Results of March 1998 Soil Samping NAF Atsugi, Japan

Burn British

Prepared for:

Atlantic Division
Naval Facilities Engineering Command
1510 Gilbert Street
Norfolk, Virginia 23511-2699

Department of the Navy Navy Environmental Health Center 2510 Walmer Ave. Norfolk, Virginia 23513-2617

Prepared by:

Radian International LLC 8501 No. Mopac Blvd. Austin, Texas 78759

TABLE OF CONTENTS

			'age
	EXE	CUTIVE SUMMARY	ES-1
1.0	INTR	RODUCTION	1-1
	1.1	Site Location and Description	1-1
	1.1	1.1.1 NAF Atsugi	1-1
		1.1.2 Jinkanpo Incineration Complex	1-3
	1.2	Project Objectives	1-5
	1.3	Sampling Approach and Rationale	1-7
	1.4	Report Organization	1-15
2.0	SAM	IPLING AND ANALYSES METHODOLOGY	2-1
	2.1	Sampling Procedures	2-1
		2.1.1 Lithologic Description	Z-1
		2.1.2 Sampling Equipment Decontamination	2-2
		2.1.3 Waste Management	2-2
	2.2	Shipping Procedures	2-2
	2.3	Analytical Procedures	2-3
	2.4	Data Validation Procedures	2-3
	2.5	Difficulties Encountered and Resolution	2-3
		2.5.1 Shipping	2-5
		2.5.2 Hold Times	2-5
		2.5.3 Other Difficulties	2-5
3.0	DAT	TA INTEREPRETATION	3-1
	3.1	Data Qualifiers	3-1
	3.2	Statistical Approach	3-1
		3.2.1 Reference Determination	3-2
		3.2.2 AOC Approach	3-6
		3 2 3 Trend Analysis	⋨-8
		3.2.4 Surface versus Subsurface Soil	3-10
4.0	RES	SULTS OF INVESTIGATION	4-1
	4.1	Soil Types and Geotechnical Results	4-1
	4.2	Reference Determination	4-1
	4.3	AOC and Reference Area Soil Results	4-6
		4.3.1 Child Development Center	4-7
		4 3 2 Elementary School	4-13
		4 3 3 Residential Towers	4-19

TABLE OF CONTENTS (Continued)

			Page
	434	Reference Area 2	4-25
	435	Reference Area1	4-30
	4.3.5	Evaluation of Non-Detected Compounds	4-31
11	Trend	Analysis	4-36
4.4		Evcoedences	4-36
		Distribution	4-43
	4.4.2	Distribution	
RECO	MMEN	IDATIONS AND CONCLUSIONS	5-1
5 1	Conch	usions	5-1
	Recon	omendations	5-2
J.2	11000		
NDIX A	A :	Plate-Sized Map of Sample Locations	
NDIX I	В:	Photographs of Sample Locations	
NDIX (C:	Soil Sample Summary Table	
NDIX I	D:	Data Validation Report	
NDIX I	Ē:	Boxplots, Means Comparisons, and UTL Statistics	
NDIX I	F:	Soil Results vs. RBCs	
NDIX (G:	Trend Analysis Plots	
		Analytical Results	
		Geotechnical Plots	
		Statistical Basis of Recommendations	
	5.1 5.2 NDIX I NDIX I NDIX I NDIX I NDIX I NDIX I NDIX I	4.3.5 4.3.6 4.4 Trend 4.4.1 4.4.2 RECOMMEN 5.1 Conclu	4.3.5 Reference Area1 4.3.6 Evaluation of Non-Detected Compounds 4.4 Trend Analysis 4.4.1 Exceedences 4.4.2 Distribution RECOMMENDATIONS AND CONCLUSIONS 5.1 Conclusions 5.2 Recommendations NDIX A: Plate-Sized Map of Sample Locations NDIX B: Photographs of Sample Locations NDIX C: Soil Sample Summary Table NDIX D: Data Validation Report NDIX E: Boxplots, Means Comparisons, and UTL Statistics NDIX F: Soil Results vs. RBCs NDIX G: Trend Analysis Plots NDIX H: Analytical Results NDIX I: Geotechnical Plots

LIST OF FIGURES

		Page
1-1	Location of NAF Atsugi—Central Japan	1-2
1-2	NAF Atsugi Layout	1-4
1-3	NAF Atsugi Windrose	1-6
1-4	Locations of AOCs and Reference Areas	1-8
1-5	Site Map, Child Development Center	1-9
1-6	Site Map, Elementary School	1-10
1-7	Site Map, Residential Towers	1-11
1-8	Site Map, Reference Area 1	1-12
1-9	Site Map, Reference Area 2	1-13
3-1	Boxplot Description	3-4
4-1	Boxplots for Arsenic	4-3
4-2	Boxplots for 1,2,3,46,7,8,9-OCDD	4-4
4-3	Organic Results for the Child Development Center Site	4-10
4-4	Inorganic Results for the Child Development Center Site	4-11
4-5	Organic Results for the Elementary School Site	4-16
4-6	Inorganic Results for the Elementary School Site	4-17
4-7	Organic Results for the Residential Towers Site	4-22
4-8	Inorganic Results for the Residential Towers Site	4-23
4-9	Organic Results for the Reference Area 2 Site	4-28
4-10	Inorganic Results for the Reference Area 2 Site	4-29
4-11	Organic Results for the Reference Area 1 Site	4-34

LIST OF FIGURES (Continued)

Page	
Inorganic Results for the Reference Area 1 Site	4-12
Distribution of Antimony in Surface and Subsurface Soils	4-13
Distribution of Benzo(a)anthracene in Surface and Subsurface Soils 4-47	4-14
Distribution of TEQ Calculated Dioxins in Surface and Subsurface Soils 4-48	4-15
Distribution of 1,2,3,4,6,7,8,9-OCDD in Surface and Subsurface Soils	4-16

LIST OF TABLES

		Page
1-1	Soil Samples Collected at NAF Atsugi, Japan	1-14
2-1	Analyses Performed on the March 1998 NAF Atsugi Soil Samples	2-4
3-1	Data Validation Qualifiers	3-1
3-2	Samples Included in Trend Analysis	3-9
3-3	Toxicity Equivalency Factors	3-10
4-1	Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Child Development Center	4-8
4-2	Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Child Development Center	4-9
4-3	Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Elementary School	4-14
4-4	Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Elementary School.	4-15
4-5	Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Towers Area	4-20
4-6	Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Towers Area	4-21
4-7	Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Reference Area 2	4-26
4-8	Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Reference Area 2	4-27
4-9	Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Reference Area 1	4-32
4-10	Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Reference Area 1	4-33
4-11	Trend Analysis Data Set	4-36

LIST OF TABLES (Continued)

		Page
4-12	Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Trend Analysis	4-38
4-13	Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Trend Analysis	4-40
4-14	Summary of Results—Trend Samples	4-42
4-15	Surface to Subsurface Soil Comparisons	4-43
4-16	Description of Dioxin Distributions	4-51
5-1	NAF Atsugi Soil Sampling Recommendations	5-4

LIST OF ACRONYMS

AOC Area of Concern

CINCPACFLT Commander in Chief U.S. Pacific Fleet

CLP Contract Laboratory Program
CNO Chief of Naval Operations

COMFAIRWESTPAC Commander, Fleet Air Wester Pacific COMNAVAIRPAC Commander U.S. Naval Forces, Pacific Environmental Protection Agency (EPA)

GPS Global positioning system

IOR Interquantile range

JMSDF Japanese Maritime Self Defense Force

LANTDIV LANTNAVAVENGCOM

MS Matrix spike

MSD Matrix spike duplicate NAF Naval Air Facility

NEHC Navy Environmental Health Center

OL Silt, organic

PARCC Precision, accuracy, representativeness, completeness, and comparability

criteria

PCB Polychlorinated bi-phenyls

PCDD Polychlorinated dibenzo-p-dioxin
PCDF Polychlorinated dibenzo-p-furans
POL Petroleum, oils, and lubricants
PPE Personal protective equipment
PSD Particle size distribution

OC Quality control

RBC Risk-based concentration
RBSL Risk-based screening level
SDG Sample delivery group

SVOC Semivolatile organic compound

SW Sand, well graded

TEF Toxicity equivalency factor

TEQ Toxicity equivalency
TOC Total organic carbon
UTL Upper tolerance limit

Executive Summary

Radian International, LLC performed soil sampling from 5 to 18 March 1998 at NAF Atsugi to support risk assessment activities being performed by the Navy Environmental Health Center (NEHC). A total of 102 field samples were collected from areas of concern (AOCs), potential reference (similar to "background") areas, and at individual locations across the base. Concentrated sampling was performed at the three designated AOCs, which included the Child Development Center, the Shirley Lanham Elementary School, the area surrounding Residential Housing Towers 3101 and 3102, and at the two potential reference areas located on the far western side of NAF Atsugi. Less dense sampling was performed at the 33 locations interspersed across the base. Of the 102 samples, 73 were from the surface interval (0-3 in.) and 29 were from the subsurface interval (3-12 in.).

All samples were analyzed for CLP semivolatile organic compounds (SVOCs), CLP organochlorine pesticides and polychlorinated bi-phenyls (PCBs), CLP metals (including cyanide), polychlorinated dibenzo-p-dioxins and –furans (PCDDs and PCDFs), percent moisture, and pH. A subset of the samples were analyzed for anions (chloride, fluoride, sulfate, and nitrate), total organic carbon, and particle size distribution (PSD). GP Environmental Services, Inc. performed all analyses other than those involving dioxins, which were analyzed by Triangle Laboratories, and the PSD analyses performed by Radian. Following analyses, the data for CLP and dioxin analyses were sent for validation by EcoChem Inc. None of the soil data were invalidated.

The soil sampling was intended to help address the following two questions:

- 1) What are the risks to sensitive receptors from dermal contact or incidental ingestion of soil contaminated by the Jinkanpo Incineration Complex?
- 2) What is the extent of deposition in the soil of particulates from the Jinkanpo Incineration Complex?

The soil sampling in the AOCs was meant to help address the first of these questions, and the samples collected throughout the base were intended to address the second question. The aim of the sampling performed in the potential reference areas was to collect data from areas that were unaffected, or minimally affected, by the Jinkanpo Incineration Complex or other potential contaminant sources. These data would be used to ascertain the degree of impact over "natural" conditions.

In order to focus the evaluation of the analytical results, the data were compared with; 1) risk-based screening levels (RBSLs) calculated using Environmental Protection Agency Region III risk-based concentrations (RBCs) at a hazard quotient of 0.1 (RBSLs are the RBCs for carcinogens and 1/10th the RBC for non-carcinogens), and 2) statistically derived upper tolerance limits (UTLs) and means from the reference area data.

Following are conclusions resulting from evaluation of the soil sample data:

Overall

- ➤ The March 1998 soil sampling provided data to address the two project objectives. Quality analytical data from pre-determined AOCs and across the base are now available for assessing risk and evaluating trends.
- The soil data set will allow risk assessors to determine risk to sensitive receptors in AOCs and, by evaluating the estimated analyte concentration trends across the base, qualitatively assess risks in other portions of the base.
- The unavailability of true "background" (i.e., unaffected) concentrations for soil constituents at NAF Atsugi increases the difficulty associated with the data evaluation. In lieu of background, calculations are based on comparisons to "reference" concentrations, which are from areas believed to be minimally affected by the Jinkanpo Incineration Complex and other potential contaminant sources.

> Although the data set is sufficient for assessing risks and determining analyte distribution trends across the base, additional soil data would provide increased confidence in risk determination and provide further definition of contaminant distribution patterns. Additional data would also further substantiate that the Jinkanpo Incineration Complex is the origin of some contaminants. This is particularly true for some metals and dioxins.

Trend Analysis

- > The Jinkanpo Incineration Complex appears to have affected surface (0-3 in.) and subsurface soil (3-12 in.) at NAF Atsugi.
- > Concentrations of some dioxins and metals are highest near the Jinkanpo Incineration Complex and decrease with distance from this apparent source.
- > Surface soils are generally more contaminated than subsurface soils, especially for dioxins.
- Some analyte concentrations are higher than RBSLs and reference concentrations.
- > Interpolated trend analysis data show the toxicity equivalency (TEQ) for dioxins exceeds the RBSL over the entire NAF Atsugi.
- > Detections of pesticides, PCBs, and SVOCs are random and infrequent and do not appear to be related to the Jinkanpo Incineration Complex.
- Based on predominate wind patterns and location, SVOCs detected southeast of the Jinkanpo Incineration Complex may be the result of another source.
- > The large distance between some sample locations resulted in larger interpolated areas of increased contamination than may actually be present.

Reference and AOC Investigations

- Soils from potential Reference Area 2 were deemed inappropriate for use in the reference data set, so reference UTLs were calculated only from the Reference Area 1 data.
- > The presence of contaminants at levels exceeding RBSLs in the subsurface soil and the correlation between surface and subsurface soil concentrations suggests that exclusive use of subsurface soils as a reference data set may not be appropriate (i.e., contamination, where present, usually extends below the surface, or 0-3 in. interval).
- Some compounds that are not naturally occurring appear to be ubiquitous throughout the base, so UTLs were calculated for organic as well as inorganic compounds. This allowed investigators to determine if contaminants appeared to be related to the Jinkanpo Încineration Complex or to other sources.
- > Due to low statistical power for AOC-to-reference means comparison and low statistical coverage for reference UTLs, there is uncertainty associated with the classification of some inorganic compounds as contaminates of concern for risk assessment, particularly for subsurface soil.
- The low statistical power and low statistical coverage are less likely to affect risk assessment decisions for organic compounds because these analytes would not be eliminated as constituents of concern in a risk assessment. However, the low power and coverage lead to increased uncertainty in determining whether contaminants appear to be related to the Jinkanpo Incineration Complex.

1.0 Introduction

Radian International LLC has been contracted by LANTNAVAVENGCOM (LANTDIV) to prepare this soil report for the Navy Environmental Health Center (NEHC).

This report presents the field sampling methods and analytical results for soil samples collected at Naval Air Facility (NAF) Atsugi, Japan in March 1998. The results described in this report will assist the NEHC in estimating human health risks associated with the operation of the adjacent privately owned Jinkanpo Incineration Complex, and increase the understanding of the distribution of contaminants across the base.

For discussion purposes, this report contains a comparison of the results against U.S. Environmental Protection Agency (EPA) Region III's risk-based concentrations (RBCs). For non-carcinogenic contaminants, the screening criterion for discussion purposes will be the risk-based screening level (RBSL), which is equivalent to 1/10th the RBC. This report does not present the methodology or results of risk assessment. The risk assessment is being performed concurrently and will be presented in a separate document.

1.1 Site Location and Description

Figure 1-1 presents the location of NAF Atsugi, which is located in the Kanto Plain area on the island of Honshu, Japan. Tokyo and Yokohama, two of the largest cities in Japan, as well as major U.S. military installations at Yokosuka, Yokota, and Camp Zama, lie within a 20-mile radius of the facility. The city of Ayase is positioned west of the base, and Yamato is northeast of the base. The Jinkanpo Incineration Complex is located immediately next to (primarily south of) NAF Atsugi.

1.1.1 NAF Atsugi

The mission of NAF Atsugi is to maintain and operate facilities and to provide services and material to support operations of Navy aviation activities and units of Navy operating forces and any other activities and units designated by the Chief of Naval Operations (CNO). NAF Atsugi is a fifth echelon command of CNO, who exercises command through Commander in Chief U.S. Pacific Fleet (CINCPACFLT), Commander U.S. Naval Forces, Pacific (COMNAVAIRPAC), and Commander, Fleet Air Western Pacific (COMFAIRWESTPAC).

Prior to the former Japanese Navy constructing the Atsugi Air Base in 1941, the property was farm land and pine forest. After World War II, the U.S. Army controlled the Base, and it fell into disuse until commissioned as U.S. Air Station Atsugi in 1950. Structures built by the Japanese government were renovated, and the U.S. Navy constructed many new buildings during the 1950s. In 1971, the name of the base was changed to NAF Atsugi, and the official joint use of the base with the Japanese Maritime Self Defense Force (JMSDF) began.

Figure 1-2 presents the current layout of NAF Atsugi. The base occupies approximately 1,240 acres. NAF Atsugi is generally level except for a small ravine formed by the Tade River, which runs north-south and divides the facility into east and west sectors. The residential areas are located on the southern and western portions of the base. A school and day care are located within the residential areas on the south side of the base. Recreational areas include the golf course, shooting range, and various parks and picnic areas found mostly on the western sector. The runway, aircraft maintenance, storage, petroleum, oils, and lubricants (POL), and other aviation-related activities generally occupy the eastern sector. The broad land use categories are located in well-defined areas, thus minimizing the overlap of incompatible land use.

1.1.2 Jinkanpo Incineration Complex

The Jinkanpo Incineration Complex is located in the Tade River Valley, approximately 150 meters south of the NAF Atsugi fence line. This complex is approximately 4 to 5 acres in size. NAF Atsugi surrounds the Jinkanpo Incineration Complex primarily on the north side from the northwest to the southeast, as shown in Figure 1-2. South and west of the complex is the Ayase Industrial Park.

Three incinerators are located in the Jinkanpo Incineration Complex. The facility is operated under a general industrial waste disposal license issued by the Kanagawa Prefecture. It is currently allowed to operate 24 hours per day with up to 10 tons of waste per incinerator per day. The facility has requested an increase to 30 tons per day per incinerator, for a total of 90 tons of waste to be burned per day. Each incinerator has a stack, and there is one bypass stack. The types of wastes they can burn are "uncontrolled" and may include municipal and industrial wastes, wood products, green wastes, plastics, industrial materials, construction debris, alkalines, waste oils, waste acids, and numerous other kinds of materials. Wastes are commonly on the ground being soaked with liquid wastes before burning. In addition, there are piles of fly ash visible at the complex, adding to the particulate emissions noted at the base on windy days.

Figure 1-2. NAF Atsugi Layout

The incinerators are equipped with control equipment consisting of a dry quench, an acid gas reaction chamber, an electrostatic precipitator, cyclone separators, and a wet quench scrubber. However, based on observations made, plant operation frequently bypasses the air pollution control equipment on the incinerators and discharges from the bypass stack immediately above the incinerators.

The Jinkanpo Incineration Complex plumes generally have the greatest impact on air quality at the NAF Atsugi installation during the late spring, summer, and early fall when the wind blows predominantly from the south. A wind rose is presented in Figure 1-3. Also, because of the terrain in this area, the installation is frequently fumigated. The Jinkanpo Incineration Complex is located in a small river valley, and the NAF Atsugi installation is positioned on a plateau at the end of the valley. The NAF Atsugi installation is only about 20 meters (m) higher than the base of the stacks at the Jinkanpo Incineration Complex. The valley tends to channel the wind in the direction of the NAF Atsugi installation. Housing units, commercial activities, industrial facilities, and a school and day care facility are within 1000 m of the stacks. The nearest high-rise/high-density housing unit is only 250 m away.

1.2 Project Objectives

Data quality objectives were presented in the Soil Sampling Plan to Demonstrate Health Impacts From the Jinkanpo Incineration Complex (Radian, May 1998). Soil sample results are intended to help answer the following two questions:

- 1) What are the risks to sensitive receptors from dermal contact or incidental ingestion of soil contaminated by the Jinkanpo Incineration Complex?
- 2) What is the extent of deposition in the soil of particulates from the Jinkanpo Incineration Complex?

These two questions guided the development of the soil sampling program, including the choice of sampling locations and number of soil samples collected.

Based on the anticipated human health risk assessment needs, the areas identified as likely to have been affected by Jinkanpo Incineration Complex emissions and likely to be frequented by sensitive receptors include:

- 1) Residential Towers 3101 and 3102, including the adjacent picnic and play areas;
- 2) The Child Development Center; and

Figure 1-3. NAF Atsugi Windrose

3) Shirley Lanham Elementary School.

Concentrated soil sampling was performed in each of these areas.

To assess the extent of deposition, the following two questions will be addressed in this report:

- 1) For each area of concern (AOC), are there concentrations that are significantly elevated above reference levels and/or EPA Region III risk-based screening values?
- 2) Is there a significantly decreasing trend in concentrations as the distance from the Jinkanpo Incineration Complex increases?

Reference levels for this investigation were determined from soil concentrations in areas that are less likely to have been significantly impacted by the Jinkanpo Incineration Complex. Two potential reference areas were sampled which are a fairly large distance from the Jinkanpo Incineration Complex, out of the principal wind direction, and are believed to have had minimal soil disturbance. The sampling effort was also designed to allow comparisons between surface and subsurface soil and to assess the degree to which contaminant concentrations decrease with distance and direction from the Jinkanpo Incineration Complex.

The locations of the AOCs and potential reference areas are shown on Figure 1-4. Figures 1-5 through 1-9 present site maps for each AOC and the two potential reference areas, including specific sampling locations.

Two sets of samples were collected. The first set was intended to provide information about the AOCs. The specific numbers and locations of samples collected at each AOC were a function of the precision, accuracy, representativeness, completeness, and comparability (PARCC) criteria that were presented in the sampling plan (Radian, 1998). The second set of samples was on a less dense but wider coverage to assess depositional trends away from the Jinkanpo Incineration Complex. For this effort, Radian developed and presented different PARCC criteria in the sampling plan. PARCC criteria were met for both sets of samples.

1.3 Sampling Approach and Rationale

The soil sampling approach was designed to provide data to support the two objectives of the project. Constituents of potential concern were identified in a previous screening health risk

Figure 1-5. Site Map, Child Development Center

Figure 1-6. Site Map, Elementary School

Figure 1-7. Site Map, Residential Towers

Figure 1-8. Site Map, Reference Area 1

Figure 1-9. Site Map, Reference Area 2

assessment, the Preliminary Human Health Risk Evaluation of the Jinkanpo Incineration Complex Activities (NEHC, 1995), and formed the basis for the soil sample analytical program.

The soil sampling event described in this report focused on the previously listed three sensitive receptor AOCs, two potential reference areas, and multiple locations for defining the deposition trends of airborne contaminants across the base. Table 1-1 provides a breakout of the number of samples collected.

Table 1-1
Soil Samples Collected at NAF Atsugi, Japan

Sample Area	Surface Soil Samples	Subsurface Soil Samples	Total Field Samples
Specified Areas of Concern	Башрісь	Bampies	Sumples
Child Development Center	8	4	12
Elementary School	8	4	12
Residential Housing Towers 3101 and 3102	12	4	16
Dispersion Trend Locations			
Ambient Air Monitoring Stations	3	3	6
Basewide	30	8	38
Potential Reference Locations (2)	12	6	18
Total Field Samples			102
Quality Control (QC) Samples ^a			
Field duplicates			11
Equipment Rinsates			11
Matrix Spikes (MS)			5
Matrix Spike Duplicates (MSD)			5
Field Blanks			1
Total QC Samples			33
Total Samples			135

^a QC samples include approximately 10% field duplicates, 5% matrix spike (MS), 5% matrix spike duplicates (MSDs) (or 1 MS/MSD pair per twenty samples), one equipment blank per day, and one field blank.

During the sampling at the AOCs, eight surface soil (0 to 3 in.) samples were collected at the child development center and at the elementary school areas, and twelve surface soil samples were collected within the larger housing tower area. Four subsurface soil samples (3 to 12 in.), co-located with four of the surface samples, were also collected at each of the AOCs. Approximately half of the samples at each of these areas were collected at locations where people normally cluster, such as at the associated playground, outdoor eating, or common areas. The remaining samples were collected from areas where maximum deposition is expected and/or minimal soil disturbance has occurred. The NEHC is using the data from these samples to calculate risks at the AOCs. Additionally, the subsurface soil data will be examined for sig-

nificant differences in comparison to the surface samples for evaluation of surficial accumulation of airborne contaminants.

Sampling at each of the two potential reference areas consisted of collecting six surface and three subsurface samples. Representative data from these samples were used to make site-to-reference constituent comparisons.

To determine the deposition trends across NAF Atsugi, the base was divided into areas defined by seven radii starting at the Jinkanpo Incineration Complex and extending to the north, with transects at arbitrary distances of less than 300 m, 300 m to 800 m, 800 m to 1500 m, and greater than 1500 m from the complex. For trend analysis purposes, samples were collected from locations where the soil had not been recently disturbed (e.g., construction activities). Also, samples were collected from areas of potential sediment accumulation, areas of observed vegetation stress, and areas lacking evidence of erosion or ground cover, where possible. Sample locations were staked on a previous site visit (January 1998), on the basis of site characteristics and personnel interviews.

1.4 Report Organization

Section 1 has introduced the project and the rationale used to guide the soil sampling effort. Section 2 will present an overview of the sampling and analysis methodology and will describe difficulties encountered during the investigation. Section 3 will describe the data review and interpretation process. All findings will be summarized and presented graphically in Section 4. Section 5 will present conclusions and recommendations for further soil sampling.

2.0 Sampling and Analyses Methodology

Between 5 and 18 March 1998, 102 samples were collected from the surface and subsurface soils at NAF Atsugi. A plate-sized map showing all soil sample locations is provided in Appendix A, and photographs and descriptions of each sample location are presented in Appendix B. Appendix C contains of a table describing the soil sample ID, sample depth, soil type, and location coordinates for each sample. The following subsections describe the sampling, shipping, analytical, and data validation procedures used.

2.1 Sampling Procedures

Surface (0 to 3 in.) and subsurface (3 to 12 in.) soil samples were collected according to the following procedures:

- 1. The sample location surface was cleared of grass, rubble, and debris with a decontaminated trowel.
- 2a. For surface soil samples, a decontaminated stainless steel spoon was used to collect a sample from the 0 to 3 in. depth. To minimize disturbance of the sample, the sample was placed directly into the sample jars without mixing in a bowl. If the sample location required quality control (QC) splits, the proper volume of soil was collected to fill all sample containers, mixed in a decontaminated stainless steel bowl, and composited before placement into sample containers.
- 2b. For subsurface soil samples, a decontaminated stainless steel spoon was used to collect soil from the 3 to 12 in. interval. The proper amount of soil was collected to fill all required sample containers, including QC splits. The sample was mixed in a decontaminated, stainless steel bowl and placed into the sample containers.
- 3. Once all soil samples were placed in containers, the hole was backfilled using the remaining sample material and the surrounding soils.
- 4. Once sample labels were affixed to the containers, the samples were packed on ice to minimize biological activity and preserve the samples.
- 5. The sample tools were decontaminated as described in Section 2.1.2.

2.1.1 Lithologic Description

Soils from each sample location and interval were described using the Unified Soils Classification System (ASTM Designation D 2488-84: Standard Practice for Description and Identification of Soils [Visual-Manual Procedure]), a hand lens, and a Muncell color chart.

Several soil samples were also analyzed in the laboratory for ASTM D421/D422/D1140, Particle Size Distribution, and the results compared with the field classifications.

2.1.2 Sampling Equipment Decontamination

The decontamination (decon) procedure was performed immediately before each sample was collected. The procedure was also performed between co-located surface and subsurface samples to prevent cross-contamination from the surface to subsurface soil sample. The decon procedure was performed as follows:

- 1. Alconox wash using a decontaminated bucket and brushes;
- 2. Distilled water rinse, also using a decontaminated bucket and brushes;
- 3. Thorough reagent-grade water rinse; and
- 4. Air dry in an area that is free from obvious air contamination.

2.1.3 Waste Management

The only wastes that were generated during the field investigation were personal protective equipment (PPE) and decontamination fluids. PPE and other similar disposable items (e.g., paper towels) were placed in plastic trash bags and disposed with common trash at a NAF Atsugi trash collection bin.

2.2 Shipping Procedures

The shipping of samples from Japan to the United States required considerably more effort than intra-U.S. sampling requires. Fortunately, Federal Express was available at NAF Atsugi, which helped a great deal, and no major problems were encountered.

Two types of documentation were required in addition to the Federal Express international shipping waybill. The first of these was a U.S. Department of Agriculture Soil Permit. Copies of this permit (the original held by the laboratory) were provided by each of the environmental laboratories. The permits are required to alert customs officials that the soil being shipped to the laboratory is for environmental analysis and not for agricultural purposes (the concern being that pests or unwanted plants may be accidentally imported to the U.S.). A small copy was taped to the outside of each sample cooler, and an 8.5 x 11 in. copy was placed inside the cooler with the laboratory chain of custody. These copies are lab-specific; each laboratory had their own soil permit.

The second type of documentation was the customs declaration form. This form described exactly what was being shipped, what the item was for, where it came from, and its monetary value in U.S. dollars. The samples were given an arbitrary value of \$1 each, and a statement was added to say that the samples were being shipped from Japan to the United States for environmental analysis. Five copies of this form were required and submitted to Federal Express along with the waybill.

2.3 Analytical Methods

Table 2-1 presents the area-by-area distribution of the various analyses performed on NAF Atsugi surface and subsurface soil (excluding QC) samples. GP Environmental Services, Inc. of Gaithersburg, Maryland performed all analyses other than those involving dioxins, which were analyzed by Triangle Laboratories of Durham, North Carolina.

2.4 Data Validation Procedures

The soil data for pesticides and polychlorinated bi-phenyls (PCBs), semivolatile organic compounds (SVOCs), and dioxins and furans were validated according to the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, September 1994, as modified by EPA Region III, and the metals and cyanide data were validated according to the Region III Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analysis, April 1993. The data validation contractor was EcoChem Inc., Seattle, Washington. The data validation report is presented as Appendix D.

Overall, the data were within acceptance criteria and were fit for use. One systematic problem was noticed. The equipment blank samples for the pesticide/PCB and SVOC analyses were extracted outside of hold time for more than one sample delivery group (SDG). The samples were qualified as biased low. A number of dioxin and furan results were qualified as estimated because the concentrations in the sample were below the lowest calibration standard. This is not considered a systematic problem, but is presented for clarity.

2.5 Difficulties Encountered and Resolution

Various minor difficulties were encountered during the field program, most relating to the long distance between the site and the laboratories. Following is a discussion of these difficulties and their resolution.

Table 2-1
Analyses Performed on the March 1998 NAF Atsugi Soil Samples

	Distribution				1									
	ASTM D421/D422/D1140, Particle Size	-	0	2	0	7	0		٥	0		5	-	13
	E300.0/E353.1, Anions (F, Cl, NO ₃ , SO ₄)	1	0	2	0	2	0	9	3	0	1	5	1	21
	EPA Region III Mod. Method, Total Organic Carbon	1	0	2	0	2	0	6	3	0	1	5	1	21
	Hq lio2 ,82406W2	8	4	8	4	12	4	9	3	9	3	33	11	102
Analyses	CLP, % Moisture	8	4	8	4	12	4	. 9	3	9	3	33	11	102
Ana	SW8290, Polychlorinated Dibenzo-p-Dioxins and Furans	8	4	8	4	12	4	9	3	9	3	33	11	102
	L.M04.4, Metals and Cyanide	8	4	00	4	12	4	9	3	9	3	33	11	102
	OLM03.2, Organochlorine Pesticides and PCBs	∞	4	∞	4	12	4	9	3	9	3	33	11	102
	OLM03.2, Semivolatile Organic Compounds	œ	4	∞	4	12	4	9	3	9	3	33	11	100
	Type of Soil Sample	Surface	Subsurface	Surface	Subsurface	Surface	Subsurface	Surface	Subsurface	Surface	Subsurface	Surface	Subsurface	
	Area		Child Development Center		Elementary School		Residential Towers		Reference Area I		Reference Area 2		Trend Locations	Total

Surface - 0-3 in.

Subsurface – 3-12 in.

2.5.1 Shipping

Sample coolers had to contain fewer samples and more ice than usual to keep them cool for the long trip to the U.S. This required considerably longer sample preparation time. However, all coolers arrived within the temperature parameters assigned to the methods.

The Federal Express employee who picked up sample coolers at NAF Atsugi did not speak English. Since the sample crew did not speak Japanese, additional phone calls and tracking were necessary to ensure that the shipments arrived properly.

The hexane (to be used in the final step of decontamination) was lost en route from the U.S. to Japan. Calls to Federal Express revealed that the hexane arrived in Hong Kong, but was tied up in customs and could not be exported from Hong Kong. Therefore, this final step of the decontamination was omitted. Equipment blank data subsequently revealed that the omission of hexane did not cause significant carry-over problems.

2.5.2 Hold Times

Hold times were missed for a number of equipment blanks for SVOC and pesticide/PCB analysis. Additionally, hold times were missed for one SDG for SVOC analysis. Samples NA-TRND-SO01-01 through NA-TRND-SO15-01 were extracted five to eight days past the recommended holding time of 14 days. The equipment blanks will continue to be a problem because of the short hold time and the long shipping period. Since no target analytes were qualified based upon equipment blank data (even those extracted within hold times), it is recommended that equipment blanks not be collected during any subsequent soil sampling. To minimize the potential for equipment-related contamination, disposable sampling materials could be used. As for the samples extracted past hold times, the laboratory has been counseled that this was unacceptable.

2.5.3 Other Difficulties

The weather caused significant delays in the sampling trip. It snows or rains an average of 21 days in March in central Honshu. Both rain and snow events occurred at NAF Atsugi during the sampling event. Four sampling days were missed due to precipitation as the sampling team waited for conditions to dry before collecting samples.

Although field plotting of sample locations onto 1"=100' basemaps provided a high degree of accuracy [normally within 5 ft, which is better than most global positioning systems (GPS)], plotting the sample locations near the runway was difficult because there were few surface features, such as buildings or markers, to serve as reference points. However, considering the data quality objectives for the trend analysis, delineating these sample locations to within approximately 20 ft was considered more than adequate. Also, no professional surveying capabilities were identified at NAF Atsugi.

The language barrier provided minor difficulties throughout the sampling period. However, most personnel at NAF Atsugi spoke English.

3.0 Data Interpretation

This section presents the procedures used to interpret the data collected for the NAF Atsugi soil program.

3.1 Data Qualifiers

Table 3-1 presents the qualifiers applied to the laboratory data. EcoChem Inc., the data validation contractor, qualified the data according to the National Functional Guidelines. None of the data were invalidated.

Table 3-1
Data Validation Qualifiers

Data Qualifier	Explanation
В	Not detected substantially above the level reported in laboratory or field blanks.
J	Analyte present. Reported value may not be accurate or precise.
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.
UJ	Not detected, quantitation limit may be inaccurate or imprecise.
UL	Not detected, quantitation limit is probably higher.

3.2 Statistical Approach

This section describes the statistical evaluation of the data collected during the March 1998 soil investigation at NAF Atsugi. Four steps were performed to help address the project objectives and to gain preliminary answers to the investigation questions (see Section 1.2), and to determine the amounts and types of additional soil data required to more completely address the questions. The four steps are as follows:

- Determine whether reference concentrations can be established based on data collected during the March 1998 sampling round. Compute preliminary reference summary statistics and identify additional sampling needs to refine the reference concentration estimates.
- 2) For each AOC, determine whether any sample concentrations exceeded risk-based screening levels and/or reference concentrations. Compute preliminary summary statistics and identify any further sampling needs to better estimate risk at each AOC.

- 3) Determine whether any trends in soil concentrations are evident. Specifically, address whether concentrations are a function of distance and direction from the Jinkanpo Incineration Complex. Identify any additional sampling needs for the trend analysis.
- 4) Compare surface soil concentrations to subsurface soil concentrations to determine whether subsurface soil may be a useful indicator of reference concentrations and to assess whether trends in the surface soil are consistent with trends in the subsurface soil.

Section 3.2.1 discusses the statistical methodology applied to the reference data, Section 3.2.2 discusses the statistical evaluation of soil data at the AOCs, Section 3.2.3 discusses the graphical and statistical trend analysis methods, and Section 3.2.4 presents the methods used to evaluate whether surface and subsurface soil concentrations differ.

3.2.1 Reference Determination

Samples were collected from two areas thought to be minimally impacted by the operation of the Jinkanpo Incineration Complex. These two areas are labeled "Reference Area 1" and "Reference Area 2" on Figure 1-4, with exact sampling locations indicated on Figures 1-8 and 1-9. Reference Area 1 samples were taken from the western boundary of NAF Atsugi, just across from the ball fields located near Ranger Gym. Reference Area 2 samples were taken from the southwestern corner of the NAF Atsugi. From Figure 1-4, notice that Reference Area 1 is farther away from the Jinkanpo Incineration Complex than Reference Area 2. Graphical displays, outlier evaluations, and means comparisons were performed to determine whether one or both of these areas were minimally affected by the Jinkanpo Incineration Complex.

Graphical Analysis and Outlier Evaluation

Boxplots were constructed in order to graphically compare concentrations at the two potential reference areas to one another and to compare concentrations at these potential reference areas to concentrations at other sampling locations across the base. Separate boxplots were drawn for each analyte, for each of the following twelve groups of data:

- Reference Area 1, Surface and Subsurface
- Reference Area 2, Surface and Subsurface
- > Child Development Center, Surface and Subsurface
- Elementary School, Surface and Subsurface

- Residential Towers, Surface and Subsurface
- Basewide Trend Samples, Surface and Subsurface

The twelve boxes were displayed side-by-side for a given analyte. Because some of the basewide trend sample concentrations were so large that the variability among the other datasets could not be distinguished with the basewide trend data included, a second set of boxplots also was constructed, with the basewide trend samples omitted.

Boxplots are useful graphical data displays because they illustrate the key features of the data and allow for quick comparisons among groups of data. An example boxplot is shown in Figure 3-1. For a given data set, the lower bound of each box is drawn at the 25th percentile and the upper bound is drawn at the 75th percentile, so that the middle 50% of the concentrations are contained within the range indicated by the length of the box. The distance from the 25th percentile to the 75th percentile is referred to as the interquartile range (IQR). A horizontal line drawn in the interior of each box represents the median (50th percentile) concentration. The "whiskers" extending from either end of the box represent the bottom 25% of the concentrations and the top 25% of the concentrations. The bottom whisker extends from the bottom of the box to the smallest result that is within 1.5 times the IQR below the bottom of the box. Any result smaller than the 25th percentile minus 1.5 times the IQR is considered a potential "outlier" and is indicated in the plot by an asterisk. The top whisker extends from the top of the box to the largest result that is within 1.5 times the IQR above the top of the box. Any result larger than the 75th percentile plus 1.5 times the IQR is considered a potential "outlier" and is indicated in the plot by an asterisk.

Key boxplots are shown in Section 4.2, where the results and conclusions of the reference determination are discussed. The remaining plots are provided in Appendix E. These plots were studied in order to visually assess whether the two potential reference areas differed from each other or from potentially affected locations across the base. The boxplots also were useful in identifying anomalous data values (outliers). In the context of defining reference areas, identifying outliers is important because an anomalously large concentration in a potential reference area could indicate that at least one location within the area has been affected, and it may not be appropriate to consider the area as a reference area.

Means Comparisons

In addition to visual comparisons and outlier evaluations facilitated by the boxplots, statistical means comparisons were performed for each constituent. The surface soil means

Figure 3-1. Boxplot Description

for Reference Area 1 were compared to the surface soil means for Reference Area 2. and the subsurface soil means for Reference Area 1 were compared to the subsurface soil means for Reference Area 2.

Before performing means comparisons, statistical assumptions were checked. The data were evaluated with the Shapiro-Wilk test to determine if the data sets were normally distributed, log-normally distributed, or neither. Conclusions of this test were used to determine an appropriate method for comparing potentially affected area results to reference results. An alpha level of 0.05 was used to determine significance for the test of normality and log-normality.

For a given constituent and depth, if the Shapiro-Wilk tests for normality for both potential reference areas indicated that the data were reasonably consistent with a normal distribution, the parametric Student's t-test was used to compare means. If the tests for normality indicated that the data for either of the two potential reference areas were not consistent with a normal distribution, the Shapiro-Wilk test was performed on the logs of the data to test for lognormality. If this test for both the potential reference areas indicated that the data were consistent with a log-normal distribution for both reference areas, the parametric Student's t-test was used to compare means of the log-transformed data. Otherwise, the non-parametric Wilcoxon Rank-Sum test was used to compare central tendencies.

The parametric t-test is preferable to the non-parametric Wilcoxon test because it can achieve higher power and confidence with fewer samples. However, for small sample sizes (less than 30), the parametric test should not be used if the basic assumption of normality is not met. The Wilcoxon Rank-Sum test compares the central tendency of the two potential reference areas by comparing the average rank for Reference Area 1 to the average rank for Reference Area 2. This test was performed by first combining the Reference Area 1 and the Reference Area 2 data sets for the given constituent and depth. The complete set of concentrations was then sorted in increasing order. The rank of a value was its position in the combined data set (lowest = 1, second-lowest = 2, etc.). The average rank for the values corresponding to the Reference Area 1 data was then compared to the average rank for the Reference Area 2 data. If the second was measurably larger or smaller than the first according to the non-parametric test, then one would conclude that concentrations tend to be higher or lower at Reference Area 1 than at Reference Area 2. Thus, the comparison was made based on the ranks of the data, and it was not necessary for the concentrations of the two areas to follow the same distribution (as is the case for parametric procedures).

An alpha level of 0.05 was used to determine significance for all statistical tests, and a two-tailed approach was used. That is, the two means were assumed to be equal unless the data provided "strong" evidence that this was not a reasonable assumption, where strong evidence is defined as an absolute difference that has less than a 5% chance of having been obtained just due to chance alone. The results of the means comparisons are presented in Section 4.2. The means comparisons and the graphical evaluations were considered together to draw conclusions about the reference areas. These conclusions also are presented in Section 4.2.

3.2.2 AOC Approach

Ultimately risk may be assessed at each AOC, and the soil data will be included in the assessment process. For this stage of the data evaluation, comparisons to reference and risk-based concentrations were performed for each AOC to gain information about potential contaminants at each AOC and to determine whether any additional data should be collected to support a risk assessment.

Comparisons to Risk-Based Concentrations

For each AOC, concentrations of Contract Laboratory Program (CLP) target compounds were compared to human health RBSLs for residential soils. The RBSLs were derived from EPA Region III RBCs for residential soils (April 15, 1998 update) and a hazard quotient of 0.1. Therefore, RBSLs are EPA Region III residential soil RBCs for carcinogenic compounds, and RBCs divided by a factor of 10 for non-carcinogenic compounds. A complete tabulation of the soil sample results versus the industrial and residential RBCs is presented in Appendix F and the comparisons are summarized in Section 4.

Comparisons to Reference Concentrations

In addition to comparing soil concentrations to RBSLs, comparisons between concentrations observed at each AOC and the reference concentrations were performed. Two types of statistical comparisons were used to compare AOC results to reference results. Tests of central tendency (means comparisons) were used to determine whether average site concentrations were greater than average reference concentrations. In addition, individual site results were compared to 95%/95% upper tolerance limits (UTLs) for reference.

The means comparisons were performed after first testing the statistical distribution. As described above in Section 3.2.1, for a given constituent and depth, the parametric Student's ttest was used to compare means if the Shapiro-Wilk tests for both the AOC and the reference area indicated that the data were consistent with a normal distribution. The parametric Student's

t-test was used to compare means of the log data if the Shapiro-Wilk tests for both the AOC and the reference area indicated that the data were consistent with a log-normal distribution.

Otherwise, the non-parametric Wilcoxon Rank-Sum test was used to compare central tendencies.

An alpha level of 0.05 was used to determine significance for the comparisons, and a one-tailed test was applied. That is, the AOC mean was assumed to be no greater than the reference mean unless the data provided "strong" evidence that this was not a reasonable assumption, where strong evidence is defined as a difference (in the direction of an AOC mean greater than a reference mean) that has less than a 5% chance of having been obtained by random chance.

Along with the means comparison, a power analysis was performed. With any statistical test, there is some chance that an incorrect conclusion may be drawn. In particular, strong evidence that the AOC mean really exceeds the reference mean is required before that conclusion is drawn with statistical significance. There is some chance that the AOC mean exceeds the reference mean by some small amount, but the data may not provide evidence that is considered sufficiently strong by the statistical test. Thus, the test may erroneously lead to the conclusion that there is no difference. The power of a means comparison is defined as the probability that the statistical test will lead to the correct conclusion if the AOC mean really exceeds the reference mean by some given amount.

Power is a function of the sample size, the variability in the data, and the amount by which the AOC mean really exceeds the reference mean. Intuitively, the larger the sample size, the less the variability, and the greater the difference between the two means, the better the chance to reach the correct conclusion. For this study, the power to achieve a difference of 50% was computed for each AOC, constituent and depth. These results were examined to determine whether more reference and/or AOC data were required.

In addition to comparing the mean, which represents the average or typical exposure at an AOC, it is important not to overlook cases in which one AOC concentration is appreciably different from reference concentrations. When this occurs, comparison of this single anomalous result to a reference UTL offers an approach for evaluating it separately and, for example, deciding if that location should be investigated in greater detail. The reference UTL represents an upper limit for background concentrations. Specifically, a parametric (normal or log-normal) UTL is a 95% upper confidence limit for the 95th percentile of all reference concentrations. That is, one can be 95% certain that 95% of all reference concentrations are below that point. A non-parametric UTL has the same interpretation but the coverage (i.e., the percentile) is a function of

the sample size. If an AOC sample concentration exceeds the reference UTL, then it could be simply an unusually large concentration from an area that is equivalent to the reference area. However, because that is very unlikely, an exceedence is taken as evidence that the location is significantly different than the reference area (possibly due to a contaminant source).

UTLs for the reference area were calculated using the equation for normally distributed data for those compounds where the Shapiro-Wilk test for normality indicated that the reference data were reasonably consistent with a normal distribution. The normal UTL was calculated using the following equation:

$$UTL = \overline{x} + (K \times s)$$

where \bar{x} is the estimated sample mean, K is the tolerance factor, and s is the estimated sample standard deviation. Normal UTLs were calculated for a coverage of 95% (i.e., the 95th percentile) with 95% confidence. For compounds that were found to be inconsistent with a normal distribution but were consistent with a log-normal distribution, a log-normal UTL was calculated using the following equation:

$$UTL = \exp \left[x + (K \times s) \right]$$

where \bar{x} is the estimated mean of the log-transformed sample data, K is the tolerance factor, and s is the estimated standard deviation of the log-transformed sample data. Log-normal UTLs were calculated for a coverage of 95% with 95% confidence.

For data sets that are neither normally nor log-normally distributed, non-parametric UTLs were calculated. The non-parametric UTL is simply the maximum reported value (if the sample size is less than 60). However, coverage for non-parametric UTLs is a function of the sample size and may be less than the coverage of 95% used for the normal or log-normal UTLs.

3.2.3 Trend Analysis

Sample results corresponding to the locations listed in Table 3-2 were included in the trend analysis. This list is comprised of all of the samples that were collected across the NAF, except for those AOC samples taken from areas where the soil is likely to have been disturbed (i.e., imported, recently altered). For example, in the Child Development Center, data were collected from areas such as the sandbox, where the material is replaced periodically. In such areas, less air-borne deposition is expected, and including those samples in the trend analysis may misrepresent the pattern of deposition from the Jinkanpo Incineration Complex.

Table 3-2
Samples Included in Trend Analysis

Area	Samples Included in	Trend Analysis
Child Development Center	DVCT-SO08	
Elementary School	ELEM-SO03	ELEM-SO07
	ELEM-SO04	ELEM-SO08
Reference Area 1	REF1-SO01	REF1-SO04
	REF1-SO02	REF1-SO05
	REF1-SO03	REF1-SO06
Reference Area 2	REF2-SO01	REF2-SO04
	REF2-SO02	REF2-SO05
	REF2-SO03	REF2-SO06
Residential Towers	TOWR-SO01	TOWR-SO03
	TOWR-SO02	
Basewide Trend Samples	TRND-SO01	TRND-SO18
	TRND-SO02	TRND-SO19
	TRND-SO03	TRND-SO20
	TRND-SO04	TRND-SO21
	TRND-SO05	TRND-SO22
	TRND-SO06	TRND-SO23
	TRND-SO07	TRND-SO24
	TRND-SO08	TRND-SO25
	TRND-SO09	TRND-SO26
	TRND-SO10	TRND-SO27
	TRND-SO11	TRND-SO28
	TRND-SO12	TRND-SO29
	TRND-SO13	TRND-SO30
	TRND-SO14	TRND-SO31
	TRND-SO15	TRND-SO32
	TRND-SO16	TRND-SO33
	TRND-SO17	

For each CLP compound where at least one sample concentration exceeded the RBSL, spatial maps of concentrations were constructed and evaluated to assess whether potential soil contamination appears to be related with respect to direction and distance from the Jinkanpo Incineration Complex. Based on measured concentrations at sampled locations, concentrations at unsampled locations were interpolated for surface and subsurface soil (separately). For each constituent and depth, a separate distribution map was constructed. Light shading indicates the lowest observed concentrations for a given depth and analyte, and dark shading indicates the higher concentrations. On each map contour lines are overlain, indicating where concentrations exceed RBSLs. Splus[®] software was used to generate the spatial distribution maps.

In addition to performing trend analysis for every CLP compound where at least one sample result exceeded the RBSL, a toxicity equivalency (TEQ) was computed to describe the cumulative toxicity of the mixture of multiple (17) congeners with dioxin-like toxicity. Concentrations of each of seventeen congeners was multiplied by the conventionally-adopted toxicity equivalency factor (TEF) (U.S. EPA, 1989, Ahlborg, et.al., 1994) shown in Table 3-3. The sum of the weighted concentrations is the TEQ value. For risk evaluation purposes, this value can be compared to the RBSL for 2,3,7,8-TCDD. Spatial maps for TEQ were constructed along with the spatial maps for the CLP compounds. The maps were studied to assess whether contamination patterns appear to be related to the Jinkanpo Incineration Complex and to identify whether any additional data should be collected to study soil deposition. Key maps and the results of this evaluation are shown in Section 4.4.2. Spatial distribution maps for all other compounds are provided in Appendix G.

Table 3-3
Toxicity Equivalency Factors

Class	Congener	Toxic Equivalency Factor
CDDs	2,3,7,8-TCDD	1.0
	1,2,3,7,8-PCDD	0.5
	1,2,3,4,7,8-HxCDD	0.1
	1,2,3,6,7,8-HxCDD	0.1
	1,2,3,7,8,9-HxCDD	0.1
	1,2,3,4,7,8,9-HpCDD	0.01
	OCDD	0.001
CDFs	2,3,7,8-TCDF	0.1
	1,2,3,7,8-PCDF	0.05
	2,3,4,7,8-PCDF	0.5
	1,2,3,4,7,8-HxCDF	0.1
,	1,2,3,6,7,8-HxCDF	0.1
	1,2,3,7,8,9-HxCDF	0.1
	2,3,4,6,7,8-HxCDF	0.1
	1,2,3,4,6,7,8-HpCDF	0.01
	1,2,3,4,7,8,9-HpCDF	0.01
	OCDF	0.001

3.2.4 Surface versus Subsurface Soil

Both surface and subsurface soil samples were collected across the base. Within each AOC, qualitative comparisons between the concentrations at the two depths were performed to gain a preliminary understanding of variation with depth. Similarly, the spatial pattern of con-

centrations in the surface and subsurface soil were compared qualitatively to evaluate the depth of potential contamination.

Additionally, investigators were interested in determining whether concentrations in the subsurface soil could be used as reference concentrations for evaluating whether the surface soil had been affected. The rationale behind this question was that deposition from the Jinkanpo Incineration Complex may have only affected the surface soil or minimally affected subsurface soils. Thus, concentrations in the subsurface soil may represent naturally-occurring concentrations or concentrations due to sources other than the Jinkanpo Incineration Complex.

The qualitative comparisons between the spatial maps for surface and subsurface soil provided one method for addressing this question. Specifically, if a strong trend in concentrations away from the Jinkanpo Incineration Complex had been observed in the surface soil, but no trends were observed in the subsurface soil, then this may have provided some evidence to support the use of subsurface concentrations as reference.

In addition to the comparisons of the trend maps for the two depths, direct comparisons were made between the surface and subsurface concentrations for cases where samples were collected from both depths at a single location. For each CLP compound, a scatterplot of the surface concentrations versus the subsurface concentrations was constructed to assess the relationship (contained in Appendix E). Only the samples that are listed in Table 3-2 were included in this evaluation because the relationship between surface and subsurface concentrations for samples taken from areas such as the playground sandboxes would likely differ from the relationship at areas where the surface soil is not frequently disturbed or replaced. The results of this analysis are presented in Section 4.5.

4.0 Results of Investigation

This section provides the results for all geotechnical and analytical results for soil samples collected at NAF Atsugi. Analytical results are presented by contaminant class and depth, in sections that correspond to AOCs and potential reference areas. The results of the trend analysis are also discussed. The analytical results for all soil samples are contained in Appendix H.

4.1 Soil Types and Geotechnical Results

There were primarily two soils types encountered during sampling at NAF Atsugi. In undisturbed areas, the soil was typically described as a very dark brown (Munsull color 10YR2/2) to black (10YR2/1) organic silt (OL). In play areas which contained imported materials, the soil was typically described as an olive brown (2.5YR4/3) to dark olive gray (5Y3/2) sand (SW). The silt varied in organic content (typically plant material in various stages of decomposition), was in some instances similar to peat, and typically had less than 20% clay composition. The sand was poorly sorted and mainly medium grained.

In general, there were no significant variations in soil type encountered in the upper 12 in. Exceptions to this were locations where imported sand was sampled in the upper 3 in. and the deeper, subsurface sample (3-12 in.) was collected in the native organic silt. Thus, when comparing constituent results from surface and subsurface intervals, it is unlikely that variations are significantly influenced by soil type. This is especially true for the two potential reference areas and the basewide trend locations, where there were no samples collected in play areas with imported sand.

The results of the geotechnical analyses are provided in Appendix I. There were 13 field and 2 duplicate samples collected for particle size analyses by ASTM D421/D422/ D1140 methodology. Eleven of these were surface soils, and two were from the subsurface interval. In general, the particle size and hydrometer analyses resulted in a higher percentage of sand-sized particles than the field-described silts. This could be the result of an often-encountered thin sand cover (especially in play areas) being mixed in with the native soil, or the organic content of the silt being sieved out in the sand fraction.

4.2 Reference Determination

Section 3.2.1 explains the details of the graphical and statistical methodology used to evaluate whether one or both of the potential reference areas appears to be minimally affected by the

by the Jinkanpo Incineration Complex. This section presents the results of the evaluation. In general, the graphical evaluations and means comparisons showed that the concentrations of target compounds found at Reference Area 1 were, on average, lower than those found in the soils from Reference Area 2. Therefore, only Reference Area 1 data were used to generate reference soil UTLs for surface soils and subsurface soils. The following discussion provides the details justifying this decision.

Figures 4-1 and 4-2 show the boxplots for arsenic and 1,2,3,4,6,7,8,9-OCDD, respectively. These compounds were selected because they are representative of the general patterns observed for most CLP compounds. Boxplots for the remaining inorganic and semivolatile compounds and dioxins are included in Appendix E. No boxplots for pesticides are included because pesticide concentrations did not exceed RBSLs.

Note in Figures 4-1 and 4-2 that all concentrations observed in the two potential reference areas are substantially lower than the largest concentrations observed across the entire base. In general, the largest concentrations of contaminants were seen in the immediate proximity of the Jinkanpo Incineration Complex at locations that were sampled specifically for the trend analysis. These locations are discussed further in Section 4.4. In general, the presence of elevated concentrations in samples collected near the Jinkanpo Incineration Complex suggests that the soil in the area has been affected. Although it is impossible to conclude that the two potential reference areas have not been affected by the Jinkanpo Incineration Complex, the fact that all reference concentrations are so much lower (see boxplots in Appendix E) than the most highly affected areas suggests that the reference areas have been affected to a smaller degree than other areas sampled at the base.

In Figures 4-1 and 4-2, the second set of boxplots show the reference area concentrations and the AOC concentrations only. These boxplots with the trend samples omitted allow for a better comparison of concentrations between the two potential reference areas and among the reference areas and the AOCs. Note that the boxplots for Reference Area 2 are, in general, shifted above the boxplots for Reference Area 1. In fact, for aluminum, the Reference Area 2 boxplots are shifted above the boxplots for most of the AOCs. While these observations do not prove that concentrations at Reference Area 2 are not naturally occurring or are due to causes other than the Jinkanpo Incineration Complex, they do bring up questions concerning the validity of the use of Reference Area 2 to establish reference concentrations.

Figure 4-1. Boxplots for Arsenic

The results of the means comparisons between the two areas are tabulated in Appendix E. Reference Area 2 surface soil means were significantly higher than Reference Area 1 means for the following compounds: 1,2,3,7,8,9-HxCDD, aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, manganese, vanadium and zinc. Reference Area 1 surface soil means significantly exceeded Reference Area 2 means only for the following compounds: calcium, magnesium and sodium. For the remaining analytes in the surface soil and for all analytes in the subsurface soil, a significant difference was not found. However, in most cases where a significant difference was not found, the average concentration at Reference Area 2 exceeded the average concentration at Reference Area 1. For subsurface soil in particular, the lack of statistical significance is most likely due to low power. (Power is the likelihood that a statistically significant difference will be found if a difference really is present.) In general, the means comparisons suggest that Reference Area 2 concentrations are, on average, higher than Reference Area 1 concentrations.

