Basics to Dengue and Chikungunya Diagnostics

Dengue

- Most readily available diagnostic tests: RT-PCR to detect the presence of dengue virus RNA. RT-PCR assays can provide a same-day laboratory diagnosis of dengue infection in primary and secondary patient samples and have a sensitivity similar to that of viral isolation in cell culture.

- ELISA IgM antibody detection. In primary infections, IgM to dengue virus is the first immunoglobulin to appear, by the end of the 3-5 day period of fever typical of dengue infection; levels peak at 2 weeks, and are undetectable by 2-3 mos. The kinetics is different in secondary infections (and more complicated).

Adapted from Robert Putnak Ph.D. Viral Diseases, WRAIR 2010.

* Secondary DEN infections exhibit a more rapid rise in IgG antibody shortly after infection
Chikungunya

- Rapid diagnostic test: RT-PCR to detect the presence of Chikungunya virus RNA. Viral RNA can be detected between 4 to 12 days post infection.

- ELISA IgM antibody detection. IgM antibody can be detected 4-5 days after infection to several weeks to several months.

<table>
<thead>
<tr>
<th>Test</th>
<th>Diagnostic Window</th>
<th>Sample Required¹</th>
<th>Sample Storage Conditions</th>
<th>Turnaround Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR</td>
<td>Acute phase</td>
<td>500 µL serum</td>
<td>Freeze (-80°C)</td>
<td>4 days</td>
</tr>
<tr>
<td>IgM ELISA²</td>
<td>Day 4 to ~Day 90 post-infection</td>
<td>250 µL serum</td>
<td>Frozen or refrigerated</td>
<td>4 days</td>
</tr>
</tbody>
</table>

¹ Serum obtained from non-hemolyzed whole blood collected in a SST or red-top (clot) or gold top tube.

² May not be detectable in cases of secondary DEN infection.

Requirements and Procedures

Preferable: patient blood sample in two separate red gel separator tubes (aka ‘tiger-topped’ tubes or SST).

1. Following collection, gently invert collection tubes five times.
2. Allow blood to clot for a minimum of 30 minutes in a vertical position.
3. Centrifuge at 1100 -1300 G for 10 minutes.
4. If possible, aseptically pipette off serum into separate aliquots (one for each test procedure) and put into cryovials.
5. Store in refrigerator or on ice (2-8°C) if ELISA is desired.
6. If RT-PCR is desired the serum sample should be aliquoted and stored at -80°C. If frozen, no more than one freeze-thaw is recommended as additional freeze-thaws may result in RNA degradation and lower PCR efficacy.
Basics to Rickettsial pathogen Diagnostics

Rickettsia:

- Are obligate intracellular bacteria, thus, they don’t “grow” on artificial media like agar plates. They have to be isolated from the blood/tissue specimens in lab animals, embryonated chicken eggs or tissue culture.
- Serology is used to confirm diagnosis, and is often retrospective
- Antibodies to specific rickettsial antigens are detected using indirect immunofluorescence and ELISA (doesn’t discriminate between the spotted fever group (SFG) rickettsioses though)
- SFG = R. rickettsii, conorii, slovaca, africae, etc; typhus group is distinct (R. typhi)

Tests available for the detection of Rickettsial pathogens at the NIDDL

Serology IgM

Specimens: serum or plasma

Time to result: Four days after specimens received

Molecular (standard, quantitative real-time PCR)

Specimens:

Whole blood (6 ml)(prefer without heparin as anticoagulant, do not freeze)

Biopsy specimens from eschars or rash (former are preferable as rickettsiae are more abundant; both specimens are preferable to whole blood)

Time to result: two days after specimen receipt

Requirements and Procedures

Depending on patient’s presentation, aim to submit both whole blood (purple topped-tube, do not freeze) and/or biopsy specimens from rash or eschar.

1. Label tube of blood as appropriate.
2. Obtain diagnostic biopsy by using a 2.5-6.0 mm skin punch and bisect.
3. Place specimen in a sterile piece of gauze (2 x 2 or 4 x 4) moistened with sterile non-bacteriostatic saline and place in sterile transport cup (urine cup or 50 cc test tube, etc). Keep refrigerated (4°C) or freeze (-80°C). Label appropriately

Point of Contact for any questions about testing:

LCDR Todd Myers, PhD, HCLD (ABB), MB (ASCP), USPHS,
Clinical Laboratory Director, Todd.Myers@med.navy.mil