In conclusion, it appears more likely that Reference Area 2 has been affected by the Jinkanpo Incineration Complex, or other sources, than Reference Area 1. Furthermore, the statistical comparisons indicate that combining the concentrations across the two areas to establish reference concentrations would involve combining data across two statistically distinct populations, but would require treating the data as if they came from a single population. To avoid such problems and to establish conservative reference concentrations, reference statistics were computed based on Reference Area 1 data only.

The UTLs are tabulated in Appendix E. For subsurface soils, only three sample results were available. Because no tests for normality or log-normality could be performed with only three data values, non-parametric UTLs were computed in every case. That is, the largest observed concentration was taken as the UTL. With only three data values, the largest concentration is likely to underestimate the upper extremes of reference concentrations. At the 95% confidence level, coverage of a non-parametric UTL based on three data values is only 37%. That is, one can be 95% certain that at least 37% of all reference concentrations fall below the UTL. This is much lower than the usual coverage of 95%. The result is that, when comparing AOC concentrations to the subsurface soil reference UTL, it is likely that more concentrations will exceed the UTL than they would with a UTL based on more data. This is a data gap that is discussed in greater detail in Section 5.

For surface soils, six reference data values were available. In these cases, tests of normality were performed, but no tests of log-normality were performed (due to small sample size). If

the data were consistent with a normal distribution, then a normal UTL was computed. These UTLs have the usual 95% coverage. If the data were not consistent with a normal distribution, a non-parametric UTL was computed. The coverage for a non-parametric UTL based on six data values is 61%. Non-parametric UTLs were computed for only three (antimony, beryllium, and silver) of the inorganic constituents, which are the constituents that are typically screened by comparisons to reference concentrations in a risk assessment. Although the data gap for surface soil is not as extreme as for subsurface soil, collecting additional surface soil reference data will increase the ability to discern whether AOC concentrations exceed reference levels. This is discussed further in Section 5.

4.3 AOC and Reference Area Soil Results

The results for the soil investigation at the Child Development Center, Elementary School, Residential Towers, Reference Area 1, and Reference Area 2 are discussed in the following subsections.

Surface soil and subsurface soil samples were collected from each of these sites. These samples were analyzed for moisture, CLP SVOCs, CLP organochlorine pesticides and PCBs, CLP metals (including cyanide), and polychlorinated dibenzo-p-dioxins and -furans (PCDDs and PCDFs). A subset of these samples were also analyzed for anions (chloride, fluoride, sulfate, and nitrate), pH, total organic carbon (TOC), and particle size distribution (PSD). The number of samples and analyses performed on samples from each site were shown in Table 2-1.

In order to focus discussions on significant analytical results from the AOCs, this section focuses on results for CLP target compounds present at concentrations greater than human health RBSLs for residential soils. The RBSLs were derived from EPA Region III RBCs for residential soils (April 15, 1998 update) and a hazard quotient of 0.1. Therefore, RBSLs are EPA Region III residential soil RBCs for carcinogenic compounds, and RBCs divided by a factor of 10 for non-carcinogenic compounds. A complete tabulation of the soil sample results versus the industrial and residential RBCs are presented in Appendix F.

The tables for this section present only data for compounds found at an AOC at concentrations exceeding the RBSLs. The corresponding reference UTLs are also included in these tables. The associated text will indicate which, if any, of these compounds were present at the site at concentrations that are significantly different from the mean concentrations in the Reference Area 1 samples. For target compounds not listed on the EPA Region III RBC table, a proxy

compound was identified and its RBC used to compare to the site results when appropriate. When no proxy RBC was available, the compound was retained in the summary tables and compared to reference UTLs. Compounds without RBSLs or proxy values include: total dioxin and total furan congener classes (U.S. EPA, January 1998), calcium, magnesium, potassium, and sodium.

The figures for this section present data for compounds found in concentrations exceeding the RBSL in at least one sample from the site. To keep the discussion focused and relevant to the nature and extent of potential site contamination, only the results for the toxic PCDD and PCDF congeners (U.S. EPA, January 1998) will be presented in these figures. Additionally results for the essential nutrients—calcium, magnesium, potassium, and sodium—may be discussed in the text, but are not included in these figures.

4.3.1 Child Development Center

Eight surface soil and four subsurface soil samples were collected from the grounds of the Child Development Center. A summary of the results for target compounds present in these samples at concentrations greater than the human health RBSLs for residential soil and the associated reference UTLs are presented in Tables 4-1 and 4-2. The results for compounds exceeding the RBSLs in at least one soil sample from the site are presented in Figures 4-3 and 4-4. Generally, concentrations of organic compounds decreased with depth while inorganic compound concentrations increased with depth.

Surface Soil

Only two of the toxic PCDD/PCDF congeners were found in the in surface soil sampled at the Child Development Center at concentrations exceeding the respective RBSLs. The surface soil from location SO02, sampled under the rain gutter located on the west side of Building 291, contained 44.3 ng/kg 1,2,3,4,7,8-HxCDF, exceeding the RBSL of 43.0 ng/kg. The surface soil from locations SO02 and SO08 (native soil sampled southeast of Building 291) contained from 13.3 to 15.4 ng/kg 2,3,4,7,8-PeCDF, exceeding the RBSL of 8.6 ng/kg. Each of these toxic isomers were present below the corresponding reference UTLs of 97.8 ng/kg for 1,2,3,4,7,8-HxCDF and 37.4 ng/kg for 2,3,4,7,8-PeCDF. The means comparison showed that the concentration of PCDDs and PCDFs in the surface soils from the Child Development Center were not significantly different than those found in the Reference Area 1 surface soils. In fact, the mean concen-

Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Child Development Center Table 4-1

Defects per Sample Size Range of Detected Concentrations Maximum Detection Screening Level* RBSL Detection Officers Risk-Based off Detection officers Detection officers Risk-Based off Detection officers Detection officers Concentrations Detection officers A3		Number of		Location of	Human Health	Number of		Number of
Betyte Sample Size Concentrations Detection Screening Level* RBSL UTLb Bioxins, ng/kg 8.6 3.10 J - 15.4 \$002-01 43 1 97.8 S-ECDF 6/8 3.10 J - 15.4 \$002-01 8.6 2 37.4 DD 7/8 2.00 - 161 \$008-01 NA° - 362 DD 8/8 0.780 - 633 \$008-01 NA° - 535 DD 8/8 0.780 - 633 \$008-01 NA° - 608 DD 8/8 0.780 - 633 \$008-01 NA° - 525 DD 7/8 0.850 - 216 \$008-01 NA° - 608 DD 7/8 0.810 - 3340 J \$008-01 NA° - 522 JCLP Metals, mg/kg 7,240 - 44,000 \$008-01 NA° - 522 S/S 1,10 - 3.70 \$008-01 NA° - 15,400 R/S 4,520 - 12,200 \$008-01		Detects per	Range of Detected	Maximum	Risk-Based	Detects Exceeding	Reference	Detects Exceeding
Dioxins, ng/kg SO02-01 43 1 8-HxCDF 8/8 0.770 J - 44.3 SO02-01 43 1 PeCDF 6/8 3.10 J - 15.4 SO02-01 8.6 2 DD 7/8 2.00 - 161 SO08-01 NA° - DD 8/8 1.70 - 215 SO08-01 NA° - DD 8/8 0.780 - 516 SO08-01 NA° - DD 8/8 0.810 - 3330 J SO08-01 NA° - DD 7/8 0.810 - 3330 J SO08-01 NA° - DD 7/8 0.810 - 3330 J SO08-01 NA° - SF 8/8 7,240 - 44,000 SO08-01 NA° - N 8/8 1,10 - 3.70 SO08-01 NA - B/8 1,420 - 1,200 SO08-01 NA - B/8 1,420 - 7,400 SO08-01 NA - B/8 3,92 - 767 SO08-01 NA </th <th>Analyte</th> <th>Sample Size</th> <th>Concentrations</th> <th>Detection</th> <th>Screening Levela</th> <th>RBSL</th> <th>UTL</th> <th>UTLS</th>	Analyte	Sample Size	Concentrations	Detection	Screening Levela	RBSL	UTL	UTLS
8-HKCDF 8/8 0.770 J - 44.3 SO02-01 43 1 PeCDF 6/8 3.10 J - 15.4 SO02-01 8.6 2 DD 7/8 2.00 - 161 SO08-01 NA° - DD 8/8 1.70 - 215 SO08-01 NA° - DD 8/8 0.780 - 633 SO08-01 NA° - DD 8/8 0.780 - 216 SO08-01 NA° - DD 8/8 0.850 - 216 SO08-01 NA° - DD 8/8 0.690 - 284 SO08-01 NA° - DF 8/8 0.690 - 284 SO08-01 NA° - NF 8/8 7,240 - 44,000 SO08-01 NA° - NB 8/8 1,10 - 3,70 SO08-01 NA - NB 8/8 1,420 - 7,400 SO08-01 NA - NB 8/8 1,420 - 7,400 SO08-01 NA - NB	SW8290, Dioxins, ng/	kg						
PeCDF 6/8 3.10 J – 15.4 SO02-01 8.6 2 JDD 7/8 2.00 – 161 SO08-01 NA° - JDF 8/8 1.70 – 215 SO08-01 NA° - DD 8/8 0.780 – 633 SO08-01 NA° - DD 8/8 0.810 – 3330 J SO08-01 NA° - DD 7/8 0.810 – 3330 J SO08-01 NA° - DF 8/8 0.690 – 284 SO08-01 NA° - DF 8/8 1.10 – 3.70 SO08-01 NA° - NA 4,520 – 12,200 SO08-01 NA - R/8 4,520 – 12,200 SO08-01 NA - R/8 6,130 – 38,700 SO08-01 NA - R/8 1,420 – 7,400 SO08-01 NA - R/8 399 – 1,000 SO08-01 NA - R/8 340 – 1,200 SO08-01 NA -	1,2,3,4,7,8-HxCDF	8/8	0.770 J - 44.3	SO02-01	43		97.8	0
DD 7/8 2.00 – 161 \$008-01 NA¢ - DF 8/8 1.70 – 215 \$008-01 NA¢ - DD 8/8 0.780 – 633 \$008-01 NA¢ - DF 8/8 0.850 – 216 \$008-01 NA¢ - DD 7/8 0.810 – 3330 J \$008-01 NA¢ - DD 7/8 0.690 - 284 \$008-01 NA¢ - DD 7/8 0.690 - 284 \$008-01 NA¢ - DF 8/8 7,240 - 44,000 \$008-01 NA¢ - 1 8/8 7,240 - 44,000 \$008-01 NA - 1 8/8 4,520 - 12,200 \$008-01 NA - 8/8 6,130 - 38,700 \$008-01 NA - e 8/8 309 - 1,000 \$008-01 NA - e 8/8 340 - 1,200 \$008-01 NA - e 8/8 <	2,3,4,7,8-PeCDF	8/9	3.10 J - 15.4	SO02-01	8.6	2	37.4	0
DF 8/8 1.70-215 \$008-01 NA¢ - DD 8/8 0.780-633 \$008-01 NA¢ - DF 8/8 0.780-633 \$008-01 NA¢ - DD 7/8 0.850-216 \$008-01 NA¢ - DD 7/8 0.810-3330 J \$008-01 NA¢ - DF 8/8 0.690-284 \$008-01 NA¢ - DF 8/8 1,10-3.70 \$008-01 NA - B/8 1,10-3.70 \$008-01 NA - - B/8 1,10-3.70 \$008-01 NA - - B/8 4,520-12,200 \$008-01 NA - - B/8 1,420-7,400 \$008-01 NA - - E 8/8 1,420-7,400 \$008-01 NA - - E 8/8 309-1,000 \$008-01 NA - B/8 340-1,200 </td <td>Total HxCDD</td> <td>2//8</td> <td>2.00 – 161</td> <td>SO08-01</td> <td>NA^c</td> <td></td> <td>362</td> <td>0</td>	Total HxCDD	2//8	2.00 – 161	SO08-01	NA ^c		362	0
DD 8/8 0.780-633 SO08-01 NA° - DF 8/8 0.850-216 SO08-01 NA° - DD 7/8 0.810-330 J SO08-01 NA° - SF 8/8 0.690-284 SO08-01 NA° - CLP Metals, mg/kg 7,240-44,000 SO08-01 7,800 7 N 8/8 1.10-3.70 SO08-01 0.43 8 B/8 4,520-12,200 SO08-01 NA - 8 B/8 6,130-38,700 SO08-01 NA - 8 m 8/8 1,420-7,400 SO08-01 NA - - e 8/8 399-1,000 SO08-01 NA - - e 8/8 340-1,200 SO01-31 NA - - e 8/8 340-1,200 SO01-31 NA - - e 8/8 340-1,200 SO01-31 0.55 2 <	Total HxCDF	8/8	1.70 - 215	SO08-01	NAc		535	0
DF 8/8 0.850-216 SO08-01 NA° - DD 7/8 0.810-330 J SO08-01 NA° - SF 8/8 0.690-284 SO08-01 NA° - CLP Metals, mg/kg 7,240-44,000 SO08-01 7,800 7 8/8 7,240-44,000 SO08-01 7,800 7 8/8 4,520-12,200 SO08-01 NA - 8/8 6,130-38,700 SO08-01 NA - e 8/8 1,420-7,400 SO08-01 NA - e 8/8 309-1,000 SO08-01 NA - e 8/8 340-1,000 SO08-01 NA - 2/8 340-1,000 SO01-31 NA - 2/8 0.600 L-0.790 SO01-31 SS 4 8/8 19.1-151 SO08-01 55 4	Total PeCDD	8/8	0.780 - 633	SO08-01	NA°	-	205	
DD 7/8 0.810 – 3330 J SOO8-01 NA° - SF 8/8 0.690- 284 SOO8-01 NA° - CLP Metals, mg/kg 7,240 – 44,000 SOO8-01 7,800 7 8/8 7,240 – 44,000 SOO8-01 0.43 8 8/8 1.10 – 3.70 SOO8-01 NA - 8/8 4,520 – 12,200 SOO8-01 NA - 8/8 1,420 – 7,400 SOO8-01 NA - e 8/8 309 – 1,000 SOO8-01 NA - e 8/8 309 – 1,000 SOO8-01 NA - 2/8 0.600 L – 0.790 SOO1-31 NA - 8/8 19.1 – 151 SOO8-01 55 4	Total PeCDF	8/8	0.850 - 216	SO08-01	NA°	,	809	0
JF 8/8 0.690-284 SO08-01 NA° - 1 8/8 7,240-44,000 SO08-01 7,800 7 8/8 1.10-3.70 SO08-01 0.43 8 8/8 4,520-12,200 SO04-01 NA - m 8/8 6,130-38,700 SO08-01 NA - e 8/8 89.2-767 SO08-01 I.60 6 e 8/8 309-1,000 SO08-01 NA - 8/8 340-1,200 SO08-01 NA - 2/8 0.600 L-0.790 SO01-31 NA - 8/8 340-1,200 SO01-31 NA - 8/8 19.1-151 SO08-01 55 4	Total TCDD	8/L	0.810 - 3330 J	SO08-01	NAc		152	
Actor Metals, mg/kg 7,240-44,000 SO08-01 7,800 7 8/8 7,240-44,000 SO08-01 7,800 7 8/8 1.10-3.70 SO08-01 0.43 8 8/8 4,520-12,200 SO08-01 NA - n 8/8 6,130-38,700 SO08-01 NA - e 8/8 1,420-7,400 SO08-01 NA - e 8/8 399-1,000 SO08-01 NA - e 8/8 340-1,200 SO01-31 NA - 2/8 0.600 L-0.790 SO01-31 0.55 2 8/8 19.1-151 SO08-01 55 4	Total TCDF	8/8	0.690- 284	SO08-01	NAc	•	522	0
n 8/8 7,240-44,000 SO08-01 7,800 7 8/8 1.10-3.70 SO08-01 0.43 8 8/8 4,520-12,200 SO04-01 NA - n 8/8 6,130-38,700 SO08-01 NA - e 8/8 1,420-7,400 SO08-01 NA - e 8/8 309-1,000 SO08-01 NA - 8/8 340-1,000 SO01-31 NA - 2/8 0.600 L-0.790 SO01-31 0.55 2 8/8 19.1-151 SO08-01 55 4	ILMO4.0, CLP Metal	s, mg/kg						
8/8 1.10 – 3.70 SO08-01 0.43 8 8/8 4,520 – 12,200 SO04-01 NA - m 8/8 6,130 – 38,700 SO08-01 2,300 8 e 8/8 1,420 – 7,400 SO08-01 NA - e 8/8 309 – 1,000 SO08-01 NA - s/8 340 – 1,000 SO08-01 NA - z/8 0.600 L – 0.790 SO01-31 NA - s/8 19.1 – 151 SO08-01 55 4	Aluminum	8/8		SO08-01	7,800	7	74,000	0
8/8 4,520 – 12,200 SO04-01 NA - m 8/8 6,130 – 38,700 SO08-01 2,300 8 e 8/8 1,420 – 7,400 SO08-01 NA - e 8/8 89.2 – 767 SO08-01 160 6 e 8/8 309 – 1,000 SO08-01 NA - s/8 340 – 1,200 SO01-31 NA - z/8 0.600 L – 0.790 SO01-31 NA - s/8 19.1 – 151 SO08-01 55 4	Arsenic	8/8	1.10 - 3.70	SO08-01	0.43	8	6.64	0
m 8/8 6,130 – 38,700 SOO8-01 2,300 8 m 8/8 1,420 – 7,400 SOO8-01 NA - e 8/8 89.2 – 767 SOO8-01 160 6 g/8 309 – 1,000 SOO8-01 NA - g/8 340 – 1,200 SOO1-31 NA - g/8 19.1 – 151 SOO8-01 55 4	Calcium	8/8		SO04-01	NA	1	15,400	0
e 8/8 1,420 - 7,400 SO08-01 NA - 6 e 8/8 89.2 - 767 SO08-01 160 6 8/8 309 - 1,000 SO08-01 NA - 6 8/8 340 - 1,200 SO01-31 NA - 6 2/8 0.600 L - 0.790 SO01-31 0.55 2 8/8 19.1 - 151 SO08-01 55 4	ron	8/8	_	SO08-01	2,300	~	009'09	0
e 8/8 89.2 - 767 SO08-01 160 6 8/8 309 - 1,000 SO08-01 NA	Magnesium	8/8	1,420 - 7,400	SO08-01	NA	1	12,400	0
8/8 309 – 1,000 SOO8-01 NA - 8/8 340 – 1,200 SOO1-31 NA - 2/8 0.600 L – 0.790 SOO1-31 0.55 2 8/8 19.1 – 151 SOO8-01 55 4	Manganese	8/8	89.2 – 767	SO08-01	160	9	1,050	0
8/8 340-1,200 SO01-31 NA - 2/8 0.600 L-0.790 SO01-31 0.55 2 8/8 19.1-151 SO08-01 55 4	Potassium	8/8	309 – 1,000	SO08-01	NA	-	643	4
2/8 0.600 L - 0.790 SO01-31 0.55 2 8/8 19.1 - 151 SO08-01 55 4	Sodium	8/8		SO01-31	NA	,	2,430	0
8/8 19.1 – 151 SO08-01 55 4	Thallium	2/8	0.600 L - 0.790	SO01-31	0.55	2	1.82	0
	Vanadium	8/8	19.1 – 151	SO08-01	55	4	268	0

Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

^c Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.

The analyte was positively identified; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Result is potentially biased low. Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound. L NA -

Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Child Development Center Table 4-2

					Number of		Number of
	Number of Detects per	Range of Detected	Location of	Human Health Risk-Based	Detects	Reference	Detects
Analyte	Sample Size	Concentrations	Detection	Screening Level	RBSL	q.ILII	ITTLE
SW8290, Dioxins, ng/kg							
Total TCDD	4/4	3.40 - 8.20	SO01-02	NAc		23	4
ILMO4.0, CLP Metals, mg/kg	ng/kg						
Aluminum	4/4	22,700 - 60,300	SO05-02	7,800	4	57.700	1
Arsenic	4/4	2.40 - 4.30	SO07-02	0.43	4	2.60	3
Calcium	4/4	10,900 - 27,000	SO03-02	NA	-	11.600	3
Iron	4/4	17,200 - 50,100	S005-02	2,300	4	51.800	O
Magnesium	4/4	5,210 - 9,810	SO05-02	NA		12,200	0
Manganese	4/4	283 – 939	SO05-02	160	4	068	1
Potassium	4/4	382 – 1,370	SO07-02	NA		285	4
Sodium	4/4	1,480 – 2,100	SO01-02	NA		2,030	
Thallium	4/4	0.580 - 2.40	SO05-02	0.55	4	1.70	6
Vanadium	4/4	56.1 – 207	SO05-02	55	4	219	0

Risk-Based Screening Level (RBSL) is calculated using EPA Region III residential soil risk-based concentrations (RBCs) and a hazard quotient of 0.1.

^b Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.
 Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

^{, ¥}

Figure 4-3. Organic Results for the Child Development Center Site

Figure 4-4. Inorganic Results for the Child Development Site

trations at the Child Development Center for these compounds were consistently lower than the reference means, so it is unlikely that the lack of significance is due to low power.

The surface soils contained up to 44,000 mg/kg aluminum, 3.70 mg/kg arsenic, 38,700 mg/kg iron, 767 mg/kg manganese, 0.790 mg/kg thallium, and 151 mg/kg vanadium. Each of these metals were present in at least two surface soil samples at concentrations exceeding the respective RBSLs, but below the corresponding reference UTLs. The means comparison showed that, with the exception of potassium, the concentration of metals in the surface soils from the Child Development Center were not significantly different than those found in the Reference Area 1 surface soils. As with the PCDDs and PCDFs, in general, the mean metal concentrations at the Child Development Center were lower than the reference means, so the lack of statistical significance in the comparisons is not likely due to insufficient data.

SVOCs, organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the surface soil samples from this site.

Subsurface Soil

None of the toxic PCDD/PCDF congeners were found in the subsurface soil sampled at the Child Development Center at concentrations exceeding the respective RBSLs. The subsurface soil sampled from locations SO01, SO03, SO05, and SO07 contained from 3.40 to 8.20 ng/kg total TCDD, exceeding the reference UTL of 2.3 ng/kg. However, the toxic congener 2,3,7,8-TCDD was not detected in any of the subsurface soil samples from this site. The means comparison showed that the concentration of other PCDDs and PCDFs in the subsurface soils from the Child Development Center were not significantly different than those found in the Reference Area 1 subsurface soils. For the subsurface soil, the lack of statistical significance is less conclusive than for the surface soil because in several cases, the means at the Child Development Center are higher than those at Reference Area 1. However, the power is generally less than 15%. Thus, although the means comparisons suggests that several AOC means may exceed the reference means, the number of samples is too small to provide any assurance that a true difference of 50% or greater would be statistically significant. This is a potential data gap.

The subsurface soils contained up to 60,300 mg/kg aluminum, 4.30 mg/kg arsenic, 50,100 mg/kg iron, 939 mg/kg manganese, 2.40 mg/kg thallium, and 207 mg/kg vanadium. Each of these metals were found in all four subsurface soil samples at concentrations exceeding the respective RBSLs. Subsurface soil concentrations also exceeding the reference UTLs include aluminum.

arsenic, calcium, manganese, potassium, sodium, and thallium at SO05, and arsenic and thallium at locations SO01 and SO07. The means comparison showed that, with the exception of potassium, the concentration of metals in the subsurface soils from the Child Development Center were not significantly different than those found in the Reference Area 1 subsurface soils. As above, the comparisons are somewhat inconclusive because the power is generally low (less than 15%) and the direction of the differences is not consistent. That is, the AOC means are not consistently higher or lower than the reference means.

SVOCs, organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the subsurface soil samples from this site.

4.3.2 Elementary School

Eight surface soil and four subsurface soil samples were collected from the grounds surrounding the Elementary School, with a primary focus on the play areas. A summary of the results for target compounds present in these samples at concentrations greater than the human health RBSLs for residential soil and the associated reference UTLs are presented in Tables 4-3 and 4-4. The results for compounds exceeding the RBSLs in at least one soil sample from the site are presented in Figures 4-5 and 4-6.

Surface Soil

Surface soil SO07, sampled from the ditch northeast of Building 993, contained 134 ng/kg 1,2,3,4,7,8-HxCDF, 56.3 ng/kg 1,2,3,6,7,8-HxCDF, 51.1 ng/kg 1,2,3,7,8,9-HxCDD, 158 ng/kg 2,3,4,6,7,8-HxCDF, 12.9 ng/kg 1,2,3,7,8-PeCDD, and 46.8 ng/kg 2,3,4,7,8-PeCDF, exceeding each of the corresponding RBSLs and reference UTLs. The 2,3,4,7, 8-PeCDF concentration in sample SO03 (native soil sampled in the playground) exceeds the RBSL of 8.6 ng/kg, but is below the reference UTL of 37.4 ng/kg. The means comparison showed that the concentration of the specific toxic congeners and the total PCDD and PCDF congener classes in the surface soils from the Elementary School site were not significantly different than those found in the Reference Area 1 surface soils. In fact, the mean concentrations at the Elementary School for these compounds were consistently lower than the reference means, so it is unlikely that the lack of significance is due to low power.

The eight surface soils collected at the Elementary School all contained aluminum, arsenic, iron, and manganese at concentrations exceeding the corresponding RBSLs. In addition, the concentration of chromium in the surface sample from SO07, thallium in samples at SO07 and SO08,

Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Elementary School Table 4-3

	Number of		Location of	Human Health	Number of		Number of
	er	Range of Detected	Maximum	Risk-Based	Detects Exceeding	Reference	Detects Exceeding
Analyte	Sample Size	Concentrations	Detection	Screening Level*	RBSL	UTL	UTLs
SW8290, Dioxins, ng/kg	- 1						
1,2,3,4,7,8-HxCDF	8/8	0.970 J - 134	SO07-01	43		8.76	1
1,2,3,6,7,8-HxCDF	8/8	0.490 J - 56.3	SO07-01	43	-	41.2	1
1,2,3,7,8,9-HxCDD	2/8	0.500 J - 51.1 J	SO07-01	43	_	35.9	1
1,2,3,7,8-PeCDD	4/8	1.70 J - 12.9 J	SO07-01	9.8	-	9.80	-
2,3,4,6,7,8-HxCDF	8/8	1.10 BJ - 158	SO07-01	43	-	101	1
2,3,4,7,8-PeCDF	8/8	0.370 J-46.8	SO07-01	9.8	2	37.4	1
Total HpCDD	8/8	5.70-709	SO07-01	NAc	•	488	1
Total HpCDF	8/8	5.60 - 700	SO07-01	NAc	1	487	1
Total HxCDD	8/8	1.50 – 487	SO07-01	,VN	•	362	1
Total HxCDF	8/8	3.80 – 767	SO07-01	NAc	,	535	1
Total PeCDD	8/8	0.610 - 160	SO07-01	NA°	1	205	0
Total PeCDF	8/8	3.20 – 614	SO07-01	NAc	1	809	1
Total TCDD	8/8	0.480 - 163	SO07-01	NAc	•	152	1
Total TCDF	8/8	1.10 – 468	SO07-01	,VN	,	522	0
ILMO4.0, CLP Metals,	ls, mg/kg						
Aluminum	8/8	10,200 – 72,600	SO07-01	7,800	8	74,000	0
Arsenic	8/8	1.80 - 6.50	SO07-01	0,43	8	6.64	0
Calcium	8/8	9,570 – 14,300	SO06-01	NA	•	15,400	0
Chromium	8/8	5.10 – 51.4	SO07-01	39	1	39.9	Ţ
Iron	8/8	10,000 - 64,100	SO07-01	2,300	8	009'09	1
Magensium	8/8	2,140 - 9,970	SO07-01	NA	-	12,400	0
Manganese	8/8	162 – 1,140	SO07-01	160	8	1,050	1
Potassium	8/8	553 - 1,060	SO04-01	NA	-	643	4
Sodium	8/8	569 – 1,210	SO08-01	NA	•	2,430	0
Thallium	2/8	1.40 L - 1.60 L	007-01	0.55	2	1.82	0
Vanadium	8/8	25.1 – 263	SO07-01	55	S	268	0
2 Diel. Daned Committee I and Appear	-1 Ander 1 is as lar	O DA A D					2000

Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs

(calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

- No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.

- The analyte was positively identified; however, the associated numerical value is the approximate concentration of the analyte in the sample.

- Result is potentially biased low.

- Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound. ¥ L

Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Elementary School Table 4-4

	Number of		Location of	Human Health	Number of		Number of
	Detects per	Range of Detected	Maximum	Risk-Based	Detects Exceeding		Reference Detects Exceeding
Analyte	Sample Size	Concentrations	Detection	Screening Levela	RBSL		UTLs
OLM03.2, Semi-Volatile Organic		Compounds, µg/kg					
Benzo(a)pyrene	1/4	029	SO03-02	87		NC	-
Dibenz(a,h)anthracene	1/4	290	SO03-02	87	1	NC	
SW8290, Dioxins, ng/kg	90						
1,2,3,4,6,7,8,9-OCDD	4/4	12.1 – 5,540	SO03-02	4,300	1	39.6	3
Total HpCDD	4/4	1.50 - 536	SO03-02	NAc		13.1	3
Total HxCDD	3/4	25.2 – 63.8	SO03-02	NΑ ^c		19.1	3
Total HxCDF	3/4	44.7 – 78.4	SO01-02	NΑ°		11.5	3
Total PeCDD	3/4	9.00 - 13.0	SO07-02	NA⁵	1	4.90	3
Total TCDD	3/4	9.90 – 14.7	SO07-02	NA°		2.30	3
ILMO4.0, CLP Metals	, mg/kg						
Aluminum	4/4	15,000 – 91,600	SO07-02	7,800	4	57,700	1
Arsenic	4/4	2.80 – 5.30	SO07-02	0.43	4	2.60	4
Calcium	4/4	5,760 - 20,200	SO05-02	NA		11,600	1
Chromium	4/4	6.80 – 58.7	SO07-02	39	1	30.8	1
Iron	4/4	14,200 - 80,900	SO07-02	2,300	4	51,800	
Magnesium	4/4	3,490 - 11,800	SO07-02	NA	•	12,200	0
Manganese	4/4	218 – 1,360	SO07-02	160	4	068	1
Potassium	4/4	520 – 767	SO01-02	NA	•	285	4
Sodium	4/4	530 – 987	SO05-02	NA	-	2,030	0
Thallium	2/4	1.10 - 3.00 L	SO07-02	0.55	2	1.70	-
Vanadium	4/4	39.9 – 359	SO07-02	55	2	219	1

^a Risk-Based Screening Level (RBSL) is calculated using EPA Region III residential soil risk-based concentrations (RBCs) and a hazard quotient of 0.1.

^b Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

^c Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.

Result is potentially biased low.

Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

Not calculated. NC NC

Figure 4-5. Organic Results, for the Elementary School Site

Figure 4-6. Inorganic Results, for the Elementary School Site

mg/kg iron, 1,360 mg/kg manganese, 3.00 mg/kg thallium, and 359 mg/kg vanadium, all at concentrations exceeding the corresponding reference UTLs. The means comparison showed that, with the exception of arsenic and potassium, the concentrations found in the subsurface soils from the Elementary School were not significantly different than those found in the Reference Area 1 subsurface soils. As above, the fact that many of the site means exceed the reference means, coupled with low power, suggests that the means comparisons are inconclusive.

Organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the subsurface soil samples from this site.

4.3.3 Residential Towers

Twelve surface soil and four subsurface soil samples were collected from the grounds surrounding the Residential Towers, with a primary focus on the surrounding recreational areas. A summary of the results for target compounds present in these samples at concentrations greater than the human health RBSLs for residential soil are presented in Tables 4-5 and 4-6. The results for compounds exceeding the RBSLs in at least one soil sample from the site are presented in Figures 4-7 and 4-8.

Surface Soil

Surface soil SO03, sampled south of the picnic area (about 180 ft north of Tower 3101), contained 140J ng/kg 1,2,3,4,7,8-HxCDF, 60.6 ng/kg 1,2,3,6,7,8-HxCDF, 46.2J ng/kg 1,2,3,7,8,9-HxCDD, 13.6 ng/kg 1,2,3,7,8-PeCDD, 114 ng/kg 2,3,4,6,7,8-HxCDF, and 43.2 ng/kg 2,3,4,7,8-PeCDF, exceeding each of the corresponding RBSLs and reference UTLs. The concentrations of 1,2,3,4,7,8-HxCDF, 2,3,4,6,7,8-HxCDF, and 2,3,4,7,8-PeCDF in sample SO02 (sampled east of the tennis courts) exceed the respective RBSL but not the corresponding reference UTLs. The means comparison showed that the concentration of the specific toxic congeners and the total PCDD and PCDF congener classes in the surface soils from the Residential Towers were not significantly different than those found in the Reference Area 1 surface soils. In fact, the mean concentrations at the Residential Towers for all the above-mentioned analytes were smaller then the mean concentrations at the reference area.

Surface soil SO04, sampled under the tire swing in the picnic area, contained 230 μ g/kg benzo(a)pyrene, exceeding the RBSL of 87 μ g/kg. A reference UTL is not available for this compound since it was not detected in the Reference Area 1 samples. It was not detected elsewhere in surface soils at the Residential Towers site.

and vanadium in samples SO03, SO04, SO05, SO07, and SO08 all exceed the respective RBSLs. Only the chromium (51.4 mg/kg), iron (64,100 mg/kg) and manganese (1,140 mg/kg) concentrations in sample SO07 exceeded the corresponding reference UTLs. The means comparison showed that, with the exception of potassium, the concentration of metals in the surface soils from the Elementary School were not significantly different than those found in the Reference Area 1 surface soils. In general, mean metal concentrations at the Elementary School were lower than the reference means, so the lack of significance is not likely to be due to insufficient data.

SVOCs, organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the surface soil samples from this site.

Subsurface Soil

The only toxic PCDD/PCDF congener found in the subsurface soil sampled at the Elementary School at a concentration exceeding the RBSLs was 1,2,3,4,6,7,8,9-OCDD in the sample from location SO03. Sample SO03, native soil sampled in the playground, contained 5,540 ng/kg 1,2,3,4,6,7,8,9-OCDD, exceeding the RBSLs of 4,300 ng/kg and reference UTL of 39.6 ng/kg. Although the mean for this compound was substantially higher at the Elementary School than at the reference area, the mean comparison indicated a nonsignificant difference. The non-significance is most likely due to the low power of the comparison (16%). This suggests a probable data gap. The means comparison indicated that the concentration of other toxic PCDD and PCDF congeners and total congener classes in the subsurface soils from the Elementary School were not significantly different than those found in the Reference Area 1 subsurface soils, but in several of these cases, the mean at the Elementary School exceeded the reference mean and the nonsignificant comparison could be due to insufficient data.

Subsurface soil sample SO03, taken in native soil in the play area, contained 670 μ g/kg benzo(a)pyrene and 290 μ g/kg dibenz(a,h)anthracene. These concentrations exceeded the corresponding RBSLs of 87 μ g/kg for both compounds. Reference UTLs are not available for these compounds since they were not detected in the Reference Area 1 samples. They were not detected in any other Elementary School soil samples.

The four subsurface soils collected at the Elementary School all contained aluminum, arsenic, iron, and manganese at concentrations exceeding the corresponding RBSLs. In addition, the concentration of chromium in sample SO07 and thallium and vanadium in sample SO03 and SO07 all exceed their respective RBSLs. Sample SO07 contained 58.7 mg/kg chromium, 80,900

Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Towers Area Table 4-5

	Number of		Location of	Human Health	Number of Detects		Number of Detects
Anslyte	Detects per	Range of Detected	Maximum Detection	Risk-Based Screening Level*	Exceeding RBSL	Reference UTL b	Exceeding UTLs
OLM03.2. Semi-Volatile Organic Compounds, µg/kg	rganic Compound	ds, µg/kg					
Benzo(a)pyrene	1/12	230	SO04-01	87	1	NC	,
SW8290, Dioxins, ng/kg							
1,2,3,4,7,8-HxCDF	12/12	1.00 - 140 J	SO03-01	43	2	97.8	1
1,2,3,6,7,8-HxCDF	12/12	0.620 J - 60.6	SO03-01	43	1	41.2	11
1,2,3,7,8,9-HxCDD	11/12	0,440 J - 46.2 J	10-£0OS	43	1	35.9	1
1,2,3,7,8-PeCDD	10/12	1.10 J - 13.6	SO03-01	9.8	1	9.80	1
2,3,4,6,7,8-HxCDF	12/12	0.910 J - 114	SO03-01	43	2	101	1
2,3,4,7,8-PeCDF	11/12	0.680 J - 43.2	SO03-01	8.6	2	37.4	
Total HpCDD	12/12	2.10 - 805	SO03-01	NA°	•	488	1
Total HpCDF	12/12	4.60 – 659	SO03-01	NA°	-	487	1
Total HxCDD	12/12	2.40 403	SO03-01	NA°		362	
Total HxCDF	12/12	3.50 – 738	SO03-01	NA°	_	535	1
Total PeCDD	12/12	0.370 - 138	SO03-01	NA ^c		205	0
Total PeCDF	12/12	2.60 – 592	SO03-01	NΑ ^c	•	809	0
Total TCDD	12/12	0.290 - 278	SO12-01	NΑ ^ε	•	152	1
Total TCDF	12/12	1.00 - 413	SO03-01	NA¢	-	522	0
II.MO4.0. CI.P Metals. mg/kg	1						
Aluminum	12/12	13,500 - 78,800	SO06-01	7,800	12	74,000	1
Arsenic	12/12	2.60 - 8.30	SO05-01	0.43	12	6.64	
Barium	12/12	13.8 K - 609 K	SO10-01	550	₩.	130	1
Calcium	12/12	3,520 - 27,700	SO10-01	NA	1	15,400	5
Chromium	12/12	6.30 - 47.9	SO06-01	39	5	39.9	5
Iron	12/12	11,100 - 64,400	SO06-01	2,300	12	009'09	1
Magnesium	12/12	2,450 – 11,700	SO01-01	NA	•	12,400	0
Manganese	12/12	173 – 1,200	SO06-01	160	12	1,050	4
Potassium	12/12	198 – 989	SO03-01	NA	1	643	7
Sodium	12/12	533 - 1,970	SO04-01	NA	•	2,430	0
Thallium	7/12	1.00 L - 2.50	SO01-01	0.55	7	1.82	4
Vanadium	12/12	34.8 – 287	SO06-01	55	6	268	1
10.1. Down Committee Toward (DDC) his colour faired BDA Berrier III residential soil risk-based concentrations (RBCs) and a hazard quotient of 0.1	Of 1 is solar forted no	The CDA Region III recident	or pesed-dain les	Pentrations (RBCs) and a b	nazard quotient of 0.1.		

b Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL. The analyte was positively identified; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Result is potentially biased high.

Result is potentially biased low.

Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

Not calculated. NA NC

Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Towers Area Table 4-6

	Number of		Location of	Human Health	Number of Detects		Number of
	Detects per Ran	Range of Detected	Maximum	Risk-Based	Exceeding	Reference	Detects Exceeding
Analyte	Sample Size	ບ	Detection	Screening Levela	RBSL	UTL	UTILS
Or M03.2. Semi-Volatile Organic Co	olatile Organi	c Compounds, ug/kg	hi				
Benzo(a)pvrene	1/4	88.0 J	SO10-02	87	1	NC	
SW8290, Dioxins, ng/kg	ne/ke						
Total HxCDF	4/4	0.470 - 56.9	SO02-32	NA°	•	11.5	3
Total PeCDD	4/4	1.30 – 11.7	SO02-32	NA°	1	4.90	2
Total TCDD	3/4	4.50 – 8.90	SO02-32	NAc	•	2.30	3
Total TCDF	4/4	2.30 46.1	SO02-32	NA°	1	13.3	
III.MO4.0, CLP Metals, mg/kg	etals, mg/kg						
Alıminum	4/4	46,000-104,000	SO06-02	7,800	4	57,700	2
Arsenic	4/4	2.20 - 4.70	SO06-02	0.43	4	2.60	2
Calcium	4/4	11.800 - 18.300	SO10-02	NA	-	11,600	4
Chrominm	4/4	21.7 - 57.4	SO06-02	39	2	30.8	2
Iron	4/4	39,400 - 86,000	SO06-02	2,300	4	51,800	2
Magnesium	4/4	9,240 - 18,500	SO06-02	NA	*	12,200	-
Manganese	4/4	705 - 1,500	SO06-02	160	4	890	3
Potassium	4/4	277 - 2,130	SO02-32	NA	1	285	3
Sodium	4/4	650 - 2,300	SO02-32	NA	•	2,030	-
Thallium	4/4	1.40 - 2.80 L	SO10-02	0.55	4	1.70	3
Vanadium	4/4	147 – 362	20-90OS	55	4	219	2
* altautulii							

b Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

^c Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.

The analyte was positively identified; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Result is potentially biased low.

Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

NC - Not calculated.

Figure 4-7. Organic Results for the Residential Towers Site

Figure 4-8. Inorganic Results for the Residential Towers Site

The twelve surface soils collected from the Residential Towers all contained aluminum, arsenic, iron, and manganese at concentrations exceeding the corresponding RBSLs. In addition, the concentration of barium, chromium, thallium, and vanadium in at least one of the surface soil samples exceed the corresponding RBSLs. The concentration of aluminum, arsenic, barium, chromium, iron, manganese, thallium, and vanadium in one or more of the surface soil samples also exceed the corresponding reference UTLs. The means comparison showed that, with the exception of potassium, the concentration of metals in the surface soils from the Residential Towers were not significantly different than those found in the Reference Area 1 surface soils. Although the power was low for many of these comparisons, the metals concentrations in the surface soil at the Residential Towers were neither consistently higher nor lower than those at Reference Area 1. Thus, the existing data do not suggest that the lack of statistical significance is due to insufficient data.

Organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the surface soil samples from this site.

Subsurface Soil

None of the toxic PCDD/PCDF congeners were found in the Residential Tower subsurface soil samples at concentrations exceeding the respective RBSLs. The subsurface soil sampled from locations SO02, SO06, and SO10 contained from 4.50 to 8.90 ng/kg total TCDD, exceeding the reference UTL of 2.3 ng/kg. However, the toxic congener 2,3,7,8-TCDD was not detected at a concentration exceeding the RBSL of 4.3 ng/kg in any of the subsurface soil samples from this site. The means comparison showed that the concentration of PCDDs and PCDFs in the subsurface soils from the Residential Towers were not significantly different than those found in the Reference Area 1 subsurface soils. The means for several of these analytes in the subsurface soil at the Residential Towers exceeded those at Reference Area 1, so the lack of statistical significance could be due to low power. However, the observed differences were not consistent for all analytes.

Subsurface soil SO10, sampled under the swing northeast of Building 3101, contained $88.0J \,\mu g/kg$ benzo(a)pyrene, exceeding the RBSL of 87 $\,\mu g/kg$. A reference UTL is not available for this compound since it was not detected in the Reference Area 1 samples. It was not detected elsewhere in subsurface soils at the Residential Towers site.

The four subsurface soils collected at the Residential Towers all contained aluminum, arsenic, iron, manganese, thallium, and vanadium at concentrations exceeding the corresponding RBSLs. In addition, the concentration of chromium in samples SO06 and SO10 exceed the RBSL of 39 mg/kg. The concentration of aluminum, arsenic, chromium, iron, manganese, thallium, and vanadium in one or more of the subsurface soil samples also exceed the corresponding reference UTLs. The means comparison showed that, with the exception of potassium, the concentrations found in the subsurface soils from the Residential Towers were not significantly different than those found in the Reference Area 1 subsurface soils. Again, the lack of statistical significance could be due to the low power of the statistical tests because, for most metals, the mean subsurface soil concentration at the Residential Towers exceeded that for Reference Area 1.

Organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the subsurface soil samples from this site.

4.3.4 Reference Area 2

Six surface soil and three subsurface soil samples were collected from Reference Area 2, which is located in the southwestern portion of the base, near the West Gate. Summaries of the results for target compounds present in these samples at concentrations greater than the human health RBSLs for residential soil and the associated reference UTLs are presented in Tables 4-7 and 4-8. The results for compounds exceeding the RBSLs in at least one soil sample from the site are presented in Figures 4-9 and 4-10.

Surface Soil

Surface soil from SO06 contained 58.2J ng/kg 1,2,3,4,7,8-HxCDF, 54.6J ng/kg 2,3,4,6,7,8-HxCDF, and 17.9 ng/kg 2,3,4,7,8-PeCDF, exceeding each of the corresponding RBSLs, but below the corresponding reference UTLs. The concentration of 2,3,4,7,8-PeCDF in samples SO02, SO03, SO05, and SO06 also exceeds the RBSL, but is below the reference UTL. The means comparison showed that the concentration of the specific toxic congeners and the total PCDD and PCDF congener classes in the surface soils from Reference Area 2 were not significantly different than those found in the Reference Area 1 surface soils.

Two samples contained di-n-Butylphthalate at concentrations greater than the reference UTL, but well below the RBSL. Organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the surface soil samples from this site.

Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Reference Area 2 Table 4-7

	Number of	Range of	Location of	Human Health	Number of		Number of
	Detects per	Detected	Maximum	Risk-Based	Detects Exceeding Reference	Reference	Detect
Analyte	Sample Size	<u>ల</u>	Detection	Screening Levela	RBSL	UTL	UTLs
SW8290. Dioxins, ng/kg							
1 2 3 4 7 8-HvCDF	9/9	15.1 J - 58.2 J	SO06-01	43	1	97.8	0
0 3 4 6 7 8-HVCDF	9/9	15.3 J - 54.6 J	SO06-01	43	1	101	0
2 3 4 7 8-PeCDF	9/9	5.60 – 17.9	10-900S	8.6	5	37.4	0
Total HxCDD	9/9	106 - 211	SO02-01	NAc	1	362	0
Total HxCDF	9/9	79.3 – 277	SO06-01	NA ^c	•	535	0
Total PeCDD	9/9	19.5 – 57.4	SO06-01	NA°	1	205	0
Total PeCDF	9/9	761 - 193	SO06-01	NA°	•	809	0
Total TCDD	9/9	14.3 – 60.9	SO06-01	NAc	-	152	0
Total TCDF	9/9	56.0 – 136	SO06-01	NA ^c	-	522	0
II.MO4.0. CLP Metals. mg/kg	s. mg/kg						
Ahiminum	9/9	58,200 - 84,200	SO03-01	7,800	9	74,000	4
Arsenic	9/9	4.50 - 8.20	SO03-01	0,43	9	6.64	2
Calcium	9/9	3,030 - 9,640	SO04-01	NA	•	15,400	0
Chromium	9/9	32.5 – 54.4	SO03-01	39	5	39.9	4
Iron	9/9	49,600 – 73,300	SO03-01	2,300	9	009'09	4
Magnesium	9/9	7,680 - 10,900	SO03-01	NA	•	12,400	0
Manganese	9/9	945 – 1,300	SO03-01	160	9	1,050	5
Pofassium	9/9	435 - 978	SO06-01	NA	,	643	
Sodium	9/9	235 - 1,040	SO05-01	NA	•	2,430	0
Thallium	5/6	1.40 L - 5.40 L	SO02-01	0.55	5	1.82	3
Vanadium	9/9	210 – 327	SO03-01	55	9	268	4
, minainii	2:5						

Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

e Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.

The analyte was positively identified; however, the associated numerical value is the approximate concentration of the analyte in the sample.

L - Result is potentially biased low.
 NA - Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Reference Area 2 Table 4-8

4	Number of	Range of	Location of	Human Health	Number of		Number of Detects
A 1	Detects per	Detected	Maximum	Risk-Based	Detects Exceeding Reference	Reference	Exceeding
Allanyte	43	Concentrations	Detection	Screening Levela	RBSL	UTL	UTLs
SW8290, Dioxins, ng/kg	ng/kg						
Total HxCDD	3/3	25.8 – 70.4	SO01-02	NA ^c	•	19.1	3
Total HxCDF	3/3	14.2 – 74.5	SO01-02	NA ^c	-	11.5	3
Total PeCDD	3/3	2.30 – 19.1	SO01-02	NAc	-	4.90	2
Total TCDD	3/3	2.70 – 10.6	SO01-02	NA ^c	•	2.30	2
ILMO4.0, CLP Metals, m	fetals, mg/kg						
Aluminum	3/3	58,200 - 108,000	SO03-02	7,800	3	57,700	33
Arsenic	3/3	3.60 – 5.90	SO01-02	0.43	3	2.60	3
Calcium	3/3	3,890 - 8,180	SO05-02	NA	-	11,600	0
Chromium	3/3	29.7 – 50.6	SO01-02	39	2	30.8	2
Iron	3/3	51,400 – 87,500	SO03-02	2,300	3	51,800	2
Magnesium	3/3	11,200 – 14,500	SO03-02	NA	-	12,200	1
Manganese	3/3	933 - 1,530	SO03-02	160	3	890	3
Potassium	3/3	290 –371	SO01-02	NA	2	285	3
Sodium	3/3	326-1,080	SO05-02	NA	1	2,030	0
Thallium	3/3	1.30 L - 5.60 L	SO01-02	0.55	3	1.70	2
Vanadium	3/3	213 – 355	SO03-02	55	3	219	2

b Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

- No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.

L - Result is potentially biased low.

NA - Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

Figure 4-9. Organic Results, for the Reference Area 2 Site

Figure 4-10. Inorganic Results, for the Reference Area 2 Site

At least five of the six surface soils collected from Reference Area 2 contained aluminum, arsenic, chromium, iron, manganese, thallium, and vanadium at concentrations exceeding the corresponding RBSLs. The concentration of these metals, in two or more of the Reference Area 2 surface soils, exceed the reference UTLs. The means comparison showed that the mean concentration of aluminum, arsenic, chromium, manganese, potassium, thallium, and vanadium in the surface soils from Reference Area 2 were significantly different than those found in the Reference Area 1 surface soils.

Subsurface Soil

None of the toxic PCDD/PCDF congeners were found in the in the Reference Area 2 subsurface soil samples at concentrations exceeding the respective RBSLs. The subsurface soil sampled from locations SO01 and SO05 contained from 2.70 to 10.6 ng/kg total TCDD, exceeding the reference UTL of 2.3 ng/kg. However, the toxic congener 2,3,7,8-TCDD was not detected in the subsurface soil samples from this site. The means comparison showed that the concentration of PCDDs and PCDFs in the subsurface soils from Reference Area 2 were not significantly different than those found in the Reference Area 1 subsurface soils.

The three subsurface soils collected in Reference Area 2 contained up to 108,000 mg/kg aluminum, 5.90 mg/kg arsenic, 50.6 mg/kg chromium, 87,500 mg/kg iron, 1,530 mg/kg manganese, 5.60 mg/kg thallium, and 355 mg/kg vanadium. The concentrations of these metals in at least two of the subsurface soil samples exceed the corresponding RBSLs and reference UTLs. The means comparison showed that the metal concentrations in the subsurface soils from Reference Area 2 are not significantly different than those found in the Reference Area 1 subsurface soils.

SVOCs, organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs or reference UTLs in any of the subsurface soil samples from this site.

4.3.5 Reference Area 1

Six surface soil and three subsurface soil samples were collected from Reference Area 1, which is located on the far western side of the base. These data were used to develop reference UTLs and to perform the mean comparison of the reference-to-site data. A summary of the results for target compounds present in these samples at concentrations greater than the human health RBSLs for residential soil and the associated reference UTLs developed from this data are

presented in the Tables 4-9 and 4-10. The results for compounds exceeding the RBSLs in at least one soil sample from the site are presented in Figures 4-11 and 4-12.

Surface Soil

Surface soil SO01contained 97.8 ng/kg 1,2,3,4,7,8-HxCDF, 9.80 ng/kg 1,2,3,7,8-PeCDD, 101 ng/kg 2,3,4,6,7,8-HxCDF, and 37.4 ng/kg 2,3,4,7,8-PeCDF, exceeding each of the corresponding RBSLs. The concentrations of 2,3,4,7,8-PeCDF in samples SO03, SO04, and SO06 also exceed the RBSL of 8.6 ng/kg.

The six surface soils collected from Reference Area 1 contained up to 57,200 mg/kg aluminum, 5.20 mg/kg arsenic, 50,600 mg/kg iron, 875 mg/kg manganese, 1.30L mg/kg thallium, and 215 mg/kg vanadium; exceeding the corresponding RBSLs.

SVOCs, organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs in any of the surface soil samples from this site.

Subsurface Soil

None of the toxic PCDD/PCDF congeners were found in the in the Reference Area 1 subsurface soil samples at concentrations exceeding the respective RBSLs.

The three subsurface soils collected in Reference Area 1 contained up to 57,700 mg/kg aluminum, 2.60 mg/kg arsenic, 51,800 mg/kg iron, 890 mg/kg manganese, 1.70 mg/kg thallium, and 219 mg/kg vanadium.

SVOCs, organochlorine pesticides, PCBs, and cyanide were not found at concentrations exceeding the RBSLs in any of the subsurface soil samples from this site.

4.3.6 Evaluation of Non-Detected Compounds

All of the detection limits for compounds not detected in any of the NAF Atsugi soil samples analyzed at a dilution factor of one, were below project required reporting limits and the corresponding RBSLs.

Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Reference Area 1 Table 4-9

	Number of		Location of	Human Health	Number of		Number of
	Detects per	Detects per Range of Detected	Maximum	Risk-Based	Detects Exceeding	Reference	Detects Exceeding
Analyte	Sample Size	Concentrations	Detection	Screening Levela	RBSL	UTL	UTLs
SW8290, Dioxins, ng/kg	54						
1.2.3.4.7.8-HxCDF	9/9	18.7 – 97.8	SO01-31	43	1	8.76	0
1,2,3,7,8-PeCDD	9/9	3.20 J - 9.80	SO01-31	9.8	1	9.80	0
2,3,4,6,7,8-HxCDF	9/9	14.8 – 101	SO01-31	43	1	101	0
2,3,4,7,8-PeCDF	9/9	6.30 – 37.4	SO01-31	9.8	4	37.4	0
Total HxCDD	9/9	68.6 – 239	SO01-31	NAc	1	362	0
Total HxCDF	9/9	95.6 – 535	1E-10OS	NAc	l	535	0
Total PeCDD	9/9	24.5 - 205	SO01-31	NAc	J	205	0
Total PeCDF	9/9	75.9 – 608	SO01-31	NAc	ı	809	0
Total TCDD	9/9	21.3 – 152	SO01-31	NA°	1	152	0
Total TCDF	9/9	60.4 – 522	SO01-31	NA°	1	522	0
ILMO4.0, CLP Metals,	, mg/kg						
Aluminum		39,900 – 57,200	SO05-01	7,800	9	74,000	0
Arsenic	9/9	2.90 – 5.20	10-900S	0.43	9	6.64	0
Calcium	9/9	9,420 – 12,800	SO01-31	NA	1	15,400	0
Iron	9/9	38,000 - 50,600	SO05-01	2300	9	009'09	0
Magnesium	9/9	11,100 – 11,700	SO03-01	NA		12,400	0
Manganese	9/9	682 – 875	SO05-01	160	9	1,050	0
Potassium	9/9	362 – 525	SO01-31	NA	1	643	0
Sodium	9/9	1,470 – 1,990	SO02-01	NA	-	2,430	0
Thallium	9/9	0.850 L-1.30 L	SO06-01	0.55	. 6	1.82	0
Vanadium	9/9	148 – 215	SO05-01	55	9	268	0

Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

^c Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

- No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.

The analyte was positively identified, however, the associated numerical value is the approximate concentration of the analyte in the sample.

Result is potentially biased low.

Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Reference Area 1 Table 4-10

	Number of	Range of	Location of	Human Health	Number of		Number of
	Detects per	Detected	Maximum	Risk-Based	Detects Exceeding Reference	Reference	Detec
Analyte	Size	Concentrations	Detection	Screening Levela	RBSL	UTL	UTLs
ILMO4.0, CLP Metals, mg/kg	mg/kg						
Aluminum	3/3	52,300 - 57,700	SO06-02	7,800	3	57,700	0
Arsenic	3/3	1.30 – 2.60	SO06-02	0.43	3	2.60	0
Calcium	3/3	9,380 - 11,600	SO02-02	NA		11,600	0
Iron	3/3	45,100 - 51,800	SO06-02	2,300	3	51,800	0
Magnesium	3/3	10,900 - 12,200	SO04-02	NA	ı	12,200	0
Manganese	3/3	068 - 008	SO06-02	160	3	968	0
Potassium	3/3	263 – 285	SO06-02	NA	1	285	0
Sodium	3/3	1,750 - 2,030	SO02-02	NA	1	2,030	0
Thallium	2/3	1.40 – 1.70	SO02-02	0.55	2	1.70	0
Vanadium	3/3	185 - 219	SO06-02	55	3	219	0

^a Risk-Based Screening Level (RBSL) is calculated using EPA Region III residential soil risk-based concentrations (RBCs) and a hazard quotient of 0.1.

^b Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

No RBSL and/or reference UTL for compound, so could not determine number of detected concentrations greater than RBSL or reference UTL.
 Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

Figure 4-11. Organic Results, for the Reference Area 1 Site

Figure 4-12. Inorganic Results, for the Reference Area 1 Site

4.4 Trend Analysis

The trend analysis sampling protocol was designed to address the following questions:

- What is the extent of deposition of particulates in the soil from the Jinkanpo Incineration Complex?
- Is there a significantly decreasing trend in concentrations away from the Jinkanpo Incineration Complex?

In addition to the samples collected for the reference locations and the AOCs, 33 surface and 11 subsurface samples were collected throughout the base. These sample results were combined with all results from the two potential reference areas and some of the results from the AOCs to form the trend analysis data set. This data set is comprised of the numbers of samples described in Table 4-11.

Table 4-11
Trend Analysis Data Set

Site	Surface	Subsurface
Reference Area 1	6	3
Reference Area 2	6	3
Child Development Center	1	0
Elementary School	4	2
Residential Towers	3	1
Trend Analysis Additional	33	11
Locations		
Total	53	20

The additional trend analysis samples were analyzed for the same list of parameters as the reference areas and AOCs, as outlined in Table 2-1.

The following subsections describe the exceedences of evaluation criteria (e.g., RBSL, reference UTL, means comparison) and the distribution of contaminants.

4.4.1 Exceedences

Analytes exceeding the RBSL in the additional trend analysis samples will be presented before discussing the distribution of these analytes. This description of the exceedences of RBSLs is limited to the 33 surface and 11 subsurface (44 total) samples collected from across the base in

a radial distribution from the Jinkanpo Incineration Complex. Limiting the discussion of the exceedences to this sample set avoids duplication in presenting exceedences in those trend analysis samples collected from the potential reference areas and AOCs. The next subsection, "Distribution," will present the combined data sets (sample set listed in Table 4-11) for the spatial distribution.

Tables 4-12 and 4-13 summarize the results for target compounds present in at least one of these 44 samples at concentrations greater than the human health RBSLs. For informational purposes, the Reference Area 1 UTL and the number of results exceeding the UTL are given for each analyte that exceeds an RBSL (analytes that exceed a UTL, but not an RBSL, are not shown, unless an RBSL is not available).

Table 4-14 summarizes the number of analytes that were detected in at least one sample, that exceed the RBSL in at least one sample, that exceed the Reference Area 1 UTL in at least one sample, and that exceed both the RBSL and UTL. The table is sorted by contaminant class and media. As shown, metals and dioxins were found at concentrations exceeding both the RBSL and Reference Area 1 UTL. SVOCs were found at concentrations exceeding the respective RBSL and UTL, but not both the RBSL and UTL. There were no pesticides or PCBs detected above RBSLs in this data set. The following text describes the contaminants detected by media and contaminant class.

Surface Soil

Of the 17 dioxins that were detected, 16 of the maximum detections exceeded both the RBSL and the Reference Area 1 UTL (the maximum concentration for 1,2,3,4,6,7,8,9-OCDF did not exceed the RBSL). Every maximum detection for dioxins was found in either sample TRND-SO04-31 or TRND-SO06-01, which are both located near the Jinkanpo Incineration Complex. As the boxplots show (Appendix E), there were several outliers to the main data set for each dioxin congener that were orders of magnitude higher in concentration than the rest of the data.

Twenty-seven inorganic analytes were detected in the trend surface samples. Nineteen of these exceeded the surface soil RBSL, 25 exceeded the Reference Area 1 UTL, and 18 exceeded both. Of these 18, calcium, iron, magnesium, potassium, and zinc are all essential nutrients. Although the maximum detections for the 13 remaining analytes exceeded the RBSL, only antimony, arsenic, and lead exceeded the residential RBC for soil.

Table 4-12 Results of Analyses for March 1998 Surface Soil Sampling, NAF Atsugi, Trend Analysis

,	Number of		Location of	Human Health	Number of		Number of Detects
	Detects per	Range of Detected	Maximum	Risk-Based		Reference	Exceeding
Analyte		Concentrations	Detection	Screening Levela	Exceeding RBSL	UTL	UTLS
SW8290, Dioxins, ng/kg	ot.						
1,2,3,4,6,7,8,9-OCDD	33/33	90 - 20040	NA-TRND-S004-31	4300	2	1180	13
1,2,3,4,6,7,8-HpCDD	33/33	20 - 4290	NA-TRND-S004-31	430	9	235	13
1,2,3,4,6,7,8-HpCDF	33/33	22 - 2740	NA-TRND-S006-01	430	9	258	11
1.2.3.4.7.8.9-HpCDF	33/33	3.3 - 857	NA-TRND-S006-01	430	1	41.9	9
1,2,3,4,7,8-HxCDD	32/33	1.1 - 144	NA-TRND-S004-31	43	9	13.7	14
1,2,3,4,7,8-HxCDF	33/33	7 - 1600	NA-TRND-S006-01	43	21	97.8	13
1,2,3,6,7,8-HxCDD	33/33	3.2 - 364	NA-TRND-S004-31	43	9	29.1	12
1,2,3,6,7,8-HxCDF	33/33	3.8 - 424	NA-TRND-S006-01	43	11	41.2	12
1,2,3,7,8,9-HxCDD	33/33	7.5 - 472	NA-TRND-S004-31	43	13	35.9	14
1,2,3,7,8,9-HxCDF	30/33	1.3 - 165	NA-TRND-S006-01	43	1	3.8	16
1,2,3,7,8-PeCDD	33/33	2 - 108	NA-TRND-S004-31	8.6	15	9.8	13
1,2,3,7,8-PeCDF	33/33	1.3 - 615	NA-TRND-S006-01	98	5	30.6	6
2,3,4,6,7,8-HxCDF	33/33	6.2 - 562	NA-TRND-S004-31	43	61	101	10
2,3,4,7,8-PeCDF	33/33	2.1 - 311	NA-TRND-S006-01	8.6	27	37.4	10
2,3,7,8-TCDD	30/33	0.42 - 24	NA-TRND-S004-31	4.3	9	2.4	9
2,3,7,8-TCDF	33/33	1.5 - 540	NA-TRND-S006-01	43	7	32.8	7
Total HpCDD	33/33	42 - 8360	NA-TRND-S004-31	NA°	t	488	13
Total HpCDF	33/33	38 - 4760	NA-TRND-S006-01	NAc	•	487	6
Total HxCDD	33/33	48 - 4260	NA-TRND-S004-31	NA°	1	362	13
Total HxCDF	33/33	28 - 4320	NA-TRND-S006-01	NAc	1	535	11
Total PeCDD	33/33	6.1 - 1900	NA-TRND-S004-31	NAc	1	202	11
Total PeCDF	33/33	31 - 3500	NA-TRND-S004-31	NAc	1	809	8
Total TCDD	33/33	7.7 - 1220	NA-TRND-S004-31	NAc	B	152	11
Total TCDF	33/33	11 - 3330	NA-TRND-S004-31	NAc	1	522	9
OLM03.2 Semivolatiles, ug/kg	S, ug/kg						
Benzo(a)anthracene	6/33	0086 - LL	NA-TRND-S001-01	870	1	NC	0
Benzo(a)pyrene	10/33	33 – 12,000	NA-TRND-S001-01	87	9	SC	0
Benzo(b)fluoranthene	9/33	83 – 15,000	NA-TRND-S001-01	870	-	NC	0
Dibenz(a,h)anthracene	1/33	2100	NA-TRND-S001-01	87	1	SC	0
Indeno(1,2,3-cd)pyrene	5/33	62 - 6300	NA-TRND-SO01-01	870	1	NC	0

Table 4-12 (Continued)

	Number of		Location of	Human Health	Number of		Number of Detects
	Detects per	Range of Detected		Risk-Based	Detects	Reference	Exceeding
Analyte	Sample Size	Concentrations	Detection	Screening Level	Screening Levela Exceeding RBSL	UTL	UTLs
ILM04.0, CLP Metals, mg/kg	mg/kg						
Aluminum	33/53	40,800 - 90,700	NA-TRND-S033-01	7,800	33	74,000	11
Antimony	27/33	0.73 - 57.6	NA-TRND-SO04-31	3.1	6	2.4	12
Arsenic	33/33	2.6 – 14.7	NA-TRND-S028-01	0.43	33	6.64	3
Barium	33/33	56.7 - 1380	NA-TRND-S004-31	550	1	130	3
Cadmium	33/33	0.71 - 23	NA-TRND-S004-31	3.9	1	1.26	19
Calcium	33/33	2,710 - 16,500	NA-TRND-S004-31	NA	•	15,400	
Chromium	33/33	20.6 – 95.9	NA-TRND-S004-31	39	18	39.9	17
Copper	33/33	95.3 – 591	NA-TRND-S004-31	310	1	134	18
Iron	33/33	36,800 – 78,500	NA-TRND-SO19-01	2,300	33	60,600	11
Lead	33/33	15.1 - 1,420	NA-TRND-S004-31	400	1	95.5	80
Magnesium	33/33	7,380 - 15,600	NA-TRND-S033-01	NA		12,400	2
Manganese	33/33	733 – 1,380	NA-TRND-S033-01	160	33	1,050	17
Mercury	33/33	0.04 2.5	NA-TRND-S004-31	0.78	-11	0.228	2
Potassium	33/33	315 - 1,840	NA-TRND-S004-31	NA	-	643	16
Silver	21/33	0.25 - 123	NA-TRND-S004-31	39	1	0.61	7
Sodium	33/33	344 - 1,630	NA-TRND-S006-01	NA	•	2,430	0
Thallium	12/33	2.2 – 4.3	NA-TRND-S009-01	0.55	12	1.82	12
Vanadium	33/33	141 – 351	NA-TRND-SO12-01	55	33	268	6
Zinc	33/33	84.8 - 3,010	NA-TRND-S004-31	2,300	1	224	6

Risk-Based Screening Level (RBSL) is calculated using EPA Region III residential soil risk-based concentrations (RBCs) and a hazard quotient of 0.1.

Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

NC A

Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

A - Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.

Table 4-13 Results of Analyses for March 1998 Subsurface Soil Sampling, NAF Atsugi, Trend Analysis

	Number of		Location of	Human Health	Number of Detects		Number of Detects
Analyte		Range of Detected Concentrations	Maximum Detection	Risk-Based Screening Level ^a	Exceeding RBSL	Reference UTL ^b	Exceeding UTLs
SW8290, Dioxins, ng/kg							
1,2,3,4,6,7,8,9-OCDD	11/11	8.5 - 5800	NA-TRND-SO04-02	4300	1	39.6	9
1,2,3,4,6,7,8,9-OCDF	11/11	2.5 - 334	NA-TRND-S004-02	4300	0	4.6	6
1,2,3,4,6,7,8-HpCDD	11/11	2.2 - 997	NA-TRND-SO04-02	430	1	9	6
1,2,3,4,7,8-HxCDF	11/11	0.89 - 92	NA-TRND-SO10-02	43	2	2.1	6
1,2,3,6,7,8-HxCDD	10/11	0.94 - 66	NA-TRND-SO04-02	43	1	1.5	8
1,2,3,7,8,9-HxCDD	11/11	3.2 - 78	NA-TRND-S004-02	43	1	5.3	7
1,2,3,7,8-PeCDD	11//11	0.72 - 19	NA-TRND-S004-02	9.8	1	1.6	7
2,3,4,6,7,8-HxCDF	11//11	0.97 - 57	NA-TRND-SO10-02	43	2	2.2	8
2,3,4,7,8-PeCDF	10/11	0.72 - 36	NA-TRND-S004-02	9.8	2	1.2	6
2,3.7,8-TCDD	6/11	0.2 - 4	NA-TRND-S004-02	4.3	0	NC	0
2,3,7,8-TCDF	10/11	0.56 – 26	NA-TRND-S004-02	43	0	0.99	80
Total HpCDD	11/11	3.9 – 2050	NA-TRND-S004-02	NAc	•	13.1	6
Total HpCDF	11/11	2 - 696	NA-TRND-S004-02	NA°		10	6
Total HxCDD	11/11	16-697	NA-TRND-SO04-02	NAc	•	19.1	10
Total HxCDF	11/11	3.6 - 488	NA-TRND-S004-02	,VN	T	11.5	8
Total PeCDD	11/11	1.2 - 253	NA-TRND-SO04-02	NAc	1	4.9	80
Total PeCDF	11/11	0.44 - 461	NA-TRND-SO04-02	NA°	1	12.1	8
Total TCDD	11/11	0.53 - 152	NA-TRND-SO04-02	NA°	1	2.3	6
Total TCDF	11/11	0.56 - 522	NA-TRND-S004-02	NAc	1	13.3	9
OLM03.2 Semivolatiles, µg/kg	, µg/kg						
Benzo(a)pyrene	4/11	66 - 420	NA-TRND-S027-02	87	3	NC	0
Dibenz(a,h)anthracene	1/11	96	NA-TRND-S027-02	87	1	NC	0
ILM04.0, CLP Metals,	mg/kg						
Aluminum	11/11	41,900 - 116,000	NA-TRND-S023-02	7,800	11	57,700	8
Antimony	7/11	1.1 - 22.5	NA-TRND-SO04-02	3.1	2	1.5	4
Arsenic	11/11	1.7 - 8.9	NA-TRND-S004-02	0.43	11	2.6	7
Barium	11/11	25 – 606	NA-TRND-S004-02	550	-	72.3	8
Cadmium	11/11	0.35 - 10.4	NA-TRND-S004-02	3.9	1	0.53	10
Calcium	11/11	3,090 - 13,900	NA-TRND-S004-02	ΝA	11	11,600	2
Chromium	11/11	20.6 - 77.5	NA-TRND-S025-02	39	8	30.8	6
Copper	11/11	103 – 1,290	NA-TRND-SO04-02	310	1	116	6
Iron	11/11	40,300 – 97,100	NA-TRND-SO23-02	2,300	11	51,800	80
Lead	11/11	5.5 - 869	NA-TRND-S004-02	400	-	8.7	6

Table 4-13 (Continued)

	Number of		Location of	Human Health	Human Health Number of Detects		Number of Detects
	Detects per	Range of Detected	Maximum	Risk-Based	Exceeding	Reference	Exceeding
Analyte	Sample Size	Concentrations	Detection	Screening Level	RBSL	UTL	UTLs
ILM04.0, CLP Metals, mg/kg (co	mg/kg (continued)	(pan					
Magnesium	11/11	8,260 - 15,100	NA-TRND-S021-02	NA	•	12,200	
Manganese	11//11	771 – 1,540	NA-TRND-SO23-02	160	11	890	6
Mercury	10/11	0.04 - 1.2	NA-TRND-SO04-02	0.78	1	0.04	10
Potassium	11/11	172 – 1,080	NA-TRND-S004-02	NA	•	285	9
Silver	4/11	0.33 - 53.3	NA-TRND-S004-02	39	Ţ	NC	0
Sodium	11/11	116 - 1,700	NA-TRND-SO29-02	NA	•	2,030	0
Thallium	3/11	3.3 – 5.2	NA-TRND-SO21-02	0.55	3	1.7	3
Vanadium	11/11	143 – 484	NA-TRND-S025-02	55	11	219	8

Risk-Based Screening Level (RBSL) is calculated using EPA Region III residential soil risk-based concentrations (RBCs) and a hazard quotient of 0.1.

^b Upper Tolerance Levels (UTLs) were calculated using matrix specific data from Reference Area 1.

c Dioxin and furan data for total congener classes are considered non-toxic. However, in the interest of completeness, the total congener classes were compared to the toxic congener RBSLs (calculated using toxicity equivalency factors [TEFs]) and exceedences are presented in this table.

 Toxicity data is not available for the compound; therefore, no RBSL was calculated for the indicated compound.
 Not calculated. N N

Table 4-14
Summary of Results—Trend Samples

Data Set	Number of Analytes Detected	Number of Analytes Exceeding RBSL	Number of Analytes Exceeding UTL	Number of Analytes Exceeding Both
Metals, Surface	27	19	25	18
Metals, Subsurface	26	18	22	17
Pesticides/PCBs, Surface	6	0	2	0
Pesticides/PCBs, Subsurface	5	0	2	0
Semivolatiles, Surface	21	5	5	0
Semivolatiles, Subsurface	17	2	2	0
Dioxins, Surface	17	17	16	16
Dioxins, Subsurface	17	11	14	8

For many of these metals, there were one or two anomalously high concentrations, primarily found in samples TRND-SO04-31 and TRND-SO31-01 (see Appendix E for the boxplots). Barium, cadmium, copper, lead, mercury, silver, and zinc each had just one exceedance of the RBSL, and each of these were detected at TRND-SO04-31, which is the nearest sample location north of the Jinkanpo Incineration Comples. Most of the results for these analytes were similar to the potential reference area and AOC results.

Five SVOCs were found at concentrations exceeding the RBSL; two organochlorine pesticides and four SVOCs were found at concentrations exceeding reference UTLs. However, none of these compounds exceeded *both* the RBSL and the Reference Area 1 UTL. Except for benzo(a)pyrene (where there were six exceedences of the RBSL), each SVOC was detected at a concentration exceeding its RBSL only once. Each of the maximum detections was found in the sample from location TRND-SO01-01, co-located with the upwind/criteria air monitoring site.

Subsurface Soil

Of the 17 dioxins that were detected, eight of the maximum detections exceeded both the RBSL and the Reference Area 1 UTL. Every maximum detection for dioxins was found in either sample TRND-SO04-02 or TRND-SO10-02. As the boxplots show (Appendix E), there were several outliers for each dioxin congener.

Twenty-six metals were detected in the trend samples. Eighteen of these exceeded the respective RBSL, 22 exceeded the Reference Area 1 UTL, and 17 exceeded both. As with the surface soils, five of these 17 (calcium, iron, magnesium, potassium, and zinc) are essential

nutrients. Therefore, the maximum detections of 12 analytes of interest exceed both the RBSL and the UTL. Only the maximum result for aluminum, arsenic, and lead exceeded the residential RBC for soil. For many of these analytes, there were outliers, primarily found in samples TRND-SO23-02 (see Appendix E for the boxplots).

Only two SVOCs were found at concentrations exceeding the RBSL. Two organochlorine pesticides and two SVOCs were found at concentrations exceeding reference UTLs. Again, none of these compounds exceeded *both* the RBSL and the Reference Area 1 UTL.

Comparison of Surface and Subsurface Soil Contamination

The surface and subsurface data sets were compared in several ways, listed below:

- > The absolute number of contaminants detected;
- The absolute number of contaminants whose maximum concentration was greater than the RBSL and the UTL;
- The maximum detections of contaminants that were found both in the surface and subsurface; and,
- ➤ The boxplots (Appendix E);

On the basis of these comparisons, it is evident that subsurface soils from the trend data set are less contaminated than the surface soils. As Table 4-15 demonstrates, there were a greater number of detections, RBSL and UTL exceedances, and maximum detections in the surface soils. The most striking differences between surface and subsurface soils were evident in the dioxin and SVOC results.

Table 4-15
Surface to Subsurface Soil Comparisons

Type of Comparison	Surface Soil	Subsurface Soil
Number of Detected Analytes	71	65
Number whose Maximum Concentration > RBSL	41	31
Number whose Maximum Concentration > UTL	48	39
Number whose Maximum Concentration > Both RBSL and UTL	34	25
Number of Analytes with Maximum Detection (Surface vs. Subsurface) – Metals	14	13
Number of Analytes with Maximum Detection (Surface vs. Subsurface) – Pesticides	3 .	2
Number of Analytes with Maximum Detection (Surface vs. Subsurface) – Semivolatiles	16	0
Number of Analytes with Maximum Detection (Surface vs. Subsurface) – Dioxins	17	0

4.4.2 Distribution

This subsection describes the surface and subsurface distribution of contaminants identified in samples collected for the trend analysis (those listed in Table 4-11). As previously explained, the trend data set was supplemented with sample results from non-disturbed (native) sample locations from each AOC and all the samples from the two potential reference sites. The interpolated distributions for all contaminants exceeding the respective RBSL in at least one sample are presented in Appendix G.

The Jinkanpo Incineration Complex appears to contribute to contamination of surface and subsurface soil at NAF Atsugi. Moreover, contamination is concentrated near the incinerator for most of the constituents analyzed. The following discussion details the distribution by contaminant class.

Metals

Several metals exhibited very similar patterns for the trend analysis. Antimony, barium, cadmium, copper, lead, mercury, silver and zinc all had maximum surface and subsurface concentrations at NA-TRND-SO04. The interpolated distributions for these metals, presented in Appendix G, were greatly affected by these maximum detections. Figure 4-13 shows the distribution of antimony in the surface and subsurface soil.

The boxplots for these contaminants also demonstrate that these detections were outliers to the respective data sets (the concentration of the maximum detection was much higher than the remainder of the data). The fact that these outliers were found in samples collected near the Jinkanpo Incineration Complex suggests that the complex is the source of the contamination.

Except for zinc, all of these metals were present in subsurface soils at concentrations exceeding their RBSLs. Generally, higher concentrations of these elements were found in surface soils. Copper exhibited a similar distribution as the other seven but differed in that higher concentrations were found in subsurface soil rather than surface soil.

Aluminum, manganese, and vanadium exhibited no clear pattern in either the surface or subsurface soils. It appears that soil over the entire base contains concentrations of these metals at levels above RBSLs, but only aluminum concentrations exceed the RBC in some areas. The uniform distribution of concentrations across the base suggests that the presence of these constituents is not a result of Jinkanpo Incineration Complex operations.

Arsenic and chromium were found at elevated levels near the Jinkanpo Incineration Complex, but were also found at similar levels in other portions of the base. For both metals, it appears that the Jinkanpo Incineration Complex could have affected surface and subsurface soil. However, other sources of these metals appear to be present in other portions of the base, especially for arsenic. All of the interpolated concentrations of arsenic exceed the RBSL; most of the values for chromium exceed the RBSL.

Thallium concentrations are elevated in several surface soil samples collected north of the Jinkanpo Incineration Complex, however, concentrations at some of the Reference Area 2 locations also were elevated. It is unclear how this pattern relates to Jinkanpo Incineration Complex operations. All concentrations were below the RBC, although a majority of the observed and interpolated concentrations exceeded the RBSL. No clear pattern was evident for subsurface soil. Concentrations were similar to those found in the surface.

Pesticides/PCBs

No organochlorine pesticides or PCBs were detected at or above RBSLs in either surface or subsurface soils.

Semivolatiles

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene and indeno(1,2,3-cd)pyrene all exhibited similar distribution patterns. Figure 4-14 shows the spatial distribution of benzo(a)anthracene in surface and subsurface soils. For each of these compounds, the maximum concentration was found in the surface soil sample TRND-SO01-01. However, all of the subsurface soil maximum results were found in TRND-SO27-02. Only benzo(a)pyrene and dibenz(a,h)anthracene exceed the RBSL in the subsurface soil. The concentrations in the surface soil are higher than in the subsurface, and the maximum result for all five SVOCs exceeded the RBSL.

Based on the lack of spatial trends, and the generally isolated occurrence of the SVOCs, their presence in soils does not appear to be associated with the Jinkanpo Incineration Complex.

Dioxins

For the trend analysis samples, the TEQ was calculated and plotted for surface and subsurface soil, as shown in Figure 4-15. As the figure shows, all of the interpolated TEQ values exceed the RBSL for 2,3,7,8-TCDD in surface soil; most of the sampled and interpolated area

also exceeds the RBSL in subsurface soil. There is a definite trend of high concentrations near the Jinkanpo Incineration Complex in both surface and subsurface soil, primarily focused around sample location TRND-SO04. However, sample location TRND-SO06, which lies to the east and on the golf course, also exhibited a relatively high TEQ concentration. Because this sample was somewhat isolated (no other samples were collected nearby), a large area of apparent contamination (off-base and near Jinkanpo Incineration Complex) was interpolated as shown on Figure 4-15.

Most of the dioxin congeners exhibited distributions similar to the above TEQ distribution, with the maximum detections always found in either sample TRND-SO04 or -SO06. Other congeners, like 1,2,3,4,6,7,8,9-OCDD, were also found at another subsurface location at the Elementary School, at levels greater than the RBSL (see Figure 4-16). 1,2,3,7,8,9-HxCDF was detected in the subsurface at location TRND-SO27-01 at a concentration higher than the remaining subsurface data, but at a level below the RBSL.

Table 4-16 provides general descriptions of the distributions for each congener. Plots of the interpolated distributions are presented in Appendix H. Congeners with "typical" distributions have surface and subsurface distributions similar to those described for the TEQ data. These congeners usually have two areas of concentrations greater than the RBSL in the surface soil, centered on TRND-SO04 and TRND-SO06. They also have one area of concentrations in the subsurface greater than the RBSL, centered near TRND-SO04 and TRND-SO10.

Summary

The Jinkanpo Incineration Complex appears to have affected the distribution of target analytes in surface and subsurface soil at NAF Atsugi. A clear trend, especially with dioxins, is evident. Concentrations of several metals were also clearly elevated near the complex. Although SVOC concentrations were elevated at location TRND-SO01, it is possible that the source of these compounds is not the Jinkanpo Incineration Complex.

4.5 Surface versus Subsurface Soil

This section presents the results of the comparisons between surface and subsurface soil. As discussed in previous sections, qualitative comparisons between concentrations in the surface and subsurface soils were performed to assess how the risk at each AOC varies with depth and to determine whether the trends are consistent in both the surface and subsurface soil. In general, subsurface soil concentrations are lower than surface soil concentrations. However, the fact that

Table 4-16
Description of Dioxin Distributions

Congener	Surface	Subsurface
	One area of contamination centered on SO04	Typical, but additional contamination at the Elementary School greater than RBSL
1,2,3,4,6,7,8-HpCDD	Typical	Typical, but additional contamination at the Elementary School less than RBSL
1,2,3,4,6,7,8-HpCDF	Typical	Typical, but less than RBSL
1,2,3,4,7,8,9-HpCDF	Typical	Typical, but less than RBSL
1,2,3,4,7,8-HxCDD	Typical	Typical, but less than RBSL
1,2,3,4,7,8-HxCDF	Most of the area greater than RBSL	Typical
1,2,3,6,7,8-HxCDD	Typical	Typical
1,2,3,6,7,8-HxCDF	Typical	Typical, but less than RBSL
1,2,3,7,8,9-HxCDD	Typical	Typical
1,2,3,7,8,9-HxCDF	Typical, but area centered on SO04 is less than RBSL	No exceedences of RBSL
2,3,4,6,7,8-HxCDF	Typical. Large area greater than RBSL	Typical
1,2,3,7,8-PeCDD	Typical. Large area greater than RBSL	Typical
1,2,3,7,8-PeCDF	Typical	Typical, but less than RBSL
2,3,4,7,8-PeCDF	Most of the area greater than RBSL	Typical
2,3,7,8-TCDD	Typical	Typical, but less than RBSL
2,3,7,8-TCDF	Typical	Typical, but less than RBSL

fewer samples were collected in the subsurface soil leads often leads to inconclusive comparisons with reference concentrations and increased uncertainty in the risk estimates. The trend analysis also suggests lower concentrations in the subsurface soil than in the surface soil. Nonetheless, higher concentrations of many analytes in the vicinity of the Jinkanpo Incinerator Complex were found in the subsurface as well as the surface soil, suggesting that the Incinerator has probably had some effect on the subsurface as well as on the surface soil.

In addition, more direct comparisons between the surface and subsurface soil concentrations were performed by evaluating those locations where both a surface soil sample and a subsurface soil sample were collected. As explained in Section 3.2.4, only those locations that were also included in the trend analysis were used for this evaluation. For these locations, scatterplots of concentrations in the surface soil versus concentrations in the subsurface soil were constructed.

Figure 4-17 shows the scatterplots for cyanide and the inorganic constituents. Notice the moderately strong linear relationship, consistent across many of the analytes. These plots suggest that, in general, high concentrations in the surface soil correspond to high concentrations in the subsurface soil and low concentration in the surface soil corresponds to low concentrations in the

Figure 4-17. Scatter Plots for Metals and Cyanide

subsurface soil. The implication is that when the surface soil has been affected for metals, so has the subsurface soil. Thus, subsurface soil may not be a good source for establishing reference, or unaffected, concentrations. Figure 4-18 shows the scatterplots for the dioxins. In general, the one or two locations with the highest concentrations in the surface soil also have the highest concentrations in the subsurface soil, providing further evidence for the observation that when the surface soil has been affected, so has the subsurface soil. When the two most affected locations are omitted, however, there is no strong relationship between the surface and subsurface soil concentrations. This suggests that for dioxins, the association is less strong between effects at the surface and effects at the subsurface than for metals. Plots for the remaining analytes also were constructed and studied, but are not presented here. In general, the results are consistent with those shown in Figures 4-17 and 4-18.

This evaluation supports the following two conclusions:

- > Subsurface soil concentrations should not be used to establish reference concentrations.
- The locations where the surface soil has been most strongly affected tend to also show affects in the subsurface soil.

Figure 4-18. Scatter Plots for Dioxins

5.0 Conclusions and Recommendations

This section provides conclusions and recommendations for future activities at NAF Atsugi based on the March 1998 soil sampling.

5.1 Conclusions

Overall

- The March 1998 soil sampling provided data to address the two project objectives. Quality analytical data from pre-determined AOCs and across the base are now available for assessing risk and evaluating trends. None of the soil data were invalidated.
- The soil data set will allow risk assessors to determine risk to sensitive receptors in AOCs and, by evaluating the estimated analyte concentration trends across the base, qualitatively assess risks in other portions of the base.
- The unavailability of true "background" (i.e., unaffected) concentrations for soil constituents at NAF Atsugi increases the difficulty associated with the data evaluation. In lieu of background, calculations are based on comparisons to "reference" concentrations, which are from areas believed to be minimally affected by the Jinkanpo Incineration Complex and other potential contaminant sources.
- Although the data set is sufficient for assessing risks and determining analyte distribution trends across the base, additional soil data would provide increased confidence in risk determination and provide further definition of contaminant distribution patterns. Additional data would also further substantiate that the Jinkanpo Incineration Complex is the origin of some contaminants. This is particularly true for some metals and dioxins.

Trend Analysis

- The Jinkanpo Incineration Complex appears to have affected surface (0-3 in.) and subsurface soil (3-12 in.) at NAF Atsugi.
- Concentrations of some dioxins and metals are highest near the Jinkanpo Incineration Complex and decrease with distance from this apparent source.
- Surface soils are generally more contaminated than subsurface soils, especially for dioxins.
- > Some analyte concentrations are higher than RBSLs and reference concentrations.

- Interpolted trend analysis data show the TEQ for dioxins exceeds the RBSL over the entire NAF Atsugi.
- Detections of pesticides, PCBs, and SVOCs are random and infrequent and do not appear to be related to the Jinkanpo Incineration Complex.
- Based on predominate wind patterns and location, SVOCs detected southeast of the Jinkanpo Incineration Complex may be the result of another source.
- The large distance between some sample locations resulted in larger interpolated areas of increased contamination than may actually be present.

Reference and AOC Investigations

- Soils from potential Reference Area 2 were deemed inappropriate for use in the reference data set, so reference UTLs were calculated only from the Reference Area 1 data.
- The presence of contaminants at levels exceeding RBSLs in the subsurface soil and the correlation between surface and subsurface soil concentrations suggests that exclusive use of subsurface soils as a reference data set (i.e., contamination, where present, usually extends below the surface, or 0-3" interval) may not be appropriate.
- Some compounds that are not naturally occurring appear to be ubiquitous throughout the base, so UTLs were calculated for organic as well as inorganic compounds. This allowed investigators to determine if contaminants appeared to be related to the Jinkanpo Incineration Complex or to other sources.
- The coverages of 95% were not met for UTL calculations for three metals antimony, beryllium, and silver) in surface soils and all analytes in subsurface soils.
- Due to low statistical power for AOC-to-reference means comparison and low statistical coverage for reference UTLs, there is uncertainty associated with the classification of some inorganic compounds as contaminates of concern for risk assessment, particularly for subsurface soil.
- The low statistical power and low statistical coverage are less likely to affect risk assessment decisions for organic compounds because these analytes would not be eliminated as constituents of concern in a risk assessment. However, the low power and coverage lead to increased uncertainty in determining whether contaminants appear to be related to the Jinkanpo Incineration Complex.

5.2 Recommendations

The recommendations which follow are based on the March 1998 soil sample results, and on how well the existing data satisfy the project and data quality objectives.

- No additional soil sampling should be performed for pesticides or PCBs.
- Because the risk assessment may depend on eliminating inorganic analytes that fall within the reference level range, and may only compute risks for those that are deemed contaminants of concern, additional samples should be collected to strengthen the reference-to-site comparisons.
- To allow better definition of the spatial extent of some contaminants, and to more conclusively determine the source origin, additional soil samples are recommended for dioxin, SVOC, and metals analyses.

Table 5-1 lists specific numbers of samples recommended to strengthen the soil data set for risk assessment and to fill spatial data gaps in the trend analysis distribution. The statistical approach used to arrive at the recommended soil sampling strategy is contained in Appendix J. The locations for the recommended samples to support the Reference Area 1 to AOC comparisons would be field-located within the respective areas. The approximate locations for additional sampling to support the trend analysis are provided in the table.

Table 5-1
NAF Atsugi Soil Sampling Recommendations

	Recommended	Additional Samples	
Data Set	Surface	Subsurface	Rationale
Reference Are			
Reference Area 1	6 (metals and dioxins)	9 (metals and dioxins)	These additional samples will increase the UTL coverage, resulting in more certainty that an AOC result above the UTL is indicative of contamination. Furthermore, these additional samples will improve the power of the means comparisons for all AOCs.
Child Development Center	8 (metals)	4 (metals)	If the recommended numbers of additional reference samples also are collected, these additional samples will increase the power of the means comparisons, thereby improving the certainty associated with COPC determination in the risk assessment.
Elementary School	8 (metals)	12 (metals)	If the recommended numbers of additional reference samples also are collected, these additional samples will increase the power of the means comparisons, thereby improving the certainty associated with COPC determination in the risk assessment.
Tower Housing Area	0 (metals)	4 (metals)	If the recommended numbers of additional reference samples also are collected, these additional samples will increase the power of the means comparisons, thereby improving the certainty associated with COPC determination in the risk assessment.
Trend Analysi	is Samples		,
Metals	8	4	If the recommended number of subsurface soil samples are collected west of NA-TRND-SO04-02, these additional samples will allow better understanding of the subsurface distribution of antimony, barium, copper, cadmium, lead, mercury, silver, and zinc. If the recommended number of surface soil samples are collected from the Jinkanpo Incineration Complex to the north end of the runway, it will further define the distinct pattern of aluminum, chromium, manganese, and vanadium in surface soil across the base.
Semivolatiles	4		If the recommended number of surface soil samples are collected surrounding NA-TRND-SO01-01, it will allow for better determination of the extent of SVOCs detected at this location.
Dioxins	6		If the recommended number of surface soil samples are collected surrounding NA-TRND-SO06-01, it will allow for better determination of the extent of "typical" dioxin congener surface distribution near the Jinkanpo Incineration Complex.
		4	If the recommended number of subsurface soil samples are collected surrounding the NA-TRND-SO04-02 (colocated with above recommended metals samples), it will allow for better understanding of the subsurface distribution of "typical" dioxin congener distributions.

6.0 References

EPA Region III, 1998. "Updated Risk-Based Concentration Table" [memorandum]. Jennifer Hubbard, Toxicologist. April.

NEHC, 1995. Preliminary Human Health Risk Evaluation of the Jinkanpo Incineration Complex Activities.

Radian, 1998. Soil Sampling Plan to Demonstrate Health Impacts From the Jinkanpo Incineration Complex, NAF Atigusi, Japan, February.

U.S. EPA, 1989. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation Manual (Part A).

U.S. EPA Region III, 1993. Modifications to the Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analysis, April.

U.S. EPA, 1994. Contract Laboratory Program National Functional Guidelines for Organic Data Review, September, EPA Region III.

U.S. EPA, 1998. The U.S. EPA Toxicity Equivalency Factors, July. (http://www.epa.gov/nceawww1/dechem.htm).

APPENDIX B

Photographs of Sample Locations

Reference Area 1

ID's: NA-REF1-S001-31; Date: 3/7/98; Location: 82' NW of NW corner of Bldg. #3015; Depth: 0-3"; Matrix: OL; View: Southeast

ID's: NA-REF1-S003-01; Date: 3/7/98; Location: 66' west of NW corner of Bldg. # 3015; Depth: 0-3"; Matrix: OL; View: East

ID's: NA-REF1-SO02-01 & 02 & 12 (duplicate); Date: 3/7/98; Location: 70' Westnorthwest of NW corner of Bldg. # 3015; Depth: 0-3"; Matrix: OL; View: Southeast

ID's: NA-REF1-S004-01 & 02; Date: 3/7/98; Location: 124' SW of NW corner of Bldg. # 3015; Depths: 0-3" and 3-12"; Matrix: OL; View: East

ID's: NA-REF1-S005-01;

Date: 3/7/98; Location: 163' SW of NW corner of Bldg. # 3015; Depth: 0-3"; Matrix: OL; View: East

ID's: NA-REF1-S006-01 & 02;

Date: 3/7/98; Location: 165' South-southwest of NW comer of Bldg. # 3015; Depths: 0-3" and 3-12"; Matrix: OL; View: East

Reference Area 2

ID's: NA-REF2-S001-01 & 02; Date: 3/7/98; Location: 62' NW of NW corner of Bldg. # 527; Depths: 0-3" and 3-12"; Matrix: OL; View: East-southeast

ID's: NA-REF2-SO04-01; Date: 3/7/98; Location: Adjacent to merry-go-round, 83' NW of NW corner of Bldg. # 527; Depth: 0-3"; Matrix: OL; View: East-southeast

ID's: NA-REF2-SO05-01 & 02;
Date: 3/7/98;
Location: 30' NW of NW corner of Bldg.# 527;
Depths: 0-3" and 3-12";
Matrix: OL;
View: Southeast

Child Development Center

ID's: NA-DVCT-SO01-31 & 02;
Date: 3/9/98;
Location: Near playslide on NW side of Bldg # 291;
Depths: 0-3" and 3-12";
Matrix: SW first 1", then OL;
View: Northeast

ID's: NA-DVCT-SO02-01 & 11 (duplicate); Date: 3/9/98; Location: Under downspout on west side of Bldg. #291, approximately 15' south of first divider tence; Depth: 0-3"; Matrix: SW/OL (mixed); View: East

ID's: NA-DVCT-SO03-01 & 02; Date: 3/9/98; Location: Under tire swing about 12' west of SW corner of Bldg. # 291; Depths: 0-3" and 3-12"; Matrix: SW going to OL at about 1"; View: Southeast

ID's; NA-DVCT-SO04-01 & 51 (equipment blank); Date: 3/9/98; Location: In play area about 15' west of SW corner of Bldg. # 286; Depth: 0-3"; Matrix: SW; View: East

ID's: NA-DVCT-SO05-01 & 02; Date: 3/9/98; Location: In play area on NE side of Bidg. # 291 about 8' south of matted area; Depths: 0-3" and 3-12"; Matrix: about 1" of SW overlying OL; View: North-northeast

ID's: NA-DVCT-SO07-01 & 02; Date: 3/9/98; Location: At end of slide on east side of Bidg. # 291; Depths: 0-3" and 3-12"; Matrix: About 2 - 3" of SW overlying OL; View: South

ID's: NA-DVCT-SO06-01; Date: 3/9/98; Location: In sandbox on east side of Bldg. #291; Depth: 0-3"; Matrix: About 1" of SW overlying OL; View: South

ID's: NA-DVCT-S008-01;

Date: 3/9/98; Location: In play area to the east of the SE corner of Bldg # 291; Depth: 0-3";

Matrix: OL; View: West

Elementary School

ID's: NA-ELEM-SO01-01 & 02; Date: 3/8/98; Location: School playground, under chin-up bars; Depths: 0-3" and 3-12"; Matrix: SW w/gravel; View: South

ID's: NA-ELEM-SO03-01 & 02; Date: 3/8/98; Location: School playground, about 10' north of slide; Depths: 0-3" and 3-9"; Matrix: Thin sand cover over OL; View: South

ID's: NA-ELEM-SO02-01 & 11 (duplicate);

Date: 3/8/98; Location: School playground, swing set area;

Depth: 0-3"; Matrix: SW w/gravel;

View: West

ID's: NA-ELEM-SO04-01 & 51 (equipment blank); Date: 3/8/98; Location: School playground, about 10' west of playscape; Depth: 0-3"; Matrix: SW overlying OL; View: East

Location: School playground, in sandy area next to playscape; ID's: NA-ELEM-SO05-01 & 02; Depths: 0-3" and 3-12"; Matrix: SW w/gravel; View: East Date: 3/8/98;

Location: 4' south of southern end of ID's: NA-ELEM-SO08-01; Date: 3/8/98; View: Northeast Bldg. # 989; Depth: 0-3"; Matrix: OL;

ID's: NA-ELEM-SO07-01 & 02; Date: 3/8/98; Location: In low area (ditch) to the NE of the NE corner of Bldg. # 993; Depths: 0-3" and 3-12"; Matrix: OL; View: South-Southwest

Residential Tower Area

ID's: NA-TOWR-SO01-01; Date: 3/8/98; Location: In picnic area, 40' north of tennis courts (#696); Depth: 0-3"; Matrix: OL; View: South-southeast

ID's: NA-TOWR-S003-01 & 11

(duplicate); Date: 3/8/98;

Location: In southeastern portion of picnic area, about 180' north of Bldg. # 3101;

Depth: 0-3";

Matrix: OL; View: South

ID's: NA-TOWR-S002-01 & 32; Date: 3/8/98;

Location: In picnic area, low spot 50' east of tennis courts (#696); Depths: 0-3" and 3-12";

Matrix: OL;

View: South-southeast

ID's: NA-TOWR-SO04-01, 02 & 12 (duplicate); Date: 3/8/98; Location: Under tire swing in middle of picnic area; Depths: 0-3" and 3-12"; Matrix: OL; View: South-southeast

ID's: NA-TOWR-SO05-01; Date: 3/8/98; Location: Under hand swings in southeastern portion of picnic area; Depth: 0-3"; Matrix: SW over OL; View: Southeast-south

ID's: NA-TOWR-SO07-01; Date: 3/8/98; Location: Under swingset to north of Bldg. # 3101; Depth: 0-3"; Matrix: SW; View: South

ID's; NA-TOWR-SO06-01 & 02; Date: 3/8/98; Location: 30' north of northern side of Bldg. #3101, Iow spot; Depths: 0-3" and 3-12"; Matrix: OL; View: South

ID's: NA-TOWR-S008-01; Date: 3/8/98;

Location: Under see-saw to NW of Bldg. # 3101;

Brug. # 3101, Depth: 0-3"; Matrix: OL;

View: South-southeast

ID's: NA-TOWR-SO09-01; Date: 3/8/98; Location: 8' south of Bidg. # 3101; Depth: 0-3"; Matrix: OL; View: North

ID's: NA-TOWR-SO11-01; Date: 3/8/98; Location: In playscape area 75' east-northeast of Bldg. # 3102; Depth: 0-3"; Matrix: SW; View: West

ID's: NA-TOWR-SO10-01 & 02; Date: 3/8/98; Location: Under swingset 100' east-northeast of Bldg. # 3102; Depths: 0-3" and 3-12"; Matrix: OL;

View: West

ID's: NA-TOWR-SO12-01; Date: 3/8/98; Location: Adjacent to NE corner of Bldg. # 3102; Depth: 0-3"; Matrix: OL; View: West

Trend Locations

ID's: NA-TRND-SO01-01 & 02; Date: 3/15/98; Location: Co-located with upwind/criteria air monitoring station, in southern portion of base near skeet and trap range; Depths: 0-3* and 3-12*; Matrix: OL; View: North

ID's: NA-TRND-SO03-01 & 02; Date: 3/15/98; Location: Co-located with Ground Electronics Maintenance site, north of incinerator; Depths: 0-3" and 3-12"; Matrix: OL; with fill; View: North

ID's: NA-TRND-SO02-01 & 02; Date: 3/15/98; Location: Co-located with Golf Course air monitoring station, due east of and adjacent to incinerator fenceline; Depths: 0-3" and 3-12"; Matrix: OL; View: West

ID's; NA-TRND-SO04-31, 11 (duplicate), & 02; Date: 3/10/98; Location: 25' north of Base boundary fenceline, north-northeast of incinerator; Depths: 0-3" and 3-10"; Matrix: OL w/debris;

complex, above Tade River, on Location: Due north of incinerator ID's: NA-TRND-SO05-01; Date: 3/10/98;

upper terrace; Depth: 0-3"; View: South Matrix: OL;

ID's: NA-TRND-SO07-01; Date: 3/10/98; Location: On Golf Course, east of #5 fairway and northeast of incinerator complex; Depth: 0-3"; Matrix: OL; View: South-southwest

ID's: NA-TRND-S006-01 (sign label incorrect); Date: 3/15/98; Location: On Golf Course, east of #4 green and incinerator complex; Depth: 0-3"; Matrix: OL; View: North-northwest

ID's; NA-TRND-SO08-01; Date: 3/10/98; Location: On Golf Course, east of #7 fairway and north-northeast of incinerator complex; Depth: 0-3"; Matrix: OL; View: South-southwest

ID's: NA-TRND-SO09-01; Date: 3/10/98; Location: On Golf Course, west of #7 fairway and north of incinerator complex; Depth: 0-3"; Matrix: OL; View: South

north-northeast of Bldg. # 3101; Location: Outside retaining wall to ID's: NA-TRND-SO11-01 & 51 (equipment blank); Date: 3/10/98; Depth: 0-3"; Matrix: OL;

ID's: NA-TRND-SO10-01 & 02; Date: 3/10/98; Location: 25' west of Bidg. # 959; Depths: 0-3" and 3-12"; Matrix: OL w/gravel; View: East

ID's: NA-TRND-SO12-01 & 11 (duplicate); Date: 3/15/98; Location: On Golf Course, near #6 teebox and north-northeast of incinerator; Depth: 0-3"; Matrix: OL; View: South-southeast (earlier picture)

ID's: NA-TRND-SO13-01; Date: 3/15/98; Location: Southern area of driving range, west of Constellation Road; Depth: 0-3"; Matrix: OL; View: North (earlier picture)

ID's; NA-TRND-SO15-01, 02 & 12 (duplicate); Date: 3/15/98; Location: In park area west of Housing Towers # 3101 and # 3202; Depths: 0-3" and 3-12"; Matrix: OL; View: Southwest

ID's: NA-TRND-SO14-01; Date: 3/15/98; Location: Adjacent to NE corner of Bldg. # 3064; Depth: 0-3"; Matrix: OL.; View: South

ID's: NA-TRND-SO16-01 & 51 (equipment blank); Date: 3/15/98; Location: In park area west of Housing Towers #3101 and #3202; Depth: 0-3"; Matrix: OL; View: Southeast

ID's: NA-TRND-SO17-01;
Date: 3/17/98;
Location: East of runway and incinerator complex;
Depth: 0-3";
Matrix: OL;
View: West

ID's: NA-TRND-SO19-01; Date: 3/17/98; Location: West of runway, south of taxiway B; Depth: 0-3"; Matrix: OL; View: South-southwest

ID's: NA-TRND-SO18-01; Date: 3/17/98; Location: West of runway, east-northeast of incinerator complex, Depth: 0-3"; Matrix: OL; View: Southwest

ID's; NA-TRND-SO20-01; Date: 3/16/98; Location: Approx. 75' west of NW corner of Bldg. #969; Depth: 0-3"; Matrix: OL; View: West

ID's: NA-TRND-SO21-01 & 02; Date: 3/16/98; Location: East of Bldg. # 150A; Depths: 0-3" and 3-12"; Matrix: OL w/gravel; View: West

ID's: NA-TRND-SO23-01 & 02; Date: 3/16/98; Location: Southern end of Base, about 100 meters east of southern end of runway overrun; Depths: 0-3" and 3-12"; Matrix: OL; View: Northwest

ID's: NA-TRND-SO22-01 & 11 (duplicate); Date: 3/16/98; Location: Between Bldgs. # 81 and 987; Depth: 0-3"; Matrix: OL; View: North

ID's: NA-TRND-SO24-31; Date: 3/17/98; Location: Approximately 75 meters east of runway in northeast direction from incinerator complex; Depth: 0-3"; Matrix: OL w/gravel; View: Southwest

ID's: NA-TRND-SO25-01 & 02; Date: 3/17/98; Location: West of runway, north-northeast direction from incinerator complex; Depths: 0-3" and 3-12"; Matrix: OL; View: South-southwest

ID's: NA-TRND-SO27-01, 51 (equipment blank), & 02; Date: 3/16/98; Location: 150' due east from Bldg. # 153, near wooded area; Depths: 0-3" and 3-12"; Matrix: OL w/gravel; View: East

1D's: NA-TRND-SO26-01 & 11 (duplicate); Date: 3/16/98; Location: 50' west-southwest of SW corner of Bldg. # 174; Depth: 0-3"; Matrix: OL; View: Northeast

ID's: NA-TRND-SO28-01; Date: 3/16/98; Location: 75' south of Bldg. # J-46; Depth: 0-3"; Matrix: OL; View: South

ID's: NA-TRND-SO29-01 & 02; Date: 3/17/98; Location: East of runway, south of taxiway C; Depths: 0-3' and 3-12"; Matrix: OL; View: South-southwest

ID's: NA-TRND-SO31-01 & 51 (equipment blank); Date: 3/17/98; Location: Northern portion of Base, west of runway and south and east of taxiway D1; Depth: 0-3"; Matrix: OL; View: South-southwest

ID's: NA-TRND-SO30-01; Date: 3/17/98; Location: 100' SW of SW corner of Bldg. # 201; Depth: 0-3"; Matrix: OL; View: East

ID's: NA-TRND-SO32-01; Date: 3/16/98; Location: NW corner of Base, west-northwest of Golf Course #12 green; Depth: 0-3"; Matrix: OL; View: Northwest

ID's: NA-TRND-SO33-01; Date: 3/16/98; Location: Extreme northern tip of Base, north and west of Kamone Dohri Street; Depth: 0-3"; Matrix: OL; View: South

APPENDIX C

Soil Sample Summary Table

Appendix C Child Development Center Sample Locations

Cilia	DC10.0	F**		
		lo -il Tuno	North	East
	Depth	Soil Type	4375354.29	1257919.11
NA-DVCT-SO01-31	0 -3	Sand/Silt (SW/OL)	4375354.29	
NA-DVCT-SO01-02	3 -12	Silt (OL)	4351513.43	
NA-DVCT-SO02-01	0 -3	Sand/Silt (SW/OL)	4332887.77	
NA-DVCT-SO03-01	0 -3	Sand/Silt (SW/OL)	4332887.77	
NA-DVCT-SO03-02	3 -12	Silt (OL)	4293898.04	
NA-DVCT-SO04-01	0 -3	Sand (SW)	4382307.89	
NA-DVCT-SO05-01	0 -3	Sand/Silt (SW/OL)	4382307.89	
NA-DVCT-SO05-02	3 -12	Silt (OL)		
NA-DVCT-SO06-01	0 -3	Sand/Silt (SW/OL)	4371629.1	
NA-DVCT-SO07-01	0 -3	Sand (SW)	4347788.3	
NA-DVC1-SO07-01			4347788.3	
NA-DVCT-SO07-02	0 -3	Silt (OL)	4337606.2	8 1291905.42
NA-DVCT-SO08-01	10-5	<u> </u>		

Appendix C Elementary School Sample Locations

Sample ID	Depth	Soil Type	North	
NA-ELEM-SO01-01	0 -3	Sand (SW)		East
NA-ELEM-SO01-02	3 -12		4314752.54	
NA-ELEM-SO02-01	0 -3	Sand (SW)	4314752.54	1093815.27
NA-ELEM-SO03-01		Sand (SW)	4296829.33	105984.9
NA-ELEM-SO03-02	0 -3	Sand/Silt (SW/OL)	4298708.38	1082388.59
NA-ELEM-SO04-01	3 -12	Silt (OL)	4298708.38	
NA-ELEM-SO05-01		Silt (OL)	4296566.86	
NA ELENASOUS-UT	0 -3	Sand (SW)	4284254.17	
NA-ELEM-SO05-02	3 -12	Sand (SW)	4284254.17	1089620.65
NA-ELEM-SO06-01		Sand (SW)		1089620.65
NA-ELEM-SO07-01		Silt (OL)	4314608	1074722
NA-ELEM-SO07-02		Sift (OL)	4341742.99	1156249.36
			4341742.99	1156249.36
	<u>U-3</u>	Sift (OL)	4225678.66	1146625.99

Appendix C Residential Towers Sample Locations

		O-I Tuno	North	East
Sample ID	Depth	Soil Type	4302355.56	1328575.07
VA-TOWR-S001-01	0 -3	Silt (OL)	4275560.74	
NA-TOWR-S002-01	0 -3	Silt (OL)		
VA-TOWR-S002-32	3 -12	Sitt (OL)	4275560.74	
NA-TOWR-S003-01	0 -3	Silt (OL)	4265557.36	
NA-TOWR-S004-01	0 -3	Silt (OL)	4294138.5	
NA-10VVK-3004-01	3 -12	Sift (OL)	4294138.5	
NA-TOWR-S004-02	0 -3	Silt (OL)	427484.23	
NA-TOWR-SO05-01	0 -3	Silt (OL)	4231260	14351113.1
NA-TOWR-SO06-01		Sitt (OL)	423126	14351113.
NA-TOWR-SO06-02	3 -12	Sand (SW)	4236976.	2 1424745.3
NA-TOWR-S007-01	0 -3		4229473.6	
NA-TOWR-S008-01	0 -3	Silt (OL)	4168036.9	
NA-TOWR-S009-01	0 -3	Silt (OL)	4083255.9	
NA-TOWR-SO10-01	0 -3	Sitt (OL)	4083255.9	
NA-TOWR-S010-02	3 -12	Sift (OL)		
NA-TOWR-S011-01	0 -3	Sand (SW)		
NA-TOWR-S012-01	0 -3	Silt (OL)	4072356.5	1 1422000.0

Appendix C Reference Area 1 Sample Locations

Sample ID	Depth	Soil Type	North	East
NA-REF1-SO01-31	0 -3	Silt (OL)	4493349.36	
NA-REF1-SO02-01	0 -3			
NA-REF1-SO02-02		Silt (OL)	4478900	590957.18
NA DEE1 1-3002-02	3 -12	Silt (OL)	4478900	590957.18
NA-REF1-SO03-01	0 -3	Sitt (OL)	4465472.3	
NA-REF1-SO04-01	0 -3	Sift (OL)		598259.89
NA-REF1-SO04-02			4452044.59	585115.05
NA REE1 0005-02	 -	Silt (OL)	4452044.59	585115.05
VA-REF1-SO05-01	0 -3	Sift (OL)	4436427.62	571678.11
VA-REF1-SO06-01		Silt (OL)		
VA-REF1-SO06-02			4434676.17	591687.47
	3-12	Silt (OL)	4434676.17	591687.47

Appendix C Reference Area 2 Sample Locations

Sample ID	Depth	Soil Type	North	East
NA-REF2-SO01-01	0 -3	Silt (OL)	3895208.34	
NA-REF2-SO01-02	3 -12	Silt (OL)	3895208.34	897368.71
NA-REF2-3001-02	0 -3	Sitt (OL)	3912851.23	
NA-REF2-SO02-01	0 -3	Silt (OL)	3905531.31	888165.54
NA-REF2-S003-01		Silt (OL)	3905531.31	
NA-REF2-SO03-02	3 -12		3900463.66	
NA-REF2-SO04-01	0 -3_	Silt (OL)		
NA-REF2-SO05-01	0_3_	Sitt (OL)	3889953.01	
NA-REF2-SO05-02	3 -12	Sitt (OL)	3889953.01	
NA-REF2-SO06-01	0 -3	Silt (OL)	3884885.36	906759.7

Appendix C Trend Analysis Sample Locations

0		Soil		
Sample ID	Dept		North	East
NA-TRND-SO01-0		Silt (OL)	3400240.9	
NA-TRND-SO01-0	_ — —		3400240.9	
NA-TRND-SO02-0		Sitt (OL)	4022861.15	
NA-TRND-SO02-0		Silt (OL)	4022861.15	
NA-TRND-SO03-0		Silt (OL)	4292967.72	
NA-TRND-SO03-0		Sift (OL)	4292967.72	
NA-TRND-SO04-3		Silt (OL)	4132317.01	
NA-TRND-S004-02		Silt (OL)	4132317.01	
NA-TRND-SO05-01		Silt (OL)	4136400.52	
NA-TRND-SO06-01		Silt (OL)	3948273.9	
NA-TRND-SO07-01		Silt (OL)	4193640.25	
NA-TRND-SO08-01		Silt (OL)	4243941.42	
NA-TRND-SO09-01		Silt (OL)	4226382.35	1724085.37
NA-TRND-SO10-01	_	Silt (OL)	4266424.9	1600606.93
NA-TRND-SO10-02		Silt (OL)	4266424.9	1600606.93
NA-TRND-SQ11-01	0 -3	Sitt (OL)	4251890.91	1470180.94
NA-TRND-SO12-01		Silt (OL)	4381661.4	1839273.18
NA-TRND-SO13-01		Silt (OL)	4412075.68	1683939.8
NA-TRND-SO14-01		Silt (OL)	4457351.49	1404122.47
VA-TRND-SO15-01		Sift (OL)	4118399.96	1191941.35
NA-TRND-SO15-02		Silt (OL)	4118399.96	1191941.35
A-TRND-SO16-01	0 -3	Sitt (OL)	4098714.89	1262782.84
A-TRND-SO17-01	0 -3	Silt (OL)	3838775.68	2441419.87
IA-TRND-SO18-01	0 -3	Silt (OL)		2277420.788
IA-TRND-SO19-01	0 -3	Silt (OL)	4602864.85	2107175.14
A-TRND-SO20-01	0 -3	Sift (OL)	4754049.76	1608880.3
A-TRND-SO21-01	0 -3	Silt (OL)	4672555.53	1226414.2
A-TRND-SO21-02		Sitt (OL)	4672555.53	1226414.2
A-TRND-SO22-01		Silt (OL)	4664959.23	958677.98
A-TRND-SO23-01		Silt (OL)	3386037.64	2508230.3
A-TRND-SO23-02		Silt (OL)	3386037.64	2508230.3
A-TRND-SO24-31		Silt (OL)	4921640.58	2435694.12
A-TRND-SO25-01	0 -3	Silt (OL)	5027428.18	2134162.34
A-TRND-SO25-02	3 -12	Silt (OL)	5027428.18	2134162.34
A-TRND-SO26-01	0 -3	Sift (OL)	5151551.82	1626983.07
A-TRND-SO27-01	0 -3	Silt (OL)	5005222.01	1263185.04
A-TRND-SO27-02		Silt (OL)	5005222.01	1263185.04
A-TRND-SO28-01		Silt (OL)	5158597.47	1053533.74
A-TRND-SO29-01	0 -3	Silt (OL)	5282404.14	2457601.73
N-TRND-SO29-02		Silt (OL)	5282404.14	2457601.73
\-TRND-SO30-01		Silt (OL)	5544573.61	1635761.43
N-TRND-SO31-01		Silt (OL)	5966435.41	2200264.44
\-TRND-SO32-01		ilt (OL)	6203973.98	1488223.19
-TRND-SO33-01		ilt (OL)		・マレレととう。[3]

APPENDIX D

Data Validation Report

Environmental Science and Chemistry

DATA VALIDATION REPORT

JINKANPO INCINERATION COMPLEX Atsugi Naval Air Facility, Japan Radian Project No. 801230.4245.14 Subcontract No. 751711.US

March 1998 Sampling

Prepared for:

Radian International LLC 8501 North Mopac Boulevard Austin, Texas 78759

Prepared by:

EcoChem, Inc. 405 Westland Building, 100 South King Street Seattle, Washington 98104

EcoChem Project Number: 15704-1

June 5, 1998

Approved for Release:

Eric Strout

Senior Project Chemist

EcoChem, Inc.

1.0 INTRODUCTION

Basis for Data Validation

This report summarizes the results of data validation performed on the data for soil samples, field rinsate blanks, and the associated laboratory quality control sample analyses. The samples were analyzed by GP Laboratories, LLLP, with the dioxin/furan analyses subcontracted to Triangle Laboratories, Inc. The samples were analyzed for the following parameters, and were reviewed by the chemists listed below:

Toot	Method	Primary	Secondary
SVOC PPCB Metals Dioxin/Furans	OLM03.2 OLM03.2 ILM04.0 SW8290	Kelley Wilt Sherri Wunderlich Bob Olsiewski Sherri Wunderlich	Eric Strout Alison Bodkin Ann Bailey Eric Strout

See TABLE 1 SAMPLE INDEX for a list of the samples and the associated laboratory SDG numbers.

Data assessment was based on the QC criteria recommended in the methods listed above; the Soil Sampling Plan to Demonstrate Health Impacts from the Jinkanpo Incineration Complex, NAF Atsugi, Japan (2/98); and Region III Modifications to USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (9/94) and Region III Modifications to USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (4/93).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are assigned a J or UJ, data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the above-referenced documents and methods.

Data qualifier definitions are included as APPENDIX A. The qualified Forms 1 are included as APPENDIX B. For ease of use, a numerical code has been added to each data qualifier in the table to indicate the reason for the qualifier. A list of all of the reason codes is also included in APPENDIX A. The data validation worksheets are included as APPENDIX C. Communication records and resubmissions are in APPENDIX D.

2.0 SUMMARY OF QC ISSUES BY FRACTION

ORGANIC ANALYSES

Semivolatile Organic Compounds (SVOC)

Overall, the precision and accuracy were acceptable for all SVOC analyses. No data were rejected for any reason. The percent completeness for the SVOC data is 100%.

The rinsate blanks were extracted 1 - 2 days past the 7 day holding time criterion. All soil samples in SDG 9803156 were extracted 5 to 8 days past the recommended 14 day holding time criterion. Four samples in SDG 9803074 were re-extracted (due to surrogate recovery outliers) 8 days past the 14 day holding time criterion. All results these samples and in the rinsate blanks were estimated (J/UJ-1).

The method blank for the water extraction (SBLKA) contained bis(2-ethylhexyl)phthalate and di-n-butylphthalate. These compounds were present in two of the rinsate blanks, and were qualified B-7. No other target analytes were qualified based on method or rinsate blank contamination.

The percent difference (%D) values for one or more compounds were outside of the control limit for most of the continuing calibrations. Associated positive results were qualified as estimated (J-5B). With the exception of hexachlorocyclopentadiene and 2,4-dinitrophenol, the detection limits were not significantly affected, and no action was taken. The %D values for hexachlorocyclopentadiene and 2,4-dinitrophenol were greater than 50% in several continuing calibrations, indicating a significant low bias. The associated detection limits were estimated (UJ-5B).

The surrogate recovery values for four samples in SDG 9803074 were less than the lower control limits. The samples were re-extracted and reanalyzed, with acceptable recovery values. The original analysis results were qualified as do-not-report (DNR-13). The results of the reanalyses should be used.

For Sample NA-TRND-S001-01, seven compounds were detected at concentrations greater than the calibration range of the instrument. The compounds were correctly 'E' flagged by the laboratory. The sample was reanalyzed at a dilution, and the compounds were detected within the instrument calibration range.

The compounds that exceeded the linear range in the original analysis were qualified as do-not-report (DNR), and should be reported from the dilution. In the dilution analysis, all compounds (except those that exceeded the linear range in the original analysis) were qualified as DNR and should be reported from the original analysis. The DNR qualifier does not imply that the data are not useable. The purpose is to designate which result (of multiple results) should not be used.

The tentatively identified compound (TIC) data were qualified as specified in the Region III Modifications to National Functional Guidelines. Although other QC outliers were present, no other SVOC data were qualified for any reason. See the validation report for additional details.

Pesticide/PCB Compounds (PPCB)

Overall, the precision and accuracy were acceptable for all PPCB analyses. No data were rejected for any reason. The percent completeness for the PPCB data is 100%.

Four of the rinsate blanks were extracted 1 - 3 days past the 7 day holding time criterion. All results in the rinsate blanks were estimated (J/UJ-1).

The %D values for one or more compounds were outside of the control limit for several of the continuing calibrations. Associated positive results were qualified as estimated (J-5B). With the exception of methoxychlor (and 4,4'-DDT in Sample NA-TRND-S015-01), the detection limits were not significantly affected, and no action was taken. The %D values for methoxychlor were greater than 50% in several continuing calibrations (and 4,4'-DDT in one continuing calibration), indicating a significant low bias. The associated detection limits were estimated (UJ-5B).

The relative percent difference (RPD) value for heptachlor was greater than the upper control limit of 31% (at 39%) in the matrix spike/matrix spike duplicate (MS/MSD) analyses performed using Sample NA-ELEM-S003-01. The positive result for heptachlor in the parent sample was qualified as estimated (J-9).

Sample results that had an RPD value greater than 25% between the two columns were P-flagged by the laboratory. These results were qualified as estimated (J-9).

For several samples, target compounds were present at concentrations that were greater than the linear range of the instrument in the original analysis. These analytes were E-flagged by the laboratory on the sample result summary forms. The samples were diluted and reanalyzed, and the analytes were detected within the linear range. The results in the original analyses that exceeded the linear range should not be used and were qualified as do-not-report (DNR-20). The result should be reported from the diluted analysis. Results for all compounds except those that exceeded the linear range should be reported from the original analysis. All results, except those that originally exceeded the linear range, should not be used in the reanalysis and were qualified as do-not-report (DNR-14). As a usable result exists for each compound in a sample, the percent completeness is still 100%.

Although other QC outliers were present, no other PPCB data were qualified for any reason. See the validation report for additional details.

Dioxin/Furan Compounds

Overall, the precision and accuracy were acceptable for all dioxin/furan analyses. No data were rejected for any reason. The percent completeness for the dioxin/furan data is 100%.

The %D value for the target compound 123478-HxCDD was outside the control limit in one continuing calibration submitted with SDG 45215A. Associated sample results were qualified as estimated (J/UJ-5B).

Positive results for target analytes were reported for several blanks. To evaluate the effect of laboratory contamination on the associated sample results, action levels of five times the blank concentrations were established. Positive results for specific congeners with concentrations less than the action level were qualified as B-6 (for equipment blank contamination) or B-7 (for method or clean-up blank contamination) at the reported levels in the associated samples.

Several labeled compound percent recovery (%R) values were not within the control limits listed in the QAPP (25% to 125%). All outliers were greater than the upper control limit of 125%. Positive results in the field samples for target compounds associated with labeled compound %R value outliers were qualified as J-13 for surrogate outliers and J-19 for internal standard outliers. For labeled compound outliers, only the associated target compound (same congener, or quantitated using the labeled compound) was qualified.

The %R and RPD values for OCDD were outside the control limits in the MS/MSD set performed using Sample NA-REF1-S001-31. The OCDD value was qualified as estimated due to accuracy and precision outliers (J-8,9).

The laboratory flagged several compounds in several samples as "PR", indicating poor resolution of the peak. The laboratory also flagged compounds as "Q", indicating quantitative interference. The laboratory flags are printed on the sample results summary forms. As the reported concentrations of target compounds in these two cases most likely have a high bias, positive results for specific congeners were qualified as estimated (J-14). Several internal standard (labeled compound) results were flagged "Q" by the laboratory. In these cases, associated positive results and detection limits for target compounds would most likely have a low bias. The associated target compound results were qualified as estimated (J/UJ-14).

Positive results for several samples were flagged "E" by the laboratory to indicate that the calibration range of the instrument was exceeded. Target compounds flagged "E" by the laboratory were qualified as estimated (J-20).

When positive results for 2378-TCDF at concentrations greater than 1.0 pg/g were present in the DB5 analyses of samples, the extracts were reanalyzed using a DB225 column. The 2378-TCDF results were confirmed on the DB225 column, except as noted. Where 2378 TCDF was analyzed on the DB225 column, the results from the DB5 column should not be used, since 2378-TCDF has better resolution on the DB225 column. The DB5 column results were qualified as DNR-14

Although other QC outliers were present, no other dioxin/furan data were qualified for any reason. See the validation report for additional details.

INORGANIC ANALYSES

Metals

Overall, the precision and accuracy were acceptable for all metals analyses. No data were rejected for any reason. The percent completeness for the metals data is 100%.

For SDG 9803124, the %R values for sodium in the contract required detection limit standard (CRIF) were not within the control limits of 80% to 120%. All sodium results were less than the action level and were qualified as estimated with a low bias (L-5A).

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits except for antimony and thallium in several of the associated soil samples. These results were qualified as estimated with a low bias (L/UL-7).

Several analytes were detected in the water preparation and continuing calibration blanks greater than the IDL. If the analyte concentrations in the associated samples were less than the action level (five times the blank concentration), the samples results were qualified B-7.

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes (aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions. Positive antimony and cadmium results less than the associated action levels were qualified as estimated (K-14); no action was taken for non-detect antimony or cadmium results. All selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

The recovery values for several analytes (usually antimony) were less than the 75% lower control limit in the soil MS/MSD analyses. All associated soil results for these analytes were qualified as estimated (L/UL-8).

The soil barium laboratory control sample (LCS) %R was greater than the upper control limit in several of the LCS analyses. All associated positive soil barium results were qualified as estimated (K-10).

The %D values for chromium, nickel, and sodium were greater than the 10% upper control limit in the serial dilution performed with SDG 9803124. All associated results for these analytes were qualified as estimated (J/UJ-16).

Although other QC outliers were present, no other metals data were qualified for any reason. See the validation report for additional details.

SAMPLE INDEX Atsugi Naval Air Base Spring, 1998 Sampling Event

ield ID	SDG	ID	Lab ID	SVOC	PPCB	Metals
NA-REF1-SO01-31	9803074	01A	9803074-01A	Х	X	X
NA-REF1-SO02-01	9803074	02A	9803074-02A	_X	X	X
VA-REF1-S002-02	9803074	03A	9803074-03A	X	X	X
NA-REF1-S002-12	9803074	04A	9803074-04A	Χ	X	X
NA-REF1-SO03-01	9803074	05A	9803074-05A	X	Х	X
NA-REF1-SO04-01	9803074	06A	9803074-06A	X	X	X
NA-REF1-SO04-02	9803074	07A	9803074-07A	Х	X	Х
NA-REF1-SO05-01	9803074	08A	9803074-08A	X	X	X
NA-REF1-SO06-01	9803074	09A	9803074-09A	X	X	X
NA-REF1-SO06-02	9803074	10A	9803074-10A	X	X	X
NA-DVCT-SO08-01	9803074	11A	9803074-11A	_X	X	X
NA-DVCT-SO04-51	9803074	12D	9803074-12D	X	X	X
NA-TOWR-SO06-01	9803074	13A	9803074-13A	X	X	X
NA-TOWR-SO06-02	9803074	14A	9803074-14A	X	Х	X
NA-TOWR-S007-01	9803074	15A	9803074-15A	X	X	X
NA-TOWR-S008-01	9803074	16A	9803074-16A	Х	Х	X
NA-TOWR-SO09-01	9803074	17A	9803074-17A	X	X	X
NA-TOWR-SO10-01	9803074	18A	9803074-18A	Х	Χ	Х
NA-TOWR-SO10-02	9803074	19A	9803074-19A	Χ	X	X
NA-TOWR-SO11-01	9803074	20A	9803074-20A	Χ	X	X
NA-TOWR-SO12-01	9803074	21A	9803074-21A	X	X	X
NA-ELEM-SO05-01	9803075	01A	9803075-01A	X	X	Х
NA-ELEM-SO05-02	9803075	02A	9803075-02A	X	X	Х
NA-ELEM-SO06-01	9803075	03A	9803075-03A	X	X	X
NA-ELEM-SO07-01	9803075	04A	9803075-04A	Х	Χ	X
NA-ELEM-SO07-02	9803075	05A	9803075-05A	X	X	X
NA-ELEM-SO08-01	9803075	06A	9803075-06A	X	X	X
NA-ELEM-SO04-51(1005)	9803075	07D	9803075-07D	X	X	X
NA-ELEM-SO01-01	9803075	08A	9803075-08A	X	X	X
NA-ELEM-SO01-02	9803075	09A	9803075-09A	X	X	X
NA-ELEM-SO02-01	9803075	10A	9803075-10A	X	Х	X
NA-ELEM-SO02-11	9803075	11A	9803075-11A	Х	X	X
NA-ELEM-SO03-01	9803075	12A	9803075-12A	Х	Х	X
NA-ELEM-SO03-02	9803075	13A	9803075-13A	Х	X	X
NA-ELEM-SO04-01	9803075	14A	9803075-14A	Х	. X	X
NA-ELEM-SO04-51(1300)	9803075	15B		X	X	Х
NA-REF2-SO03-02	9803075	16A		X	X	X
NA-REF2-SO03-02 NA-REF2-SO04-01	9803075	17A		Х	X	Х
NA-REF2-S005-01	9803075	18A		X	X	Х
NA-REF2-S005-02	9803075	19A		X	X	X
NA-REF2-S005-02	9803075	20A		Х	X	X
NA-REF2-S006-11	9803075	21 <i>A</i>		Х	X	X
NA-TOWR-S001-01	9803076	01/		· · · · · · · · · · · · · · · · · · ·	X	X
NA-TOWR-S002-32	9803076	02/		·	X	Х

SAMPLE INDEX Atsugi Naval Air Base Spring, 1998 Sampling Event

Field ID	SDG	ID	Lab ID	SVOC	PPCB	Metais
NA-TOWR-SO02-01	9803076	03A	9803076-03A	Х	X	X
NA-TOWR-SO03-01	9803076	04A	9803076-04A	Χ	X	X
NA-TOWR-SO03-11	9803076	05A	9803076-05A	Х	Χ	X
NA-TOWR-SO04-02	9803076	06A	9803076-06A	X	Х	Х
NA-TOWR-SO04-01	9803076	07A	9803076-07A	X	X	Х
NA-TOWR-SO05-01	9803076	A80	9803076-08A	Х	X	X
NA-TOWR-SO04-12	9803076	09A	9803076-09A	X	Х	X
NA-DVCT-S001-31	9803076	10A	9803076-10A	X	X	X
NA-DVCT-SO01-02	9803076	11A	9803076-11A	Х	Х	Х
NA-DVCT-SO02-01	9803076	12A	9803076-12A	Х	X	Х
NA-DVCT-SO02-11	9803076	13A	9803076-13A	Χ		X
NA-DVCT-SQ03-01	9803076	14A	9803076-14A	Χ	X	Х
NA-DVCT-SO03-02	9803076	15A	9803076-15A	X	Χ	X
NA-DVCT-SO04-01	9803076	16A	9803076-16A	X	Х	X
NA-DVCT-SO07-02	9803076	17A	9803076-17A	X		X
NA-DVCT-SO05-01	9803076	18A	9803076-18A	X	Χ	X
VA-DVCT-SO05-02	9803076	19A	9803076-19A	Х	X	X
NA-DVCT-SO06-01	9803076	20A	9803076-20A	X	X	X
NA-DVCT-SO07-01	9803077	01A	9803077-01A	X	Х	X
NA-REF2-SO01-01	9803077	02A	9803077-02A	X	X	X
NA-REF2-SO01-02	9803077	03A	9803077-03A	X	Х	X
NA-REF2-SO02-01	9803077	04A	9803077-04A	X	X	X
A-REF2-SO03-01	9803077	05A	9803077-05A	X	Χ	X
NA-REF2-SO02-51	9803077	06D	9803077-06D	X	X	<u>X</u>
IA-TRND-S011-51	9803077	07A	9803077-07A	X	X	X
IA-TRND-SO04-31	9803077	08A	9803077-08A	X	X	X
IA-TRND-S004-11	9803077	09A	9803077-09A	X	Χ	X
IA-TRND-S004-02	9803077	10A	9803077-10A	X	X	X
IA-TRND-SO05-01	9803077	11A	9803077-11A	Х	X	X
IA-TRND-S007-01	9803077	12A	9803077-12A	X	X	X
A-TRND-S008-01	9803077	13A	9803077-13A	X	X	X
IA-TRND-S009-01	9803077	14A	9803077-14A	X	X	X
IA-TRND-SO10-01	9803077	15A	9803077-15A	X	X	Х
A-TRND-SO10-02	9803077	16A	9803077-16A	X	Χ	X
A-TRND-SO11-01	9803077	17A	9803077-17A	X	X	X
A-TRND-SO23-02	9803124	01A	9803124-01A	X	X	X
A-TRND-SO24-31	9803124	02A	9803124-02A	X	X	X
A-TRND-SO25-01	9803124	03A	9803124-03A	X	X	X
A-TRND-SO25-02	9803124	04A	9803124-04A	X	$\frac{x}{x}$	X
A-TRND-SO26-01	9803124	05A	9803124-05A	X	X	$\frac{x}{x}$
A-TRND-SO26-11	9803124	06A	9803124-06A	X	X	X
A-TRND-SO27-01	9803124	07A	9803124-07A	X	X	$\frac{\hat{x}}{x}$
A-TRND-SO27-02	9803124		9803124-08A	X	X	-
A-TRND-SO28-01	9803124		9803124-09A	X	X	$-\hat{\mathbf{x}}$

SAMPLE INDEX Atsugi Naval Air Base Spring, 1998 Sampling Event

Field ID	SDG	ID	Lab ID	SVOC	PPCB	Metals
NA-TRND-SO29-01	9803124	10A	9803124-10A	Х	X	_X
NA-TRND-SO29-02	9803124	11A	9803124-11A	X	X	X
NA-TRND-SO30-01	9803124	12A	9803124-12A	Х	X	Х
NA-TRND-S030-01 NA-TRND-S015-02	9803124	13A	9803124-13A	Х	X	X
NA-TRND-SO15-02 NA-TRND-SO15-22	9803124	14A	9803124-14A	X	Χ	X
NA-TRND-SO16-01	9803124	15A	9803124-15A	Χ	X	X
NA-TRND-SO17-01	9803124	16A	9803124-16A	X	Х	X
NA-TRND-SO18-01	9803124	17A	9803124-17A	X	X	X
NA-TRND-SO19-01	9803124	18A	9803124-18A	Х	Х	X
NA-TRND-SO20-01	9803124	19A	9803124-19A	Χ.	Х	X
NA-TRND-SO21-01	9803124	20A	9803124-20A	Х	Х	X
NA-TRND-SO21-02	9803127	01A	9803127-01A	Х	Х	X
NA-TRND-SO22-01	9803127	02A	9803127-02A	X	X	Х
NA-TRND-SO22-11	9803127	03A	9803127-03A	X	Х	Х
NA-TRND-SO23-01	9803127	04A	9803127-04A	Х	Χ	X
NA-TRND-SO32-01	9803127	05A	9803127-05A	Х	X	X
NA-TRND-SO33-01	9803127	06A	9803127-06A	Х	X	X
NA-TRND-SO31-01	9803127	07A	9803127-07A	Х	X	X
NA-TRND-SO27-51	9803127	08D	9803127-08D	Х	X	Х
NA-TRND-SO16-51	9803127	09D	9803127-09D	X	Х	X
NA-TRND-SO31-51	9803127	10D	9803127-10D	X	X	X
NA-TRND-S001-01	9803156	01A	9803156-01A	Χ	X	X
NA-TRND-S001-02	9803156	02A	9803156-02A	X	X	X
NA-TRND-SO02-01	9803156	03A	9803156-03A	X	X	X
NA-TRND-SO02-02	9803156	04A	9803156-04A	X	X	X
NA-TRND-S003-01	9803156	05A	9803156-05A	X	X	X
NA-TRND-S003-02	9803156	06A	9803156-06A	Х	X	X
NA-TRND-S006-01	9803156	07A	9803156-07A	Х	X	Х
NA-TRND-SO12-01	9803156	08A	9803156-08A	Х	X	X
NA-TRND-SO12-01	9803156	09A	9803156-09A	Х	X	X
NA-TRND-SO13-01	9803156	10A	9803156-10A	Х	X	X
NA-TRND-SO14-01	9803156	11A		Х	X	X
NA-TRND-SO15-01	9803156	12A		Х	X	X

ì

DATA VALIDATION REPORT - FULL REVIEW Atsugi Naval Air Facility GC/MS Semivolatiles Matrix: Soil

Method: CLP

Analytical data for 113 soil samples and eight equipment rinsate blanks were reviewed using quality control (QC) criteria documented in the analytical method and the Quality Assurance Project Plan (QAPP). The samples were collected between March. 7 and 17, 1998, and were analyzed by GP Environmental Services, Inc. Refer to the **Sample Index** for a complete listing of the samples.

I. COMPLETENESS

All contract-required deliverables were submitted by the laboratory. The laboratory followed adequate corrective action processes, and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- Chain of Custody and Technical Holding Times
 GC/MS Instrument Performance Check (Tuning)
- * Blanks (Method & Rinsate)
- Initial Calibration
- * Continuing Calibration
- Surrogate Compounds
- * Matrix Spike/Matrix Spike Duplicates (MS/MSD)
- Laboratory Control Samples (LCS)
- * Internal Standards
- Compound Quantitation and Reported Detection Limits
- Tentatively Identified Compounds (TIC)
- * Field Duplicates

Those items marked with an asterisk (*) did not meet all specified QC criteria and are discussed below. QC items not marked with an asterisk meet all QC criteria. Qualified sample result summaries (Form Is) are included in APPENDIX B.

Chain of Custody and Technical Holding Times

SDG 9803074

Due to surrogate compound recovery outliers, four samples (NA-TOWR-SO06-02, NA-TOWR-SO08-01, NA-TOWR-SO10-01), and NA-TOWR-SO10-02) were re-extracted 8 days past the 14 day recommended holding time for soils. See the **Surrogate Compounds** section for more details. As the surrogate recovery values in the re-extracted samples were acceptable, the results from the re-extracts should be reported and original analysis data should not be used. The results from the initial analyses were qualified as do-not-report (DNR-13). Due to the holding time exceedance, the re-extracted sample results were estimated (J/UJ-1).

SDG 9803075

The rinsate blanks, NA-ELEM-SO04-51 (1005) and NA-ELEM-SO04-51 (1300), were extracted one day past the required 7 day holding time criterion. Due to the holding time exceedance, all results in these blanks are estimated (J/UJ-1).

SDG 9803077

The CLP forms for the samples identified by the laboratory as 9803077-17A and 9803077-01A were given the incorrect client ID, as verified using the chain-of-custody and the LIMS summary sheet. These two samples should have client IDs of NA-TRND-SO11-01 and NA-DVCT-SO07-01, respectively. The Form I for each sample has been corrected by the reviewer. The other summary CLP forms have not been corrected.

The rinsate blank (NA-REF-SO02-51) was extracted 2 days past the required 7 day holding time criterion. Due to the holding time exceedance, all results in this blank are estimated (J/UJ-1).

SDG 9803127

The rinsate blanks, NA-TRND-SO27-51 and NA-TRND-SO16-51, were extracted 1 and 2 days (respectively) past the required 7 day holding time criterion. Due to the holding time exceedance, all results are estimated (J/UJ-1).

SDG 9803156

All soil samples were extracted 19 days after collection (22 days for Sample NA-TRND-SO02-02), 5 to 8 days past the 14 day recommended holding time for soils. Due to the holding time exceedance, all results are estimated (J/UJ-1).

Blanks (Method & Rinsate)

SDGs 9803074, 9803075, and 9803077

The method blanks associated with the soil samples (SBLKB, SBLKC, SBLKD, & SBLKE) were free from target analyte contamination. The method blank for the water extraction (SBLKA) contained bis(2-ethylhexyl)phthalate and di-n-butylphthalate. Action levels were established at ten times the blank concentrations. The di-n-butylphthalate concentrations found

in the rinsate blanks NA-DVCT-SO04-51 and NA-ELEM-SO04-51 (1005) associated with this method blank were less than the action level and were qualified with a "B" flag. No other qualifiers were issued.

Several of the method blanks associated with the soil samples had one or more tentatively identified compounds (TIC) reported. The laboratory did not flag the associated sample TIC with a B, as required by the CLP SOW. If a TIC reported in a method blank was also present in a sample at a concentration less than the action level (10 times the blank concentration), the sample TIC result was qualified B and crossed off on the Form 1F, as specified by the Region III Modification to Functional Guidelines. See the TIC section for more details.

SDGs 9803156

The method blank associated with most of the soil samples contained diethylphthalate at a concentration of 45 μ g/Kg. This compound was not detected in the associated samples; no action was necessary.

Initial Calibration

SDGs 9803074 and 9803076

The percent relative standard deviation (%RSD) value for 3-nitroaniline was greater than the 30% upper control limit (at 42.2%) in the initial calibration for instrument HP#H (analyzed 3/31/98). Since the response factor was greater than 0.05 and this analyte was not detected in any of the samples, no qualifiers were assigned.

SDG 9803127

The %RSD values in the initial calibration for instrument HP#H for hexachlorocyclopentadiene and 2,4-dinitrophenol were 36.3% and 31.3% respectively. Since the response factors were greater than 0.05 and these analytes were not detected in any of the samples, no qualifiers were added.

Continuing Calibration

SDG 9803074

The percent difference (%D) values for two or more compounds were outside the ±25% control limits in four of the seven CCAL submitted with this SDG. A list of the %D outliers and the associated samples is in the data validation worksheets. If an analyte was detected in a sample that has an associated CCAL outlier, the analyte was qualified J-5B. For non-detects associated with %D outliers, the detection limits were judged not significantly affected, and no action was taken.

SDG 9803075

The %D values for two or more compounds were outside the $\pm 25\%$ control limits in each of the four CCAL submitted with this SDG A list of the %D outliers and the associated samples is in the data validation worksheets. None of the compounds associated with a %D outlier was reported in the associated samples. With the exception of hexachlorocyclopentadiene and 2,4-dinitrophenol, the detection limits were not significantly affected, and no action was taken.

The hexachlorocyclopentadiene %D value was greater than +50% (at 64%) in the CCAL analyzed 3/28/98, indicating a significant low bias. All hexachlorocyclopentadiene detection limits were estimated (UJ-5B) in the samples associated with this continuing calibration. The 2,4-dinitrophenol %D value was greater than +50% (at 60.6%) in the CCAL associated with one rinsate blank [NA-ELEM-SO04-51(1300)]. The 2,4-dinitrophenol result in this rinsate blank was estimated (UJ-5B) due to the low bias.

SDG 9803076

The %D values for two or more compounds were outside the $\pm 25\%$ control limits in each of the three CCAL submitted with this SDG A list of the %D outliers and the associated samples is in the data validation worksheets. None of the compounds associated with a %D outlier was reported in the associated samples. With the exception of hexachlorocyclopentadiene, the detection limits were not significantly affected, and no action was taken.

The hexachlorocyclopentadiene %D value was greater than +50% (at 73.3%) in the CCAL analyzed 3/30/98, indicating a significant low bias. All hexachlorocyclopentadiene detection limits were estimated (UJ-5B) in the samples associated with this continuing calibration.

SDG 9803077

The %D values for two or more compounds were outside the $\pm 25\%$ control limits in each of the five CCAL submitted with this SDG A list of the %D outliers and the associated samples is in the data validation worksheets. If an analyte was detected in a sample that has an associated CCAL outlier, the analyte was qualified J-5B. For non-detects associated with %D outliers, with the exception of hexachlorocyclopentadiene and 2,4-dinitrophenol, the detection limits were not significantly affected, and no action was taken.

The hexachlorocyclopentadiene %D values were greater than +50% (at 55.1% and 54.5%) in the CCAL analyzed 3/28/98 and 3/30/98, indicating a significant low bias. All hexachlorocyclopentadiene detection limits were estimated (UJ-5B) in the samples associated with these continuing calibrations. The 2,4-dinitrophenol %D value was greater than +50% (at 60.6%) in the CCAL associated with two rinsate blanks (REF2-SO05-51 and TRND-SO11-51). The 2,4-dinitrophenol results in these rinsate blanks were estimated (UJ-5B) due to the low bias.

SDG 9803124

The %D values for three compounds (2,2' oxybis(1-chloropropane), hexachlorocyclopentadiene, and di-n-octylphthalate) were outside the ±25% control limit in the continuing calibration

analyzed 4/3/98. None of the compounds associated with a %D outlier was reported in the associated samples. The detection limits were not significantly affected, and no action was taken.

SDG 9803127

The %D values for two or more compounds were outside the ±25% control limits in two of the four CCAL submitted with this SDG A list of the %D outliers and the associated samples is in the data validation worksheets. If an analyte was detected in a sample that has an associated CCAL outlier, the analyte was qualified J-5B. For non-detects associated with %D outliers, the detection limits were not significantly affected, and no action was taken.

SDG 9803156

The %D values for two or more compounds were outside the ±25% control limits in each of the three CCAL submitted with this SDG A list of the %D outliers and the associated samples is in the data validation worksheets. If an analyte was detected in a sample that has an associated CCAL outlier, the analyte was qualified J-5B. For non-detects associated with %D outliers, the detection limits were not significantly affected, and no action was taken.

Surrogate Compounds

SDG 9803074

Samples NA-TOWR-SO06-02, NA-TOWR-SO08-01, NA-TOWR-SO10-01, & NA-TOWR-SO10-02 were re-extracted due to poor (<10%) recovery values of one or more surrogates in each of these samples. All surrogate recovery values in the re-extracted samples were acceptable. Since the original results may have a significant low bias, the re-extract results should be reported and the original results should not be used. The results from the original extraction were qualified as do-not-report (DNR-13). The results from the re-extracted samples should be reported, and were qualified J(+)/UJ(-) due to the holding time exceedance (see also the **Holding Times** section).

SDG 9803074/9803075

The percent recovery (%R) value for the surrogate 2,4,6 tribromophenol exceeded the upper control limit in the QC analyses SBLKAMS and SBLKDAMSD. Qualifiers are not issued to QC analyses; no action was taken. The outliers appear to be an isolated case.

SDG 9803076/9803077/9803127

Some of the samples in these SDG have surrogate %R values that exceed the upper control limit. As only one %R value outlier is present in each sample, the results were judged not significantly affected, and no action was taken.

Matrix Spike/Matrix Spike Duplicate Analyses

Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed for the water matrix. As all water samples were rinsate blanks, no action was necessary.

SDG 9803074

The MS/MSD was performed on sample NA-TOWR-SO06-01, although Sample NA-REF1-SO01-31 was specified for MS/MSD analyses. No action was taken. All %R values were acceptable. The relative percent difference (RPD) value for 1,2,4-trichlorobenzene was greater than the upper control limit by 1%. No action was taken.

SDG 9803077

The MS/MSD was performed on sample NA-TRND-SO04-02, although Sample NA-TRND-SO04-31 was specified for MS/MSD analyses. No action was taken. All %R values were acceptable. The RPD value for 1,4-dichlorobenzene was at the upper control limit of 27%. No action was taken.

SDG 9803124

The MS/MSD was performed on sample NA-TRND-SO23-02, although Sample NA-TRND-SO24-31 was specified for MS/MSD analyses. No action was taken. The %R values and RPD values for 1,4-dichlorobenzene and 1,2,4-trichlorobenzene exceeded the upper control limits. These compounds were not detected in the associated samples; no action was taken.

SDG 9803127

The MS/MSD was performed on sample NA-TRND-SO21-02. The %R value for 1,4-dichlorobenzene was less than the lower control limit in the MS/MSD, and the %R value for 1,2,4-trichlorobenzene was less than the lower control limit in the MS. As the LCS %R values for these compounds were acceptable, no action was taken based on the MS/MSD results alone.

SDG 9803156

The MS/MSD was performed on sample NA-TRND-SO01-01. The %R value for 2,4-dinitro-toluene was greater than the upper control limit in the MS/MSD. As the LCS %R value for 2,4-dinitrotoluene was acceptable, no action was taken based on the MS/MSD results.

Laboratory Control Sample/Laboratory Control Sample Duplicate Analyses

SDG 9803074/9803075/9803076/9803077/9803124/9803127

Laboratory control samples (LCS) are not specified or required by the CLP SOW for OLMO3.2 or by the Region III Functional Guidelines, although the QAPP requires LCS analyses. The LCS analyses were only spiked with the standard MS/MSD analyte list and did not contain the entire list of analytes.

In general, the precision and accuracy results found in the LCS/LCSD samples were acceptable. The %R values for some analytes in various LCS/LSCD sets exceed the 140% upper control limit. The RPD values were elevated for a few of the analytes in the LCS/LCSD sets associated with SDG 9803074. None of these analytes were detected in the associated samples, and no action was necessary.

Internal Standards

The internal standards in all samples met the acceptance criteria for the method except as noted below.

SDG 9803074

The internal standard area for perylene-d12 was less than the lower control limit for samples NA-TOWR-SO10-01 and NA-TOWR-SO06-01MS. No qualifiers were assigned since sample NA-TOWR-SO10-01 was qualified DNR (see **Surrogate Compounds** section), and NA-TOWR-SO06-01MS is a QC analysis.

Compound Quantitation and Reported Detection Limits

SDG 9803156

For Sample NA-TRND-S001-01, seven compounds were detected at concentrations greater than the calibration range of the instrument. The compounds were correctly 'E' flagged by the laboratory. The sample was reanalyzed at a dilution, and the compounds were detected within the instrument calibration range.

The compounds that exceeded the linear range in the original analysis were qualified as do-not-report (DNR), and should be reported from the dilution. In the dilution analysis, all compounds (except those that exceeded the linear range in the original analysis) were qualified as DNR and should be reported from the original analysis. The DNR qualifier does not imply that the data are not useable. The purpose is to designate which result (of multiple results) should not be used.

Tentatively Identified Compounds (TIC)

SDG 9803074/9803075/9803076/9803077/9803124/9803127/9803156

The laboratory reported the alkanes found during the TIC search in the case narrative, as specified by the CLP OLMO3.2 SOW. The remaining compounds were reported in the TIC report (Form 1F).

Although a TIC may be present in the associated method blank, the laboratory did not flag the TIC with a 'B' on the Form 1F. The laboratory also reported as "unknown" compounds which appear to be aldol condensates, solvent preservatives (such as cyclohexanone bi-products) or other laboratory artifacts. TIC that were also present in the associated method blank were qualified B and crossed out, as specified in the Region III Modifications to Functional Guidelines. Aldol condensates were flagged "A" and crossed off; other artifacts were also crossed off.

Several of the reported identifications of specific organic acids may be better reported in general as an "Unknown organic acid." These identifications were changed by the reviewer on the Form

1F. All other TIC identifications reported by the laboratory were appropriate, and were correctly J or JN flagged by the laboratory. No further action was taken..

Field Duplicates

All field duplicate RPD values were acceptable, with the exceptions as noted below.

SDG 9803074

Samples NA-REF1-SO02-02 and NA-REF1-SO02-12 are blind field duplicates. No target analytes were detected in these two samples; precision could not be evaluated.

SDG 9803077

Samples NA-TRND-SO04-31 and NA-TRND-SO04-11 are blind field duplicates. The RPD for most analytes exceeded the 50% control limit. However, most of the compound concentrations are less than the reported limit (and are J flagged by the laboratory). A higher variance is common at such low levels, and no action was taken.

SDG 9803127

Samples NA-TRND-SO22-01 and NA-TRND-SO22-11 are blind field duplicates. The RPD for all analytes exceeded the 50% control limit. All reported analytes are phthalates, with most concentrations slightly greater than the reporting limits. A higher degree of variance is common, and no action was taken based on field duplicate results alone.

SDG 9803156

Samples NA-TRND-SO12-01 and NA-TRND-SO12-11 are blind field duplicates. No target analytes were detected in these two samples; precision could not be evaluated.

Overall Assessment

On the basis of this evaluation, the laboratories followed the specified analytical method. The MS/MSD, LCS/LCSD, and field duplicate RPD results indicated acceptable precision, with exceptions as noted. Accuracy is also acceptable, as demonstrated by most of the surrogate, MS/MSD, and LCS spike recovery results.

Data were qualified because of holding time, blank, surrogate, and calibration outliers. Reported TIC results were evaluated and qualified as specified in the Region III Modifications to National Functional Guidelines.

Data that were qualified as DNR should not be used. All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT - FULL REVIEW Atsugi Naval Air Base

Organochlorine Pesticide and Polychlorinated Biphenyls (PCB)

Matrix: Soil Method: CLP

Analytical data for 113 soil samples and eight equipment rinsate blanks were reviewed using quality control (QC) criteria documented in the analytical method and the Quality Assurance Project Plan (QAPP). The samples were collected between March 7 and 17, 1998, and were analyzed by GP Environmental Services, Inc. Refer to the **Sample Index** for a complete listing of the samples.

I. COMPLETENESS

All contract-required deliverables were submitted by the laboratory. The laboratory followed adequate corrective action processes, and all anomalies were discussed in the case narrative.

SDG 9803076: Sample NA-DVCT-S005-02 (corresponding to Lab Identification Number 9803076-19A) was incorrectly identified on the CLP forms and raw data as NA-DVCT-S006-01. As the Laboratory Identification Numbers were correct on all data, and the laboratory results forms listed the correct identifications, no action was taken.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- * Technical Holding Times
- * Performance Evaluation Check Standards
- Endrin/DDT Degradation Checks
- Initial Calibration
- Continuing Calibration

Blanks

- Surrogate Compounds
- * Matrix Spikes/Matrix Spike Duplicates
- Laboratory Control Samples
 Retention Times
- Compound Quantitation and Reported Detection Limits Chromatographic Performance
- * Field Duplicate Precision
- Calculation and Transcription Checks

Those items marked with an asterisk (*) did not meet all specified QC criteria and are discussed below. QC items not marked with an asterisk meet all QC criteria. Qualified sample result summaries (Form Is) are included in APPENDIX B.

Technical Holding Times

SDG 9803075: Two equipment rinsate blanks [Samples NA-ELEM-S004-51(1005) and NA-ELEM-S004-51(1300)] were extracted one day past the 7-day extraction holding time criterion for water samples. No positive results were reported for these two samples; reporting limits were qualified as estimated (UJ-1).

SDG 9803077: One equipment rinsate blank (Sample NA-REF2-S002-51) was extracted 2 days past the 7-day extraction holding time criterion for water samples. No positive results were reported for this sample; reporting limits were qualified as estimated (UJ-1).

SDG 9803127: Three equipment rinsate blanks (Samples NA-TRND-S016-51, NA-TRND-S027-51, and NA-TRND-S031-51) were extracted 1 to 3 days past the 7-day extraction holding time criterion for water samples. No positive results were reported for these three samples; reporting limits were qualified as estimated (UJ-1).

SDG 9803156: All soil samples were extracted 19 days from collection, 12 days past the suggested holding time of 7 days. Since the samples were stored at 3°C, and pesticides and PCBs are stable in soil samples, the data were judged as not significantly affected; no action was taken.

Performance Evaluation Check Standards

SDG 9803074, 9803075, 9803076, 9803077, 9803124, and 9803127: For one or more performance evaluation check standards in each of these SDG, the resolution for one or more compounds was less than the minimum limit of 90% specified by the QAPP. No positive results in samples were associated with resolution outliers. As the method minimum requirement of 60% was met, the reported detection limits were judged not significantly affected, and no action was taken.

Endrin/DDT Degradation Checks

SDG 9803074, 9803075, 9803076, 9803077, 9803124, 9803127, and 9803156: The breakdown of endrin exceeded the 20% control limit for one or more degradation check standards. The outliers are listed in the Data Validation Worksheet. As no positive results for endrin, endrin ketone, or endrin aldehyde were reported for associated samples, no action was required.

SDG 9803074: For the one degradation check standard, the combined breakdown was greater than the 30% control limit. As no positive results were reported in the associated sample, no action was required.

Initial Calibration

SDG 9803074, 9803075, 9803076, 9803077, 9803124, 9803127, and 9803156: The percent relative standard deviation (%RSD) values for one or two compounds for each initial calibration were greater than the control limit of 20%. The outliers are listed in the Data Validation Worksheets. No positive results for the field samples were associated with %RSD outliers. Since all %RSD outliers were less than 30%, no action was taken for reporting limits.

Continuing Calibration

SDG 9803074, 9803705, 9803076, 9803077, and 9803127: Several percent difference (%D) values in the continuing calibrations were not within the $\pm 15\%$ control limit. The outliers are listed in the Data Validation Worksheets. No positive results for the field samples were associated with %D outliers. No action was taken for reporting limits, as all %D outliers were less than $\pm 25\%$.

SDG 9803124: Several %D values in the continuing calibrations were not within the $\pm 15\%$ control limit. The outliers are listed in the Data Validation Worksheet. The only positive results associated with %D outliers were 4,4'-DDT results for nine samples. These results were qualified as estimated (J-5B). Reporting limits for methoxychlor were qualified as estimated (UJ-5B) for 16 samples because the %D outliers were greater than $\pm 25\%$.

SDG 9803156: Several %D values in the continuing calibrations were not within the ±15% control limit. The outliers are listed in the Data Validation Worksheet. The only positive result associated with a %D outlier was the 4,4'-DDT result for Sample NA-TRND-S013-01. This result was qualified as estimated (J-5B). Reporting limits for methoxychlor were qualified as estimated (UJ-5B) for all samples except NA-TRND-S001-02, and the reporting limit for 4,4'-DDT was qualified as estimated (UJ-5B) for Sample NA-TRND-S015-01 because the %D outliers were greater than +25%. No other positive results for the field samples were associated with %D outliers. No action was taken for other reporting limits, as all other %D outliers were less than +25%.

Surrogate Compounds

SDG 9803074: For two diluted analyses (Samples NA-REF1-S003-01DL2 and NA-TOWR-S008-01DL), the percent recovery (%R) values for decachlorobiphenyl (DCB) on the RTX-1701 column were greater than the upper control limit of 150% (at 170% and 164%, respectively). As the %R values for DCB and tetrachloro-m-xylene (TCX) were within the control limits for the undiluted analyses for these samples, no qualifiers were assigned on the basis of surrogate recoveries.

SDG 9803075: For one diluted analysis (Sample NA-ELEM-S003-02DL2), the %R value for DCB on the RTX-1701 column was greater than the upper control limit of 150% (at 191%). As the %R values for DCB and TCX were within the control limits for the undiluted analysis for this

sample, no qualifiers were assigned on the basis of surrogate recoveries.

SDG 9803127: For Samples NA-TRND-S021-02 and NA-TRND-S022-01, the %R values for TCX on both columns were less than the lower control limit of 30% (ranging from 22% to 26%). As the %R values for DCB were within the control limits (for both columns) for these samples, no qualifiers were assigned on the basis of surrogate recoveries. For Sample NA-TRND-S021-02DL, the %R value for DCB on the RTX-1701 column was greater than the upper control limit of 150% (at 152%). As the %R values for DCB on the RTX-5 column and TCX on both columns were within the control limits, no qualifiers were assigned to this sample on the basis of surrogate recoveries.

Matrix Spikes/Matrix Spike Duplicates

SDG 9803074: Although Sample NA-REF1-S001-31 was designated for matrix spike/matrix spike duplicate (MS/MSD) analyses, MS/MSD analyses were performed using Sample NA-TOWR-S006-01. All results were within the specified control limits.

SDG 9803075: Although the client did not designate any sample for MS/MSD analyses, the laboratory performed MS/MSD analyses for Sample NA-ELEM-S003-01. For Sample NA-ELEM-S003-01MSD, the %R value for endrin was greater than the upper control limit of 139% (at 140%). Since no positive result for endrin was reported for the parent sample, no action was taken. The relative percent difference (RPD) value for heptachlor was greater than the upper control limit of 31% (at 39%). The positive result for heptachlor in the parent sample was qualified as estimated (J-9).

SDG 9803076: Although Samples NA-TOWR-S002-32 and NA-TOWR-S001-31 were designated for MS/MSD analyses, MS/MSD analyses were performed for Sample NA-DVCT-S006-01. No action was taken.

For Sample NA-DVCT-S006-01MS, the %R values for five compounds were greater than the upper control limits. The outliers are listed in the Data Validation Worksheet. Since all %R values for the MSD and laboratory control sample (LCS) were acceptable, no qualifiers were assigned to the parent sample. The RPD values for heptachlor and dieldrin were greater than the upper control limits. As no positive results for these two compounds were reported for the parent sample, no action was taken.

SDG 9803077: Although Sample NA-TRND1-S004-31 was designated for MS/MSD analyses, MS/MSD analyses were performed using Sample NA-DVCT-S007-01. All results were within the specified control limits.

SDG 9803127: Although the client did not designate any sample for MS/MSD analyses, the laboratory performed MS/MSD analyses using Sample NA-TRND-S022-11. All results were within the specified control limits.

SDG 9803156: Although the client did not designate any sample for MS/MSD analyses, the laboratory performed MS/MSD analyses using Sample NA-TRND-S001-02. All results were within the specified control limits.

Laboratory Control Samples

SDG 9803127: The %R value for endrin was greater than the upper control limit of 121% (at 130%) for the laboratory control sample duplicate (LCSD) associated with the water analyses. As no positive results for endrin were reported for the water samples, no action was required.

Compound Quantitation and Required Reporting Limits

SDG 9803074, 9803075, 9803076, 9803077, 9803124, 9803127, and 9803156: Positive results that were less than the required reporting limits were J-flagged by the laboratory. No additional action was necessary.

Sample results that had an RPD value greater than 25% between the two columns were P-flagged by the laboratory. These results were qualified as estimated (J-9).

For several samples, target compounds were present at concentrations that were greater than the linear range of the instrument in the original analysis. These analytes were E-flagged by the laboratory on the sample result summary forms. The samples were diluted and reanalyzed, and the analytes were detected within the linear range. The results in the original analyses that exceeded the linear range should not be used and were qualified as do-not-report (DNR-20). The result should be reported from the diluted analysis. Results for all compounds except those that exceeded the linear range should be reported from the original analysis. All results, except those that originally exceeded the linear range, should not be used in the reanalysis and were qualified as do-not-report (DNR-14). As a usable result exists for each compound in a sample, the percent completeness is still 100%.

SDG 9803074: Sample NA-REF1-S003-1 was analyzed at a two-fold dilution due to high concentrations of target analytes. The reported detection limits were elevated accordingly, and were greater than the QAPP specified reporting limits by a factor of two.

SDG 9803075: Sample NA-ELEM-S003-02 was analyzed at a two-fold dilution due to high concentrations of target analytes. The reported detection limits were elevated accordingly, and were greater than the QAPP specified reporting limits by a factor of two.

Field Duplicate Precision

SDG 9803127: For field duplicates NA-TRND-S022-01 and NA-TRND-S022-11, the RPD value for 4,4'-DDT was greater than the upper control limit of 50 (at 52.8%). The results for this compound in both samples were already qualified as estimated (J-9) because the RPD value for

the dual column results was greater than 25%. (See the Compound Quantitation and Required Reporting Limits Section.) No further action is recommended.

Calculation and Transcription Checks

SDG 9803127: The surrogate %R values for the water samples were reported incorrectly on the surrogate summary form (Form II PEST-1). The actual %R values are two times higher than those reported. As no surrogate %R values for the water samples were outside of the control limits, no further action was taken.

III. OVERALL ASSESSMENT

On the basis of this evaluation, the laboratory followed the specified analytical method. The MS/MSD and field duplicate RPD results indicated acceptable precision, with exceptions noted above. Accuracy is also acceptable, as demonstrated by the surrogate, MS/MSD, and LCS recovery results, with exceptions noted above.

Data were qualified because of holding time exceedances, calibration outliers, MS/MSD RPD outliers, differences between results on the two columns, and concentrations that exceeded the linear range of the instrument.

Data that were flagged as DNR should not be used. All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT - FULL REVIEW Atsugi Naval Air Base

Dioxin Furan Compounds

Matrix: Soil

Method: 8290

Analytical data for 113 soil samples and 7 equipment rinsate blanks were reviewed using quality control (QC) criteria documented in the analytical method and the Quality Assurance Project Plan (QAPP). The samples were collected between March 7 and 17, 1998, and were analyzed by Triangle Laboratories, Inc. (TLI). Refer to the **Sample Index** for a complete listing of the samples.

I. COMPLETENESS

All contract-required deliverables were submitted by the laboratory. The laboratory followed adequate corrective action processes, and all anomalies were discussed in the case narrative.

SDGs 45215A and 45215B: The field samples and equipment rinsate blank were identified on the chain-of-custody form (COC) as beginning with the letter "N", but the laboratory identified the samples and blank by substituting the "N" with "F". No action was taken other than to note the discrepancy.

II. TECHNICAL DATA VALIDATION

The OC requirements that were reviewed are listed below.

Technical Holding Times Instrument Performance Check Initial Calibration

- Continuing Calibration Verification (CCV)
 Isomer Specificity
- * Blanks (Method, Clean-Up, and Equipment)
- * Labeled Compounds
- * Laboratory Control Samples and Matrix Spike Samples
- Field Duplicates
- * Compound Identification
- Compound Quantitation and Reported Detection Limits
 Calculation and Transcription Checks

Those items marked with an asterisk (*) did not meet all specified QC criteria and are discussed below. QC items not marked with an asterisk meet all QC criteria. The qualified sample result summaries (Form Is) are included in **APPENDIX B**.

Continuing Calibration Verification (CCV)

SDG 45201B: For the ending CCV analyzed on Instrument U on March 27, 1998 (at 19:29), the percent difference (%D) values for the labeled compounds $^{13}C_{12}$ -PeCDD 12378 (36.3%) and $^{13}C_{12}$ -OCDD (57.3%) were outside the $\pm 35.0\%$ control limit. As the percent recovery (%R)

values for these compounds were acceptable in the associated samples, the reported sample results were judged not significantly affected, and no action was taken.

SDGs 45201Br2 and 45308A: For the ending CCV analyzed on Instrument S on April 11, 1998 (at 11:45), the %D values for labeled compounds $^{13}C_{12}$ -PeCDD 12378 (-38.9%) and $^{13}C_{12}$ -OCDD (-37.7%) were outside the $\pm 35.0\%$ control limit. As the percent recovery (%R) values for these compounds were acceptable in the associated samples, the reported sample results were judged not significantly affected, and no action was taken.

SDG 45215A: For the beginning CCV analyzed on Instrument U on April 3, 1998 (at 18:23), the %D value for the target compound 123478-HxCDD (20.3%) was outside the ±20.0% control limit for target compounds. Associated sample results were qualified as estimated (J,UJ-5B).

Blanks (Method, Clean-Up, and Equipment)

Positive results for target analytes were reported for several blanks. To evaluate the effect of laboratory contamination on the associated sample results, action levels of five times the blank concentrations were established. Positive results for specific congeners with concentrations less than the action level were qualified as B-6 (for equipment blank contamination) or B-7 (for method or clean-up blank contamination) at the reported levels in the associated samples.

Many of the blanks also had reported 'total' results. The 'total' represents the sum of all target congeners and all non-target peaks that meet the ion ratio criteria. A reported 'total' result may include from one to 49 separate peaks. Due to this, it is not possible to directly correlate a reported 'total' in a blank to reported 'totals' in the associated samples. Therefore, data were not qualified based on reported 'total' values in the blanks.

The laboratory flagged positive results in field samples as "B" when the compound was present in the associated method blank, even if the concentrations in the field samples were greater than the action levels. Therefore, some results that were flagged as "B" by the laboratory were not qualified based upon blank contamination.

The laboratory also "B"-flagged compounds in field samples even when the compounds were reported as estimated maximum possible concentration (EMPC) results in the blank. Since EMPC values should not be interpreted as positive results (see Compound Quantitation and Reported Detection Limit Section), field sample results that were flagged as "B" due to an EMPC in the associated blank were not qualified based upon blank contamination.

SDG 45201A: Positive results for OCDD (0.39 pg/g) and 123478 HxCDF (0.17 pg/g) were reported in the clean-up blank. Associated sample results less than the 5x action levels were qualified B-7.

Total HxCDF (0.17 pg/g) was reported in the clean-up blank. No action was taken.

SDGs 45201B and 45203A: Positive results for Total HxCDD (0.27 pg/g) and Total HxCDF (0.22 pg/g) were reported in the method blank. No action was taken.

SDG 45201Br2: A positive result for OCDD (3.8 pg/g) was reported for the method blank. No associated sample results for OCDD were at concentrations less than the action level, and no qualifiers were issued.

SDG 45202A and 45202B: Positive results for five target compounds were reported in the method blank. The specific contaminants and concentrations found are listed in the Data Validation Worksheets. Associated sample results less than the 5x action levels were qualified B-7.

Total HpCDD, Total HxCDF, and Total HpCDF were reported in the method blank. No action was taken.

SDG 45215B: A positive result for OCDD (6.7 pg/L) was reported for equipment rinsate blank NA-TRND-S011-51. No associated sample results for OCDD were at concentrations less than the action level, and no qualifiers were issued.

SDG 45217B: A positive result for OCDD (7.6 pg/L) was reported for equipment rinsate blank NA-DVCT-S004-51. No associated sample results for OCDD were at concentrations less than the action level, and no qualifiers were issued.

SDG 45288C: Positive results for 123478-HxCDF (12.4 pg/L) and 123678-HxCDF (12.5 pg/L) were reported in the method blank. Associated sample results less than the 5x action levels were qualified B-7.

Total HxCDF (24.9 pg/L) was also reported in the method blank. No action was taken.

Positive results for seven target compounds and four 'totals' were reported for equipment rinsate blank NA-TRND-S027-51. The specific contaminants and concentrations found are listed in the Data Validation Worksheets. No associated sample results for these compounds were at concentrations less than the action level, and no qualifiers were issued.

SDG 45308A: Positive results for eight target compounds were reported in the clean-up blank. The specific contaminants and concentrations found are listed in the Data Validation Worksheets. Associated sample results less than the 5x action levels were qualified B-7.

Three positive 'total' results were also reported in the clean-up blank. No action was taken.

Labeled Compounds

Three types of labeled compounds are used for the dioxin/furan analyses: internal standards, which are used to calculate the recovery values of all target (target) compounds; recovery standards, which are used to quantitate the concentration of the labeled compounds; and surrogate standards, which are used to monitor method and clean-up efficiency. TLI further

designates some of the labeled compounds as "Alternate Standards" and "Other Standards". These labeled compounds are not used for compound quantitation; however, the recovery values are tracked to monitor method efficiency.

Several labeled compound percent recovery (%R) values were not within the control limits listed in the QAPP (25% to 125%). All outliers were greater than the upper control limit of 125%. Positive results in the field samples for target compounds associated with labeled compound %R value outliers were qualified as J-13 for surrogate outliers and J-19 for internal standard outliers. For labeled compound outliers, only the associated target compound (same congener, or quantitated using the labeled compound) was qualified.

SDG 45201A: The labeled compound %R value for one compound ($^{13}C_{12}$ -1234678-HpCDD) for Sample NA-TOWR-S005-01 was greater than the upper control limit of 125% (at 136%). A positive result in the field sample for 1234678-HpCDD was qualified as estimated (J-19).

SDG 45201B: The labeled compound %R values for two compounds in the laboratory control sample (LCS) and one compound in the laboratory control sample duplicate (LCSD) were greater than the upper control limit of 125%. Since qualifiers are not issued to QC samples, no action was taken.

SDG 45202A: The labeled compound %R values for one or more compounds in 10 field samples, the matrix spike (MS), and the matrix spike duplicate (MSD) analyses were greater than the upper control limit of 125%. The outliers are listed in the Data Validation Worksheet. Positive results in the field samples for target compounds associated with labeled compound %R value outliers were qualified as estimated (J-13 or J-19). Qualifiers are not issued to QC analyses, so no action was taken for the MS/MSD labeled compound outliers.

SDG 45202B: The labeled compound %R values for one or more compounds in three field samples and one clean-up blank were greater than the upper control limit of 125%. The outliers are listed in the Data Validation Worksheet. Positive results in the field samples for target compounds associated with labeled compound %R value outliers were qualified as estimated (J-13 or J-19). No action was taken for the clean-up blank outliers.

SDG 45203A: The labeled compound %R values for one or more compounds in three field samples and the LCS and LCSD were greater than the upper control limit of 125%. The outliers are listed in the Data Validation Worksheet. Positive results in the field samples for target compounds associated with labeled compound %R value outliers were qualified as estimated (J-13 or J-19). No action was taken for the LCS/LCSD labeled compound outliers.

SDG 45217A: The labeled compound %R value for one compound ($^{13}C_{12}$ -1234789-HpCDF) for Sample NA-DCVT-S005-01 was greater than the upper control limit of 125% (at 134%). A positive result in the field sample for 1234789-HpCDF was qualified as estimated (J-13).

SDG 45308B: The labeled compound %R value for one compound ($^{13}C_{12}$ -123478-HxCDD) for Sample NA-TRND-S019-01 was greater than the upper control limit of 125% (at 127%). A positive result in the field sample for 123478-HxCDD was qualified as estimated (J-13).

Laboratory Control Samples and Matrix Spike Samples

SDG 45201A: Although Sample NA-TOWR-S002-32 was designated for MS/MSD analyses. no MS/MSD analyses were performed for this batch of samples. However, an LCS/LCSD set was analyzed, and all results were within the specified control limits. No action was taken.

SDG 45202A: The laboratory did not extract or analyze an LCS for this batch of samples. The QAPP requires that one LCS be performed with each batch of samples. However, a MS/MSD set was analyzed. No action was taken due to the lack of an LCS analysis.

The %R values three compounds in the MS and two compounds in the MSD were outside the control limits of 60% to 140%. The relative percent difference (RPD) values for four compounds were greater than the upper control limit of 50%. The outliers are listed in the Data Validation Worksheet. OCDD is the only compound detected in the parent sample (NA-REF1-S001-31) that is associated with %R value outliers in both the MS and MSD analyses. Since the RPD value for OCDD was greater than 50%, the OCDD value in the parent sample was qualified as estimated due to accuracy and precision outliers (J-8.9).

SDG 45215A: Although Sample NA-TRND-S004-31 was designated for MS/MSD analyses, no MS/MSD analyses were performed for this batch of samples. However, an LCS/LCSD set was analyzed, and all results were within the specified control limits. No action was taken.

SDG 45288A: Although Sample NA-TRND-S024-31 was designated for MS/MSD analyses, no MS/MSD analyses were performed for this batch of samples. However, an LCS/LCSD set was analyzed, and all results were within the specified control limits. No action was taken.

Field Duplicates

ic 05/19/98 4:00 PM

SDG 45201A: For field duplicates NA-TOWR-S003-01 and NA-TOWR-S003-11, the RPD values for 1234789-HpCDF (55.2%) and OCDF (79.6) were greater than the upper control limit of 50%. Since 24 of 26 RPD values were acceptable, no qualifiers are recommended on the basis of field duplicate results.

For the field duplicate set consisting of Samples NA-TOWR-S004-02 and NA-TOWR-S004-12, the RPD value outliers include 123789-HxCDD (80.4%), Total PeCDD (73.2%), Total HxCDD (66.7%), Total TCDF (60.6%), and Total HxCDF (109%). The 123789-HxCDD concentrations were at low levels (less than 5 pg/g); a higher variance is common at concentrations less than the method minimum levels. Since the reported 'total' values consist of all peaks that meet the ion abundance criteria, higher RPD values are common. No qualifiers are recommended on the basis of field duplicate results.

SDG 45202A: One field duplicate set (NA-REF1-S002-02 and NA-REF1-S002-12) was analyzed. The RPD values for OCDF (63.2%) and Total HpCDF (65.1%) were greater than the upper control limit of 50%. Since 22 of 24 RPD values were acceptable, no qualifiers are recommended on the basis of field duplicate results.

SDG 45202B: One field duplicate set (NA-Elem-S002-01 and NA-Elem-S002-11) was analyzed. The RPD values for 1234678-HpCDD (59.6%), OCDD (79.9%), Total TCDF (84.2%), and Total HpCDD (67.7%) were greater than the upper control limit of 50%. Since seven of 11 RPD values were acceptable, no qualifiers are recommended on the basis of field duplicate results.

SDG 45308B: For field duplicate set NA-TRND-S015-02 and NA-TRND-S015-12, the RPD value for 123478-HxCDD (103%) was greater than the upper control limit of 50%. Since 20 of 21 RPD values were acceptable, no qualifiers are recommended on the basis of field duplicate results.

Compound Identification

EMPC results for target compounds should not be interpreted as positive results (see Compound Quantitation and Reported Detection Limits Section). However, several results reported as EMPC were "X"-flagged by the laboratory to indicate that a significant diphenyl ether interference was present at a retention time near the expected target compound. A review of the raw data for these compounds indicated that for some X-flagged results the retention time and ion abundance ratio criteria were acceptable. However, since a large diphenyl ether peak could result in potential false positives, TLI labels the result as an EMPC value with a laboratory "X"-flag, even if all identification criteria may have been met. As an EMPC value represents an elevated detection limit, this was judged to be acceptable, and no further action was taken.

Compound Quantitation and Reported Detection Limits

Two types of reporting limits are used for high resolution dioxin/furan analyses: detection limits (DL) and EMPC results. DL values are reported when no peak is detected (flat baseline) at the correct retention time for a given target compound ion. When a peak is present, the peak is evaluated against retention time and ion abundance ratio criteria. If the criteria are not met, the peak is not considered to be a target compound. However, since a peak is present, a DL value (from a flat baseline) is not appropriate. Instead, the peak is quantitated as if a target compound was present, and the reported value represents the estimated maximum possible concentration (EMPC) that would be reported if the peak met the identification criteria. EMPC values generally should not be interpreted as positive results; rather, the EMPC values represent elevated detection limits.

For many samples with positive results for 'totals', an EMPC value was also reported. In these cases, the concentrations for the 'totals' represent the total concentrations for the peaks that met retention time and ion abundance ratio criteria. These results should be considered as positive results. The EMPC 'total' value represents the maximum possible concentration for all peaks, even if the identification criteria were not met.

The laboratory flagged several positive results as "J", indicating that the concentration is less than the lowest calibration standard. For these compounds, the retention time and ion abundance criteria were met. No further action was necessary.

The laboratory flagged several compounds in several samples as "PR", indicating poor resolution of the peak. The laboratory also flagged compounds as "Q", indicating quantitative interference. The laboratory flags are printed on the sample results summary forms. As the reported concentrations of target compounds in these two cases most likely have a high bias, positive results for specific congeners were qualified as estimated (J-14). Several internal standard (labeled compound) results were flagged "Q" by the laboratory. In these cases, associated positive results and detection limits for target compounds would most likely have a low bias. The associated target compound results were qualified as estimated (J/UJ-14).

Positive results for several samples were flagged "E" by the laboratory to indicate that the calibration range of the instrument was exceeded. Target compounds flagged "E" by the laboratory were qualified as estimated (J-20).

When positive results for 2378-TCDF at concentrations greater than 1.0 pg/g were present in the DB5 analyses of samples, the extracts were reanalyzed using a DB225 column. The 2378-TCDF results were confirmed on the DB225 column, except as noted below. Where 2378 TCDF was analyzed on the DB225 column, the results from the DB5 column should not be used, since 2378-TCDF has better resolution on the DB225 column. The DB5 column results were qualified as DNR-14

SDG 45201A: For Sample NA-TOWR-S001-01, a positive result for 2378-TCDF (7.9 pg/g) was reported for the DB5 column analysis. The extract was reanalyzed using the DB225 confirmation column; the 2378-TCDF result was not confirmed (EMPC of 0.65 pg/g). Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be used and was qualified as DNR-14. The non-detect result from the DB225 column should be used as the final value.

SDG 45201B: For Samples NA-TOWR-S007-01 and NA-TOWR-S008-01, positive results for 2378-TCDF (1.0 pg/g and 1.8 pg/g, respectively) were reported for the DB5 column analyses. The extracts were reanalyzed using the DB225 confirmation column; the 2378-TCDF results were not confirmed (DL of 0.9 pg/g and EMPC at 1.4 pg/g, respectively) Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF results from the DB5 column should not be used and were qualified as DNR-14. The non-detect results from the DB225 column should be used as the final values.

For Sample NA-TOWR-S011-01, an EMPC result for 2378-TCDF at 1.1 pg/g was reported for the DB5 column analysis. The extract was reanalyzed using the DB225 confirmation column; the compound was not detected (DL of 0.6 pg/g). Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be used. The DB5 result for 2378-TCDF was qualified as DNR-14. The lower detection limit from the DB225 column should be used as the final value.

SDG 45202A: For Sample NA-REF1-S006-02, an EMPC result for 2378-TCDF at 2.0 pg/g was reported for the DB5 analysis. The extract was reanalyzed using the DB225 confirmation column and a positive result for 2378-TCDF (0.94 pg/g) was present. Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be

used. The DB5 result for 2378-TCDF was qualified as DNR-14. The positive result from the DB225 column should be used as the final value.

SDG 45203A: For Sample NA-REF2-S004-01, a positive result for 2378-TCDF (10.4 pg/g) was reported on the DB5 column analysis. The extract was reanalyzed using the DB225 confirmation column; the 2378-TCDF result was not confirmed (EMPC at 2.2 pg/g). Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be used and was qualified as DNR-14. The non-detect from the DB225 column should be used as the final value.

SDG 45204A: For Sample NA-Elem-S006-01, a positive result for 2378-TCDF (2.0 pg/g) was reported for the DB5 column analysis. The extract was reanalyzed using the DB225 confirmation column; the 2378-TCDF result was not confirmed (DL of 0.8 pg/g). Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be used. The DB5 result for 2378-TCDF was qualified as DNR-14. The non-detect from the DB225 column should be used as the final value.

SDG 45217A: For Samples NA-DVCT-S005-01 and NA-DVCT-S005-02, positive results for 2378-TCDF (13.4 pg/g and 3.4 pg/g, respectively) were reported for the DB5 column analyses. The extracts were reanalyzed using the DB225 confirmation column; the 2378-TCDF results were not confirmed (EMPCs at 2.6 pg/g and 1.3 pg/g, respectively). Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF results from the DB5 column should not be used and were qualified as DNR-14. The non-detect results from the DB225 column should be used as the final values.

SDG 45288B: For Sample NA-TRND-S029-02, an EMPC result for 2378-TCDF at 2.3 pg/g was reported for the DB5 column analysis. The extract was reanalyzed using the DB225 confirmation column; a positive result at 1.1 pg/g was reported. Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be used. The DB5 result for 2378-TCDF was qualified as DNR-14. The positive result from the DB225 column should be used as the final value.

For Sample NA-TRND-S032-01, a positive result for 2378-TCDF (17.0 pg/g) was reported for the DB5 column analysis. The extract was reanalyzed using the DB225 confirmation column; the 2378-TCDF result was not confirmed (EMPC at 4.8 pg/g). Since 2378-TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be used and was qualified as DNR-14. The non-detect from the DB225 column should be used as the final value.

SDG 45308A: For Sample NA-TRND-S006-01, an EMPC result for 123789-HxCDF at 165 pg/g was greater than the detection limit of 50 pg/g required by the QAPP. No action was taken, other than to note the elevated detection limit.

SDG 45308B: For Sample NA-TRND-S021-02, a positive result for 2378-TCDF (2.3 pg/g) was reported for the DB5 column analysis. The extract was reanalyzed using the DB225 confirmation column; the 2378-TCDF result was not confirmed (DL 0.8 pg/g). Since 2378-

TCDF has better resolution on the DB225 column, the 2378-TCDF result from the DB5 column should not be used. The DB5 result for 2378-TCDF was qualified as DNR-14. The non-detect from the DB225 column should be used as the final value.

III. OVERALL ASSESSMENT

On the basis of this evaluation, the laboratory followed the specified analytical method, and the project-specific analytical requirements. Accuracy was acceptable, as demonstrated by the %R values for most of the labeled compounds, most of the MS compounds in the MS/MSD analyses, and all of the spike compounds in the LCS/LCSD sets. Precision was acceptable on the basis of the field duplicate sets, LCS/LCSD, and most of the MS/MSD RPD values.

The 2378-TCDF results should be reported from the DB225 column, when analyzed. The DB5 column results should not be used for 2378-TCDF when confirmed by a DB225 column.

Data were qualified because of continuing calibration outliers, blank contamination, labeled compounds, MS/MSD results, quantitative interferences, poor resolution, and calibration range exceedance.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT - FULL REVIEW Atsugi Naval Air Base Priority Pollutant Metals Matrix: Soil

This report documents the review of analytical data from the analysis of soil samples for priority pollutant metals by GP Environmental Services. The samples that received a full review including calculations, transcriptions, and compound identification are indicated in the **Sample Index**.

I. COMPLETENESS

All contract-required deliverables were submitted by the laboratory. The laboratory followed contract-required corrective action processes, and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements that were reviewed are listed below.

Technical Holding Times

- * Initial Calibration
 - Initial and Continuing Calibration Verification
- * Blanks (Method and Calibration)
- * ICP Interference Check Sample
- Matrix Spike Sample
 - **Duplicate Sample**
- Laboratory Control Sample
- * ICP Serial Dilution (ICP only)
- Field Duplicate Samples
- * Sample Result Quantitation and Contract-Required Detection Limits (CRDL)
 Calculation and Transcription Checks

Those items marked with an asterisk (*) did not meet all specified QC criteria and are discussed below. QC items not marked with an asterisk meet all QC criteria. Qualified data are summarized in APPENDIX B.

Initial Calibration

SDG 9803124

The percent recovery (%R) values for lead in the contract required detection limit standard (CRII) and chromium, iron, nickel, and sodium in the CRIF were not within the control limits of 80% to 120%. All sample lead, chromium, and iron results were greater than the action levels. All sodium results were less than the action level and were qualified (L-5A).

Blanks

SDG 9803074

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits except for thallium in the soil samples. The thallium results were qualified (L/UL-7).

Several analytes were detected in the water preparation and continuing calibration blanks greater than the IDL. The aluminum, barium, calcium, copper, magnesium, potassium, sodium, and zinc results in the water sample were qualified (B-7).

SDG 9803075

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits except for thallium in the soil samples. The thallium results were qualified (L/UL-7).

Several analytes were detected in the water preparation and continuing calibration blanks greater than the IDL. The aluminum, barium, calcium, copper, magnesium, potassium, sodium, and zinc results in the water sample were qualified (B-7).

SDG 9803076

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits.

SDG 9803077

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits except for thallium in several soil samples. The thallium results were qualified (L/UL-7).

Several analytes were detected in the water preparation and continuing calibration blanks greater than the IDL or less than the negative IDL. The aluminum, barium, calcium, chromium, copper,

magnesium, potassium, sodium, and zinc results in the water sample were qualified (B-7 or UL-7 as appropriate).

Cyanide was detected in the field blank NA-REF2-S002-51 at 11.4 ug/L. No action was taken on this basis.

SDG 9803124

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits except for antimony and thallium in the soil samples. The antimony and thallium results were qualified (L/UL-7).

SDG 9803127

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits.

Several analytes were detected in the water preparation and continuing calibration blanks greater than the IDL. The aluminum, barium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, sodium, vanadium and zinc results in the water samples were qualified (B-7).

Lead was detected in the field blank NA-TRND-S016-51 at 35.5 ug/L. No action was taken on this basis.

SDG 9803156

Several analytes were detected in the soil preparation and continuing calibration blanks at concentrations greater than the IDL or less than the negative IDL. All sample results were greater than the corresponding action limits except for thallium in the soil samples. The thallium results were qualified (L/UL-7).

ICP Interference Check Sample

SDG 9803074

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes (aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions. All positive antimony and cadmium results were qualified as estimated (K-14); no action was taken for non-detect antimony or cadmium results. All selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

SDG 9803075

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes (aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions. All positive antimony and cadmium results were qualified as estimated (K-14); no action was taken for non-detect antimony or cadmium results. All selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

SDG 9803076

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes(aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions. All positive cadmium results were qualified as estimated (K-14); no action was taken for non-detect cadmium results. All selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

SDG 9803077

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes (aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions, except for Sample NA-DVCT-S007-01. Positive antimony and cadmium results less than the associated action levels were qualified as estimated (K-14); no action was taken for non-detect antimony or cadmium results. All selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

SDG 9803124

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes (aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions. Positive cadmium results less than the associated action levels were qualified as estimated (K-14); no action was taken for non-detect results. All selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

SDG 9803127

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes (aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions. Positive cadmium results less than the associated action levels were qualified as estimated (K-14); no action was taken for non-detect results. All

selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

SDG 9803156

Several analytes were detected in the ICSA solutions at concentrations greater than the IDL or less than the negative IDL. Of the four interferent analytes (aluminum, calcium, iron, and magnesium), only iron was present in the field samples at concentrations greater than or equal to the concentrations in the ICS solutions. Positive antimony and cadmium results less than the associated action levels were qualified as estimated (K-14); no action was taken for non-detect antimony or cadmium results. All selenium results were qualified as estimated (L/UL-14). All other sample results were greater than the corresponding action limits.

Matrix Spike Sample

SDG 9803074

The soil antimony matrix spike/matrix spike duplicate (MS/MSD) %R were less than the control limits of 75% to 125% at 44.7% and 47.1%, respectively. All associated soil antimony results were qualified as estimated (L/UL-8).

The soil selenium MS %R value (72.5%) was less than the control limits. All associated soil selenium results were qualified as estimated (L/UL-8).

SDG 9803075

The soil antimony MS/MSD %R were less than the control limits of 75% to 125% at 50.0% and 53.0%, respectively. All associated soil antimony results were qualified as estimated (L/UL-8). The soil selenium MS %R value (67.9%) was less than the control limits. All associated soil selenium results were qualified as estimated (L/UL-8).

SDG 9803076

The soil antimony MS/MSD %R were less than the control limits of 75% to 125% at 40.9% and 42.7%, respectively. All associated soil antimony results were qualified as estimated (L/UL-8). The soil barium MS/MSD %R were less than the control limits of 75% to 125% at 30.6% and 30.0%, respectively. All associated soil barium results were qualified as estimated (L/UL-8). The soil selenium MSD %R value (52.8%) was less than the control limits. All associated soil selenium results were qualified as estimated (L/UL-8).

SDG 9803077

The soil antimony MS/MSD %R were less than the control limits of 75% to 125% at 54.1% and 51.7%, respectively. All associated soil antimony results were qualified as estimated (L/UL-8).

SDG 9803124

The soil antimony MS/MSD %R were less than the control limits of 75% to 125% at 35.2% and 35.9%, respectively. All associated soil antimony results were qualified as estimated (L/UL-8). The soil selenium MS %R value (65.1%) was less than the control limits. All associated soil

selenium results were qualified as estimated (L/UL-8). The soil thallium MSD %R value (70.2%) was less than the control limits. All associated soil thallium results were qualified as estimated (L/UL-8).

SDG 9803127

The soil antimony MS/MSD %R were less than the control limits of 75% to 125% at 35.7% and 38.6%, respectively. All associated soil antimony results were qualified as estimated (L/UL-8).

SDG 9803156

The soil antimony MS/MSD %R were less than the control limits of 75% to 125% at 42.3% and 40.2%, respectively. All associated soil antimony results were qualified as estimated (L/UL-8).

Laboratory Control Sample

SDG 9803074

The soil barium laboratory control sample (LCS) %R was greater than the upper control limit of 3630 mg/Kg at 3896 mg/Kg. All associated positive soil barium results were qualified as estimated (K-10).

SDG 9803075

The soil barium LCS %R was greater than the upper control limit of 3630 mg/Kg at 3730 mg/Kg. All associated positive soil barium results were qualified as estimated (K-10).

SDG 9803076

The soil barium LCS %R was greater than the upper control limit of 3630 mg/Kg at 4260 mg/Kg. All associated positive soil barium results were qualified as estimated (K-10).

ICP Serial Dilution

SDG 9803124

All percent difference (%D) values were acceptable, except for chromium (18.6%), nickel (106.9%), and sodium (14.1%). All associated chromium, nickel, and sodium results were qualified as estimated (J/UJ-16).

Field Duplicate Samples

SDG 9803075

All RPD values were acceptable, except for calcium (64.6%) in the 980307510A/980307511A field duplicate pair. No action was taken on this basis.

SDG 9803156

All RPD values were acceptable, except for nickel (65.5%) in the NA-TRND-S012-01/NA-TRND-S012-11 field duplicate pair. No action was taken on this basis.

Sample Result Quantitation and Contract-Required Detection Limits

SDG 9803074, 9803075, 9803076, 9803077, 9803124, 9803127, 9803156

The laboratory reported a selenium reporting limit of 0.267 mg/Kg instead of the QAPP required 0.1 mg/Kg. No action was taken.

III. OVERALL ASSESSMENT

On the basis of this evaluation, the laboratory followed the specified methods. Precision was acceptable, as demonstrated by the RPD values of the MS/MSD and laboratory and field sample/duplicate analyses, except where previously noted. Accuracy was acceptable, as demonstrated by the MS, MSD, and LCS %R values, except where previously noted.

Qualification of sample results was required because of initial calibration (CRII and CRIF), blank, MS %R, LCS %R and serial dilution %D outliers.

All data, as qualified, are acceptable for use.

Environmental Science and Chemistry

APPENDIX A DATA QUALIFIER DEFINITIONS

DATA VALIDATION QUALIFIER CODES REGION III

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

CODES RELATING TO IDENTIFICATION (confidence concerning presence or absence of compounds)

U	Not detected. The associated number indicates approximate sample concentration necessary to be detected.
(NO CODE)	Confirmed identification.
В	Not detected substantially above the level reported in laboratory or field blanks.
R	Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.
N	Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

CODES RELATING TO QUANTITATION (can be used for both positive results and sample quantitation limits)

(•				
J	Analyte present. Reported value may not be accurate or precise.				
K	Analyte present. Reported value may be biased high. Actual value is expected to be lower.				
L	Analyte present. Reported value may be biased low. Actual value is expected to be higher.				
UJ	Not detected, quantitation limit may be inaccurate or imprecise.				
UL	Not detected, quantitation limit is probably higher.				
OTHER CODES					
Q	No analytical result.				
NJ	Qualitative identification questionable due to poor resolution. Presumptively present at approximate quantity.				

				_
	•			

APPENDIX E

Boxplots, Means Comparisons, and UTL Statistics

		_
		•
	•	
		•

Boxplots

Means Comparisons

• .		•	
	•		
·			
			•

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

DEPTH=Subsurface UNITS=mg/kg ------

REF2	Min-Max	0.000123 to 0.000755	0.000018 to 0.000062	0.000023 to 0.000104	0.000011 to 0.000043	4.6E-6 to 7.7E-6	1.2E-6 to 2.5E-6	2.9E-6 to 0.000014	4.5E-6 to 7.9E-6	1.1E-6 to 6E-6	6.3E-6 to 0.000012	5.5E-7 to 5.5E-7														
REF2	Detect/N	3/3	3/3	3/3	3/3	2/3	2/3	3/3	2/3	3/3	3/3	1/3		Test	Conclusion	SN	SN	S₩	S	SN		SZ	SN	SN	SN	
REF1	Std.Dev	2.329E-6	3.786E-7	1.528E-7	2.082E-7	4.646E-7	5E-8	1.155E-7	1.528E-7	1.253E-7	7.506E-7	2.887E-8	P-Value	for	Test	0.1413	0.1413	0.1413	0.1413	0.2474		0.1367	0.6807	0.1819	0.1367	
REF1	Average	0.000038	4.333E-6	5.867E-6	4.867E-6	4.667E-7	1.5E-7	2.033E-6	1.367E-6	9.7E-7	4.867E-6	1.833E-7			Los	netric	netric	netric	netric	netric	All NDs/NULL in REF1	netric	netric	metric	metric	All NDs/NULL in REF1
		0.000035 to 0.00004	4.6E-6	9-39	5.1E-6	9-:		2.1E-6	1.5E-6	1.1E-6	.3E-6			Type of	Comparison	Nonparametric	Nonparametric	Nonparametric	Monparametric	Nonparametric	AII NDS	Nonparametric	Nonparametric	Nonparametric	Nomparametric	All NDS
REF1	Min-Max	0.000035	3.9E-6 to 4.6E-6	5.7E-6 to 6E-6	4.7E-6 to 5.1E-6	1E-6 to 1E-6	ND to ND	1.9E-6 to 2.1E-6	1.2E-6 to 1.5E-6	8.5E-7 to 1.1E-6	4E-6 to 5.3E-6	ND to ND		REF2	Std.Dev	0.000343	0.000023	0.000044	0.000016	3.716E-6	1.106E-6	5,401E-6	3.475E-6	2.452E-6	2.994E-6	1.803E-7
REF1	Detect/N	3/3	3/3	3/3	3/3	1/3	0/3	3/3	3/3	3/3	3/3	0/3		REF2	Average	0,000362	0.000036	0.000053	0.000025	4.2E-6	1.333E-6	8,233E-6	4.45E-6	3.6E-6	9.733E-6	3.5E-7
	Analyte	1.2.3.4.6.7.8.9-0000	1.2.3.4.6.7.8.9-0CDF	1.2.3.4.6.7.8-HpCDD	1.2.3.4.6.7.8-HpCDF	1.2.3.4.7.8.9-HpCDF	1.2.3.4.7.8-HxCDD	1,2,3,4,7,8-HxCDF	1.2.3.6.7.8-HxCDD	1.2.3.6.7.8-HxCDF	1.2.3.7.8.9-HxCDD	1,2,3,7,8,9-HxCDF			Analyte	000-68287	1.2.3.4.6.7.8.9-0008	1.2.3.4.6.7.8-Hpcbb	1,2,3,4,6,7,8-HpcDF	1,2,3,4,7,8,9-HpcDF	1,2,3,4,7,8-HxCDD	1.2.3.4.7.8-HxCDF	1.2.3.6.7.8-HXCDD	1.2.3.6.7.8-HXCDF	1.2.3.7.8.9-HxCDD	1,2,3,7,8,9-HxCDF

Atsugi Reference 1 Area vs. Reference 2 Area: Means Comparisons

11S=mg/kg11S=mg/kg
UNITS=mg/kg
DEPTH=Subsurface UNITS=mg/kg

:2 REF2	:t/N Min-Max	8.9E-7 to 3.1E-6		ND to ND	ND to ND	ND to ND	ND to ND					8.5E-7 to 4E-6				-										
REF2	Detect/N	3/3	3/3	0/3	0/3	0/3	0/3	0/3			0/3			Test	Conclusion	S.	SH						SN	SZ		S
1 REF1	e Std.Dev	6 1.528E-7	7 1.3016-7	5 0	2	5 0	5 0	5 0	6 2E-7	6 1.637E-7	0 2	7 1.041E-7	P-Value	for		0.6807	0.1413						0.1413	0.3187		0.4227
REF 1	Average	1.467E-6	6.667E-7	0.0255	0.0255	0.0255	0.0255	0.0255	2E-6	1.06E-6	1.5E-7	9.067E-7		.	ison	Nonparametric	Nonparametric	ъ	75	75	70	75	Nonparametric	Monparametric	פ	Monparametric
	•	1.6E-6	8E-7						2.2E-6	1.2E-6		9.9E-7		Type of	Comparison	Nonpar	Nonpar	NO good	NO good	NO good	NO good	NO good	Nonpar	Monpar	NO good	Nonpar
REF1	Min-Max	1.3E-6 to 1.6E-6	5.4E-7 to 8E-7	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	1.8E-6 to 2.2E-6	8.8E-7 to 1.2E-6	ND to ND	7.9E-7 to 9.9E-7		REF2	Std.Dev	1,199€-6	1.229E-6	0.003122	0.003122	0.003122	0.003122	0.003122	5.501E-6	1.662E-6	8.66E-8	1.616E-6
REF1	Detect/N	3/3	3/3	0/3	0/3	0/3		0/3						REF2	Average	2.263E-6	2.117E-6	0.0315	0.0315	0.0315	0.0315	0.0315	8.067E-6	2.867E-6	2.5E-7	2.217E-6
	Analyte	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-oxybis(1-chloropropane)	2,3,4,6,7,8-HXCDF	2,3,4,7,8-PeCDF	2,3,7,8-1000	2,3,7,8-TCDF			Analyte	1,2,3,7,8-PecbD	1,2,3,7,8-PeCDF	1,2,4-Trichlorobenzene	1,2-Dichtorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-oxybis(1-chloropropane)	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-1CDD	2,3,7,8-1cDF

Atsugi Reference 1 Area vs. Reference 2 Area: Means Comparisons

									P-Value	
	REF1	REF1	REF1	REF1	REF2	REF2	REF2	REF2 Type of	for	Test
Analyte D)etect/N	Detect/N Min-Max	Average	Std.Dev I)etect//	Std.Dev Detect/N Min-Max	Average	Std.Dev Comparison	Test	Conclusion
2,4,5-Trichlorophenal	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
2,4,6-Trichlorophenol	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
2,4-Dichlorophenol	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
2,4-Dimethylphenol	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
2,4-Dinitrophenol	0/3	ND to ND	0.0255	0	0/3	NO to NO	0.0315	0.003122 ND good		
2,4-Dinitrotoluene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
2,6-Dinitrotoluene	0/3	ND to ND	0.0255	0	0/3	NO to NO	0.0315	0.003122 NO good		
2-Chloronaphthalene	0/3	ND to ND	0.0255	0	0/3	NO to NO		0.003122 NO good		
2-Chlorophenol	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
2-Methylnaphthalene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
2-Nitroaniline	0/3	ND to ND	0.0255	0	0/3	NO to NO	0.0315	0.003122 NO good		
2-Nitrophenol	0/3	ND to ND	0.0255	0	0/3	NO to ND	0.0315	0.0315 0.003122 NO good		
3,3'-Dichlorobenzidine	0/3	¥D to NO	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
3-Nitroaniline	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
4,4,-000	0/3	ND to ND	0.000127 2.887E-6	2.887E-6	0/3	ND to ND	0.000158	0.000158 0.000016 NO good		
4,4'-DDE	3/3	0.00099 to 0.0058	0.00263	0.002746	3/3	0.0014 to	0.01	0.005967 0.004325 Monparametric 0.2474	ic 0.2474	SN
4,4'-DDT	2/3	0.0008 to 0.0017	0.000875	0.00079	3/3	0.0023 to 0.0073		0.005333 0.002665 Nonparametric	ic 0.1413	S
4,6-Dinitro-2-methylphenol	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
4-Bromophenyl-phenylether	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0,003122 NO good		
4-Chloro-3-methylphenol	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
4-Chloroaniline	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
4-Chlorophenyi-phenylether	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315			
4-Nitroanaline	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
4-Nitrophenol	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
Acenaphthene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
Acenaphthylene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315	0.003122 NO good		
Aldrin	0/3	ND to ND	0.000127	0.000127 2.887E-6	0/3	ND to ND	0.000158	0.000158 0.000016 NO good		

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

DEPTH=Subsurface UNITS=mg/kg (continued)
--

	REF1	REF1	REF1	REF1	REF2	REF2	REF2	REF2 Type of	ţ	P-Value for	Test
Analyte	Detect/N	Detect/N Min-Max	Average	Std.Dev Detect/N Min-Max	etect/N	Min-Max	Average Std	Std.Dev Comparison	arison	Test	Conclusion
Aluminum	3/3	52300 to 57700	54100	3117.691	3/3	58200 to 108000	84000 24948.75 Nonparametric	8.75 Nonp	arametric	0.1367	SS
Anthracene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122 NO good	3122 NO g	poo		
Antimony	2/3	1 to 1.5	0.933333 0.602771	0.602771	3/3	1.1 to 2.2	1.633333 0.550757 Nonparametric	0757 Nonp	arametric	0.2474	NS
Aroclor-1016	0/3	ND to ND	0.000127 2.887E-6	2.887E-6	6/3	NO to NO	0.000158 0.000016 NO good	0016 NO g	poo		
Aroclor-1221	0/3	ND to ND	0.000127 2.887E-6	2.887E-6	0/3	ND to ND	0.000158 0.000016 NO good	0016 NO g	poo		
Aroclor-1232	0/3	ND to ND	0.000127 2.887E-6	2.887E-6	0/3	ND to ND	0.000158 0.000016 NO good	0016 NO g	pod		
Aroctor-1242	0/3	ND to ND	0.000127 2.887E-6	2.887E-6	0/3	ND to ND	0.000158 0.000016 No good	0016 NO g	pod		
Aroclor-1248	0/3	ND to ND	0.000127	2.887E-6	0/3	ND to ND	0.000158 0.000016 NO good	0016 NO g	poo		
Aroctor-1254	0/3	ND to ND	0.000127	2.887E-6	0/3	ND to ND	0.000158 0.000016 NO good	0016 NO g	poc		
Aroclor-1260	0/3	ND to ND	0.000127 2.887E-6	2.887E-6	0/3	ND to ND (0.000158 0.000016 NO good	001.6 NO g	poo		
Arsenic	3/3	1.3 to 2.6	2.033333 0.665833	0.665833	3/3	3.6 to 5.9	4.766667 1.150362 Nonparametric	0362 Nonp	arametric	0.1413	SZ
Barium	3/3	67.9 to 72.3	69.86667 2.236813	2.236813	3/3	73.7 to 198	122.6 66.25187	5187 Nonp	Nonparametric	0.1413	SN.
Benzo(a)anthracene	0/3	ND to ND	0.0255	•	0/3	ND to ND	0.0315 0.003122	3122 NO good	poc		
Benzo(a)pyrene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122		pod		
Benzo(b)fluoranthene	0/3	ND to ND	0.0255	0	0/3	ND to NO	0.0315 0.003122	3122 NO good	þoc		
Benzo(g,h,i)perylene	0/3	ND to ND	0.0255	0	0/3	ND to NO	0.0315 0.003122		poc		
Benzo(k)fluoranthene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122	\$122 NO good	poc		
Beryllium	0/3	ND to ND	0.098333 0.002887	0.002887	1/3	0.26 to 0.26 (3.166667 0.08	2209 ALL	0.166667 0.082209 All NDs/NULL in REF1		
Butylbenzylphthalate	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122	3122 NO good	poc		
Cadmium	3/3	0.47 to 0.53	0.49	0.49 0.034641	3/3	1 to 1.4	1.133333 0.2	0.23094 Nonparametric	srametric	0.1321	ES.
Calcium	3/3	9380 to 11600	10726.67 1183.272	1183.272	3/3	3890 to 8180	5720 2213.301 Nonparametric	.301 Nonpi	arametric	0.1413	NS
Carbazole	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122	5122 NO good	poc		
Chloride	3/3	2.25 to 9.64	5.396667 3.815106	3.815106	17	3.38 to 3.38	3.38	Nong.	Nonparametric	1.0000	SX
Chromium	3/3	24.9 to 30.8	27.13333 3.200521	3.200521	3/3	29.7 to 50.6 4	43.23333 11.73556 Nomparametric	3556 Nonpi	rametric	0.2474	SK
Chrysene	0/3	MD to ND	0.0255	0	0/3	ND to NO	0.0315 0.003122	\$122 NO good	po		
Cobal t	3/3	22.2 to 25	23.3333 1.474223	1.474223	3/3	25.5 to 42.4	34.03333 8.451233 Nonparametric	1233 Nonp	nametric	0.1413	SN
Copper	3/3	103 to 116	107.6667 7.234178	7.234178	3/3	125 to 189	164.3333 34.42867 Nonparametric	2867 Nonpi	rametric	0.1413	Ş

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

										P-Value	
	REF1	REF1	REF1	REF1	REF2	REF2	REF2	REF2 Type of	of	for	Test
Analyte	Detect/	Detect/N Min-Max	Average Std.	.Dev De	Std.Dev Detect/N	Min-Max	Average Std	Std.Dev Comparison	ırison	Test	Conclusion
Cyanide	1/3	0.39 to 0.39	0.248333 0.122712	2712	1/3	1.4 to 1.4	0.615 0.680055 Nonparametric	0055 Nonpe	arametric	0.4227	SN
Dibenz(a,h)anthracene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122	3122 NO good	poc		
Dibenzofuran	0/3	ND to MD	0.0255	0	0/3	ND to ND	0.0315 0.003122 NO	3122 NO go	pood		
Dieldrin	0/3	ND to ND	0.000127 2.887E-6	9-∃⁄	0/3	ND to ND (0.000158 0.000016 NO	0016 NO go	pood		
Diethylphthalate	1/3	0.058 to 0.058	0.036333 0.018764	8764	0/3	ND to ND	0.0315 0.003122	3122 ALL P	All NDs/NULL in REF2		
Dimethylphthalate	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122 NO good	3122 NO gc	pod		
Endosulfan 1	0/3	ND to ND	0.000127 2.887E-6	7E-6	0/3	ND to ND (0.000158 0.000016	0016 NO good	pod		
Endosulfan II	0/3	ND to ND	0.000127 2.887E-6	7E-6	0/3	ND to ND (0.000158 0.000016 NO	0016 NO gA	pood		
Endosulfan sulfate	0/3	ND to ND	0.000127 2.887E-6	7E-6	0/3	ND to ND	0.000158 0.000016	오	bood		
Endrin	0/3	ND to MD	0.000127 2.887E-6	7E-6	0/3	ND to ND (0.000158 0.000016	엹	pood		
Endrin aldehyde	0/3	ND to ND	0.000127 2.887E-6	7E-6	0/3	ND to ND	0.000158 0.000016 NO		pood		
Endrin ketone	0/3	ND to ND	0.000127 2.887E-6	7E-6	0/3	ND to ND	0.000158 0.000016	윷	pood		
Fluoranthene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122	오	pood		
Fluorene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.00	0.003122 NO 9	good		
Fluoride	0/3	ND to ND	0.19	0	0/1	ND to ND	0.205	. SON	boog		
Heptachlor	0/3	ND to ND	0.000127 2.887E-6	7E-6	0/3	ND to ND	0.000158 0.000016	皇	poob		
Heptachlor epoxide	0/3	ND to ND	0.000127 2.887E-6	7E-6	0/3	ND to ND	0.000158 0.000016	皇	pood		
Hexachloro-1,3-butadiene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122	엹	pood		
Hexachlorobenzene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.00	0.003122 NO g	good		
Rexachlorocyclopentadiene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.00	0.003122 NO g	poog		
Hexachloroethane	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122 NO good	3122 NO 9	poc		
Indeno(1,2,3-cd)pyrene	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122 NO good	3122 NO 9	pod		
Iron	3/3	45100 to 51800	47666.67 3614.323	.323	3/3	51400 to 87500	71166.67 18293.26 Nonparametric	3.26 Nonp	arametric	0.2474	NS
Isophorone	0/3	ND to ND	0.0255	0	0/3	ND to ND	0.0315 0.003122 NO good	3122 NO 9	pod ·		
Lead	3/3	5.4 to 8.7	7.333333 1.72	1.721434	3/3	15.4 to 48.1	27.63333 17.8	17.83713 Nonparametric	arametric	0.1413	¥S
Magnesium	3/3	10900 to 12200	11700	700	3/3	11200 to 14500	12400 1824	1824.829 Nonparametric	arametric	1.0000	S.
Manganese	3/3	800 to 890	830.6667 51.	51.3939	3/3	933 to 1530	1271 306.	306.2401 Nonparametric	arametric	0.1413	SN

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

	REF1	REF1	REF1	REF1	REF2	REF2
Analyte	Detect/N	Min-Max	Average	Std.Dev	Detect/N	Min-Max
Hercury	3/3	0.02 to 0.04	0,0	0.01	3/3	0.08 to 0.22
Methoxychlor	0/3	ND to MD	0.000127	2.887E-6	0/3	ND to ND
N-Witroso-di-n-propylamine	0/3	ND to ND	0.0255	0	0/3	ND to ND
N-Witrosodiphenylamine	0/3	ND to ND	0.0255	0	0/3	ND to ND
Naphthalene	0/3	ND to ND	0.0255	0	0/3	ND to ND
Nicket	3/3	28.5 to 32.9	.9 30.76667	2.203028	3/3	33.2 to 47.9
Nitrate	3/3	3.5 to 6.74	4.776667	1.725698	1/1	7.16 to 7.16
Nitrobenzene	0/3	ND to ND	0.0255	0	0/3	ND to ND
Pentachlorophenol	0/3	ND to ND	0.0255	0	0/3	ND to ND
Phenanthrene	0/3	ND to ND	0.0255	0	0/3	ND to ND
Phenol	0/3	ND to ND	0.0255	0	0/3	ND to ND
				9-Value		
	REF2	REF2	Type of	for	Test	
Analyte	Average	Std.Dev	Comparison	Test	Conclusion	
Mercury	0.133333	0.075719	Nonparametric	0.1413	SR	
Methoxychlor	0.000158	0.000016	NO good			
N-Nitroso-di-n-propylamine	0.0315	0.003122	No good			
N-Nitrosodiphenylamine	0.0315	0.003122	No good			
Naphthalene	0.0315	0.003122	NO good			
Nickel	45.4	8.018105	Nomparametric	0.1413	S¥	
Nitrate	7.16	•	Nonparametric	0.4370	SN	
Nitrobenzene	0.0315	0.003122	No good			
Pentachlorophenol	0.0315	0.003122	No good			
Phenanthrene	0.0315	0.003122	Poof ON			
Phenol	0.0315	0.003122	NO good			

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

REF2	Min-Max	290 to 371	ND to ND	0.88 to 0.88	0.33 to 1.3	326 to 1080	1.3 to 5.6	0.000043 to 0.000178	0.000021 to 0.000089	0.000026 to 0.00007	0.000014 to 0.000075	2.3E-6 to 0.000019															
REF2 R	Detect/N M	3/3		1/3 (3/3		3/3	3/3		3/3			Test	Conclusion	NS		SN		SN	S	SN	SN	NS	SN	S
REF1	Std.Dev	11.06044	0	0.228272	0.002887	140	0.683502	1,418E-6	2.212E-6	2.706E-6	1,493E-6	1.652E-6		P-Value	for	Test	0.1413		1.0000		0.1413	0.4227	0.1413	0.1413	0.1413	0.1413	0.4227
REF1	Average	273.3333	0.0255	0.458333	0.098333	1890	1.165	0.000012	7.933E-6	0.000017	0.00001	3.3E-6	i.				ric		ric	LL in REF1	ric	ric	ric	ric	rric	iric	tric
						Q		0.000013	1,00001	0.000019	0.000012	9-36)		Type of	Comparison	Nonparametric	NO good	Nonparametric	All NDs/NULL in REF1	Nonparametric	Nonparametric	Nonparametric	Nonparametric	Nonparametric	Nonparametric	Nonparametric
REF1	Min-Max	263 to 285	ND to ND	0.58 to 0.6	ND to ND	1750 to 2030	1.4 to 1.7	0.00001 to 0.000013	5.6E-6 to 0.00001	0,000014 to 0,000019	8.7E-6 to 0.000012	1 6F-6 to 4.9E-6	2		REF2	Std.Dev	46.19885	0.003122	0.35507	0.505206	410,4258	2.15484	0.000073	0.000034	0.000022	0.00003	8.45-6
REF1	Detect/N	3/3	0/3	2/3) (4)	3/3	2/3	3/3	3/3	3/3	3/3	2/2	ì		REF2	Average	317.6667	0.0315	0.47	0,733333	609.3333	3.366667	0.000094	0.000051	0.000048	0.000042	0.000011
																								,			
	Analyte	Dotosoiim		ryrene	Setenium	Sodium	The Line	Total Month	Total Hache	Total uson	Total Hydre	וסומו שיכטו	Total Pecbb			Analyte	Potassium	Pyrene	Selenium	Silver	anipo a	Soulce The Line	Total NoCDD	Total MDCDF	Total HXCDD	Total HXCDE	Total Pecbb

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

DEPTH=Subsurface UNITS=mg/kg	All remains a second of the se
;	

	REF1	REF1		REF1	REF1	REF2	REF2
Analyte	Detect/#	Min-Max		Average	Std.Dev	Detect/N	Min-Max
Total PeCDF	3/3	7.4E-6 to 0.000012	0.000012	9.733E-6	2.35E-6	3/3	8.4E-6 to 0.000041
Total TCDD	3/3	1.7E-6 to 2.3E-6	2.3E-6	1.9E-6	3.464E-7	3/3	2E-6 to 0,000011
Total TCDF	3/3	4.9E-6 to 0.000013	0.000013	8.967E-6	4.206E-6	3/3	8.6E-6 to 0.00004
Toxaphene	0/3	ND to ND		0.000127	2.887E-6	0/3	ND to ND
Vanadium	3/3	185 to 219		197,6667	18.58315	3/3	213 to 355
Zinc	3/3	40 to 48.6		44.33333	4.300388	3/3	68.6 to 190
alpha-BHC	0/3	ND to ND		0.000127	2.887E-6	0/3	ND to ND
alpha-Chlordane	0/3	ND to ND		0.000127	2.887E-6	0/3	ND to ND
beta-BKC	0/3	MD to ND		0.000127	2.887E-6	0/3	NO to NO
bis(2-Chloroethoxy)methane	0/3	ND to ND		0.0255	0	0/3	KD to ND
bis(2-Chloroethyl)ether	0/3	ND to ND		0.0255	0	0/3	ND to ND
					P-Value		
	REF2	REF2	Type of		for	Test	
Analyte	Average	Std.Dev	Comparison		Test	Conclusion	
Total PeCDF	0.000025	0.000016	Nonparametric	2	0.4227	9	
Total TCDD	5.1E-6	4.776E-6	Nonparametric	į	0.2414	SE	
Total TCDF	0.000025	0.000016	Nonparametric	ic	0.4227	SZ	
Toxaphene	0.000158	0.000016	MO good				
Vanadium	298	75.02666	Nonparametric	<u>5</u>	0.2474	SZ	
Zinc	124.8667	61.18377	Nonparametric	ic	0.1413	Ş	
alpha-BHC	0.000158	0.000016	PooB ON				
alpha-Chlordane	0.000158	0.000016	NO good				
beta-BHC	0.000158	0.000016	NO good				
bis(2-Chloroethoxy)methane	0.0315	0.003122	NO good				
bis(2-Chloroethyl)ether	0.0315	0.003122	NO good				

Atsugi Reference 1 Area vs. Reference 2 Area: Means Comparisons

:	
:	
 DEPTH=Subsurface UNITS=mg/kg 	(continued)

	2 1 1	RF #1	œ.	REF1	REF1	REF2	REF2
Analyte	Detect/N	Min-Max	Average	age	Std.Dev	Detect/N	Min-Max
bis(2-Ethvlhexvi)ohthalate	0/3	ND to ND	0.0255	255		0/3	ND to ND
del ta-BHC	0/3	ND to ND	0.000127	127	2.887E-6	0/3	ND to ND
di-n-Butylohthalate	1/3	0.077 to 0.077		299	0.029734	1/3	0.32 to 0.32
di-n-Octylphthalate	0/3	ND to ND	0.0255	255	0	0/3	ND to ND
gamma-BRC(Lindane)	0/3	ND to ND	0.000127	127	2.887E-6	0/3	ND to ND
gamma-Chlordane	0/3	ND to ND	0.000127	127	2.887E-6	0/3	ND to ND
o-Cresol	0/3	ND to ND	0.0	0.0255	0	0/3	ND to ND
p-Cresot	0/3	ND to ND	0.0	0.0255	0	0/3	ND to ND
					P-Value		
	REF2	REF2	Type of		for	Test	
Analyte	Average	Std.Dev	Companison		Test	Conclusion	
bis(2-Ethylhexyl)phthalate	0.0315	0.003122	NO good				
del ta-BHC	0.000158	0.000016	NO good			a.	٠.
di-n-Butylphthalate	0.128833	0.165557	Nonparametric		0.4164	S.	
di-n-Octylphthalate	0.0315	0.003122	NO good				
gamma-BKC(Lindane)	0.000158	0.000016	NO good				
gamma-Chlordane	0.000158	0.000016	NO good				
o-Cresol	0.0315	0.003122	NO good				
p-Cresol	0.0315	0.003122	NO good				

Atsugi

•		REF2	Min-Max	0.000307 to 0.00161	0,000036 to 0,000181	0.00005 to 0.000211	0.000035 to 0.000133	8.4E-6 to 0.000032	3.7E-6 to 9E-6	0.000015 to 0.000058	6.6E-6 to 0.000019	7.2E-6 to 0.000024	0.00002 to 0.00003	6.8E-7 to 3.6E-6															
		REF2	Detect/N	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9				ie.											
Comparisons		REF1	Std.Dev	0.000186	0.000037	0.000039	0.000048	8.08E-6	2.443E-6	0.00003	5.058E-6	0.000012	5.735E-6	1.15E-6			lest	Conclusion	S	SN	NS	WS	SN	SN	S	SX.	N.S.	S 2	NS
rea: Means (-mg/kg	REF1	Average	0.000493	0.000075	0.0000.0	0.000081	0.000012	4.633E-6	0.00004	0.00001	0.000017	0.000015	1.457E-6	er lev-d		10L	Test	0.0534	0.1576	0.0803	0.7309	0.0988	0.1268	0.5858	0.2683	0.6966	0.0087	0.3195
Reference 1 Area vs. Reference 2 Area: Means Comparisons	DEPTH=Surface UNITS=mg/kg			0.000257 to 0.000757 (0.000038 to 0.000136 (0.000054 to 0.000156	0.000042 to 0.000172 (0.000019 to 0.000098	0.00002					Time of	iype or	Comparison	Hormal	Normal	Normal	Normel	Normat	Normal	Nonparametric	Normal	Nonparametric	Normal	Monparametric
e 1 Area vs.	DEPTI	REF1	Min-Wax	0.000257 t	0.000038 t	0.000054 t	0.000042 t	5E-6 to 0.000028	2.5E-6 to 9E-6	0.000019 t	5.6E-6 to 0.00002	8E-6 to 0.000041	8.2E-6 to 0.000023	8.8E-7 to 3.8E-6		0000	אבוב	Std.Dev	0.000443	0.000047	0.000056	0.000032	7.845E-6	1.857E-6	0.000014	4.016E-6	5.281E-6	3.313E-6	9.993E-7
Reference		REF1	Detect/N	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9		6220	MEFE	Average	0.000952	0.000112	0.000145	0.00009	0.00002	6.733E-6	0.000039	0.000013	0.000016	0.000024	1.813E-6
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		Analyte	1,2,3,4,6,7,8,9-0000	1,2,3,4,6,7,8,9-0CDF	1,2,3,4,6,7,8-HpcDD	1,2,3,4,6,7,8-HpcDF	1,2,3,4,7,8,9-HpcDF	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF			•	Analyte	1,2,3,4,6,7,8,9-0000	1,2,3,4,6,7,8,9-0CDF	1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpcDF	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

Continued)

REF2 REF2	Detect/N Min-Max	6 3.7E-6 to 7.3E-6	6 3.7E-6 to 0.000013	6 ND to ND	6 ND to ND	6 ND to ND	6 ND to ND	6 ND to ND	6 0.000015 to 0.000055	6 5.6E-6 to 0.000018	6 3.9E-7 to 1.1E-6	6 2.2E-6 to 0.000011															
Ä	Dete	/9	9/9	9/0	9/0	9/0	0	9/0	9/9	/9	9/9	9/9		•	lest	Conclusion	SE SE	NS.						SN	NS	NS	NS
REF1	Std.Dev	2.456E-6	5.777E-6	0.001357	0.001357	0.001357	0.001357	0.001357	0.000032	0.000011	4.508E-7	5.879E-6			-	Conc	•										
REF1	Average		9.2E-6			0.026417 (0.026417 (0.000016	7.317E-7		P-Value		<u>1</u>	Test	0.2007	0.9277						0.5864	0.5343	0.7366	0.2778
_	Ave	5.017E-6	6	0.026417	0.026417	0.05	0.02	0.026417	0.000039	0.00	7.31	0.000011				5	etric							etric	etric		
		998	,00002						0.000101	.000037	.5E-6	.000021			Type of	Comparison	Nonparametric	Normal	Poog 0¥	NO good	NO good	NO good	NO good	Nonparametric	Nonparametric	Normal	Normal
REF1	Min-Max	3.2E-6 to 9.8E-6	3.8E-6 to 0.00002	ND to ND	ND to MD	ND to ND	ND to ND	ND to ND	0.000015 to 0.000101	6.3E-6 to 0.000037	4.7E-7 to 1.5E-6	3.6E-6 to 0.000021			REFZ	Std.Dev	1.196E-6	3.044E-6	0.003402	0.003402	0.003402	0.003402	0,003402	0.000013	3.928E-6	2.494E-7	2.972E-6
REF1	Detect/N	9/9	9/9	9/0	9/0	9/0								1	REFZ	Average	5.617E-6	8.95E-6	0.03475	0.03475	0.03475	0.03475	0.03475	0.000036	0.000012	8.05E-7	7.85E-6
	Analyte	1,2,3,7,8-Pecb0	1,2,3,7,8-PecDF	1,2,4-Trichtorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-oxybis(1-chloropropane)	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PecDF	2,3,7,8-TCDD	2,3,7,8-TCDF				Analyte	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-oxybis(1-chloropropane)	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PecDF	2,3,7,8-TCDD	2,3,7,8-TCDF

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

•										
	1 1 1	9 1	1270	0 1	C	C 11 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	c L E		P-Value	
	- :		אבר -		7 2 2	KEFC	KEFZ	KEPZ Type of	for	Test
Analyte	Detect/A	Detect/W Min-Max	Average	Std.Dev Detect/N Min-Max)etect/N	Min-Max	Average Std	Std.Dev Comparison	Test	Conclusion
2,4,5-Trichlorophenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2,4,6-Trichlorophenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2,4-Dichlorophenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2,4-Dimethylphenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2,4-Dinitrophenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2,4-Dinitrotoluene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2,6-Dinitrotoluene	9/0	ND to AD	0.026417	0.026417 0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2-Chloronaphthalene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2-Chlorophenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2-Methylnaphthalene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2-Nitroaniline	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
2-Nitrophenol	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	MD to ND	0.03475 0.00	0.003402 ND good		
3,3'-Dichlorobenzidine	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
3-Nitroaniline	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
4,4'-000	9/0	ND to ND	0.000155	0.000061	9/0	ND to ND	0.000173 0.00	0.000017 NO good		
4,4'-DDE	9/9	0.00086 to	0.99 0.195527	0.393353	9/9	0.0033 to 0.071	0.022083	0.025564 Nonparametric	ic 0.8146	SN
4,4'-DDT	9/9	0.0069 to (0.2 0.044756 0.077531	0.077531	9/9	0.0025 to 0.024	0.010067	0.00791 Nonparametric 0.8146	c 0.8146	SN
4,6-Dinitro-2-methylphenol	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
4-Bromophenyl-phenylether	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
4-Chloro-3-methylphenol	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
4-Chloroaniline	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
4-Chlorophenyl-phenylether	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
4-Nitroanaline	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.003402	3402 NO good		
4-Nitrophenol	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.003402	3402 NO good		
Acenaphthene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.003402	3402 NO good		
Acenaphthylene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 0.00	0.003402 NO good		
Aldrin	9/0	ND to ND	0.000155 0.000061	0.000061	9/0	ND to ND	0.000173 0.00	0.000017 NO good		

Atsugi Reference 1 Area vs. Reference 2 Area: Means Comparisons

									P-Value	
	REF1	REF1	REF1	REF1	REF2	REF2	REF2	REF2 Type of	for	Test
Analyte	₹	Min-Max	Average	Std.Dev Detect/N Min-Max	etect/N	Min-Max	Average	Std.Dev Comparison	Test	Conclusion
Aluminum	9/9	39900 to 57200 o	49633.33 6566.785	5566.785	9/9	58200 to 84200	73150	73150 9395.265 Normal	0.0007	S 2
Anthracene	9/0		0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 NO good		
Antimony	9/9	4.	1.633333 0.377712	377772	9/9	1.6 to 2.7	2.016667 0.371035	0.371035 Nonparametric	0.0685	SN
Aroctor-1016	9/0		0.000155 0.000061	3,000061	9/0	ND to ND	0.000173	0.000173 0.000017 NO good		
Aroclor-1221	9/0	ND to ND	0.000155 0.000061	0.000061	9/0	ND to ND	0.000173	0.000173 0.000017 NO good		
Aroctor-1232	9/0	ND to ND	0.000155 0.000061	0.000061	9/0	ND to ND	0.000173	0.000173 0.000017 NO good		
Aroclor-1242			0.000155 0.000061	0.000061	9/0	ND to ND	0.000173	0.000173 0.000017 ND good		
Aroclor-1248	9/0	ro ND	0.000155 0.000061	0.000061	9/0	ND to ND	0.000173	0.000173 0.000017 NO good		
Aroclor-1254	9/0		0.000155 0.000061	0.000061	9/0	ND to NO	0.000173	0.000173 0.000017 NO good		
Aroctor-1260	9/0		0.000155 0.000061	0.000061	9/0	ND to ND	0.000173	0.000173 0.000017 NO good		
Arsenic	9/9	2.9 to 5.2	3.783333 0.770498	0.770498	9/9	4.5 to 8.2	6.1	6.1 1.391402 Normal	0.0076	s 5
Barium	9/9	60.2 to 96.9	75.85	75.85 14.65643	9/9	66.1 to 105	79.81667	79.81667 13.73847 Normal	0.6391	SZ
Benzo(a)anthracene	9/0		0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 NO good		
Benzo(a)pyrene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 ND good		
Benzo(b)fluoranthene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 NO good		
Benzo(g,h,i)perylene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 NO good		
Benzo(k)fluoranthene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 NO good		
Beryllium	1/6	0.25 to 0.25	0.124167 0.062082	0.062082	1/6	0.23 to 0.23	0.1575	0.036297 Nonparametric	0.0907	N.S
Butylbenzylphthalate	9/2	83	0.044167 0.027491	0.027491	9/0	ND to ND	0.03475	0.03475 0.003402 All NDs/NULL in REF2		
Cadmium	9/9	0.65 to 1	0.786667 0.128478	0.128478	9/9	0.9 to 1.8	1.2	1.2 0.309839 Nonparametric	0.0225	S 2
Calcium	9/9	9420 to 12800	11016.67 1193.745	1193.745	9/9	3030 to 9640	5893.333	5893.333 2645.741 Normal	0.0035	s T
Carbazole	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 NO good		
Chloride	9/9	1.56 to 3.76	2.255	2.255 0.784034	;	ND to ND	•	. All NDs/NULL in REF2		
Chromium	9/9	26.4 to 34.5	30.15	30.15 2.616677	9/9	32.5 to 54.4	43.3	43.3 7.759124 Normal	0.0074	\$ 2
Chrysene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.03475 0.003402 NO good		
Cobalt	9/9	19.6 to 24.9	22.26667	22.26667 1.778389	9/9	23.7 to 33.9	29.06667	29.06667 3.660965 Normal	0.0043	S
Copper	9/9	90 to 115	100.7333	100.7333 9.039174	9/9	121 to 158	143.1667	143.1667 14.04872 Normal	0.0002	s 2

Atsugi Reference 1 Area vs. Reference 2 Area: Means Comparisons

					(continued)	(continued)			* : : : : : : : : : : : : : : : : : : :	; ; ; ; ; ;	:
	REF1	REF1	REF1	REF1	REF2	REF2	REF2	REF2 Type of	P-Value for	.ue	
Analyte	Detect/	Detect/W Min-Max	Average	Std.Dev Detect/N Min-Max)etect/N	Min-Max	Average	Std.Dev Comparison	Test	Ç	8
Cyanide	9/5	0.43 to 0.6	0.396667 0.184002	0.184002	9/4	0.8 to 1.7	0.918333	0.636276 Normal	0.1034	SN 75	
Dibenz(a,h)anthracene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.003402 NO good			
Dibenzofuran	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475	욷			
Dieldrin	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173	0.000017 NO good			
Diethylphthalate	9/9	0.058 to 0.13	0.069167 0.033749	0.033749	9/0	ND to ND	0.03475	0.003402 All NDS/NULL in REF2	in REF2		
Dimethylphthalate	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475	0.003402 NO good			
Endosulfan 1	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173	0.000017 NO good			
Endosulfan 11	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173	0.000017 NO good			
Endosulfan sulfate	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173	오			
Endrin	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173	0.000017 NO good			
Endrin aldehyde	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173 (0.000017 NO good			
Endrin ketone	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173	0.000173 0.000017 No good			
Fluoranthene	5/6	0.055 to 0.06	0.036583 (0.016317	9/0	ND to MD	0.03475 (0.003402 All NDs/NULL	in REF2		
Fluorene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475 (0.003402 NO good			
Fluoride	1/6	0.76	3 0.2905	0.231637		ND to ND	•	. All NDs/NULL in REF2	in REF2		
Heptachlor	9/0	ND to ND	0.000155	0.000061	9/0	ND to ND	0.000173 (0.000173 0.000017 NO good			
Heptachlor epoxide	9/0	ND to ND	0.000155 (0.000061	9/0	ND to ND	0.000173 0.000017	3.000017 NO good			
Mexachloro-1,3-butadiene	9/0	ND to ND	0.026417 0.001357	0.001357	9/0	ND to ND	0.03475 (0.003402 NO good			
Hexachlorobenzene	9/0	ND to ND	0.026417 0.001357	.001357	9/0	ND to AD	0.03475 (0.003402 NO good			
Hexachlorocyclopentadiene	9/0	ND to ND	0.026417 0.001357	.001357	9/0	MD to ND	0.03475 (0.003402 NO good			
Hexachloroethane	9/0	ND to ND	0.026417 0.001357	1.001357	9/0	ND to ND	0.03475 (0.003402 NO good			
Indeno(1,2,3-cd)pyrene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND	0.03475	0.003402 NO good			
Iron	9/9	38000 to 50600	44316.67	4385.62	9/9	49600 to 73300	62233.33	8159.575 Normal	0.0017	5 5 2	
Isophorone	9/0	ND to ND	0.026417 0	0.001357	9/0	ND to ND	0.03475 0	0.003402 NO good			
Lead	9/9	13.8 to 57.3		37.8 15.54902	9/9	22.5 to 55.3	45.08333 1	12.10825 Normai	0.3879	SE	
Magnesium	9/9	11000 to 11700		11400 268.3282	9/9	7680 to 10900	9641.667 1	9641.667 1084.886 Normal	0.0096		
Manganese	9/9	682 to 875	796.6667 68.01961	8.01961	9/9	945 to 1300	1147.5 1	125.7676 Normal	0.0004	\$ S 5	

12:51 Tuesday, July 28, 1998 15

Atsugi Reference 1 Area vs. Reference 2 Area: Means Comparisons

	REF1	REF1	REF1	REF1	REF2	REF2
Analyte	Detect/N	Min-Max	Average	Std.Dev	Detect/N	Min-Max
Mercury	9/9	0.06 to 0.14	14 0.111667	0.031252	9/9	0.07 to 0.22
Methoxychlor	9/0	ND to ND	0.000155	0.000061	9/0	ND to ND
N-Nitroso-di-n-propylamine	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND
N-Nitrosodiphenylamine	9/0	ND to ND	0.026417	0,001357	9/0	ND to ND
Naphthalene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND
Nickel	9/9	30.5 to 35.4	.4 33.43333	1.624397	9/9	31.8 to 56.1
Witrate	9/9	3.33 to 8.33	33 5.0625	2.802456	;	ND to ND
Nitrobenzene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND
Pentachlorophenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND
Phenanthrene	9/0	ND to ND	0.026417	0.001357	9/0	ND to ND
Phenol	9/0	ND to ND	0.026417	0.001357	9/0	ND to MD
				p-Value		
	REF2	REF2	Type of	for	Test	
Analyte	Average	Std.Dev	Comparison	Test	Conclusion	
Mercury	0.17	0.051769	Nonparametric	0.0693	S	
Methoxychlor	0.000173	0.000017	NO good			
N-Nitroso-di-n-propylamine	0.03475	0.003402	NO good			
N-Nitrosodiphenylamine	0.03475	0.003402	NO good			
Naphthalene	0.03475	0.003402	No good			
Nickel	41.6	9.021308	Normal	0.0776	SN	
Witrate	•	•	All NDs/NULL in REF2			
Nitrobenzene	0.03475	0.003402	NO good			
Pentachlorophenol	0.03475	0.003402	Poog ON			
Phenanthrene	0.03475	0.003402	NO good			
Phenol	0.03475	0.003402	NO good			

Reference 1 Area vs. Reference 2 Area: Means Comparisons

....... DEPTH=Surface UNITS=mg/kg ------

		. :		į			7.12
-	Detect/N	Min-Max		Average	Std.Dev	Detect/N	Min-Max
	9/9	362 to 525		409.5	63.09596	9/9	435 to 978
	5/6	0.053 to 0.07	.07	0.037917	0.019075	9/0	NO to MD
	9/9	0.43 to 0.61	61	0.541667	0.067946	3/6	1.1 to 1.2
	9/9	0.27 to 0.61	61	0.366667	0.128478	9/9	0.33 to 0.63
	9/9	1470 to 1990	8	1758.333	182.4737	9/9	235 to 1040
	9/9	0.85 to 1.3	ĸ	1,113333	0.189912	9/9	1.4 to 5.4
Total HpcDD	9/9	0.000107 to 0.000318	0 0.000318	0.00018	0.000083	9/9	0.000101 to 0.000395
F	9/9	0.000079 to 0.000323	0 0.000323	0.000152	0.000091	9/9	0.000066 to 0.000263
8	9/9	0.000069 to 0.000239	0 0.000239	0.000125	0.000064	9/9	0.000106 to 0.000211
<u> </u>	9/9	0.000096 to 0.000535	0 0.000535	0.000213	0.000165	9/9	0.000079 to 0.000277
٥	9/9	0.000025 to 0.000205	0.000205	0.000062	0.000071	9/9	0.00002 to 0.000057
					P-Value		
	REF2	REF2	Type of		for	Test	
	Average	Std.Dev	Comparison		Test	Conclusion	
	580	206.1077	Nonparametric	ric	0.0611	SF.	
	0.03475	0.003402	All NDs/NULL in REF2	LL in REF2			
	0.708333	0.467051	Nonparametric	ric	1.0000	NS	
	0.5	0.101193	Nonparametric	ric	0.1203	SX	
	488.8333	289.0207	Normal		0.000	s 1	
Thallium	2.891667	1.930393	Normal		0.0737	WS	
8	0.000277	0.000101	Normal		0.1002	NS	
.	0.000174	0.000064	Normal		0.6254	NS	
9	0.000168	0.000036	Normal		0.1842	NS	
<u>.</u>	0.000189	0.000063	Nonparametric	ric	0.7544	NS	
8	0.000041	0.000013	Nomparametric	ric	9969.0	NS	

Reference 1 Area vs. Reference 2 Area: Means Comparisons

Atsugi

	REF1 REF2 REF2	Std.Dev Detect/N Min-Max	0.000196 6/6	0.000049 6/6 0.000014 to 0.000061	7 0.000166 6/6 0.000056 to 0.000136	0.000061 0/6 ND to ND	23.05356	; 31.52741 6/6 120 to 183	; 0.000061 0/6 ND to ND	3 0.000296 0/6 ND to ND	0.000061	7 0.001357 0/6 ND to ND	7 0.001357 0/6 ND to ND	P-Value	for Test	Test Conclusion	0.5858 NS	0.9376 NS	0.1564 NS		0.0011 s 2	0.0187 s 2		73			
(continued)	REF1	Average	0.000608 0.000222			0,000155	182,333	106.8833	0.000155	0.00087 0.000278	0,000155	0.026417	0.026417		Type of	Comparison	Nonparametric	Nonparametric	Nonparametric	NO good	Normal	Normal	NO good	Ali NDs/NULL in REF2	NO good	NO good	Poor Old
	REF1	Min-Max	0.000076 to 0.00060B	0,000021 to 0,000152	0.00006 to 0.000522	ND to ND	148 to 215	71 to 156	ND to ND	0.00087 to 0.00087	XD to ND	ND to ND	ND to ND		REF2	Std.Dev	0.000044	0.000017	0.000028	0.000017	39.59167	24.34748	0.000017	0.000017	0.000017	0.003402	207200
	REF1	Detect/N	9/9	9/9	9/9	9/0	9/9	9/9	9/0	1/6	9/0	9/0	9/0		REF2	Average	0.000138	0.00004	0.000102	0.000173	274.5	153	0.000173	0.000173	0.000173	0.03475	0.03475
		Analyte	Total PeCDF	Total ICDD	Total ICDF	Toxaphene	Vanadium	Zinc	alpha-BHC	alcha-chlordane	beta-8HC	his (2-Chloroethoxv)methane	bis(2-Chloroethyl)ether			Analyte	Total PecDF	Total TCDD	Total TCDF	Toxaphene	Vanadium	Zinc	elpha-BHC	alpha-Chlordane	beta-8HC	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether

Reference 1 Area vs. Reference 2 Area: Means Comparisons Atsugi

(continued)	REF1 REF1 REF2 REF2 Detect/N Min-Max Average Std.Dev Detect/N Min-Max		0.28 0.1465 0.068742 6/6 (ND to ND 0.026417 0.001357	ND to ND 0.000155 0.000061	ND to ND 0.000155 0.000061	ND to ND 0.026417 0.001357	0/6 ND to ND 0.026417 0.001357 0/6 ND to ND	P-Value REF2 Type of for Test Average Std.Dev Comparison Test Conclusion
DEPT#=:			_						REF2 Std.Dev
	Analyte	bis(2-Ethylhexyl)phthalate delta-BHC	di-n-Butylphthalate	di-n-Octylphthalate	gamma-BHC(Lindane)	gamma-Chlordane	o-Cresol	p-Cresol	·· Analyte

N = 144

ş

0.9374

Nonparametric

NO good

0.000017

0.143027

0.281667 0.000173

bis(2-Ethylhexyl)phthalate

Ş

0.6956

Nonparametric

NO good NO good

0.003402 0.000017

> 0.000173 0.000173

0.178431

0.2225 0.03475

di-n-Butylphthalate di-n-Octylphthalate gamma-BHC(Lindane) gamma-Chlordane

delta-BHC

NO good NO good NO good

0.003402 0.000017

0.03475

o-Cresot p-Cresol Means Comparisons and UTL Statistics

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

		Test	Power	(8)	0.1257	
			Test	Conclusion	SN	
		P-Value	for	Test	0.0798	
nits=mg/kg ∙			Test	Type	Wilcoxon	
=1LM04.0 Ur	^ ~	. UTL	for	Bkgrd	۳	
ce Method			REF	TI.	0.390	
:Child Development Center DEPTH=Subsurface Method=1LMO4.0 Units=mg/kg			Site	Range	0.37 to 0.97	
nent Centel			Site	Mean	0.7275	
Develop			Site	Hits	4/4	
40C=Child			REF	Range	0.39 to 0.39	
			REF	Mean	0.24833	
			REF	Hits	1/3	
				Analyte	Cyanide	

Test	_	(a)	0.2358	0.2554	0.1248	0.1562	오	0.1267	0.1399	0.2786	0.3028
	Test	Conclusion	SN	SN	SN	SN	NC	¥IS	S₩	SN	SX
P-Value	for	Test	0.5679	0.6925	0.0814	0.2054	오	0.0782	0.1311	0.7946	0.8689
	Test	Type	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	None	Wilcoxon	Wilcoxon	Witcoxon	Wilcoxon
, N 170	for	Bkgrd	-	0	2	m	꽂	m	m	0	0
	REF	를.	57700	1.50	5.60	72.3	오	0.530	11600	30.8	25.0
	Site	Range	22700 to 60300	0.83 to 1.2	2.4 to 4.3	31.1 to 118	ND to ND	0.52 to 1.6	10900 to 27000	11.2 to 29.3	5.9 to 23.8
	Site	Mean	45000.00	0.77	3.30	78.00	0.09	1.18	15825,00	21.63	16.45
	Site	Hits	4/4	3/4	4/4	7/7	7/0	4/4	4/4	4/4	7/7
	REF	Range	52300 to 57700	1 to 1.5	1.3 to 2.6	67.9 to 72.3	ND to ND	0.47 to 0.53	9380 to 11600	24.9 to 30.8	22.2 to 25
	REF	Mean	54100.00	0.93	2.03	69.87	0.10	0.49	10726.67	27.13	23.33
	REF	Hits	3/3	2/3	3/3	3/3	0/3	3/3	3/3	3/3	3/3
		Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

~

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

9
0 Units=mg/
ö
:1LM04
Method=11
DEPTH=Subsurface Method=ILM
Center
Development
Aoc=child D
-

(continued)

Test	Power	(a)	0.2333	0.3028	0.1562	0.3537	0.2333	0.1562	0.3278	0.1109		오	0.2786	0.1399	0.3028	0.1562
	Test	Conclusion	S	SN	SN	SN	SN	SN	SN	v	SE	SC	NS	SN	SN	SN
p-Value	for	Test	0.5672	0.8689	0.2054	0.9501	0.5672	0.2054	0.9186	0.0499	오	꾶	0.7946	0.1311	0.8689	0.2054
ı	Test	Туре	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	¥i l coxon	Wilcoxon	Wilcoxon	Wilcoxon	None	None	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon
* T.	ţ	Bkgrd	-	0	M	0	-	m	0	4	0	Ş		m	0	m
;	REF	TI	116	51800	8.70	12200	890	0.0400	32.9	582	0.600	S	2030	1.70	219	9.84
;	Site	Range	18.1 to 127	17200 to 50100	3.5 to 19.1	5210 to 9810	283 to 939	0.05 to 0.12	9.6 to 29.1	382 to 1370	ND to ND	0.18 to 0.18	1480 to 2100	0.58 to 2.4	56.1 to 207	35.1 to 88.2
;	Site	Mean	84.83	36975.00	12.80	8012.50	673.50	0.07	21.30	755.25	0.18	0.12	1680.00	1.70	141.03	67.35
į	Site	E ts	4/4	7/7	4/4	4/4	4/4	3/4	4/4	4/4	7/0	1/4	4/4	4/4	4/4	7/7
i.	REF	Range	103 to 116	45100 to 51800	5.4 to 8.7	10900 to 12200	800 to 890	0.02 to 0.04	28.5 to 32.9	263 to 285	0.58 to 0.6	ND to ND	1750 to 2030	1.4 to 1.7	185 to 219	40 to 48.6
i	KF.	Kean	107.67	47666.67	7.33	11700.00	830.67	0.03	30.77	273.33	97.0	0.10	1890.00	1.17	197.67	44.33
i	Ä	Hits	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	2/3	0/3	3/3	2/3	3/3	3/3
		Analyte	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	2inc

N = 23

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

								^ ==				
								UTL		P-Value		Test
	ļ			4	Site	Site	REF	far	Test	for	Test	Power
Analyte	KEr Hits	Mean	Range	Hits	Mean	Range		Bkgrd	Туре	Test	Conclusion	<u>e</u>
	,			7770	0 000115	ON at GN	SZ.	皇	None	S	N.	SK
4,4'-000			NU to NU	t ;	0.00077	0 002 40 0 19	0.00580	2	Wilcoxon	0.3075	SN	0.1737
			0.00099 to 0.0058	* :	0.79000	0.0025 to 0.11	0.00170	· M	Wilcoxon	0,2054	N	0.1562
	2/3		0.0008 to 0.0017	* 3	0.029240	אף לה אף	20.1) <u>S</u>	None	2	Ş	S
	0/3		ND to ND	*/0	21,000,0		<u> </u>	<u> </u>	Mone	2	Ş	呈
	0/3	.0001267	\$	7/0	0.000113	S C C C C C C C C C C C C C C C C C C C	2 2	<u> </u>	None	S	Š	皇
Aroctor-1221	0/3		\$	# : 0	0,000,0		2 2	2	None	2	NC	Ş
	0/3	.0001267	ಧ	* / 0	0.00010	5 C C C C C C C C C C C C C C C C C C C	2 5	, <u>,</u>	None	皇	S	오
Aroclor-1242	0/3	.0001267		7/0	0.000115	NO TO NO	<u>۽</u> ڇ	<u> </u>	9 00	2	2	꾶
	0/3	.0001267	ND to ND	0/4	0.000115	ND to ND	ž ;	2 5	100	<u> </u>) N	오
	0/3	.0001267	ND to ND	4/0	0.000115	ND to ND	2	ָ בַּ	ב ב ב	2 5	2	.
	0/3	.0001267	ND to ND	0/4	0.000115	ND to ND	≌	ž	None	ָבְ יַבְּ	2 4	2 5
nieldrin	0/3	.0001267	ND to ND	9/0	0.000115	ND to ND	오	¥	None	¥ !	ည္ (Z	<u>۽</u> ڇ
	0/3	.0001267	ND to ND	9/0	0.000115	ND to ND	N.	ž	None	2	ည (۽ ڇ
Traboulton 15	5/0	0001267	ND to ND	7/0	0.000115	ND to ND	Š	웆	None	¥	ž	⊋ !
40	2 6	0001267	ND to ND	9/0	0.000115	ND to ND	오	Š	None	皇	2	S
Endosurran surrand	, <u>r</u>	0001267	ND to ND	0/4	0.000115	ND to ND	皇	Ş	None	Ş	S :	ည န
ridiin oldohudo	6/2	.0001267		9/0	0.000115	ND to ND	ş	2	None		S :	2 9
Erdi'in atuenyue	, ,	0001267		7/0	0.000115	ND to ND	웆	Z Z	None	울	S	<u>.</u>
Engrin Ketone		7351000	9	7/0	0.000115	ND to ND	오	S	None	웆	∵	2
Heptachlor	0/0	7764000	5 5	0/4	0.000115	ND to ND	SK SK	Ş	None	SC SC	Š	皇
Heptachlor epoxide	ָרְיָּרְ בְּיִרְיִּרְיִּרְיִּרְיִּרְיִּרְיִּרְיִּר	7921000		9/0	0.000115	ND to ND	ž	皇	None	오	Š	오
Methoxychior	2 6	750,000	2 9	7/0	0.000115	ND to ND	皇	S	None	呈	Š	욽
Toxaphene	6/0	1021000	2 5	7/0	0.000115	2	Š	Š	None	오	NC NC	皇
alpha-BHC	0/3	,0011000.	3	>		}						

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

	Test Power (a)	2 2 2 2 2
	Test Conclusion	N N N N
	P-value for Test	<u> </u>
:=mg/kg -	Test Type	None None None None
3.2 Units	N > UTL for Bkgrd	N N N N N N N N N N N N N N N N N N N
hod=OLM03	REF UTL	NC NC NC NC
osurface Met Jed)	Site Range	ND to ND
DEPTH=Subsur (continued)	Site Mean	.000115 .000115 .000115
ant Center	Site Hits	0/4 0/4 0/4 0/4
=Child Development Center DEPTH=Subsurface Method=OLMO3.2 Units=mg/kg	REF Range	ND to ND
Ago	REF Mean	.00012667 .00012667 .00012667 .00012667
	REF Hits	0/3 0/3 0/3 0/3
	Analyte	alpha-Chlordane beta-BHC delta-BHC gamma-BHC(Lindane)

N = 28

2

얼

	Test Power (a)	2
	Test Conclusion	N NC NC
Development Center DEPTH=Subsurface Method=OLMO3.2 Units=mg/kg	P-Value for Test	N
mg/kg	Test Type	None None None None
i.2 Units=	N > UTL for Bkgrd	N
od=01M03	REF UTL	S S S S
urface Meth	Site Range	MD to ND ND to ND ND to ND ND to ND
r DEPTK=Subs	Site Mean	0.023375 0.023375 0.023375 0.023375
int Cente	Site Hits	0/4 0/4 0/4
	REF Range	ND to ND ND to ND ND to ND ND to ND
A0C=ch	REF Mean	0.0255 0.0255 0.0255 0.0255
	REF Hits	0/3 0/3 0/3
A0C=Child	Analyte	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) \$ = one-tailed test statistically significant at the alpha = 0.05 significance level

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

AOC=Child Development Center DEPTH=Subsurface Method=OLMO3.2 Units=mg/kg ------ AOC=Child Development Center DEPTH=Subsurface Method=OLMO3.2 Units=mg/kg

(continued)

								^ ~				
								UTL		P-Value		Test
	u C	<u>u</u>	9110	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	15	Bkgrd	Туре	Test	Conclusion	(a)
	ţ	0		"	0 024375	ND to NO	ž	2	None	Š	*C	읓
2,2'-oxybis(1-chloropropane)	5 1	0,000		, ; ;	0.023375	ND to ND	2	皇	None	ž	S	S
2,4,5-Trichlorophenol	0/2	0.025	2 3	t :	0.02225	: 5	, Z	ž	None	NC	¥	잁
2,4,6-Trichtorophenol	0/3	0.0255	ND to ND	*	0.023375	: 5	2	Š	None	읒	NC	皇
2,4-Dichlorophenol	0/3	0.000	3	† :	0.022275	2	<u> </u>	뀵	None	皇	S	오
2,4-Dimethylphenol	0/3	0.065		* / C	0.023375		皇	Š	None	2	NC	오
2,4-Dinitrophenol	0/3	6620.0	2 ;	†	0.023375	2	꽃	S	None	ž	S	꽃
2,4-Dinitrotoluene	2/3	0.025	2 \$	5 6	0.023375	5 5 5	Š	SC	None	S	S	S
2,6-Dinitrotoluene	s !	0.023	3 3	1 1	0.023375	\$	2	2	None	皇	皇	웆
2-Chloronaphthalene	0/3	0.0255	2	* /o	0.02337		<u> </u>	<u> </u>	None	S	S	S
2-Chlorophenol	0/3	0.0255	Ş	*/0	0.023373	3 .	2 5	2 5	1	Į,	S	皇
2-Methylnaphthalene	0/3	0.0255	Ş	9/4	0.023375	ND to ND	2 :	<u>:</u> ځ		2 5	. L	Ñ
2.witrosniline	0/3	0.0255	NO to NO	9//	0.023375	ND to ND	¥	2	Sone:) (E	2	<u> </u>
	2/0	0.0255	ND to ND	9/6	0.023375	ND to ND	皇	皇	None	S E	.	2 6
Z-Nitrophenot	, P	0.0255	\$	9/0	0.023375	ND to ND	ž	옻	None	皇	S S	2 !
5,5°-plentiford	5/0	0.0255	ţ	9/0	0.023375	ND to ND	S	오	None	꾩	S	¥ :
S-Nitroanitine) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.0255		7/0	0.023375		ž	옱	None	웆	呈	ָ בּ
4,6-Unitro-2-metnytphenot	, ,	0.0255	÷	9/0	0.023375	ND to ND	ž	오	None	S S	S	2
4-Bromophenyl-phenyletner	2 6	0.0255	: :	7/0	0.023375	ND to ND	ž	몿	None	Š	¥	ž
4-Chloro-3-methylphenol	c /o	0.020	3 ;	, ,	0 024475	5	2	皇	None	2	S	皇
4-Chloroaniline	0/3	0.025	2	* 3	0.023375	; ;	2	Ž	None	Š	NC NC	ž
4-Chlorophenyl-phenylether	0/3	0.0255	2	† ;	0.023375	3 \$	2 5	2	None	무	NC	ž
4-Nitroanaline	0/3	0.0255		1 /0	0.023373	3 .	2 5	2 5	1000	Ļ	22	2
4-Nitrophenol	0/3	0.0255	ND to ND	9/4	0.023375	NO to NO	₹	ž	5 2	ž	!	,

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

(continued)

0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC <th>REF</th> <th>Ä</th> <th>R. F.</th> <th>;;;</th> <th></th> <th></th> <th>į</th> <th>^ IT</th> <th></th> <th>P-Value</th> <th></th> <th>Test</th>	REF	Ä	R. F.	;;;			į	^ IT		P-Value		Test
0.023375 ND to ND NC None NC NC 0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NOne NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NOne NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC	Mean	- C		מונים	מו מו	9) Le	ָּבָּאָ יָּבָּי יַבָּי	for	Test	for	Test	Power
0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC NOne NC NC 0.023375 ND to ND NC NC NOne NC NC 0.023375 ND to ND NC NC NOne NC NC 0.023375 ND to ND NC NC NOne NC NC 0.023375 ND to ND NC NC NOne NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC		אל של אל		\$1 12 13	Mean	Range	TI Ti	Bkgrd	Туре	Test	Conclusion	(a)
0.023375 ND to ND NC None NC 0.023375 ND	0.025500 ND to ND	ND to ND		9/4	0.023375		2	2	arc.	<u>L</u>	Š	9
0.023375 ND to ND NC None NC 0.023375 ND	0.025500 MD to ND	MD to ND		7/0	0.023375	ţ	: ¥	<u> </u>	2 00	<u> </u>	₹ 5	ب 2
0.023375 ND to ND NC None NC 0.023375 ND	0.025500 ND to ND	ND to ND		9/6	0.023375	5		<u> </u>	None	ַבַ בַּ	ر * ±	2
0.023375 ND to ND NC None NC 0.023375 ND to ND NC NC NC 0.023375 ND to ND NC NC NC 0.023375 ND to	ND to ND	ND to ND		9//0	0.023375	\$. <u>2</u>	2 5	None Parent	2 £	ა ლ ≥ :	2 :
0.023375 ND to ND NC NO NC	0.025500 ND to ND	ND to ND		0/4	0.023375		. S	2		בַ בַ	ž ;	<u>.</u>
0.023375 ND to ND NC None NC 0.023375 ND to ND NC NC NC 0.023375 ND to ND NC NC NC 0.023375 ND to ND NC NC NC 0.023375 ND to ND	0.025500 ND to ND	ND to MD		7/0	0.023375		<u> 2</u>	2		ב ב	۽ ج	ည <u>ရှ</u>
0.023375 ND to ND NC None NC 0.023375 ND to ND NC NC NC 0.023375 ND to ND <td>ND to ND</td> <td>ND to ND</td> <td></td> <td>9/0</td> <td>0.023375</td> <td></td> <td>2</td> <td>2 2</td> <td>alone Hone</td> <td>ב ב</td> <td>ב ב</td> <td>į</td>	ND to ND	ND to ND		9/0	0.023375		2	2 2	alone Hone	ב ב	ב ב	į
0.023375 ND to ND NC NO NO NO 0.023375 ND to ND NC NO NO NO 0.023375 ND to ND NC NO NO NO 0.023375 ND to ND NC NO NC NC 0.023375 ND to ND NC NO NC NC 0.023375 ND to ND NC NC NC NC 0.023375 ND to ND NC	0.025500 ND to ND	ND to ND		9/0	0.023375		웆	皇	None	2 2	ב ב ב	ב ב
0.023375 ND to ND NC None NC 0.023375 ND to ND NC None NC 0.023375 ND to ND NC None NC 0.023375 ND to ND NC NO NC 0.023375 ND to ND NC NC NC 0.023375 ND to ND	0.025500 ND to ND	ND to ND		0/4	0.023375		泛	2	None	2 2	ב <u>ז</u>	בַּ בַ
0.023375 ND to ND NC NC NO NC 0.023375 ND to ND NC NC NC NC 0.023375 ND to ND NC	0.025500 ND to ND	ND to ND		0/4	0.023375		2	2	None e	} <u>}</u>	2 5	<u> </u>
0.023375 ND to ND NC NO NO NO 0.023375 ND to ND NC NO NO NC 0.023375 ND to ND NC NC NC NC	0.025500 ND to ND	ND to ND		9/4	0.023375		Š		None	2	ž	ر 2 ع
0.023375 ND to ND NC NO NO NO 0.023375 ND to ND 0.0580 0 NO NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC	0.025500 ND to ND	ND to ND	_	9/4	0.023375		2	2	Mone	2 5	5 5	5 5
0.023375 ND to ND 0.0580 0 None NC NC 0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC 0.023375 ND to ND NC NC NC NC NC	0.025500 ND to ND	ND to ND		9/6	0.023375		오	皇	None	2 5	<u> </u>	ב <u>ב</u>
0.023375 ND to ND NC NC None NC	0.036333 0.058 to 0.058	0.058 to 0.058	_	7,4	0.023375		0.0580	0	None	2	2 5	֝֞֝֝֞֝֜֝֝֝֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
0.023375	0.025500 ND to MD	ND to MD	o	*	0.023375		¥	Ş	None	2	2 2	ב ב
0.023375 ND to ND NC NC None NC NC NC NC 0.023375 ND to ND NC NC None NC NC 0.023375 ND to ND NC NC None NC	0.025500 ND to ND	ND to ND	o`	2	0.023375		¥	3	None	ž	: Z	2 5
0.023375 ND to ND NC NC None NC NC O.023375 ND to ND NC NC None NC NC O.023375 ND to ND NC NC None NC NC O.023375 ND to ND NC NC None NC NC NC O.023375 ND to ND NC	0.025500 ND to ND	ND to ND	6	4	0.023375		¥	2	None	<u> </u>	2 5	2 9
0.023375 ND to ND NC NC NC NC NC O.023375 ND to ND NC	ND to ND	to ND	6	.	0.023375		. Y	<u>.</u>) de contra	<u> </u>		۽ ج
0.023375 ND to ND NC None NC	ND to ND	to MD	2	•	722200	: ;		2 :	<u> </u>	٤	2	S N
0.023375 ND to ND NC None NC NC NC O.023375 ND to ND NC NC None NC NC NC NC	0 025500 ND ±0 ND	£ ;	3	٠.	0.053330	2 .	₹ :	<u> </u>	None	皇	오	∑
0.023375 ND to ND NC NONE NC NC NC O.023375 ND to ND NC NC NC NC	O OCCUPANT OF THE PROPERTY OF	€ !	3	.	0.025575	\$	≌	呈	None	呈	꾶	¥
0.023375 ND to ND NC NC NC NC NC	U.U.SOUU NO to ND	to #D	o	7	0.023375	\$	윭	오	None	2	S	Ž
	0/3 0.025500 ND to ND 0,	to ND	o,	*	0.023375	\$	¥.	¥	None	S	2	<u> </u>

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

	Statistics
	를
	and UTL
tsugi	Comparisons
-	Means
	Reference:
	te vs.
	Site

09:46 Tuesday, July 28, 1998 7

=OLMO3.2 Units=mg/kg	
Method=OLMO3.2	
DEPTH=Subsurface	
Center	
AOC=Child Development	

								^ =				
								UTL		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type	Test	Conclusion	(a)
Isophorone	0/3	0.025500	ND to ND	7/0	0.02338	ND to ND	ž	Š	None	S	Š	Š
N-Nitroso-di-n-propylamine	0/3	0.025500	ND to ND	9/0	0.02338	ND to ND	2	오	None	S.	S	S
N-Witrosodiphenylamine	0/3	0.025500	ND to ND	9/6	0.02338	ND to ND	2	2	None	ž	S	Š
Naphthalene	0/3	0.025500	ND to ND	0/4	0.02338	ND to ND	Ş.	XC	None	웆	SC	¥
Nitrobenzene	0/3	0.025500	ND to ND	9/0	0.02338	ND to ND	2	오	None	呈	SC	呈
Pentach loropheno!	0/3	0.025500	ND to ND	7/0	0.02338	ND to ND	S	ž	None	皇	및	S
Phenanthrene	0/3	0.025500	ND to ND	0/4	0.02338	ND to ND	잁	Š	None	皇	무	웆
Phenol	0/3	0.025500	ND to ND	9/6	0.02338	ND to ND	2	2	None	<u>≥</u>	皇	잎
Pyrene	0/3	0.025500	ND to ND	9/0	0.02338	ND to ND	SC SC	Š	None	웆	S	S
bis(2-Chloroethoxy)methane	0/3	0.025500	ND to ND	7/0	0.02338	ND to ND	SC SC	S	None	皇	S	S
bis(2-Chloroethyl)ether	0/3	0.025500	ND to ND	9/0	0.02338	ND to ND	오	S	None	꾶	S	ž
bis(2-Ethylhexyl)phthalate	0/3	0.025500	ND to ND	3/4	0.10788	0.07 to 0.25	ž	Š	None	오	2	S
di-n-Butylphthalate	1/3	0.042667	0.077 to 0.077	1/4	0.06175	0.18 to 0.18	0.0770	-	Wilcoxon	0.5679	NS	0.2358
di-n-Octylphthalate	0/3	0.025500	*D to ND	7/0	0.02338	ND to ND	¥	S	None	¥	S	S
o-Cresol	0/3	0,025500	ND to ND	9/0	0.02338	ND to ND	옻	오	None	¥	S	S
- C - C - C - C - C - C - C - C - C - C	0/3	0.025500	ND to ND	7/0	0.07338	ND to ND	皇	2	None	2	2	皇

3/3 .0

Total TCDD Total TCDF

REF Hits

Analyte

99 = №

2.2550

6/6 1/6

Chloride Fluoride

REF Mean

REF Hits

Analyte

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

5 Tuesday, July 28, 1998 8

								^ =				
								II.		P-Value	*	Test
	ū	275	84 54 54 54 54 54 54 54 54 54 54 54 54 54	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	Ή	Bkgrd	Туре	Test	Conclusion	(a)
litrate	2/6	5.0625	3.33 to 8.33	7	6.36	6.36 to 6.36	15.5	0	Wilcoxon	0.5000	S	0.2123

	# 5	27
	Test Power (a)	0.5927
	Test	v
	P-Value for Test	0.0163
nits=mg/kg	Test Type	t-Test
:1LM04.0 U	N > UTL for Bkgrd	0
Method=	REF UTL	1.08
ld Development Center DEPTH=Surface Method=1LMO4.0 Units=mg/kg	Site Range	0.43 to 0.97 1.08
ent Cent	Site Mean	99.0
Developm	Site	8/8
AOC=Child	REF	0.43 to 0.6
	REF	0.39667
	REF	9/4
A0C=Chi	Analyte	Cyanide

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) s = one-tailed test statistically significant at the alpha = 0.05 significance level

Test	Power	(e)	0.1562	0.1109	0.1562	0.1109	0.1399	S	0.1116	0.2123	0.1116	0.2145	¥	0.2123	0.1109	0.1663	0.1116	S	0.1109	0.1492	0.1109	0.1924	0.1109	0.1248	0.1248
	Test	Conclusion	SN	S	S¥	S	S	오	S	SN	S	S	웆	NS.	s	Ş	v	꾶	s	S¥.	s	SI	s,	S	SN
P-Value		Test	 0.2054	0.0499	0.2054	0.0499	D. 1311	웆	0.0487	0.200	0.0487).5000	皇	.5000	.0499	.2512	-0487	오	.0499	. 1628	.0499	4328	.0499	.0814	, 0814

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

Test Power (a)	0.9901 0.3310 0.3310 0.9392 0.2984 0.9970 0.9967 0.9967 0.9962 0.8705 1.0000 0.9997 0.3256 0.3256 0.3997 0.3644 0.3517 1.0000 0.3517 1.0000
Test Conclusion	S S S S S S S S S S S S S S S S S S S
p-value for Test	0.9998 0.9539 0.9989 0.9484 0.9120 0.9999 0.9999 0.9998 0.9998 0.9998 1.0000 0.9995 0.9995 1.0000 0.9995
Test	Wilcoxon Wilcoxon t-Test Wilcoxon t-Test Wilcoxon t-Test Wilcoxon t-Test Wilcoxon t-Test
N > UTL for Bkgrd	00000000000000000000
REF UTL	74000 2.40 6.64 130 0.250 1.26 15400 39.9 28.9 134 60600 95.5 12400 1050 0.228 2430 1.82 224
Site Range	7240 to 44000 0.63 to 1.8 1.1 to 3.7 13.7 to 79.6 0.21 to 0.21 0.27 to 1.1 4520 to 12200 5 to 26.1 2.3 to 17.3 8.2 to 92 6130 to 38700 3.1 to 23.8 1420 to 7400 89.2 to 767 0.03 to 0.15 4.2 to 24 309 to 1000 0.4 to 0.4 0.19 to 0.29 340 to 1200 0.6 to 0.79 19.1 to 151 26.5 to 125
Site Mean	23291.25 0.55 2.96 35.26 0.10 0.59 12.90 8.53 38.59 20828.75 12.61 4320.00 357.28 0.04 12.03 627.00 0.19 0.14
Site Hits	8/8 3/8 3/8 8/8 1/8 8/8 8/8 8/8 8/8 3/8 3/8 2/8 3/8 3/8
REF Range	39900 to 57200 1.4 to 2.4 2.9 to 5.2 60.2 to 96.9 0.25 to 0.25 0.65 to 1 9420 to 12800 26.4 to 34.5 19.6 to 24.9 90 to 115 38000 to 50600 13.8 to 57.3 11000 to 11700 682 to 875 0.06 to 0.14 30.5 to 35.4 362 to 525 0.43 to 0.61 0.27 to 0.61 1470 to 1990 0.85 to 1.3 148 to 215 71 to 156
REF	49633.33 1.63 3.78 75.85 0.12 0.12 0.79 11016.67 30.15 22.27 100.73 44316.67 37.80 11400.00 796.67 0.11 33.43 409.50 0.54 0.57 1758.33 1162.33
REF Hits	6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6
Analyte	Aluminum Antimony Arsenic Barium Beryllium Cadomium Calcium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium

S = one-tailed test statistically significant at the alpha = 0.05 significance level

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level

(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

N = 23

Test Power (a)	2	0.2646	0.2464	S 2	ž 2	2	꽃	皇	2	꾩	皇	S	웆	皇	呈	Ş	Š
Test Conclusion		SN	SZ :	<u> </u>	≗ ≌	™ C	S	NC	N.	S	S	NC	SC	웆	S	2	¥
P-Value for Test	N	0.8538	0.7549	בַ בַ	2	SC	웊	Š	呈	皇	¥	¥	皇	呈	오	ž	NC
Test Type	None	Wilcoxon	M) I COXON	None	None	None	None	None	None	None	None	None	None	None	None	None	None
N v UTL for Bkgrd	꾩	0 0	٠ <u>٢</u>		오												
REF UTL	2 €			皇	꾩	2	<u> </u>	2 :	2 9	<u>ب</u>	<u>ب</u> ج	¥ ;	<u> </u>	글 :	皇	읓	皇
Site Range	ND to ND	0.0017 to 0.051	ND to ND	ND to ND	ND to ND	ND to ND	5 0 5	NO TO NO	S C C S C S C S C S C S C S C S C S C S	0 0032 \$2 0 0032	40 to 40	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			ND TO AID	NO 10 NO 11	MD to ND
Site Mean	0.000103	0.012273	0.000103	0.000103	0.000103	0.000103	0.000103	0.000103	0.000103							0.000.00	
Site	8/0	8/9	8/0	8/0	8/0 0/8	0 % 0 %	8/0	8/0	8/0	1/8	9/0	8/0	8/0	2 K	2 8	0 K) }
REF Range	ND to ND 0.00086 to 0.99	0.0069 to 0.2	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	MD to MD	ND to NO	ND to ND	ND to ND	ND to ND	ND to ND	!
REF Mean	0.00016	0.04476	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016			0.00016		0.00016	0.00016	
REF Hits	9/9 9/9	9/9	9/0	9 /0	9/0	9/0	9/0	9/0	9/0							9/0	
Analyte	4,4'-DDE 4,4'-DDE	4,4'-DDT	Aldrin Angeles: 1017	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroctor-1260	Dieldrin	Endosulfan 1	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone	

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

	Test	Power	(a)	呈	S	S	呈		0.2531	오	2	⊋	S
		Test	Conclusion	N.	皇	皇	皇	오	¥	2	오	S	S
	P-Value	for	Test	Š	윭	2	오	皇	0.7922	오	2	皇	S
		Test	Type	None	None	None	None	None	Wilcoxon	None	None	None	None
<u>^</u>	ПŢ	for	Bkgrd	Š	S	Š	Š	2	~	呈	오	NC	皇
		REF	UTL	S.			皇		0.000870	Š	Σ	S.	S
		Site	Range	ND to ND	ND to ND	ND to ND	ND to MD	ND to ND	0.00081 to 0.00097	ND to ND	ND to ND	ND to ND	0.00085 to 0.0011
		Site	Mean	.00010313	.00010313	.00010313	.00010313	.00010313	.00039625	.00010313	.00010313	.00010313	.00031813
		Site	Hits	8/0	8/0	8/0	8/0	8/0	3/8	8/0	8/0	8/0	2/8
		REF	Range	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	0.00087 to 0.00087	ND to ND	ND to ND	ND to ND	ND to ND
		REF	Mean	.00015500 ND to ND	.00015500 ND to ND	.00015500 ND to ND	.00015500	.00015500	.00027833	.00015500 ND to ND	.00015500	.00015500 ND to ND	.00015500 ND to ND
		REF	Hits	9/0	9/0	9/0	9/0	9/0	1/6	9/0	9/0	9/0	9/0
			Analyte	Heptach(or	Heptachlor epoxide	Methoxychlor	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC(Lindane)	gamma-Chlordane

M = 28

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

Analyte Hits Mean 1,2,4-Trichlorobenzene 0/6 0.026417 1,2-Dichlorobenzene 0/6 0.026417 1,3-Dichlorobenzene 0/6 0.026417 1,4-Dichlorobenzene 0/6 0.026417											
REF Hits -ichlorobenzene 0/6 Ilorobenzene 0/6 Ilorobenzene 0/6							^ =				
REF Hits -ichlorobenzene 0/6 Ilorobenzene 0/6 Ilorobenzene 0/6							Ţ		P-Value		Test
Hits ichlorobenzene 0/6 ilorobenzene 0/6 ilorobenzene 0/6	## ##	REF	Site	Site	Site	REF	for	Test	for	Test	Power
one 0/6 0/6 0/6 0/6 0/6 0/6 0/6	na:	Range	Hits	Mean	Range	TL	Bkgrd	Туре	Test	Conclusion	(e)
9/0 9/0	6417	ND to ND	8/0	0.020563	ND to NB	S	2	None	ğ	2	Ş
9/0 9/0	16417	ND to ND	8/0	0.020563		모	皇	Kone	2	2 2	2 5
9/0	6417	ND to ND	8/0	0.020563	ND to ND	皇	웆	None		2 5	2 2
	6417	ND to ND	8/0	0.020563	ND to ND	皇	¥	None	ž		2 2
oropane) 0/6	6417	ND to ND	8/0	0.020563	ND to ND	오	S	None	皇	2	2
9/0	6417	ND to ND	8/0	0.020563	ND to ND	呈	S	None	2	2	2
9/0 loua	6417	85 to 85	8/0	0.020563	ND to ND	2	S	None	물	<u> </u>	2 5
9/0	6417	ND to ND	8/0	0.020563	ND to ND	S.	2	None	皇	2	2
ا 0/9	6417	ND to ND	8/0	0.020563	ND to ND	Ş.	皇	None	皇	2	2 2
9/0		ND to MD	8/0	0.020563	ND to ND	S	2	None	Š	2	2
9/0		粉 to 沿	8/0	0.020563	ND to ND	ž	皇	None	오) ¥
9/0		NO to NO	8/0	0.020563	ND to ND	SE SE	웆	None	皇	2	2
atene 0/6		ND to ND	8/0	0.020563	ND to ND	ž	皇	None	웆	2	2
9/0		形 to 形	8/0	0.020563	ND to ND	皇	皇	None	皇	2	2
alene 0/6		NO to NO	8/0	0.020563	ND to ND	2	K	None	皇	2	2
9/0 a		NO to NO	8/0	0.020563	ND to ND	Š	皇	None	오	S	2
9/0		ND to ND	8/0	0.020563	ND to ND	S	皇	None	£	Ş	Ş
enzidine 0/6		ND to ND	8/0	0.020563	ND to ND	皇	皇	None	皇	2	2
		ND to ND	8/0	0.020563	ND to ND	꾩	읓	None	S	2	2
<u>.</u>	_	ND to ND	8/0	0.020563	ND to ND	꽃	ž	Mone	Ş	꽃	¥
er		ND to ND	8/0	0.020563	ND to ND	오	ž	None	2		2
/Iphenol 0/6		NS to NS	8/0	0.020563	ND to ND	NC NC	S	None	오	S	S
4-Chloroaniline 0,6 0.026417		ND to ND	8/0	0.020563	ND to ND	윤	웊	None	Ş	NC NC	呈

MS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Mean

------ ACC=Child Development Center DE

	REF	REF REF	u.	Site	Site
Analyte	Hits	Mean Range	əb	Hits	Mear
1,2,3,4,6,7,8,9-0000 6/6	9/9	.00049350 0.000257 to 0.000757 8/8	0 0.000757	8/8	.000345
1,2,3,4,6,7,8,9-0CDF	9/9	.00007485 0.000038 to 0.000136	0 0.000136	8//	.000046
1,2,3,4,6,7,8-HpcDD	9/9	.00009028 0.000054 to 0.000156	0 0.000156	8/8	5,0000.
1,2,3,4,6,7,8-HpcDF	9/9	.00008132 0.000042 to 0.000172	0 0.000172	8/8	.000040
1,2,3,4,7,8,9-HpCDF	9/9	.00001193 5E-6 to 0.000028	000028	8/9	200000
1,2,3,4,7,8-HxCDD	9/9	.00000463 2.5E-6 to 9E-6	9E-9	8/9	.000002
1,2,3,4,7,8-HXCDF	9/9	.00003988 0.000019 to 0.000098	0.000098	8/8	.00001
1,2,3,6,7,8-HxCDD	9/9	.00001035 5.6E-6 to 0.00002	0.00002	8/9	,000000
1,2,3,6,7,8-HxCDF	9/9	.00001727 8E-6 to 0.000041	000041	8/9	200000
1,2,3,7,8,9-HxCDD	9/9	.00001460 8.2E-6 to 0.000023	0.000023	8/9	900000
1,2,3,7,8,9-HxCDF	9/9	.00000146 8.8E-7 to 3.8E-6	3.8E-6	5/8	.000001
1,2,3,7,8-PeCDD	9/9	.00000502 3.2E-6 to 9.8E-6	9.8E-6	8/9	£000000
1,2,3,7,8-PecDF	9/9	.00000920 3.8E-6 to 0.00002	0.00002	8/9	,00000
2,3,4,6,7,8-HXCDF	9/9	.00003915 0.000015 to 0.000101	0.000101	2/8	.000015
2,3,4,7,8-PeCDF	9/9	.00001568 6.3E-6 to 0.000037	0.000037	8/9	900000
2,3,7,8-1CDD	9/9	.00000073 4.7E-7 to 1.5E-6	1.5E-6	3/8	.000000
2,3,7,8-TCDF	9/9	.00001100 3.6E-6 to 0.000021	0.000021	8/8	.000003
Total HpCDD	9/9	.00017983 0.000107 t	0.000107 to 0.000318	8/8	260000
Total MpCDF	9/9	.00015158 0.000079 t	0.000079 to 0.000323	8/8	.0000080
Total HxCDD	9/9	.00012453 0.000069 t	0.000069 to 0.000239	2/8	090000
Total HxCDF	9/9	.00021335 0.000096 t	0.000096 to 0.000535	8/8	.000095
Total PeCDD	9/9	.00006188 0.000025 to 0.000205	0.000205	8/8	.000100
Total PeCDF	9/9	.00022182 0.000076 to 0.000608 8/8	809000.0 0	8/8	980000.

S = one-tailed test statistically signi
NS = one-tailed test not statistically sig
(a) = Power to detect a difference of 50

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

09:46 Tuesday, July 28, 1998 15

(continued)

								^ =				
								뒫		P-Value		Test
	REF	REF	REF	Site	Site	Site		for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	占	Bkgrd	Туре	Test	Conclusion	(a)
4-Chlorophenyl-phenylether	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	NC	SC	None	NC NC	S	NC.
4-Nitroanaline	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	S	NC	None	꾩	S	皇
4-Witrophenol	9/0	0.026417	ND to ND	0/8	0.020563	ND to ND	S	¥	None	SK	N	皇
Acenaphthene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	NC	잁	None	S	Š	S
Acenaphthylene	9/0	0.026417	ND to ND	9/0	0.020563	ND to ND	꾶	皇	None	S	NC	오
Anthracene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	오	S	None	ž	S	윷
Benzo(a)anthracene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	오	N N	None	¥	S	皇
Benzo(a)pyrene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	ž	S	None	S	SC	오
Benzo(b)fluoranthene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	SC SC	잁	None	S	NC	ž
Benzo(g,h,i)perylene	9/0	0.026417	ND to ND	9/0	0.020563	ND to ND	S	皇	None	옷	S	NC
Benzo(k)fluoranthene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	S	NC NC	None	물	S	웆
Butylbenzylphthalate	5/6	0.044167	0.076 to 0.083	1/8	0.033313	0.13 to 0.13	0.0830	-	Wilcoxon	0.9793	NS	0.3232
Carbazole	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	웆	Ş	None	오	NC	오
Chrysene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	윷	오	None	오	Z	S.
Dibenz(a,h)anthracene	9/0	0.026417	ND to ND	9/0	0.020563	ND to ND	皇	Š	None	Ş	S	윷
Dibenzofuran	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	오	Š	None	S	S	皇
Diethylphthalate	9/9	0.069167	0.058 to 0.13	8/0	0.020563	ND to ND	0.194	0	None	皇	S	2
Dimethylphthalate	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	NC NC	웆	None	S	NC	오
Fluoranthene	2/6	0.036583	0.055 to 0.06	8/0	0.020563	ND to ND	0.0600	0	None	S	Ş	¥
Fluorene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	오	S	None	웊	Š	皇
Hexachloro-1,3-butadiene	9/0	0.026417	ND to ND	8/0	0.020563	ND to ND	Ϋ́C	꾶	None	皇	S	오
Hexachlorobenzene	9/0	0.026417	ND to ND	0/8	0.020563	ND to ND	NC	皇	None	2	웆	S

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

09:46 Tuesday, July 28, 1998 18

Site vs. Reference: Means Comparisons and UTL Statistics

...... AOC=Child Development Center DEPTH=Surface Method=SW8290 Units=mg/kg ------

(continued)

0.2962 0.3160 Power Conclusion (a) § § P-Value Test Wilcoxon 0.9736 1 Wilcoxon 0.9475 for Type Test Bkgrd for 0.000152 0.000522 REF to 0.000522 8/8 .00007726 6.9E-7 to 0.000284 6/6 .00005538 0.000021 to 0.000152 7/8 .00043016 8.1E-7 to 0.00333 6/6 .00019707 0.00006 to 0.000522 8/8 .00007726 6.9E-7 to 0.000284 Range Site Site Mean Site Hits Range 띭 뛾 REF Hits Total TCDD Total TCDF Analyte

N = 25

Conclusion Test 오 P-Value for Test 읒 Test Type None Bkgrd for 0.390 REF NO to NO Range 0.1675 Site Mean Hits Site 9/6 0.39 to 0.39 REF Range 0.24833 Mean REF Hits ÆF 1/3 Cyanide Analyte

--

Power 3

오

Test

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) test statistically significant at the alpha = 0.05 significance level \$ = one-tailed

09:46 Tuesday, July 28, 1998 16

ins and UTL Statistics

•
Units≕mg/kg
Method=OLMO3.2

,	Ë		P-Value		Test
REF	for	Test	for	Test	Power
UIL	Bkgrd	Type	Test	ទ	(a)
SC	S	None	Ş	2	S
Ş		None	呈	NC	¥
ЖC		None	皇	NC	S
£		None	Ş	SK.	오
Ş		¥one	S	NC	S
2		Kone	오	NC	꾶
S		None	呈	Š	ž
皇		None	皇	NC	Š
오		Hone	일	Š	S
Ş		#one	¥	SC SC	웊
S		None	¥	2	3
0.0700		None	S	Ş	S
Ş		None	S	꾶	呈
오		None	. 및	£	ž
0.785		t-Test	0.7536	SN	0.5209
0.280		Wilcoxon	0.9836	SN	0.3295
오	S	None	S	S	皇
오	Š	None	ž	KC	오
¥	유	None	SE SE	Z.	Ş

: the alpha = 0.05 significance level reference and the site (alpha=0.05) the alpha = 0.05 significance level

Site vs. Reference: Mean

...... AOC=Elementary School DEPTH=

Analyte	REF Hits	REF Mean	REF Range	Site Hits	Site
Heptachlor	0/3	.00012667	ND to ND	1/4	0.0103
Heptachlor epoxide	0/3	.00012667	NO to NO	9/0	0.0001
Methoxychlor	0/3	.00012667	ND to ND	9/0	0.0001
Toxaphene	0/3	.00012667	ND to ND	9/0	0.0001
alpha-BHC	0/3	.00012667	ND to ND	9/4	0.0001
alpha-Chlordane	0/3	.00012667	ND to ND	1/4	0.0925
beta-BHC	0/3	.00012667	ND to ND	9/6	0.0001
delta-BHC	0/3	.00012667	ND to ND	9/4	0.0001
gamma-BHC(Lindane)	0/3	.00012667	ND to ND	9/4	0.0001
gamma-Chlordane	0/3	.00012667	ND to MD	1/4	0.1050

S = one-tailed test statistically signi
NS = one-tailed test not statistically sig
(a) = Power to detect a difference of 50

Atsugi

09:46 Tuesday, July 28, 1998 19

Site vs. Reference: Means Comparisons and UTL Statistics

AOC=Elementary School DEPIH=Subsurface Method=ILMO4.0 Units=mg/kg

								^ ~				
								UTĹ		P-Value		Test
	200	1100	956	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	JTI	Bkgrd	Туре	Test	Conclusion	ê
		00000		77.7	UU UU01.7	15000 to 91600	57700	-	Wilcoxon	0.7966	SR	0.2818
Aluminum		00.00144		•	10,000,00	0 60 +0 2 2	1.50		Wilcoxon	0.5000	SN	0.2123
Antimony		0.93		t/c		7 9 40 5 2		. 4	Vilcoxon	0.0499	v	0.1109
Arsenic		2.03		-	5.00	2.0 00 2.3		· -	Lilcoxon	6096	<i>S</i>	0.2554
Barium		69.87		4/4	56.78	17.8 to 101		- 5	Witcoxoli Mone) 	2	¥
Beryllium		0.10			0.22	0.18 to 0.30		2 (2010		2	0 214B
Cadmium		0.49		-	0.59	0.22 to 1		N	W) (coxon	00000	2 2	0.5.0
Calcium		10726.67			10907.50	5760 to 20200		-	Hi (coxon	0.6925	S :	0.034
Chromita		27.13		4/4	24.20	6.8 to 58.7		-	Wilcoxon	0.7946	S	0.2780
Cohalt		23.33			17.10	4.5 to 36.9		_	Wilcoxon	0.7946	SN	0.2786
Connec		107.67		4/4	81.80	9.6 to 183		•-	Wilcoxon	0.7946	S.	0.2786
ropper		12:101			38750.00	14200 to 80900		-	Wilcoxon	0.7946	SN	0.2786
1101		7 7			15.80	3.1 to 31.9		2	Wilcoxon	0.5000	SN	0.2123
near		11700 00			7197.50	3490 to 11800		0	Wilcoxon	0.9186	S#	0.3278
Magnesium		920.67			675.50	218 to 1360	890	-	Wilcoxon	0.5672	SN	0.2333
Manganese		030.02			0.04		0.0400	7	Wilcoxon	0.5000	S	0.2168
Mercury		20.03			21.73		32.9	-	Wilcoxon	9,62.0	NS	0.2786
Nicket		273.33		4/4	674.75	520 to 767	285	4	Wilcoxon	0.0499	Ø	0.1109
Selenim		0.46			0.18		0.600	0	None	오	皇	오 :
Silver		0.10			0.25	0.27 to 0.47	N S	皇	None	웆	S	2 !
Rodin		1890,00			807.00	530 to 987	2030	0	Wilcoxon	0.9501	SZ	0.5557
304: Ell		1.17			1.17	1.1 to 3	1.70	-	Wilcoxon	0.6925	S	0.2554
Marchall		107.67			154.15	39.9 to 359	219	-	µilcoxon	0.7946	SZ	0.2786
Zinc	3/3	44.33	40 to 48.6		60.93	27.3 to 93.6	9.87	7	Wilcoxon	0.5000	S	0.2123
: 1												

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

09:46 Tuesday, July 28, 1998 22

Site vs. Reference: Means Comparisons and UTL Statistics

Analyte 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	REF Hits											
rich lorobenzene h lorobenzene 1 lorobenzene 1 lorobenzene	REF Hits							UTL		P-Value		Test
richlorobenzene hlorobenzene hlorobenzene	Hits	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
		Mean	Range	Hits	Mean	Range	占	Bkgrd	Type	Test	Conclusion	(B)
	0/3	0.0255	ND to ND	9//0	0.023375	ND to ND	S	呈	None	ИC	S	S
	0/3	0.0255	ND to NO	7/0	0.023375	ND to ND	N	X	None	呈	S	¥
	0/3	0.0255	NO to NO	7/0	0.023375	ND to ND	S	ž	None	皇	S	¥
	0/3	0.0255	ND to ND	9/0	0.023375	ND to ND	N	웊	None	S	皇	¥
ropane)	0/3	0.0255	ND to ND	9/6	0.023375	ND to ND	Š	¥C	None	S	×	Ş
	0/3	0.0255	NO to NO	9//	0.023375	ND to ND	¥C	Ş	None	皇	SC	¥
enot	0/3	0.0255	NO to NO	0/4	0.023375	ND to ND	¥C	NC	None	S	NC.	×
2,4-Dichlorophenol	0/3	0.0255	ND to ND	9/4	0.023375	ND to ND	NC	S	None	꾶	NC	呈
2,4-Dimethylphenol	0/3	0.0255	ND to ND	9/4	0.023375	ND to ND	NC S	S	None	¥	NC	NC NC
2,4-Dinitrophenol	0/3	0.0255	NO to NO	9/6	0.023375	ND to ND	NC	NC	None	呈	NC	¥C
2,4-Dinitrotoluene	0/3	0.0255	ND to ND	0/4	0.023375	ND to ND	S	S.	None	š	SC	ž
2,6-Dinitrotoluene (0/3	0.0255	ND to ND	9/6	0.023375	NO to ND	S	NC	None	S	S	S
2-Chloronaphthalene C	0/3	0.0255	ND to ND	9/0	0.023375	ND to ND	읒	¥	None	S	N.C	S
2-Chlorophenol	0/3	0.0255	ND to ND	9/4	0.023375	ND to ND	NC	¥	None	S	æ	S
2-Methylnaphthalene 0	0/3	0.0255	ND to ND	1/4	0.036375	0.075 to 0.075	¥C	Ş	None	꾶	HC.	S
2-Nitroaniline 0	0/3	0.0255	ND to ND	9/6	0.023375	ND to ND	꾶	S	None	웆	S.C	S
	0/3	0.0255	ND to ND	. 7/0	0.023375	ND to ND	¥	S	None	¥	¥	잁
3,3'-Dichlorobenzidine 0	0/3	0.0255	ND to 25	0/4	0.023375	ND to ND	NC	S	None	오	NC NC	¥
3-Nitroaniline 0	0/3	0.0255	的 to 稻	9/4	0.023375	MD to ND	Š	¥	None	옾	NC	¥
4,6-Dinitro-2-methylphenol 0	0/3	0.0255	ND to ND	7/0	0.023375	ND to ND	S	呆	None	S	N	¥
er	0/3	0.0255	ND to ND	9/0	0.023375	ND to ND	S	오	None	S	NC	ž
4-Chloro-3-methylphenol 0	0/3	0.0255	ND to ND	9/4	0.023375	ND to ND	S	ž	None	S	NC	SC
4-Chloroaniline 0	0/3	0.0255	ND to ND	9/6	0.023375	ND to ND	¥	S	None	S	NC NC	S

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

ns and UTL Statistics

09:46 Tuesday, July 28, 1998 20

)thod=DLM03.2 Units=mg/kg -----

Test Power (a)	Z	0.2145	0.2145	2	2	2	2	2	皇	물	皇	2	2	2	2	2	2	, N
Fest Conclusion	Σ	Ş	NS	2	Š	SEC.	S	NC.	NC	ž	N.	Š	NC	S	HC.	S	웊	NC
P-Value for Test	NC	0.5000	0.5000	오	ž	¥	Ä	皇	Ş	皇	¥	웆	Š	¥	皇	읓	오	몵
Test Type	None	Wilcoxon	Wilcoxon	None														
N > UTL for Bkgrd	皇	~	7	Š	¥		•										S.	
REF UTL	NC	0.00580	0.00170	¥.	오	웆	Ş	웆	닱	Š	S	呈	皇	Ş	S	SC	S	¥
	0.14	0.029	0.064	_	_	_	_										_	

the atpha = 0.05 significance level e alpha ≈ 0.05 significance level Ference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^ Z				
								J.		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UIL	Bkgrd	Туре	Test	Conclusion	(a)
4-Chlorophenyl-phenylether	0/3	0.025500	ND to ND	7/0	0.02338	ND to ND	呈	2	None	2	皇	웆
4-Nitroanaline	0/3	0.025500	ND to ND	9/6	0.02338	ND to ND	皇	ž	None	오	S	S
4-Nitrophenol	0/3	0.025500	ND to ND	9/6	0.02338	ND to ND	¥	ž	None	S	S	¥
Acenaphthene	0/3	0.025500	ND to ND	9/4	0.02338	ND to ND	오	Š	None	오	NC	Ş
Acenaphthylene	0/3	0.025500	ND to ND	1/4	0.02988	0.049 to 0.049	Ş	₩C	None	皇	NC	Š
Anthracene	0/3	0.025500	ND to ND	9//	0.02338	ND to ND	S.	SC SC	None	옾	닺	Š
Benzo(a)anthracene	0/3	0.025500	ND to ND	1/4	0.14763	0.52 to 0.52	¥	¥C	None	잁	S	Š
Benzo(a)pyrene	0/3	0.025500	ND to ND	1/4	0.18513	0.67 to 0.67	¥C	SC	None	皇	S	SC MC
Benzo(b)fluoranthene	0/3	0.025500	ND to ND	1/4	0.18763	0.68 to 0.68	2	S	None	오	S	NC
Benzo(g,h,i)perylene	0/3	0.025500	ND to ND	1/4	0.18763	0.68 to 0.68	S	S	None	오	S	ž
Benzo(k)fluoranthene	0/3	0.025500	ND to ND	1/4	0.14763	0.52 to 0.52	S	S	None	오	SC	잁
Butylbenzylphthalate	0/3	0.025500	ND to ND	9/4	0.02338	ND to ND	S	皇	None	皇	NC	S
Carbazole	0/3	0.025500	ND to ND	9//0	0,02338	ND to ND	S	S.	None	皇	ž	Ş
Chrysene	0/3	0.025500	ND to ND	1/4	0.16012	0.57 to 0.57	2	SC SC	None	SC	NC	ž
Dibenz(a,h)anthracene	0/3	0.025500	ND to ND	1/4	0.09013	0.29 to 0.29	¥	N.	None	2	NC	Ş.
Dibenzofuran	0/3	0.025500	ND to ND	9/6	0.02338	ND to ND	₩	皇	None	오	S	S
Diethylphthalate	1/3	0.036333	0.058 to 0.058	0/4	0.02338	ND to ND	0.0580	0	None	오	SC	皇
Dimethylphthalate	0/3	0.025500	MD to ND	0/4	0.02338	ND to ND	잎	S	None	皇	SC	S
Fluoranthene	0/3	0.025500	ND to ND	1/4	0.13013	0.45 to 0.45	S	S	None	2	Ş	S
Fluorene	0/3	0.025500	ND to ND	0/4	0,02338	ND to ND	呈	Š	None	꾶	NC NC	ž
Hexachloro-1,3-butadiene	0/3	0.025500	ND to ND	9//0	0.02338	ND to ND	S	呈	None	읓	2	ž
Hexachlorobenzene	0/3	0.025500	ND to ND	9//	0.02338	ND to ND	S	NC NC	None	ž	Ş	⊋

S = one-tailed test statistically significant at the alpha = 0.05 significance level WS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

AOC=Ele	<u></u>	mentary Schoo	ol DEPT	H=Subsurface (continued)	ementary School DEPTH=Subsurface Method=OLMO3.2 Units=mg/kg (continued)	5.2 Units:	:mg/kg				
							^				
							15		P-Value		Test
REF REF	REF		Site	Site	Site	REF	for	Test	for	Fest	Power
Hits Mean Range	Range		Hits	Mean	Range	UL	Bkgrd	Type	Test	Conclusion	(a)
0/3 0.025500 ND to ND	\$		9/0	0.02338	ND to ND	¥	2	None	皇	Ş	N.
0/3 0.025500 ND to ND	ಭ		9/6	0.02338	ND to ND	皇	S	None	오	2	2
0/3 0.025500 ND to ND	ţ		1/4	0.17013	0.61 to 0.61		S	None	S	S	2
0/3 0.025500 ND to ND	\$		9/6	0.02338	ND to ND	S	2	None	呈	S	2
0/3 0.025500 ND to ND			9/6	0.02338	ND to ND	읒	웆	None	웆	Š	2
0/3 0.025500 ND to ND	Ş		7/0	0.02338	ND to ND	ž	ž	None	¥	S	2
0.025500 N	\$		0/4	0.02338	ND to ND	¥	Ş	None	S.	NC NC	2
0.025500 ND	NG to NG		9/4	0.02338	ND to ND	S	S	None	S	SC	Š
0.025500 K	ND to ND		7/0	0.02338	ND to ND	오	2	None	2	NC	2
0.025500 N	NO to NO		1/4	0.03288	0.061 to 0.061	NC NC	2	None	呈	S	NC NC
0.025500 ND	ND to ND		9/4		ND to ND	꾶	¥C	None	2	皇	2
0.025500 ND	ND to ND		1/4	0.15763	0.56 to 0.56	오	Š	None	오	NC	오
0.025500 ND	ND to ND		0/4	0.02338	ND to ND	2	S	None	皇	NC	S
0/3 0.025500 ND to ND	ND to ND		9/0	0.02338	ND to ND	오	꾶	None	잁	S	꾩
0/3 0.025500 ND to ND	ND to ND		3/4	0.09213	0.065 to 0.19	⊋	¥	None	呈	S	2
-	0.077 to 0.0	77	1/4	0.13513	0.47 to 0.47	0.0770	_	Wilcoxon	0.5685	SZ	0.2385
	ND to ND		0/4	0.02338	ND to ND	皇	SC	None	오	SC	S
0.025500 ND	NO to NO		0/4	0.02338	ND to ND	皇	2	None	꽃	Ş	Ş
0/3 0.025500 ND to ND	ដ		7/0	0.02338	ND to ND	웆	¥	None	皇	S	왍

59 = N

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

								<u>^</u>			
								UIL	P-Value	v	Test
	REF	REF	REF	Site	Site	Site	REF	for	Test for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL B	Bkgrd Type	Type Test	Conclusion	æ
1,2,3,4,6,7,8,9-0c00 3/3	3/3	.000037967	.000037967 0.000035 to 0.00004	7/7	.0014866 0.00	0014866 0.000012 to 0.00554	0.0000396	M	Wilcoxon 0.2054	SI	0.1562
1,2,3,4,6,7,8,9-0CDF 3/3	3/3	.000004333		3/4	.0000913 0.00	0000913 0.000028 to 0.00027	0.00000460	М	Wilcoxon 0.2054	SN	0.1562
1,2,3,4,6,7,8-HpCDD	3/3	.000005867	.000005867 5.7E-6 to 6E-6	7/7	.00000904 1.3E	0000904 1.3E-6 to 0.000296	0.000000000	M	Wilcoxon 0.2054	SN	0.1562
1,2,3,4,6,7,8-HpCDF	3/3	.000004867	9-	7/7	.0000362 1.2E	0000362 1.2E-6 to 0.000067	0.00000510	M	Wilcoxon 0.2054	SN	0.1562
1,2,3,4,7,8,9-HpcDF	1/3	.0000000467 1E-6 1		3/4	.00000051 3.5E	0000051 3.5E-6 to 0.000013	0.00000100	M	Wilcoxon 0.0814	SN	0.1248
1,2,3,4,7,8-HxCDD	0/3	.0000000150 ND to	O ND to ND	5/4	.00000010 1.3E	0000010 1.3E-6 to 1.7E-6	NC	皇	None NC	S	S
1,2,3,4,7,8-HxCDF	3/3	.0000002033	000002033 1.9E-6 to 2.1E-6	3/4	.0000008 4.9E	0000088 4.9E-6 to 0.000022	0.00000210	m	Wilcoxon 0.2034	SN	0.1576
1,2,3,6,7,8-HxCDD	3/3	.000001367	.000001367 1.2E-6 to 1.5E-6	3/4	.00000044 2.6E	0000044 2.6E-6 to 0.000011	0.00000150	m	Wilcoxon 0.2054	NS.	0.1562
1,2,3,6,7,8-HxCDF	3/3	.0000000	,000000970 8.5E-7 to 1,1E-6	3/4	.0000035 2.2E	0000035 2.2E-6 to 7.9E-6	0.00000110	m	Wilcoxon 0.2054	SN	0.1562
1,2,3,7,8,9-HxCDD	3/3	,000004867 4E-6	7 4E-6 to 5.3E-6	3/4	.0000047 2.9E	0000047 2.9E-6 to 8.8E-6	0.00000530	~	Wilcoxon 0.5000	SN	0.2145
1,2,3,7,8,9-HxCDF	0/3	.000000183 ND to	3 ND to ND	2/4	.00000008 3.3E	0000008 3.3E-7 to 2.1E-6	SC	ž	None NC	S.	¥
1,2,3,7,8-PecDD	3/3	.000001467	000001467 1.3E-6 to 1.6E-6	3/4	.00000015 1.1E	0000015 1.1E-6 to 2.4E-6	0.00000160	~	Wilcoxon 0.5000	NS	0.2123
1,2,3,7,8-PecDF	3/3	.00000006	.000000667 5.4E-7 to 8E-7	3/4	.00000027 8.2E	0000027 8.2E-7 to 7.2E-6	0.000000800	М	Wilcoxon 0.2054	SZ	0.1562
2,3,4,6,7,8-HXCDF	3/3	.0000002000	000002000 1.8E-6 to 2.2E-6	3/4	.00000058 4.76	0000058 4.7E-6 to 0.000011	0.00000220	m	Wilcoxon 0.2054	SN	0.1562
2,3,4,7,8-PecDF	3/3	.000001060	000001060 8.8E-7 to 1.2E-6	3/4	.0000027 1.5E-6 to 5E-6	E-6 to 5E-6	0.00000120	M	Wilcoxon 0.2054	SN	0.1562
2,3,7,8-TCDD	0/3	.0000000150 ND to	O ND to ND	1/4	.00000003 5.18	0000003 5.1E-7 to 5.1E-7	NC	呈	None NC	SK.	呈
2,3,7,8-TCDF	3/3	.00000000.	000000007 7.9E-7 to 9.9E-7	3/4	.0000003 9.68	0000023 9.6E-7 to 4.9E-6	0.0000000000	N	Wilcoxon 0.3075	SE	0.1737
Total HpCDD	3/3	.000011500	000011500 0.00001 to 0.000013	5/4	.0001651 1.56	0001651 1.5E-6 to 0.000536	0.0000131	M	Wilcoxon 0.2054	SM	0.1562
Total HpCDF	3/3	.000000793	000007933 5.6E-6 to 0.00001	4/4	.0000993 1.2E	0000993 1.2E-6 to 0.000247	0.0000100	M	Wilcoxon 0.2054	SN	0.1562
Total HxCDD	3/3	.000016767	000016767 0.000014 to 0.000019	3/4	.0000328 0.00	0000328 0.000025 to 0.000064	0.0000191	M	Wilcoxon 0.2054	SN	0.1562
Total HxCDF	3/3	.000010400	000010400 8.7E-6 to 0.000012	3/4	.0000491 0.00	0000491 0.000045 to 0.000078 0.0000115	0.0000115	m	Wilcoxon 0.2054	SN	0.1562
Total PeCDD	3/3	.0000003300	000003300 1.6E-6 to 4.9E-6	3/4	.00000083 9E-4	0000083 9E-6 to 0.000013	0.00000490	m	₩ilcoxon 0.2054	SN	0.1562
Total PeCDF	3/3	.00000073	000009733 7.4E-6 to 0.000012	3/4	.00000311 0.00	.0000311 0.000018 to 0.000058 0.0000121	0.0000121	M	Wilcoxon 0.2054	SN	0.1562

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

	Test Power n (a)	0.1576 0.1562
	Test Test Powe Conclusion (a)	E S
	P-Value for Test	0.2034
# # # # # # # # # # # # # # # # # # #	N > UTL for Test Bkgrd Type	3 Wilcoxon 0.2034 3 Wilcoxon 0.2054
; D	N > UTL for Bkgrd	M M
O Units=mg/k	REF UTL	0.00000230 0.0000133
=Elementary School DEPTH=Subsurface Method=SW8290 Units=mg/kg	Site Site Mean Range	.0000094 9.9E-6 to 0.000015 0.00000230 .00000227 0.000017 to 0.000041 0.0000133
ol DEP	Site S Hits M	3/4 .00 3/4 .00
/ Scho	2 ±	
AOC=Elementary	REF REF Mean Range	.000001900 1.7E-6 to 2.3E-6 .000008967 4.9E-6 to 0.000013
	co.	3/3 .00
	REF	3/
A06	Analyte	Total TCDD Total TCDF

H = 25

; ; ; ; ;	, , , ,	; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AOC=Element	ary School	i≃Elementary School DEPIH≃Surface Method=300.0 Units=πg/kg	:hod=300.0	Units=mg	/kg			
								^=				
								JTL		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	#its	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type	Test	Conclusion	(B)
Chloride	9/9	2.2550	1.56 to 3.76		4.4175	0.665 to 8.17	5.16	-	Wilcoxon	0.5000	SR	0.2123
fluoride	1/6	0.2905	0.763 to 0.763	63 1/2	0.8825	1.63 to 1.63	0.763	-	Wilcoxon	0.5000	SN	0.2137

S = N

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

09:46 Tuesday, July 28, 1998 27

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

		Test	Power	(a)	0.2033	
			Test	Conclusion	SN	
		P-Value	fo	Test	0.4362	
ng/kg			Test	Туре	Wilcoxon	
3.2 Units≒	^ =	UTL	for	Bkgrd	-	
thod=35			REF	Ę	15.5	
AOC=Elementary School DEPTH=Surface Method=353.2 Units=mg/kg			Site	Range	0.712 to 16.3 15.5	•
ary School			Site	Mean	8.506	
Element			Site	Hits	2/2	
ADC:			REF	Range	5.0625 3.33 to 8.33	
			REF	Mean	5.0625	
			REF	Hits	9/9	
				Analyte	Nitrate	

	Test	Power	(a)	S
		Test	Conclusion	NC
	P-Value	for	Test	2
		Test	Type	None
^ =	JTL	for	Bkgrd	o
		REF	Į,	1.08
		Site	Range	ND to ND
		Site	Mean	0.14938
		Site	Hits	8/0
		REF	Range	0.43 to 0.6
		REF	Mean	0.39667
		REF	Hits	9/4
			Analyte	Cyanide
	^ =	p-value	N > UTL P-Value REF Site Site REF for Test for Test	N > UTL P-Value REF REF Site Site REF for Test for Hits Mean Range UTL Bkgrd Type Test Cor

-2 S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

rsugn

Site vs. Reference: Means Comparisons and UTL Statistics

			AOC=E	Elementar	'y School DEF	≔Elementary School DEP⊺H=Surface Method=ILMO4.O Units=mg/kg ·	:ILMO4.0 U	nits≕mg/k _i				; ; ;
								^ =				
								ΠŢ		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	¥	Bkgrd	Туре	Test	Conclusion	(a)
Aluminum	9/9	49633.33	39900 to 57200	8/8	31175.00	10200 to 72600	74000	0	t-Test	0.9732	S	0.8004
Antimony	9/9	1.63	1.4 to 2.4	8/9	0.85	0.46 to 2.5	2.40	-	Wilcoxon	0.9588	SZ	0.3049
Arsenic	9/9	3.78	2.9 to 5.2	8/8	3.78	1.8 to 6.5	79.9	0	t-Test	0.5058	S.R.	0,9032
Barium	9/9	75.85	60.2 to 96.9	8/8	48.41	13.5 to 143	130	-	Wilcoxon	0.9347	NS	0.2898
Beryllium	1/6	0.12	0.25 to 0.25	2/8	0.13	0.24 to 0.35	0.250	-	Wilcoxon	0.9018	NS	0.2786
Cadmium	9/9	0.79	0.65 to 1	8/8	0.50	0.16 to 1.3	1.26		t-Test	0.9519	N.	0.6939
Calcium	9/9	11016.67	9420 to 12800	8/8	11607.50	9570 to 14300	15400	0	t-Test	0.2408	NS	1.0000
Chromium	9/9	30.15	26.4 to 34.5	8/8	17.34	5.1 to 51.4	39.9	-	Wilcoxon	0.9736	NS	0.3160
Cobal t	9/9	22.27	19.6 to 24.9	8/8	11.89	3.1 to 27.6	28.9	0	t-Fest	0.9935	SZ	0.8790
Соррег	9/9	100.73	90 to 115	8/8	54.49	7.1 to 152	134	-	t-Test	0.9778	WS	0.6887
Iron	9/9	44316.67	38000 to 50600	8/8	28050.00	10000 to 64100	00909	-	t-Test	0.9775	NS.	0.8434
Lead	9/9	37.80	13.8 to 57.3	8/8	14.08	3 to 61.5	95.5	0	Wilcoxon	9996.0	N.	0.3094
Magnes i um	9/9	11400.00	11000 to 11700	8/8	6280.00	2140 to 9970	12400	0	t-Test	9666.0	SN	0.9994
Manganese	9/9	796.67	682 to 875	8/8	486.50	162 to 1140	1050	-	t-Test	0.9788	SZ	0.8163
Mercury	9/9	0.11	0.06 to 0.14	3/8	0.04	0.04 to 0.13	0.228	0	Wilcoxon	0.9841	S¥.	0.3324
Nickel	9/9	33.43	30.5 to 35.4	8/8	16.59	4.9 to 37.5	39.5	0	t-Test	0.9981	NS	0.9565
Potassium	9/9	409.50	362 to 525	8/8	752.13	553 to 1060	643	4	t-Test	0.000	ဟ	0.7056
Selenium	9/9	0.54	0.43 to 0.61	2/8	0.29	0.51 to 0.91	0.794	-	Wilcoxon	0.9739	SN	0.3174
Silver	9/9	0.37	0.27 to 0.61	3/8	0.17	0.18 to 0.5	0.610	0	Wilcoxon	0.9738	SZ	0.3169
Sodium	9/9	1758.33	1470 to 1990	8/8	832.13	569 to 1210	2430	0	t-Fest	1.0000	SE	1.0000
Thallium	9/9	1.11	0.85 to 1.3	8/2	09.0	1.4 to 1.6	1.82	0	Wilcoxon	0.9197	WS	0.2842
Vanadium	9/9	182.33	148 to 215	8/8	100.89	25.1 to 263	268	0	Wilcoxon	0.9475	NS	0.2962
Zinc	9/9	106.88	71 to 156	8/8	72.29	22.2 to 274	524		Wilcoxon	0.9792	SN	0.3227

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

09:46 Tuesday, July 28, 1998 29

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

N = 23

								:				
								^ I		P-Value		Test
REF		ÆF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Hits	ι,	Mean	Range	Hits	Mean	Range	Ę	Bkgrd	Type	Test	Conclusion	(a)
6	•	0.00016	ND to ND	1/8	0.015095	0.12 to 0.12	S	ž	None	Š	ž	Σ.
3	9	0.19553	0.00086 to 0.99	4/8	0.009283	0.0025 to 0.039	0.990	0	Wilcoxon	0.9349	NS	0.2902
ľ	9,	0.04476	0.0069 to 0.2	4/8	0.009908	0.0031 to 0.047	0.200	0	Wilcoxon	0.9011	NS.	0.2774
0	9/	0.00016	ND to ND	8/0	0.000109	ND to ND	S	잁	None	Ş	ž	S
0	9/	0.00016	ND to ND	8/0	0.000109	ND to ND	S	皇	None	Ş	NC NC	웊
0	9/	0.00016	ND to ND	8/0	0.000109	ND to ND	S	S	None	오	N.C	SK.
\circ	9/	0.00016	ND to ND	8/0	0.000109	ND to ND	SC	皇	None	Ş	SK.	皇
	9/6	0.00016	ND to ND	9/0	0.000109	ND to ND	S	呈	None	오	SC SC	S
	9/6	0.00016	ND to ND	8/0	0.000109	ND to ND	S	皇	None	Š	N.	옻
	9/6	0.00016	ND to ND	1/8	0.005346	0.042 to 0.042	S	皇	None	오	ž	皇
	9/0	0.00016	ND to ND	9/0	0.000109	ND to ND	Š	皇	Kone	오	NC NC	皇
	9/0	0.00016	ND to MD	8/0	0.000109	ND to ND	NC NC	S	None	옻	SK SK	2
	9/0	0.00016	ND to ND	9/0	0.000109	ND to ND	NC NC	오	None	ž	NC	2
_	9/(0.00016	ND to ND	9/0	0.000109	ND to ND	2	皇	None	오	NC	2
_	9/0	0.00016	ND to ND	8/0	0.000109	ND to ND	Ş.	오	Kone	Ş	NC	2
0	9/	0.00016	ND to ND	8/0	0.000109	ND to ND	Š	皇	None	Š	NC	2
_	9/0	0.00016	ND to ND	8/0	0.000109	ND to ND	ž	皇	None	S	NC	S
	9/0	0.00016	ND to ND	9/0	0.000109	ND to ND	¥C	皇	None	呈	NC	皇

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

	:	•	AOC=Elementary School DEPTH=Surface Method=OLM03.2 Units=mg/kg	School	DEPTH=Sur	face Method=OLMO	13.2 Units≕	mg/kg -			
					(continued)	(panu					
								^ 2			
								15		P-Value	
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test
Analyte	Hits	Mean	Range	Hits	Mean	Range	J.	Bkgrd	Туре	Test	Conclusion
Heptachlor	9/0	.00015500	ND to ND	1/8	0.001470	0.011 to 0.011	2	ž	None	Š	Š
Heptachlor epoxide	9/0	.00015500	ND to ND	8/0	0.000109	ND to ND	£	2	None	皇	ž
Methoxychlor	9/0	.00015500	ND to ND	8/0	0.000109	ND to ND	- 2	Ş	None	呈	皇
Toxaphene	9/0	.00015500	ND to ND	8/0	0.000109	ND to NO	Ş	Š	None	皇	皇
alpha-BHC	9/0	.00015500	ND to ND	8/0	0.000109	ND to ND	Š	Š	None	S	皇
alpha-Chlordane	1/6	.00027833	0.00087 to 0.00087	2/8	0.027937	0.0029 to 0.22	0.000870	2	Wilcoxon	0.8911	Ş
beta-8HC	9/0	.00015500	MD to ND	8/0	0.000109	ND to ND	¥	Š	None	呈	£
del ta-BHC	9/0	.00015500	ND to ND	8/0	0.000109	ND to ND	¥	ž	None	꾶	꾩
gamma-BHC(Lindane)	9/0	.00015500	ND to ND	9/0	0.000109	ND to ND	오	皇	None	ž	옾
gamma-Chlordane	9/0	.00015500	ND to HD	1/8	0.027595	0.22 to 0.22	Š	2	None	S	S

MC MC NC NC NC

Test Power (a) 2 2 2 2

N = 28

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

			•					^ =				
								J.		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	Ħ	Bkgrd	Type	Test	Conclusion	(a)
1,2,4-Trichlorobenzene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	S	ş	None	Ş	S	S
1,2-Dichtorobenzene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	S	S	None	ž	S	2
1,3-Dichlorobenzene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	일	S	None	뀾	S	S
1,4-Dichlorobenzene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	S	S	None	Ş	S	2
2,2'-oxybis(1-chloropropane)	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	Ş	S	None	S	S	2
2,4,5-Trichlorophenol	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	皇	Ş	None	오	S	Š
2,4,6-Trichlorophenol	9/0	0.026417	MD to ND	8/0	0.021938	ND to ND	呈	웆	None	오	S	S
2,4-Dichlorophenol	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	Ş	NC	None	오	S	皇
2,4-Dimethylphenol	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	2	S.	None	Š	2	오
2,4-Dinitrophenol	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	엹	S.	None	Š	ž	오
2,4-Dinitrotoluene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	ž	SC SC	None	S	S	皇
2,6-Dinitrotoluene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	ž	2	None	S	S	皇
2-Chloronaphthalene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	2	%C	None	ž	**	2
2-chlorophenol	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	꾩	Ş.	None	오	Ş	皇
2-Methylnaphthalene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	ž	2	None	ž	S	皇
2-Nitroaniline	9/0	0.026417	ND to ND	0/8	0.021938	ND to ND	皇	2	None	잁	S	S
2-Nitrophenol	9/0	0.026417	ND to MD	8/0	0.021938	ND to ND	Š	2	None	ž	SC	꾶
3,3'-Dichlorobenzidine	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	ş	2	None	웆	S	¥
3-Nitroaniline	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	Š	2	None	Z	SN	Š
4,6-Dinitro-2-methylphenol	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	ž	2	None	呈	S	Ş.
4-Bromophenyl-phenylether	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	Š	皇	¥one	NC.	S	S
4-Chloro-3-methylphenol	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	오	2	None	ž	S	ñ
4-Chloroaniline	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	S	皇	None	S	NC	S

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^ =				
								UTL		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	Ę	Bkgrd	Туре	Test	Conclusion	<u>e</u>
4-Chlorophenyl-phenylether	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	S	ž	None	SK	S	SC
4-Nitroanaline	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	S	NC	None	웆	S	S
4-Witrophenol	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	S	ş	None	S	S	꾶
Acenaphthene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	잁	S	None	皇	S	꾩
Acenaphthylene	9/0	0.026417	MD to ND	9/0	0.021938	ND to ND	皇	S	None	呈	S	웆
Anthracene	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	잁	¥C	None	웆	S	¥C
Benzo(a)anthracene	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	잁	2	None	皇	NC	呈
Benzo(a)pyrene	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	오	오	None	皇	S	S.
Benzo(b)fluoranthene	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	잁	S	None	오	NC	ž
Benzo(g,h,i)perylene	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	잁	2	None	皇	NC	몵
Benzo(k)fluoranthene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	잁	2	None	웆	NC	S¥.
Butyibenzylphthalate	9/2	0.044167	0.076 to 0.083	1/8	0.029750	0.096 to 0.096	0.0830		Wilcoxon	0.9739	SN	0.3174
Carbazole	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	잁	NC	None	皇	NC	웆
Chrysene	9/0	0.026417	ND to ND	1/8	0.026875	0.073 to 0.073	皇	S	None	웆	NC	꾩
Dibenz(a,h)anthracene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	皇	S	None	皇	NC	ž
Dibenzofuran	9/0	0.026417	ND to ND	9/8	0.021938	ND to ND	잁	S	None	오	S.	S
Diethylphthalate	9/9	0.069167	0.058 to 0.13	1/8	0.025625	0.047 to 0.047	0.194	0	Wilcoxon	0.9922	SN	0.3507
Dimethylphthalate	9/0	0.026417	ND to ND	9/0	0.021938	ND to ND	웊	2	None	皇	NC NC	呈
fluoranthene	5/6	0.036583	0.055 to 0.06	8/0	0.021938	ND to ND	0.0600	0	None	皇	NC	皇
Fluorene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	잁	잁	None	皇	NC	오
Hexachloro-1,3-butadiene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	S	S	None	皇	¥C	오
Hexachlorobenzene	9/0	0.026417	ND to ND	8/0	0.021938	ND to ND	오	웆	None	Š	S.	S

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^ =				
								UTL		P-Value		Test
	Æ	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range		Bkgrd	Туре	Test	Conclusion	(a)
Hexach lorocyclopentadiene	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	ž	皇	None	ž	S	Š
Hexachloroethane	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	NC Sk	Š	None	꾶	S	꾶
Indeno(1,2,3-cd)pyrene	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	S	S	None	¥C	S	ž
Isophorone	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	¥	S	None	2	NC	2
N-Nitroso-di-n-propylamine	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	Ş	S	None	¥	NC	ž
N-Nitrosodiphenylamine	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	S	2	None	웆	N	ž
Naphthalene	9/0	0.02642	ND to ND	9/0	0.02194	ND to ND	S.	S	None	2	S	ž
Nitrobenzene	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	SC	Š	None	S	NC	S
Pentachlorophenol	9/0	0.02642	ND to ND	9/0	0.02194	ND to MD	S	SC.	None	S	MC.	ž
Phenanthrene	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	NC	»C	None	오	NC	皇
Phenol	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	SC	¥C	None	ž	NC	Š
Pyrene	5/6	0.03792	0.053 to 0.07	8/0	0.02194	ND to ND	0.0700	0	None	2	NC	오
bis(2-Chloroethoxy)methane	9/0	0.02642		8/0	0.02194	ND to ND	Š	S	Kone	S	¥C	오
bis(2-Chloroethyl)ether	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	NC NC	S	None	오	NC	Š
bis(2-Ethylhexyl)phthalate	9/9	0.27333		8/8	0.37375	0.14 to 0.98	0.785	-	Wilcoxon	0.3294	SN	0.1911
di-n-Butylphthalate	9/9	0.14650	0.099 to 0.28	3/8	0.10838	0.089 to 0.35	0.280	N	Wilcoxon	0.9197	SN	0.2842
di-n-Octylphthalate	9/0	0.02642	ND to ND	0/8	0.02194	ND to ND	£C €	S	None	Š	Ñ	Š
o-Cresoi	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	SK.		None	¥	N	Ş
p-cresol	9/0	0.02642	ND to ND	8/0	0.02194	ND to ND	ЯC	皇	None	Ş	2	S

199 = 14

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Test Power	0.2898	0.3094	0.3237	0.3094	0.3165	0.3227	0.3094	0.2810	0.2962	0.3227	0.3094	0.2999
Test Conclusion	SSS	S S S	SE SE	S S	S S	S S	S S	s s	s s	SN	S S	XS.
P-Value for Test	Wilcoxon 0.8791 Wilcoxon 0.9347	Wilcoxon 0.954/ Wilcoxon 0.9666 Wilcoxon 0.9666	Wilcoxon 0.9793 Wilcoxon 0.9792	Wilcoxon 0.9666 Wilcoxon 0.9792	0.9737	0.9792	0.9666	0.9109	0.9475	0.9792	0.9666	0.9532
Test	Wilcoxon 0.879' Wilcoxon 0.9347	WILCOXOR WILCOXOR	Wilcoxon 0.9793 Wilcoxon 0.9792	Wilcoxor Wilcoxor	Wilcoxon 0.9737 Wilcoxon 0.9347	Wilcoxon 0.9792 Wilcoxon 0.9193	Wilcoxon 0.9666 Wilcoxon 0.9347	Wilcoxon 0.9109 Wilcoxon 0.9347	Wilcoxon 0.9475 Wilcoxon 0.9581	Wilcoxon 0.9792	Wilcoxon 0.9666 Wilcoxon 0.9836	Wilcoxon 0.9532
N > UTL for Bkgrd	~ ← ←					- 0		00		-	- 0	-
REF	0.000118	0.000258 0.0000419	0.0000137	0.0000291	0.0000359	0.00000980	0.000101	0.00000240	0.000488	0.000362	0.000535	0.000608
Site Range	.00067290 0.000016 to 0.00237 0.00118 .00006808 2.5E-6 to 0.000339 0.00021 .00007574 3.2E-6 to 0.000345 0.00023	00006033 3.3E-6 to 0.000364 00001071 1.2E-6 to 0.000068	00000338 1.1E-6 to 0.00002 00002271 9.7E-7 to 0.000134	00000611 4.4E-7 to 0.000032 00000970 4.9E-7 to 0.000056	000000899 SE-7 to 0.000051 00000161 5.4E-7 to 7.1E-6	00000254 1.7E-6 to 0.000013 00000699 8.1E-7 to 0.000028	00000581 1.1E-6 to 0.000158 00000983 3.7E-7 to 0.000047	00000044 2.5E-7 to 1.7E-6 00000525 1.7E-7 to 0.000023	00014316 5.7E-6 to 0.000709 00012684 5.6E-6 to 0.0007	00007908 1.5E-6 to 0.000487	00013190 3.8E-6 to 0.000767 00002644 6.1E-7 to 0.00016	.00011500 3.2E-6 to 0.000614
Site Mean	.00067290	.00006033	.00000338	.000000611	.000000899	.000000254	.000002581	.00000044	.00014316	.00007908	.000013190	.00011500
Site	8/8 8/8			5/8 8/8	5/8 4/8	4/8 5/8	8/8 8/8	3/8	8/8		8/8 8/8	8/8
REF	.00049350 0.000257 to 0.000757 8/8 .00007485 0.000038 to 0.000136 8/8 .00009028 0.000054 to 0.000156 8/8	00008132 0.000042 to 0.000172 00001193 5E-6 to 0.000028	00000463 2.5E-6 to 9E-6 00003988 0.000019 to 0.000098	00001035 5.6E-6 to 0.00002 00001727 8E-6 to 0.000041	000001460 8.2E-6 to 0.000023 00000146 8.8E-7 to 3.8E-6	00000502 3.2E-6 to 9.8E-6 00000920 3.8E-6 to 0.00002	00003915 0.000015 to 0.000101 00001568 6.3E-6 to 0.000037	00000073 4.7E-7 to 1.5E-6 00001100 3.6E-6 to 0.000021	00017983 0.000107 to 0.000318 00015158 0.000079 to 0.000323	.00012453 0.000069 to 0.000239	00021335 0.000096 to 0.000535 8/8 00006188 0.000025 to 0.000205 8/8	.00022182 0.000076 to 0.000608 8/8
REF Mean	.00049350 0.000 .00007485 0.000	.00008132 0.000	.00000463	.00001035 5.6E	.00001460 8.2E-	.00000502 3.2E-	.00003915	.00000073	.00017983	.00012453	.00006188	.00022182 (
REF	9/9 9/9	9/9	9/9	9/9	9/9	9/9	9/9	2/e 6/e	9/9	9/9	9/9	9/9
Analyte	1,2,3,4,6,7,8,9-ocdp 6/6 1,2,3,4,6,7,8,9-ocdf 6/6 1,2,3,4,6,7.8-Mocdp 6/6	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF	2,3,7,8-TCDD 2,3,7,8-TCDF	Total MpCDD Total MpCDF	Total HxCDD	Total PecDD	Total PeCDF

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

09:46 Tuesday, July 28, 1998 35

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

(continued)

	Test	Power	(a)	0.3227
		Test	nclusion	S S
	P-Value	for	es	0.9792
		Test	Type	Wilcoxon 0.9792 Wilcoxon 0.9581
^ ==	15	for	Bkgrd	- 0
		REF	1 n	0.000152
		Site	Range	.00005538 0.000021 to 0.000152 8/8 .00002717 4.8E-7 to 0.000163 .00019707 0.00006 to 0.000522 8/8 .00009260 1.1E-6 to 0.000468
		Site	Mean	.00009260
		Site	Hits	152 8/8 522 8/8
		REF	Range).000021 to 0.000).00006 to 0.0005
		REF	Mean	.00005538
		REF	Hits	9/9
			Analyte	Total TCDD Total TCDF

N = 25

		Test	Power	(a)	0.2290	SC.
9 9 9 9 1 1 1 2 4 9			Test	Conclusion	WS	Š
		P-Value	for	Test	0.5000	봊
kg			Test	Type	Wilcoxon	None
Units=mg/	^ =	JT.	for	Bkgrd	0	잁
od=300.0			REF	님	9.64	S
AOC=Reference 2 DEPTH=Subsurface Method=300.9 Units=mg/kg			Site	Range	3.38 to 3.38 9.64	ND to ND
2 DEPTH			Site	Mean	3.380	0.205
Reference			Site	Hits	17	1/0
AOC=			REF	Range	2.25 to 9.64 1/1	MD to ND
			Æ	Mean	5.39667	0.19000
			REF	Hits	3/3	0/3
				Analyte	Chloride	Fluoride

2 = N

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level s = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

:						
		Test	Power	(a)	0.1666	
			Test	Conclusion	S	
		P-Value	for	Test	0.2185	
19/kg ·····			Test	Туре	Wilcoxon	
.2 Units=	^ ~	UTL	for	Bkgrd	-	
thod=353			REF	ĭ	6.74	
			Site	Range	7.16 to 7.16	Z
ce 2 DEP1			Site	Kean	7.16	
=Referen			Site	Hits	1/1	
A00			REF	Range	3.5 to 6.74	
			REF	Mean	4.77667	
			REF	Hits	3/3	
				Analyte	Nitrate	

	Test	Power	(a)	0.1586
		Test	Conclusion	N.S
	P-Value	for	Test	0.2113
		Test	Type	Wilcoxon
^ =	디	for	Bkgrd	-
		REF	J.	0.390
		Site	Range	0.615 1.4 to 1.4
		Site	Mean	0.615
		Site	Hits	0.39 1/3
		REF	Range	0.39 to
		REF	Mean	0.24833
		REF	Hits	1/3
			Analyte	Cyanide 1/3
	^ ZZ	P-Value	N > UTL P-Value REF Site Site Site Test for Test	N > UTL P-Value REF REF Site Site Site REF for Test for Test P Hits Mean Range UTL Bkgrd Type Test Conclusion

* = 1

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) s = one-tailed test statistically significant at the alpha = 0.05 significance level

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

Test	Test Power	Conclusion (a)	NS 0.1242	NS 0.1399	NS 0.1228	NS 0.1228	NC NC	NS 0.1257	NS 0.3315	NS 0.1399	NS 0.1228		NS 0.1399	NS 0.1228	NS 0.2008	NS 0.1228	NS 0.1228	WS 0.1228	NS 0.1228	NS 0.2041	NC NC	NS 0.3315	NS 0.1586	NS 0.1399	NS 0.1228
P-Value	for T	_	0.0684	0.1237	0.0706	0.0706	2	0.0661	0.9294	0.1237	0.0706	0.0706	0.1237	0.0706	0.5000	0.0706	0.0706	0.0706	0.0706	0.5000	S	0.9294	0.2113	0.1237	0.0706
	Test	Type	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	None	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Witcoxon	Wilcoxon	Wilcoxon	Wilcoxon	None	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon
VII.	for	Bkgrd	м	N	m	m	잁	m	0	N	m	м	Ο.;	м	-	м	М	M	M		NC	0	7	7	٣
	REF	J.	57700	1.50	5.60	72.3	S	0.530	11600	30.8	25.0	116	51800	8.70	12200	890	0.0400	32.9	582	0.600	옻	2030	1.70	219	48.6
	Site	Range	58200 to 108000	1.1 to 2.2	3.6 to 5.9	73.7 to 198	0.26 to 0.26	1 to 1.4	3890 to 8180	29.7 to 50.6	25.5 to 42.4	125 to 189	51400 to 87500	15.4 to 48.1	11200 to 14500	933 to 1530	0.08 to 0.22	33.2 to 47.9	290 to 371	0.88 to 0.88	0.33 to 1.3	326 to 1080	1.3 to 5.6	213 to 355	68.6 to 190
	Site	Mean	84000.00	1.63	4.77	122.60	0.17	1.13	5720.00	43.23	34.03	164.33	71166.67	27.63	12400.00	1271.00	0.13	45.40	317.67	0.47	0.73	609.33	3.37	298.00	124.87
	Site	Hits	3/3		3/3																				
	REF	Range	52300 to 57700	1 to 1.5	1.3 to 2.6	67.9 to 72.3	ND to ND	0.47 to 0.53	9380 to 11600	24.9 to 30.8	22.2 to 25	103 to 116	45100 to 51800	5.4 to 8.7	10900 to 12200	800 to 890	0.02 to 0.04	28.5 to 32.9	263 to 285	0.58 to 0.6	ND to ND	1750 to 2030	1.4 to 1.7	185 to 219	40 to 48.6
	REF	Mean	54100.00	0.93	2.03	69.87	0.10	0.49	10726.67	27.13	23.33	107.67	47666.67	7.33	11700.00	830.67	0.03	30.77	273.33	95.0	0.10	1890.00	1.17	197.67	44.33
	REF	Hits	3/3	2/3	3/3	3/3	0/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	2/3	0/3	3/3	2/3	3/3	3/3
		Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Setenium	Silver	Sodium	Thallium	Vanadium	Zinc

S = one-tailed test statistically significant at the alpha = 0.05 significance level

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level

(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

N = 23

•
:
ï
_
9
₹
Ë
ä
نټ
=
독
_
N
8
1=0LM03.
\equiv
Ö
#
H=Subsurface Method
2
بد
¥
_
ψ
2
ű,
Ŀ
⋾
×
=
Ō
SEPTH=S
Ξ
5
W
_
۸,
•
Q)
2
7
Ľ
Ū
*
2
Ŧ
ت
AOC=Reference 2 DEPTH
٠,
:
:
-

								<u>*</u> 15		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	fo	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	JT.	Bkgrd	Type	Test	Conclusion	(a)
4,4'-DDD		.0001267	ND to ND	0/3	.0001583	ND to ND	S	S	None	S	¥	N.C
4,4'-DDE		.0029300	0.00099 to 0.0058	3/3	.0059667	0.0014 to 0.01	0.00580	Ν.	Wilcoxon	0.1237	NS	0.1399
4,4'-DDT	2/3	.0008750	0.0008 to 0.0017	3/3	.0053333	0.0023 to 0.0073	0.00170	m	Wilcoxon	0.0706	NS	0.1228
Aldrin		.0001267	ND to ND	0/3	.0001583	ND to ND	皇	S	None	¥	엁	S
Aroclor-1016		.0001267	ND to ND	0/3	.0001583	ND to ND	오	S	None	皇	오	꽃
Aroclor-1221		.0001267	ND to ND	0/3	.0001583	ND to ND	잁	皇	None	皇	S	呈
Aroclor-1232		.0001267	ND to ND	0/3	.0001583	ND to ND	£ E	S	None	웆	S	웆
Aroclor-1242		.0001267	ND to ND	0/3	.0001583	ND to ND	2	S	None	오	S	皇
Aroclor-1248		.0001267	ND to ND	0/3	.0001583	ND to ND	S	잎	None	Ş	잁	꾩
Aroclor-1254		.0001267	ND to ND	0/3	.0001583	ND to ND	SC.	S	None	皇	잁	잁
Aroclor-1260		.0001267	ND to ND	0/3	.0001583	ND to ND	오	잁	None	皇	싶	몵
Dieldrin		.0001267	ND to ND	0/3	.0001583	ND to ND	오	S	None	웆	¥	¥
Endosulfan I		.0001267	ND to ND	0/3	.0001583	ND to ND	오	S	None	오	S.	꾩
Endosulfan II		.0001267	ND to ND	0/3	.0001583	ND to ND	오	S	None	皇	S	웆
Endosulfan sulfate		.0001267	ND to ND	0/3	.0001583	ND to ND	S	Ş	None	웆	웊	웆
Endrin	0/3	.0001267	ND to ND	0/3	.0001583	ND to ND	S	S	None	¥	NC NC	윘
Endrin aldehyde	0/3	.0001267	ND to ND	0/3	.0001583	ND to ND	S	S	None	읒	잁	웆
Endrin ketone	0/3	.0001267	ND to ND	0/3	.0001583	ND to ND	S	오	None	Ş	¥	꾶

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

4OC=Reference 2 DEPTH=Subsurface Method=OLMO3.2 Units=mg/kg	(continued)
AOC=Reference	

	Test	Power	(a)	χ 2	皇	오	皇	오	另	2	2	2	Š	
		Test	Conclusion	Ş	2	S	S	Ş	N.	2	오	Ş	S	
	P-Value	for	Test	NC	Š	¥	2	ž	오	ž	皇	오	皇	
		Test	Type	None	None	None	None	None	None	None	None	None	None	
^ ~	Π	for	Bkgrd	몿	S	S	오	오	S	S	꽃	Ş	HC.	
		REF	υT	皇	ž	Š	2	ž	Ş	皇	皇	ž	ž	
		Site	Range	\$	ţ	ND to ND	40	\$	Ç	ţ	ಭ	ţ	\$	
		Site	Mean	.00015833	.00015833	.00015833	.00015833	.00015833	.00015833	.00015833	.00015833	.00015833	.00015833	
		Site	Hits	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	
		REF	Range	ND to ND	ND to ND	当 to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND		ND to ND	
		REF	Mean	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	
		REF	Hits	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	
			Analyte	Heptachlor	Heptachlor epoxide	Methoxychlor	Toxaphene	alpha-BHC	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC(Lindane)	gamma-Chlordane	

N = 28

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Power 3

등

Test

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

			אמרייה מונס ני מני ווויסייים ווחסיים מני ויכיווסיים מני מיים מאריים מונים ני מיים מאריים מיים מיים מיים מיים מאריים מיים מיים מיים מיים מיים מיים מיים		5			? ?			
								. I		P-Value	
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test
Analyte	Hits	Mean	Range	Hits	Mean	Range	片	Bkgrd	Type	Test	Conclusio
1,2,4-Trichlorobenzene	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	Š	오	None	NC	S
1,2-Dichlorobenzene	0/3	0.0255	ND to ND	0/3	0.0315	MD to ND	S	S	None	윷	皇
1,3-Dichlorobenzene	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	S	오	None	잁	오
1,4-Dichlorobenzene	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	SC	S	None	皇	오
2,2'-oxybis(1-chloropropane)	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	S	오	None	皇	ž
2,4,5-Trichlorophenol	0/3	0.0255	ND to ND	0/3	0.0315	NO to NO	ž	£	None	皇	MC
2,4,6-Trichlorophenol	0/3	0.0255	ND to MD	0/3	0.0315	ND to ND	2	¥	None	오	æ
2,4-Dichlorophenol	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	呈	오	None	꾩	SC.
2,4-Dimethylphenol	0/3	0.0255	. ND to ND	0/3	0.0315	NO to ND	ž	¥	None	오	S
2,4-Dinitrophenol	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	¥	웊	None	오	Š
2,4-Dinitrotoluene	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	꾩	S	None	오	S
2,6-Dinitrotoluene	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	꽃	¥	None	呈	NC
2-Chloronaphthalene	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	오	웆	None	오	Š
2-chlorophenol	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	皇	皇	None	呈	S
2-Methylnaphthalene	0/3	0.0255	ND to ND	0/3	0.0315	MD to ND	¥	S	None	윷	皇
2-Witroaniline	0/3	0.0255	ND to ND	0/3	0.0315	ab to 15	皇	오	None	윷	S
2-Nitrophenol	0/3	0.0255	MD to ND	0/3	0.0315	ND to ND	皇	皇	None	ž	NC
3,3'-Dichlorobenzidine	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	皇	오	None	웆	ž
3-Witroaniline	0/3	0.0255	ND to ND	0/3	0.0315	NG to NG	皇	皇	None	S	Ş.
4,6-Dinitro-2-methylphenol	0/3	0.0255	ND to ND	0/3	0.0315	ND to NO	皇	皇	None	¥	NC
4-Bromophenyl-phenylether	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	오	皇	None	오	웆
4-Chloro-3-methylphenol	0/3	0.0255	ND to ND	0/3	0.0315	ND to NS	Š	皇	None	SC	2
4-Chloroaniline	0/3	0.0255	ND to ND	0/3	0.0315	ND to ND	오	S	None	오	웆

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level \$ = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^ =				
								ij		P-Vatue		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Туре	Test	Conclusion	(a)
4-Chlorophenyl-phenylether	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	2	2	None	Q Z	S	S.
4-Nitroanaline	0/3	0.025500	ND to ND	0/3	0.0315		皇	2	None	皇		. U
4-Nitrophenoi	0/3	0.025500	ND to ND	0/3	0.0315		Ş	Ş	None	Ş	2	2
Acenaphthene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	S.	S	None	Ş	NC	S
Acenaphthylene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	¥	2	None	Ş	NC	S
Anthracene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	ž	오	None	Z	NC	S
Benzo(a)anthracene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	Ş	오	None	£	NC	皇
Benzo(a)pyrene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	오	ž	None	¥	S	S
Benzo(b)fluoranthene	0/3	0.025500	ND to ND	0/3	0.0315		Ş	오	None	Ş	Š	S
Benzo(g,h,i)perylene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	S	¥	None	꾩	NC	S
Benzo(k)fluoranthene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	S	¥	None	오	S	SC
Butylbenzylphthalate	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	Ş	SC SC	None	皇	NC	£
Carbazole	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	皇	ž	None	S	S	Ş
Chrysene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	皇	S	None	잁	NC	Ş
Dibenz(a,h)anthracene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	Ş	皇	None	닞	S.	Ş
Dibenzofuran	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	ž	ž	None	읓	SK	皇
Diethylphthalate	1/3	0.036333	0.058 to 0.058	0/3	0.0315	AD to ND	0.0580	0	None	ž	Ç	Ş
Dimethylphthalate	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	皇	皇	None	S	Ş.	S
Fluoranthene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	Ž	S	None	E.	오	S
Fluorene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	Ş	皇	None	ž	옻	S
Hexachloro-1,3-butadiene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	ž	皇	None	S.	S	Ş
Hexachlorobenzene	0/3	0.025500	ND to ND	0/3	0.0315	ND to ND	S	S	None	ž	S	오

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

(continued)

								^=				
								UTL		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	TI Ti	Bkgrd	1ype	Test	Conclusion	(a)
Kexachlorocyclopentadiene	. 0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	Ş	S	None	웆	S	S
Hexachloroethane	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	Š	ş	None	¥	NC S	2
Indeno(1,2,3-cd)pyrene	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	S	오	None	웆	S	皇
Isophorone	0/3	0.025500	ND to MD	0/3	0.03150	ND to ND	일	Ş	None	윷	SC	2
N-Witroso-di-n-propylamine	0/3	0.025500	ND to MD	0/3	0.03150	ND to ND	오	2	None	웆	NC	오
N-Nitrosodiphenylamine	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	오	ž	None	윷	SC	2
Naphthalene	0/3	0.025500	ND to MD	0/3	0.03150	ND to ND	오	S	None	오	NC	ž
Nitrobenzene	0/3	0.025500	ND to ND		0.03150	ND to ND	皇	오	None	皇	NC	呈
Pentachlorophenol	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	오	皇	None	皇	S S C	웆
Phenanthrene	0/3	0.025500	NO to MD	0/3	0.03150	ND to ND	오	皇	None	웆	NC	오
Phenol	0/3	0.025500	ND to MD	0/3	0.03150	ND to ND	S	Ş	None	¥	NC	ž
Pyrene	0/3	0.025500	ND to ND		0.03150	ND to ND	오	오	None	웆	NC	2
bis(2-Chloroethoxy)methane	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	皇	Ş	None	오	NC	Š
bis(2-Chloroethyl)ether	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	皇	오	None	皇	NC	오
bis(2-Ethylhexyl)phthalate	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	일	Š	None	皇	SC.	<u>3</u>
di-n-Butyiphthalate	1/3	0.042667	0.077 to 0.077	1/3	0.12883	0.32 to 0.32	0.0770	-	Wilcoxon	0.2082	SH	0.1609
di-n-Octylphthalate	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	오	Š	None	皇	S	옾
o-Cresol	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	오	ž	None	呈	ž	2
p-Cresol	0/3	0.025500	ND to ND	0/3	0.03150	ND to ND	2	S	None	Š	2	ž

¥9 = ₩

Atsugi

								_ ₹	L.	P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgr	Bkgrd Type	Test	Conclusion (a)	(a)
1,2,3,4,6,7,8,9-0000 3/3		.000037967	.000037967 0.000035 to 0.00004	3/3	.00036233	.00036233 0.000123 to 0.000755 0.0000396	0.0000396	M	Wilcoxon 0.0706	9020.0	S¥	0.1228
14.	3/3	.000004333 3.9E-6	3.9E-6 to 4.6E-6	3/3	.000003640	00003640 0.000018 to 0.000062 0.00000460	0,00000460	М	Wilcoxon 0.0706	90.000	SN	0.1228
1,2,3,4,6,7,8-HpcDD	3/3	.000005867 5.7E-6	5.7E-6 to 6E-6	3/3	.00005340	00005340 0.000023 to 0.000104 0.00000600	0.000000000	М	Wilcoxon 0.0706	90.00	SN	0.1228
1,2,3,4,6,7,8-HpcDF	3/3	.000004867	000004867 4.7E-6 to 5.1E-6	3/3	.00002527	00002527 0.000011 to 0.000043 0.00000510	0.00000510	κŅ	Wilcoxon 0.0706	9.0200	SN	0.1228
1,2,3,4,7,8,9-HpcDF	1,3	.000000467	000000467 1E-6 to 1E-6	2/3	.00000420	00000420 4.6E-6 to 7.7E-6	0.00000100	7	Wilcoxon 0.1237	1237	SZ	0.1399
1,2,3,4,7,8-HxCDD	0/3	.0000000150 ND to ND	ND to ND	2/3	.00000133	00000133 1.2E-6 to 2.5E-6	S	Š	Kone	오	몿	皇
1,2,3,4,7,8-HxCDF	3/3	.0000002033	000002033 1.9E-6 to 2.1E-6	3/3	.00000823	00000823 2.9E-6 to 0.000014	0.00000210	m	Wilcoxon 0.0684	,0684	S₩	0.1242
1,2,3,6,7,8-HxCDD	3/3	.000001367 1.2E-6	1.2E-6 to 1.5E-6	5/3	.00000445	00000445 4.5E-6 to 7.9E-6	0.00000150	8	Wilcoxon 0.3404	3404	¥.S	0.1789
1,2,3,6,7,8-HxCDF	3/3	.0000000970 8.5E-7	8.5E-7 to 1.1E-6	3/3	.000000360	00000360 1.1E-6 to 6E-6	0.00000110	N	Wilcoxon 0.0909	060.	NS	0.1328
1,2,3,7,8,9-HxCDD	3/3	.000004867	000004867 4E-6 to 5.3E-6	3/3	.00000073	00000973 6.3E-6 to 0.000012	0.00000530	m	Wilcoxon 0.0684	.0684	Ş	0.1242
1,2,3,7,8,9-HxCDF	0/3	.000000183 ND to ND	ND to ND	1/3	.00000035	.00000035 5.5E-7 to 5.5E-7	×C	Ş	None	S	Ş	오
1,2,3,7,8-PecDD	3/3	.000001467 1.3E-6	1.3E-6 to 1.6E-6	3/3	.00000226	.00000226 8.9E-7 to 3.1E-6	0.00000160	~	Wilcoxon 0.3404	.3404	SN	0.1789
1,2,3,7,8-PecDF	3/3	.000000067 5.4E-7	5.4E-7 to 8E-7	3/3	.00000212	.00000212 9.5E-7 to 3.4E-6	0.0000000800	М	Wilcoxon 0.0706	90.00	SN	0.1228
2,3,4,6,7,8-HxCDF	3/3	.0000002000	000002000 1.8E-6 to 2.2E-6	3/3	. 70800000.	.00000807 2.5E-6 to 0.000014	0.00000220	٣	Wilcoxon 0.0706	90.00	SZ	0.1228
2,3,4,7,8-PecDF	3/3	.0000001060 8.8E-7	8,8E-7 to 1,2E-6	3/3	.00000287	00000287 1.1E-6 to 4.4E-6	0.00000120	~	Wilcoxon 0.1593	.1593	S	0.1511
2,3,7,8-TCDD	0/3	.000000150 ND to ND	ND to ND	0/3	.000000025 ND to ND	ND to ND	NC	2	None	皇	呈	S
2,3,7,8-TCDF	3/3	.000000007 7.9E-7	7.9E-7 to 9.9E-7	3/3	.00000222	00000222 8.5E-7 to 4E-6	0.0000000000	7	Wilcoxon 0.2113	1,2113	SE	0.1586
Total HpCDD	3/3	.000011500	000011500 0.00001 to 0.000013	3/3	.000009370	00009370 0.000043 to 0.000178	0.0000131	m	Wilcoxon 0.0706	90.00	SN	0.1228
Total HpCDF	3/3	.0000007933 5.6E-6	5.6E-6 to 0.00001	3/3	.00005117	00005117 0.000021 to 0.000089 0.0000100	0.0000100	M	Wilcoxon 0.0706	9020.	SX	0.1228
Total HxCDD	3/3	.000016767	000016767 0.000014 to 0.000019	3/3	.00004813	00004813 0.000026 to 0.00007	0.0000191	m	Wilcoxon 0.0706	9020.	SZ	0.1228
Total HxCDF	3/3	.000010400 8.7E-6	8.7E-6 to 0.000012	3/3	.00004243	00004243 0.000014 to 0.000075	0.0000115	M	Wilcoxon 0.0706	9.0706	SN:	0.1228
Total PeCDD	3/3	.0000003300 1.6E-6	1.6E-6 to 4.9E-6	3/3	.000001067	00001067 2.3E-6 to 0.000019	0.00000490	N	Wilcoxon 0.2113	1.2113	SE	0.1586
Total PeCDF	3/3	.000009733 7.4E-6	7.4E-6 to 0.000012	3/3	.00002487 8	00002487 8.4E-6 to 0.000041	0.0000121	~ i	Wilcoxon 0.2113	1.2113	NS	0.1586

Atsugi

			₹	2 DEPT	IN=Subsur (cont	OC=Reference Z DEPTH=Subsurface Method=Sw8ZYU Units=mg/Kg ···································	S≍mg/kg	i ! !	6 6 5 3 3 3	1 1 1 1 1 1 1		
								^ Z				
								ΉL		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	fo	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UIL	Bkgrd	Bkgrd Type	Test	Conclusion (a)	(a)
Total TCDD	3/3	3/3 .000001900 1.7E-6 to	1.7E-6 to 2.3E-6	3/3	.00000510	3/3 .00000510 ZE-6 to 0.000011	0.00000230	2	2 Wilcoxon 0.1207	0.1207	SN	0.1418
Total TCDF	3/3	.0000008967	0.000013	3/3	.00002487	3/3 .00002487 8.6E-6 to 0.00004	0.0000133	8	Wilcoxon 0.2113	0.2113	SN	0.1586

N = 25

		Test	Power	(e)	0.1685
AOC=Reference 2 DEPTH=Surface Method=1LMO4.0 Units=mg/kg			Test	Conclusion	SN
		P-Value	for	Test	0.0517
kg			Test	Type	t-Test 0.0517
Units=mg/	^=	UIL	for	Bkgrd	~
=1LM04.0			REF	Ę	1.08
Surface Method:			Site	Range	0.8 to 1.7 1.08
se 2 DEPTH≕			Site	Mean	0.91833
)=Referenc			Site	Hits	9/5
AQ			REF	Range	0.43 to 0.6 4/6
			REF	Mean	0.39667
; ; ; ; ;			REF	Hits	9/7
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Analyte	Cyanide 4/6

- =

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

								^ <u>-</u>		: : :		,
		!		•	į			 5		P-value		lest
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	Į,	Bkgrd	Туре	Test	Conclusion	(a)
Aluminum	9/9	49633.33	39900 to 57200	9/9	73150.00	58200 to 84200	74000	4	t-Test	0.0004	v	7666.0
Antimony	9/9	1.63	1.4 to 2.4	9/9	2.02	1.6 to 2.7	2.40	-	Witcoxon	0.0342	v	0.1410
Arsenic	9/9	3.78	2.9 to 5.2	9/9	6.10	4.5 to 8.2	9.9	~	t-Test	0.0038	v	0.8562
Barium	9/9	75.85	60.2 to 96.9	9/9	79.82	66.1 to 105	130	0	t-Test	0.3195	NS	0.9959
Beryllium	1/6	0.12	0.25 to 0.25	1/6	0.16	0.23 to 0.23	0.250	0	Wilcoxon	0.0453	S	0.1458
Cadmium	9/9	0.79	0.65 to 1	9/9	1.20	0.9 to 1.8	1.26	_	Wilcoxon	0.0113	v	0.1219
Calcium	9/9	11016.67	9420 to 12800	9/9	5893.33	3030 to 9640	15400	0	t-Test	0.9982	SN	0.9961
Chromium	9/9	30.15	26.4 to 34.5	9/9	43.30	32.5 to 54.4	39.9	4	t-Test	0.0037	w	0.9944
Cobalt	9/9	22.27	19.6 to 24.9	9/9	29.07	23.7 to 33.9	28.9	4	t-Test	0.0022	S	1.0000
Copper	9/9	100.73	90 to 115	9/9	143.17	121 to 158	134	4	t-Test	0.0001	S	1.0000
Iron	9/9	44316.67	38000 to 50600	9/9	62233.33	49600 to 73300	90909	4	t-Test	0.0008	S	0.9999
Lead	9/9	37.80	13.8 to 57.3	9/9	45.08	22.5 to 55.3	95.5	0	t-Test	0.1939	NS	0.7058
Magnesium	9/9	11400.00	11000 to 11700	9/9	9641.67	7680 to 10900	12400	0	t-Test	0.9952	NS	1.0000
Manganese	9/9	796.67	682 to 875	9/9	1147.50	945 to 1300	1050	ľ	t-Test	0.0002	s	1.0000
Mercury	9/9	0.11	0.06 to 0.14	9/9	0.17	0.07 to 0.22	0.228	0	Wilcoxon	0.0347	S	0.1406
Nickel	9/9	33.43	30.5 to 35.4	9/9	41.60	31.8 to 56.1	39.5	3	t-Test	0.0388	S	0.9937
Potassium	9/9	409.50	362 to 525	9/9	580.00	435 to 978	643	-	Wilcoxon	0.0306	S	0.1377
Selenium	9/9	0.54	0.43 to 0.61	3/6	0.71	1.1 to 1.2	0.794	٣	Wilcoxon	0.5000	SN	0.2140
Silver	9/9	0.37	0.27 to 0.61	9/9	0.50	0.33 to 0.63	0.610	_	Wilcoxon	0.0601	SN	0.1501
Sodium	9/9	1758.33	1470 to 1990	9/9	488.83	235 to 1040	2430	0	t-Test	1.0000	NS	1.0000
Thallium	9/9	1.1	0.85 to 1.3	9/9	2.89	1.4 to 5.4	1.82	m	t-Test	0.0368	s	0.1614
Vanadium	9/9	182.33	148 to 215	9/9	274.50	210 to 327	892	4	t-Test	0.0006	v	0.9979
Zinc	9/9	106.88	71 to 156	9/9	153.00	120 to 183	524	0	t-Test	0.0094	ဟ	0.9204

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi

N = 23

								^ ~				
	Ļ	L L	ı. L	4	4		į	를 ;	,	P-Value	•	Test
	¥ F	χ Π	K	51Te	Site	Site	늍	1 0	est	†o 1	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	ᆿ	Bkgrd	Type	Test	Conclusion	æ
4,4'-000	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	웆	닞	None	N	æ	꾶
4,4'-DDE	9/9	0.19553	0.00086 to 0.99	9/9	0.022083	0.0033 to 0.071	0.00	0	Witcoxon	0.5927	S₩	0.2251
4,4'-007	9/9	0.04476	0.0069 to 0.2	9/9	0.010067	0.0025 to 0.024	0.200	0	Wilcoxon	0.5927	SH	0.2251
Aldrin	9/0	0.00016	MD to ND	9/0	0.000173	ND to ND	SC SC	2	None	꾩	NC NC	오
Aroclor-1016	9/0	0.00016	00016 ND to ND	9/0	0,000173	ND to ND	오	웆	None	2	S	皇
Aroclor-1221	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	2	皇	None	웊	NC NC	윭
Aroclor-1232	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	¥	None	¥	꾶	¥
Aroclor-1242	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	皇	None	呈	¥	오
Aroclor-1248	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	Ş	None	꾩	Š	皇
Aroclor-1254	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	2	None	2	S	웆
Aroclor-1260	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	잁	2	None	皇	S	¥
Dieldrin	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	2	None	皇	S	꾶
Endosulfan I	9/0	0.00016	ND to NO	9/0	0.000173	ND to ND	皇	2	None	皇	S	웆
Endosulfan II	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	Ş	None	皇	S	꾶
Endosulfan sulfate	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	2	None	ž	SC	SK
Endrin	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	S	Ş	None	皇	S	呆
Endrin aldehyde	9/0	0.00016	ND to ND	9/0	0.000173	ND to ND	皇	웆	Kone	皇	S	꾶
Endrin ketone	9/0	0.00016	MD to ND	9/0	0.000173	ND to ND	NC NC	옻	None	皇	S	æ

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^				
								J.		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	_
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type	Test	Conclusion	(a)
Heptachlor	9/0	.00015500	ND to ND	9/0	.00017333	ND to ND	Š	2	None	ž	Ş	Š
deptachlor epoxide	9/0	.00015500	ND to ∜D	9/0	.00017333	ND to ND	皇	S	None	Š	2	2
Methoxychlor	9/0	.00015500	ND to ND	9/0	.00017333	#O to NO	Ş.	¥	None	오	N.	¥
loxaphene	9/0	.00015500	ND to ND	9/0	.00017333	ND to MD	NC	ž	None	皇	Ş	Z
1pha-BHC	9/0	.00015500	ND to ND	9/0	.00017333	ND to ND	NC	∑	Mone	皇	2	2
I pha-Chiordane	1/6	.00027833	0.00087 to 0.00087	9/0	.00017333	ND to ND	0.000870	0	None	꾶	2	2
beta-BHC	9/0	.00015500	ND to ND	9/0	.00017333	ND to ND	2	Ş	None	꾩	2	2
delta-BNC	9/0	.00015500	ND to ND	9/0	.00017333	ND to ND	NC	S	None	윷	Ş	2
gamma-BHC(Lindane)	9/0	.00015500	ND to ND	9/0	.00017333	ND to ND	Z	2	None	ž	NC	2
gamma-Chlordane	9/0	.00015500	ND to ND	9/0	.00017333	NG to ND	ž	NC	None	오	SK	呈

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

N = 28

Site vs. Reference: Means Comparisons and UTL Statistics

i
ķ
Ē
its
2 C
M03.2
글
ethoc
Æ
face
Sur
품
E
ce 2
renc
Refe
AOC=Refe
;
į
ļ
į
:
į
1

								^ F		P-Value		Test
	REF	REF	REF	Site	Site	Site	Æ	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	J.	Bkgrd	Type	Test	Conclusion	(B)
1,2,4-Trichtorobenzene	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	오	웊	None	S	S	Š
1,2-Dichlorobenzene	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	¥	NC NC	None	呈	S	Š
1,3-Dichlorobenzene	9/0	0.026417		9/0	0.03475	ND to ND	웆	¥	None	오	S	ž
1,4-Dichlorobenzene	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	NC	오	None	Š	S	Ş
2,2'-oxybis(1-chloropropane)	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	Š	S	None	ž	S	Š
2,4,5-Trichlorophenol	9/0	0.026417	ND to ND	9/0	0.03475	ND to MD	ž	2	None	오	NC NC	옾
2,4,6-Trichlorophenol	9/0	0.026417	ND to NO	9/0	0.03475	ND to ND	Š	2	None	皇	S.	옻
2,4-Dichlorophenol	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	NC	꾩	None	Ş	ž	S
2,4-Dimethylphenol	9/0	0.026417	NO to ND	9/0	0.03475	ND to ND	ž	呆	None	呈	NC	S
2,4-Dinitrophenol	9/0	0.026417	NO to NO	9/0	0.03475	ţ	ž	皇	None	ջ	N	S
2,4-Dinitrotoluene	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	오	皇	None	ž	NC	잁
2,6-Dinitrotoluene	9/0	0.026417	ND to ND	9/0	0.03475		皇	皇	None	ž	NC	잁
2-Chloronaphthalene	9/0	0.026417		9/0	0.03475	ND to ND	오	오	None	¥	SC	ž
2-Chlorophenol	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	Ş	皇	None	¥	υž	ž
2-Methylnaphthalene	9/0	0.026417	ND to ND	9/0	0.03475		S	皇	None	꾶	SC	웆
2-Witroaniline	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	Š	오	None	¥	呈	웆
2-Nitrophenol	9/0	0.026417	ND to ND	9/0	0.03475		Š	呈	None	윷	2	꾶
3,3'-Dichlorobenzidine	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	오	웆	None	皇	S	皇
3-Nitroaniline	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	ž	웆	None	¥	Ş	皇
4,6-Dinitro-2-methylphenol	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	皇	2	None	皇	S	皇
4-Bromophenyl-phenylether	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	呈	皇	Nane	皇	¥	오
4-Chloro-3-methylphenol	9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	S	Ş	None	잁	呈	呈
4-Chloroaniline	9/0	0.026417	ND to ND	9/0	0.03475	NO to NO	ž	오	None	¥	NC	웊

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

	Au	IC=Reference 2 DEP	TH=Surf (con	ace Methoc itinued)	=OLMO3.2 Ur	its=mg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	
							^ =				
							UTL		P-Value		Test
REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type eqy	Test	Conclusion	(a)
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	NC .	Š	None	2	S	S
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	¥	»KC	None	Ş	S	오
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	ž	ž	None	Š	SC	ž
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	SC SC	ž	None	Š	S	오
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	SE SE	¥	None	S	S	NC
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	SE SE	읓	None	Ş	2	NC.
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	2	¥C	None	Ş	S	¥C
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	꾩		None	Ş	S	NC NC
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	¥	웊	None	2	Š	윷
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	윷	웆	None	ž	S	꽃
9/0	0.026417	ND to MD	9/0	0.03475	ND to ND	잁	몵	None	2	S	×
9/2	0.044167	0.076 to 0.083	9/0	0.03475	ND to ND	0.0830	0	None	ž	S	ž
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	S	웆	None	SC SC	S	¥
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	오	읓	None	¥C	S	¥
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	¥	¥	None	Ş	N	ž
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	읒	꽃	None	ž	S	皇
9/9	0.069167	0.058 to 0.13	9/0	0.03475	ND to ND	0.194	0	None	SC SC	S	2
9/0	0.026417	ND to WD	9/0	0.03475	ND to ND	皇	ž	None	NC.	Š	S
5/6	0.036583	0.055 to 0.06	9/0	0.03475	ND to ND	0.0600	0	None	2	S	S
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	S	웊	None	¥C	Š	Ş
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	S	皇	None	2	¥	2
9/0	0.026417	ND to ND	9/0	0.03475	ND to ND	S	오	None	NC NC	S	S
	Hits Hits 0000 0000 0000 0000 0000 0000 0000 0	8 8 00 00 00 00 00 00 00 00 00 00 00 00	8 8 00 00 00 00 00 00 00 00 00 00 00 00	8 8 00 00 00 00 00 00 00 00 00 00 00 00	8 8 00 00 00 00 00 00 00 00 00 00 00 00	8 8 00 00 00 00 00 00 00 00 00 00 00 00	8 8 00 00 00 00 00 00 00 00 00 00 00 00	REF REF Site Site Site REF	Continued N N N N N N N N N	N N N N N N N N N N	National State Site Site Site Site Continued) Site Site Site Site Tor Test Tor Test Tor Test Tor Test Tor Site Site Site Site Site Tor Test Tor Test Tor Site Site Site Site Site Tor Test Tor Site Site Site Site Site Site Site Site Tor Test Tor Site Tor Test Tor Site Site

Atsugi

								^ = 5		P-Value		Test
	REF	REF	REF	Site	Site	Site			Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL B		Туре	Test	Conclusion	(e)
Hexach lorocyclopentadiene	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	SC	꾜	None	Z	NC	S
Hexachloroethane	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	N.	皇	None	X	S	2
Indeno(1,2,3-cd)pyrene	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	N.	웆	None	S	SC	2
Isophorone	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND		꾩	None	ž	S	呈
N-Nitroso-di-n-propylamine	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND		읓	None	¥	2	옻
N-Nitrosodiphenylamine	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	N.	皇	None	ž	S	皇
Naphthalene	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	-	皇	None	ž	S	皇
Nitrobenzene	9/0	0.02642	ND to ND		0.03475	ND to ND	NC NC	웆	None	ž	S	웆
Pentachlorophenol	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND		웆	None	S	S	皇
Phenanthrene	9/0	0.02642	ND to ND		0.03475	ND to ND	¥C	呈	None	웊	S	皇
Phenol	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	NC OK	율	None	꾶	S	2
Pyrene	5/6	0.03792	0.053 to 0.07	9/0	0.03475	ND to ND	0.0700	0	None	꾩	S	오
bis(2-Chloroethoxy)methane	9/0	0.02642			0.03475	ND to ND	N N	皇	None	呈	NC	2
bis(2-Chloroethyl)ether	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	₩	皇	None	2	NC	×
bis(2-Ethylhexyl)phthalate	9/9	0.27333	0.13 to 0.5			0.2 to 0.57	0.785	0	Wilcoxon	0.4687	SN	0.2069
di-n-Butylphthalate	9/9	0.14650	0.099 to 0.28	9/9	0.22250	0.075 to 0.51	0.280	2	Wilcoxon	0.3478	SN	0.1946
di-n-Octylphthalate	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	皇	읓	None	皇	S	呈
o-Cresol	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	2	읓	None	呈	S	오
p-Cresol	9/0	0.02642	ND to ND	9/0	0.03475	ND to ND	NC C	皇	None	NC	S	Š

59 = N

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

								* F		P-Value		Test
	REF	REF	REF S	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Туре	Test	Conclusion	(a)
1,2,3,4,6,7,8,9-0000 6/6	9/9	.00049350 0.000	.00049350 0.000257 to 0.000757 6/6	•	00095233 0.00	0.000307 to 0.00161	0.00118	7	t-Test	0.0267	v	0.3186
1,2,3,4,6,7,8,9-0CDF 6/6	9/9	.00007485 0.000	.00007485 0.000038 to 0.000136 6/6	•	00011222 0.00	0.000036 to 0.000181	0.000212	0	t-Test	0.0788	SN	0.4158
1,2,3,4,6,7,8-HpcDD	9/9	.00009028 0.000	00009028 0.000054 to 0.000156 6/6	•	00014507 0.00	0.00005 to 0.000211	0.000235	0	t-Test	0.0401	s	0.4480
1,2,3,4,6,7,8-HpcDF	9/9	.00008132 0.000	00008132 0.000042 to 0.000172 6	. 9/9	00008963 0.00	0.000035 to 0.000133	0.000258	0	t-Test	0.3654	SN	0.4893
1,2,3,4,7,8,9-HpcDF	9/9	.00001193 5E-6	s S	. 9/9	00002030 8.4€	00002030 8.4E-6 to 0.000032	0.0000419	0	t-Test	0.0494	s	0.3319
1,2,3,4,7,8-HxCDD	9/9	.00000463 2.5E-6 to 9E-6		. 9/9	00000673 3.7E-6 to 9E-6	:-6 to 9E-6	0.0000137	0	t-Test	0.0634	N.S	0.5309
1,2,3,4,7,8-HxCDF	9/9	.00003988 0.000	00003988 0.000019 to 0.000098 6	. 9/9	00003895 0.00	0.000015 to 0.000058	0.0000978	0	Wilcoxon	0.2929	MS.	0.1883
1,2,3,6,7,8-HxCDD	9/9	.00001035 5.6E-6 to 0.00002		9/9	00001345 6.68	00001345 6.6E-6 to 0.000019	0.0000291	0	t-Test	0.1341	MS	0.5726
1,2,3,6,7,8-HxCDF	9/9	.00001727 8E-6	to 0.000041). 9/9	00001632 7.2E	00001632 7.2E-6 to 0.000024	0.0000412	0	Wilcoxon 0.3483	0.3483	SN	0.1939
1,2,3,7,8,9-HxCDD	9/9	.00001460 8.2E-6 to 0.000023		. 9/9	00002392 0.00	00002392 0.00002 to 0.00003	0.0000359	0	t-Test	0.0044	s	0.8068
1,2,3,7,8,9-HxCDF	9/9	.00000146 8.8E-7 to 3.8E-6		. 9/9	00000181 6.85	00000181 6.8E-7 to 3.6E-6	0.00000380	0	Wilcoxon 0.1597	0.1597	SZ	0.1712
1,2,3,7,8-PeCDD	9/9	.00000502 3.2E-		· 9/9	00000562 3.78	00000562 3.7E-6 to 7.3E-6	0.00000980	0	Wilcoxon	0.1004	SN	0.1601
1,2,3,7,8-PecoF	9/9	.00000920 3.8E-6 to 0.00002		. 9/9	00000895 3.78	00000895 3.7E-6 to 0.000013	0.0000306	0	t-Test	0.5361	SN	0.4852
2,3,4,6,7,8-HxCDF	9/9	.00003915 0.000	00003915 0.000015 to 0.000101 6	. 9/9	00003598 0.00	00003598 0.000015 to 0.000055	0.000101	0	Wilcoxon	0.2932	S	0.1880
2,3,4,7,8-PecoF	9/9	.00001568 6.3E-0	5 to 0.000037	. 9/9	00001200 5.68	00001200 5.6E-6 to 0.000018	0.0000374	0	Wilcoxon 0.7329	0.7329	SN	0.2422
2,3,7,8-1000	9/9	.000000073 4.7E-7	7 to 1.5E-6	. 9/9	000000081 3.96	3.9E-7 to 1.1E-6	0.00000240	0	t-Test	0.3683	Ş	0.4903
2,3,7,8-TCDF	9/9	.00001100 3.6E-6 to 0.000021		. 9/9	000000785 2.26	2.2E-6 to 0.000011	0.0000328	0	t-Test	0.8611	S¥	0.6023
Total MpCDD	9/9	.00017983 0.000	00017983 0.000107 to 0.000318 6	. 9/9	00027667 0.00	00027667 0.000101 to 0.000395	0.000488	0	t-Test	0.0501	SN	0.4711
Total HpCDF	9/9	.00015158 0.000	00015158 0.000079 to 0.000323 6	. 9/9	00017443 0.00	00017443 0.000066 to 0.000263	0.000487	0	t-Test	0.3127	S¥	0.4671
Total ExCDD	9/9	.00012453 0.000		. 9/9	00016817 0.00	00016817 0.000106 to 0.000211 0.000362	0.000362	0	t-Test	0.0921	SW	0.6136
Total HxCDF	9/9	.00021335 0.000	00021335 0.000096 to 0.000535 6	. 9/9	00018922 0.00	00018922 0.000079 to 0.000277 0.000535	0.000535	0	Wilcoxon	0.3772	S	0.1973
Total PeCDD	9/9	.00006188 0.000	00006188 0.000025 to 0.000205 6/6	•	00004098 0.00	00004098 0.00002 to 0.000057 0.000205	0.000205	0	Wilcoxon 0.3483	0.3483	SI	0.1939
Total PeCDF	9/9	.00022182 0.000	0076 to 0.000608 6/6		00013845 0.00	.00013845 0.000067 to 0.000197 0.000608	0.000608	0	Wilcoxon 0.7071	0.7071	SN	0.2388

09:46 Tuesday, July 28, 1998 52

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

; ; ; ; ;	Test	Power	0.2060
		Test Powe Conclusion (a)	S S
	P-Value	for Test	0.4688
		Test Type	Wilcoxon 0.4688 Wilcoxon 0.9218
1	, I	for Bkgrd	00
Units=mg/kg	-	REF UTL	0061 0.000152 0136 0.000522
AOC-Reference 2 DEPTH=Surface Method=SM8290 Units=mg/kg ···································		Site Range	1 to 0.000152 6/6 .00004040 0.000014 to 0.000061 0.000152 to 0.000522 6/6 .00010153 0.000056 to 0.000136 0.000522
TH=Surface Met (continued)		Site Mean	00004040
ence 2 DEP		Site	152 6/6 . 22 6/6 .
1		REF Range	.00005538 0.000021 to 0.000152 6/6 .00004040 0.000014 to 0.000061 0.000152 .00019707 0.00006 to 0.000522 6/6 .00010153 0.000056 to 0.000136 0.000522
* * * * * * * * * * * * * * * * * * *		REF Mean	6/6 .00005538 0.000021 6/6 .00019707 0.00006
		REF	9/9
		Analyte	Total TCDD Total TCDF

₩ = 25

1 1 1 1 1 1		Test	Power	(g)	0.1399
			Test	Conclusion	NS
		P-Value	for	Test	0.1311
/kg			Test	Type	Wilcoxon
0 Units=mg	^ =	ᆿ	for	Bkgrd	~
od=11M04.			REF	ᆵ	0.390
AOC=Towers Area DEPTH=Subsurface Method=1LMO4.0 Units=mg/kg			Site	Range	0.83 to 0.93
rea DEPT#:			Site	Mean	0.555
Towers A			Site	Hits	5/4
;			REF	Range	0.39 to 0.39
			REF	Hean	0.24833
;			REF	Hits	1/3
				Analyte	Cyanide

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

09:46 Tuesday, July 28, 1998 53

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

------ AOC=Towers Area DEPTH=Subsurface Method=1LMO4.0 Units=mg/kg -------

								U†t		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type	Test	Conclusion	(e)
Aluminum	3/3	54100.00	52300 to 57700	4/4	69725.00	46000 to 104000	57700	2	Wilcoxon	0.3059	SS	0.1753
Antimony	2/3	0.93	1 to 1.5	3/4	1.15	0.77 to 1.9	1.50	7	Wilcoxon	0.3075	SN	0.1737
Arsenic	3/3	2.03	1.3 to 2.6	4/4	3.50	2.2 to 4.7	5.60	7	Wilcoxon	0.1628	SN	0.1492
Barium	3/3	69.87	67.9 to 72.3	4/4	138.65	67.4 to 308	72.3	м	Wilcoxon	0.2054	SN	0.1562
Beryllium	0/3	0.10	ND to ND	1/4	0.16	0.28 to 0.28	S	잁	None	S	S	2
Cadmium	3/3	0.49	0.47 to 0.53	7/7	1.09	0.87 to 1.3	0.530	4	Wilcoxon	0.0487	s	0.1116
Calcium	3/3	10726.67		4/4	14675.00	11800 to 18300	11600	4	Wilcoxon	0.0499	s	0.1109
Chromium	3/3	27.13		4/4	38.03	21.7 to 57.4	30.8	۲3	Wilcoxon	0.3075	SN	0.1737
Cobalt	3/3	23.33		4/4	27.83	18.2 to 40.2	25.0	~	Wilcoxon	0.3075	NS	0.1737
Copper	3/3	107.67		4/4	141.58	98.3 to 194	116	m	Wilcoxon	0.2054	SN	0.1562
Iron	3/3	47666.67		4/4	59400.00	39400 to 86000	51800	7	Wilcoxon	0.3075	NS	0.1737
Lead	3/3	7.33		7/7	12.38	4 to 21.8	8.70	m	Wilcoxon	0.2054	SN	0.1562
Magnesium	3/3	11700.00		4/4	12535.00	9240 to 18500	12200	-	Wilcoxon	0.6925	NS	0.2554
Manganese	3/3	830.67		4/4	1066.00	705 to 1500	890	M	Wilcoxon	0.2054	SN	0.1562
Mercury	3/3	0.03		3/4	0.03	0.03 to 0.05	0.0400	-	Wilcoxon	0.4315	SN	0.1963
Nickel	3/3	30.77		7/7	33.78	23.5 to 44.3	32.9	7	Wilcoxon	0.4328	SN	0.1924
Potassium	3/3	273.33		4/4	946.00	277 to 2130	285	м	Wilcoxon	0.0814	NS	0.1248
Selenium	2/3	97.0		9/0	0.23	ND to ND	0.600	0	None	S	S	Z
Silver	0/3	0.10		3/4	0.26	0.2 to 0.42	오	₩	None	오	S	S
Sodium	3/3	1890.00		4/4	1389.50	650 to 2300	2030	-	Wilcoxon	0.6925	NS	0.2554
Thallium	2/3	1.17		4/4	2.22	1.4 to 2.8	1.70	M	Wilcoxon	0.1017	SN	0.1333
Vanadium	3/3	197.67		4/4	243.00	147 to 362	219	2	Wilcoxon	0.3075	¥	0.1737
Zinc	3/3	44.33		4/4	83.10	46.7 to 125	48.6	M	₩ilcoxon	0.0814	¥	0.1248

S = one-tailed test statistically significant at the alpha ≈ 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

N = 23

	Test t Power	-	S	0.1333	0.1257	NC	S	SK	S	¥	ž	S	S	Š	S	Š	S	S	S	
	e Test	Conclusion	25	SE	S¥		웊	꽃	꾶	皇	35		2		오	오			오	
,	P-Value for	Test	오	0.1	0.0798	N.	呈	呈	ž	ž	오	ž	2	S	S	皇	S	S	2	
	Test	•	None	Wilcoxon	Wilcoxon	None	None	None	None	None	Kone	None	None	None	None	None	None	None	None	:
*	# #	Bkgrd	윤	M	m	꾶	呈	¥C	ž	Š	2	S	皇	S	S	오	오	¥	呈	1
	REF	Ħ	2	0.00580	0.00170	S	皇	S	S	S	긡	꾶	2	¥	呈	¥	呈	윷	皇	;
	Site	Range	0.0095 to 0.0095	0.0011 to 0.055	0.00098 to 0.079	ND to ND	ND to ND	NO to NO	ND to ND	ND to ND	NO to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to MD	ND to ND	
	Site	Hean	0.002484	0.021750	0.041620	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	0.000145	11.000
	Site	Hits	1/4	4/4	4/4	7/0	7/0	9/0	9/6	9/4	9/6	9/4	9/4	9/0	9/0	7/0	7/0	9/0	9/0	
	REF	Range	ND to ND	0.00099 to 0.0058		ND to ND	ND to ND	ND to ND	ND to ND	MD to ND	ND to ND	ND to ND	MD to ND	ND to ND	ND to ND	ND to ND	NO to ND	NO to ND	ND to ND	
	REF	Mean	.0001267	.0029300	.0008750	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	.0001267	1.00000
	REF	Hits	0/3	3/3	2/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	!
		Analyte	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Aroctor-1016	Aroctor-1221	Aroctor-1232	Aroclor-1242	Aroctor-1248	Aroclor-1254	Aroclor-1260	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	The state of the state of

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

			_	rs Area [EPTK=Subsur (con	λOC=Towers Area DEPT∦=Subsurface Method=OLMO3.2 Units=mg/kg · (continued)	Units=m	9/kg				
								^				
								J.		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	TI.	Bkgrd	Type	Test	Conclusion	(a)
Heptachlor	0/3	.00012667	ND to ND	9/6	.0001450	ND to ND	S	오	None	Š	SN	ž
Heptachlor epoxide	0/3	.00012667	ND to ND	7/0	.0001450	ND to ND	S	S	None	2	S	ž
Methoxychlor	0/3	.00012667	ND to ND	9/4	.0001450	ATD to ND	Š	S	None	ä	S	ž
Toxaphene	0/3	.00012667	ND to ND	9/6	.0001450	ND to ND	Š	S	None	S	Ş.	¥
alpha-BHC	0/3	.00012667	ND to MD	9/0	.0001450	ND to ND	Š	오	None	S	S	ž
alpha-Chlordane	0/3	.00012667	ND to AD	1/4	.0012588	0.0046 to 0.0046	Š	S	None	웊	Ş	오
beta-BMC	0/3	.00012667	ND to ND	9/6	.0001450	ND to ND	ž	S	None	S	N.C	ž
delta-BHC	0/3	.00012667	ND to ND	9/6	.0001450	ND to ND	Š	S	None	ž	NC	ž
gamma-BHC(Lindane)	0/3	.00012667	ND to ND	9//0	.0001450	ND to ND	皇	2	None	S	S	2
gamma-Chlordane	0/3	.00012667	ND to ND	1/4	.0012588	0.0046 to 0.0046	Š	S	None	오	N	¥

N = 28

Power Test

æ

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

1 2 3 4 6 0			Test	Conclusion	皇	S.	S.	Ş	S	S	S	S	NC	Š	2	SC	SC	ž	¥	S	S	Š	S	SC	S	S	NC
1 1 1 3 4 0		P-Value	for	Test	유	윷	ž	잁	ž	오	ž	S	S	呆	NC NC	SC	오	오	皇	오	£	呈	꾩	읓	오	ž	S.
			Test	Type	None	None	None	None	None	None	None	None	None	None	None	None	¥one	None	None	None	None	None	None	None	None	None	None
3/kg	^=	Η	for	Bkgrd	3	2	ž	Ş	오	오	Ş	오	Ş	皇	皇	Ş	SC.	¥	¥	呈	읓	ž	皇	皇	읓	皇	ž
Units=m			REF	Ή	꾶	¥	皇	¥C	ž	N	S	Ş	S	SC	兴	NC	S	皇	SC.	皇	SC SC	¥	¥	Ş	2	2	NG C
.hod=0LM03.2			Site	Range	MD to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	MD to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND
bsurface Met			Site	Mean	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125	0.029125
DEPTH=Su			Site	Hits	9/4	9/6	9/0	9/4	9/0	7/0	7/0	7/0	9/4	9/4	9/4	0/4	0/4	9/0	9/6	9/0	7/0	7/0	7/0	9/0	9/4	9/4	9/0
- AOC=Towers Area DEPTH-Subsurface Method=DLMO3.2 Units=mg/kg			REF	Range	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to MD	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	₩D to ND
AOC=			REF	Mean	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255	0.0255
			REF	Hits	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
				Analyte	1,2,4-Trichlorobenzene	1,2-Dichtorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-oxybis(1-chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-chlorophenol	2-Methylnaphthalene	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl-phenylether	4-Chloro-3-methylphenol	4-Chloroaniline

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^=				
								JT,		>-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type	Test	Conclusion	(a)
4-Chlorophenyl-phenylether	0/3	0.025500	ND to ND	9/4	0.029125	ND to ND	S	S	None	2	Ş	Ž
4-Nitroanaline	0/3	0.025500	ND to ND	9/4	0.029125	ND to ND	S	皇	None	2	S.	2
4-Nitrophenol	0/3	0.025500	ND to ND	0/4	0.029125	ND to ND	잁	皇	None	ž	NC	2
Acenaphthene	0/3	0.025500	ND to ND	9/0	0.029125	ND to ND	읓	2	None	2	NC	S
Acenaphthylene	0/3	0.025500	ND to ¾D	9/0	0.029125	ND to ND	NC Si	¥C	None	Š	Š	S
Anthracene	0/3	0.025500	ND to ND	0/4	0.029125	ND to ND	SK SK	ξĊ	Hone	Š	Š	S
Benzo(a)anthracene	0/3	0.025500	ND to ND	1/4	0.040375	0.074 to 0.074	SC SC	ž	None	ž	Š	S
Benzo(a)pyrene	0/3	0.025500	ND to ND	1/4	0.043875	0.088 to 0.088	SK SK	Ç.	None	Ş	Š	S
Benzo(b)fluoranthene	0/3	0.025500	ND to ND	1/4	0.041625	0.079 to 0.079	NC	¥	None	Š	NC	S
Benzo(g,h,i)perylene	0/3	0.025500	ND to ND	0/4	0.029125	ND to ND	S.	¥	None	Ş	Š	S
Benzo(k)fluoranthene	0/3	0.025500	ND to ND	1/4	0.042125	0.081 to 0.081	XC	¥	None	Š	NC	S
Butylbenzylphthalate	0/3	0.025500	ND to ND	9/0	0.029125	ND to ND	NC SC	Š	None	Š	S	S
Carbazole	0/3	0.025500	ND to ND	0/4	0.029125	ND to ND	SC SC	Š	None	Ş	S	S
Chrysene	0/3	0.025500	ND to NO	1/4	0.041625	0.079 to 0.079	SC	N S	None	2	NC	Ş
Dibenz(a,h)anthracene	0/3	0.025500	ND to ND	9/0	0.029125	ND to ND	S	Ş	None	S	S	SK
Dibenzofuran	0/3	0.025500	ND to ND	5/0	0.029125	ND to MD	S	S	None	오	SA.	Z.
Diethylphthalate	1/3	0.036333	0.058 to 0.058	0/4	0.029125	ND to *D	0.0580	0	None	皇	S	ZC ZC
Dimethylphthalate	0/3	0.025500	ND to ND	0/4	0.029125	ND to MD	S	Š	None	皇	SK	¥C
Fluoranthene	0/3	0.025500	ND to ND	9/6	0.029125	ND to MD	S	N S	None	Ş	S	S R
Fluorene	0/3	0.025500	ND to ND	0/4	0.029125	ND to ND	S	Ş	None	웆	S.	ž
Hexachloro-1,3-butadiene	0/3	0.025500	ND to ND	0/4	0.029125	ND to ND	S	Š	None	皇	S	Z.
Hexachlorobenzene	0/3	0.025500	ND to ND	9/0	0.029125	ND to MD	NC	잁	None	S	N.	NC NC

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

	(continued)
--	-------------

								^ ~				
								Μ		P-∀alue		Test
	Æ	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	TI Ti	Bkgrd	Туре	Test	Conclusion	(a)
Hexachlorocyclopentadiene	0/3	0.025500	ND to ND	0/4	0.029125	ND to ND	S	2	None	2	NC	오
Hexachloroethane	0/3	0.025500	ND to ND	9/6	0.029125	ND to ND	皇		¥one	皇	N.	皇
Indeno(1,2,3-cd)pyrene	0/3	0.025500	ND to ND	9/0	0.029125	ND to ND	¥	¥	None	呈	NC SC	S
Isophorone	0/3	0.025500	ND to ND	9/6	0.029125	ND to ND	¥C	S.	None	몵	NC	웊
N-Nitroso-di-n-propylamine	0/3	0.025500	ND to ND	5/0	0.029125	ND to ND	2	웆	None	윷	NC	웆
N-Nitrosodiphenylamine	0/3	0.025500	ND to ND	9/4	0.029125	ND to ND	오	ž	None	오	NC	웆
Naphthalene	5/0	0.025500	ND to ND	9/4	0.029125	ND to ND	오	잁	None	2	NC NC	웆
Nitrobenzene	0/3	0.025500	ND to ND	9/4	0.029125	ND to ND	¥	Š	None	2	NG NG	ž
Pentachlorophenol	0/3	0.025500	ND to ND	9//	0.029125	ND to ND	윷	2	None	2	NC	S.
Phenanthrene	0/3	0.025500	ND to ND	9/6	0.029125	ND to ND	오	2	None	ž	NC	오
Phenol	0/3	0.025500	ND to ND	7/0	0.029125	ND to ND	Ę	2	None	¥	S	S
Pyrene	0/3	0.025500	ND to ND	1/4	0.040125	0.073 to 0.073	NC NC	Ş	None	꽃	S	옻
bis(2-Chloroethoxy)methane	0/3	0.025500	ND to ND	9/6	0.029125	ND to ND	S	ž	None	웆	NC NC	S
bis(2-Chloroethyl)ether	0/3	0.025500	ND to ND	9/4	0.029125	ND to MD	S	皇	None	SC	Š	2
bis(2-Ethylhexyl)phthalate	0/3	0.025500	ND to ND	1/4	0.056875	0.14 to 0.14	2	오	None	웆	2	呈
di-n-Butylphthalate	1/3	0.042667	0.077 to 0.077	1/4	0.036875	0.06 to 0.06	0.0770	0	Wilcoxon	0.5000	SE	0.2145
di-n-Octylphthalate	0/3	0.025500	ND to ND	9/0	0.029125	ND to ND	꾩	꽃	None	웆	꾶	Ş
o-Cresol	0/3	0.025500	ND to MD	9/4	0.029125	ND to ND	오	ž	None	皇	S	오
p-Cresol	0/3	0.025500	ND to ND	9/4	0.029125	ND to ND	SE.	S	None	Š	오	S

79 ==

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

00002343 0.000015 to 0.00056 0.000036 3 Wilcoxon 0.2054 NS 0.1562 00002346 0.000034 to 0.000048 0.0000040 0.000048 0.000004 0.0000040 0.000040 0.000040 0.00004 0.00004 0.000004 0.000004 0.000004 0.000004 0.000005 0.000004 0.000005 0.000004 0.000005 0.000004 0.000005 0.000004 0.000001 0.000004 0.000001 0.000004 0.000001 0.000004 0.000001 0.000004 0.000001 0.000004 0.000001 0.000004 0.000004 0.000001 0.000001 0.000004 0.000001 0.000001 0.000004 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000000 0.0000000000000000000 0.00000000000000000000000000000000000
0 3 Wilcoxon 0.2054 NS 0 3 Wilcoxon 0.2034 NS 0 3 Wilcoxon 0.2054 NS 0 3 Wilcoxon 0.2054 NS 0 Wilcoxon 0.2054 NS 1 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 0 Wilcoxon 0.2054 NS 1 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS
10 3 Wilcoxon 0.2054 NS 10 3 Wilcoxon 0.2034 NS 10 3 Wilcoxon 0.2034 NS 10 3 Wilcoxon 0.2034 NS 10 3 Wilcoxon 0.2054 NS 11 11 12 12 13 12 13 14 12 12 13 14 12 12 14 12 12 13 15 14 12 13 16 16 16 16 17 17 16 16 18 17 16 17 19 17 17 17 19 18 17 19 19 17 19 19 17 19 19 17 19 19 17 19 18 17 19 18 18 19 19 19 19 19 19 19 19
0 3 Wilcoxon 0.2034 NS NC None NC NC O 3 Wilcoxon 0.2034 NS O 3 Wilcoxon 0.2054 NS O 3 Wilcoxon 0.2054 NS O 0 Wilcoxon 0.2054 NS O 2 Wilcoxon 0.2054 NS O 2 Wilcoxon 0.2054 NS O 3 Wilcoxon 0.2054 NS O 4 Wilcoxon 0.2054 NS O 5 Wilcoxon 0.2054 NS O 6 Wilcoxon 0.2054 NS O 7 Wilcoxon 0.2054 NS
NC None
NC None NC 0 3 Wilcoxon 0.2034 NS 0 3 Wilcoxon 0.2054 NS 0 3 Wilcoxon 0.2054 NS 0 Wilcoxon 0.2054 NS 90 1 Wilcoxon 0.2054 NS 90 1 Wilcoxon 0.2054 NS 9 3 Wilcoxon 0.2054 NS 1 3 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 4 Wilcoxon 0.2054 NS 5 Wilcoxon 0.2054 NS 6 2 Wilcoxon 0.2054 NS
0 3 Wilcoxon 0.2034 NS 0 3 Wilcoxon 0.2054 NS 0 0 Wilcoxon 0.9235 NS 0 0 Wilcoxon 0.9235 NS 0 0 Wilcoxon 0.9235 NS 0 0 Wilcoxon 0.2054 NS 0 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.2054 NS 0 1 Wilcoxon 0.2054 NS 0 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.2054 NS
0 3 Wilcoxon 0.2054 NS 0 3 Wilcoxon 0.2054 NS 0 0 Wilcoxon 0.9235 NS NC None NC NC 0 0 Wilcoxon 0.8413 NS 00 3 Wilcoxon 0.2054 NS 00 2 Wilcoxon 0.2054 NS 00 2 Wilcoxon 0.2054 NS 00 1 Wilcoxon 0.2054 NS 00 1 Wilcoxon 0.2054 NS 01 Wilcoxon 0.2054 NS 02 Wilcoxon 0.2054 NS 03 Wilcoxon 0.2054 NS 04 Wilcoxon 0.2054 NS 05 Wilcoxon 0.2054 NS 06 Wilcoxon 0.2054 NS 07 Wilcoxon 0.2054 NS 08 Wilcoxon 0.2054 NS 09 Wilcoxon 0.2054 NS 09 Wilcoxon 0.2054 NS 09 Wilcoxon 0.2054 NS
0 3 Wilcoxon 0.2054 NS 0 0 Wilcoxon 0.9235 NS NC None NC NC 0 0 Wilcoxon 0.8413 NS NO 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.2054 NS NC None NC NC 90 1 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 5 Wilcoxon 0.2054 NS 7 Wilcoxon 0.2054 NS 8 Wilcoxon 0.2054 NS 9 Wilcoxon 0.2054 NS
0 0 Wilcoxon 0.9235 NS NC None NC NC 0 0 Wilcoxon 0.8413 NS 00 3 Wilcoxon 0.2054 NS 00 2 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.2054 NS NC None NC NC 90 1 Wilcoxon 0.2054 NS 1 Wilcoxon 0.2054 NS 1 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 2 Wilcoxon 0.5000 NS
MC None NC NC 0 Wilcoxon 0.8413 NS 00 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.2054 NS 00 2 Wilcoxon 0.4328 NS 00 2 Wilcoxon 0.2054 NS 90 1 Wilcoxon 0.2054 NS 1 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 4 Wilcoxon 0.2054 NS 9 Wilcoxon 0.2057 NS
00 0 Wilcoxon 0.8413 NS 00 3 Wilcoxon 0.2054 NS 00 2 Wilcoxon 0.2054 NS 00 2 Wilcoxon 0.4328 NS 00 1 Wilcoxon 0.5679 NS 00 1 Wilcoxon 0.2054 NS 01 Wilcoxon 0.2054 NS 01 Wilcoxon 0.2054 NS 02 Wilcoxon 0.2054 NS 03 Wilcoxon 0.2054 NS 04 Wilcoxon 0.2054 NS 05 Wilcoxon 0.2054 NS 06 2 Wilcoxon 0.2054 NS
00 3 Wilcoxon 0.2054 NS 0 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.4328 NS NC None NC NC 90 1 Wilcoxon 0.5679 NS 3 Wilcoxon 0.2054 NS 1 3 Wilcoxon 0.2054 NS 1 3 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 2 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS
0 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.4328 NS NC None NC NC 90 1 Wilcoxon 0.5679 NS 3 Wilcoxon 0.2054 NS 1 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.5000 NS
0 2 Wilcoxon 0.4328 NS NC None NC
NC None NC NC 90 1 Wilcoxon 0.5679 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.5000 NS 2 Wilcoxon 0.5075 NS
90 1 Wilcoxon 0.5679 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.5000 NS 2 Wilcoxon 0.5000 NS
3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 5 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.5000 NS 2 Wilcoxon 0.3075 NS
3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.5000 NS 2 Wilcoxon 0.5075 NS
3 Wilcoxon 0.2054 NS 3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.5000 NS 2 Wilcoxon 0.3075 NS
3 Wilcoxon 0.2054 NS 0 2 Wilcoxon 0.5000 NS 2 Wilcoxon 0.3075 NS
0 2 Wilcoxon 0.5000 NS 2 Wilcoxon 0.3075 NS
2 Wilcoxon 0.3075 NS

	Test Power on (a)	0.1576		Test Power (a)	0.1697
	e Test F Conclusion	S S		Test Conclusion	S
	P-Value for Test	Wilcoxon 0.2034 Wilcoxon 0.5000			
	N > UTL for Test Bkgrd Type	Wilcoxor Wilcoxor		P-Value for Test	0.0886
	N > UTL for Bkgrd	v -		pe t	Witcoxon
	ref UTL	0.00000230	ng/kg	L r Test rd Type	
	₩ 5	9	Units≕	N > UTL for Bkgrd	
	Site Range	to 8.9E-	od=300.0	REFUTL	5.16
(continued)	Site	.00000498 4.5E-6 to 8.9E-6 .00001730 2.3E-6 to 0.000046	N = 25 AOC=Towers Area DEPTH=Surface Method=300.0 Units=mg/kg	Site Range	2.29 to 11.4
	Site Hits	3/4 .00	Area DEP1	Site Mean	6.8450
		2.3E-6 0.000013	AOC=Towers	Site #its	2/2
	REF Range	3/3 .000001900 1.7E-6 to 3/3 .000008967 4.9E-6 to		REF Range	1.56 to 3.76
	REF	.00000190			
	REF	3/3		REF Mean	2.2550
			; ; ; ;	REF	9/9
	Analyte	Total TCDD Total TCDF		Analyte	Chloride

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

N = 2

09:46 Tuesday, July 28, 1998 61

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

0.1945 Test Power (a) Conclusion Test Ş P-Value 0.3162 fot Test Wilcoxon Test Type Bkgrd for 15.5 REF UTL 4.24 to 23.1 " Z Site Range Site 13.67 Mean Site Hits 2/5 3.33 to 8.33 Range REF 5.0625 REF Hean 2/6 REF Analyte Nitrate

			_		25
		Test	Power	(a)	0.2257
			Test	Conclusion	SN
		P-Value	for	Test	0.5913
g/kg			Test	Type	Wilcoxon
0 Units=m	^ =	Ę	for	Bkgrd	2
d=1L₩04.			REF	ΝŢ	1.08
AOC=Towers Area DEPTH=Surface Method=IL₩O4.0 Units=mg/kg			Site	Range	0.45 to 1.7 1.08
s Area DEPT			Site	Mean	0.48542
OC=Tower:			Site	Hits	5/12
W			REF	Range	0.43 to 0.6
			REF	Mean	0.39667
			REF	Hits	9/4
; ; ; ; ; ; ;				Analyte	Cyanide

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

_ |-

Site vs. Reference: Means Comparisons and UTL Statistics

---- AOC=Towers Area DEPTH=Surface Nethod=11MO4.0 Units=mg/kg·············

								^=				
								UTL		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	Į,	Bkgrd	Type	Test	Conclusion	(B)
Aluminum	9/9	49633.33	39900 to 57200	12/12	49050.00	13500 to 78800	74000	-	t-Test	0.5308	SX	0.7600
Antimony	9/9	1.63	1.4 to 2.4	10/12	1.36	0.77 to 2.7	2.40	-	Wilcoxon	0.7951	NS NS	0.2562
Arsenic	9/9	3.78	2.9 to 5.2	12/12	4.28	2.6 to 8.3	6.64	-	Wilcoxon	0.3732	SZ	0.1960
Barium	9/9	75.85	60.2 to 96.9	12/12	108.53	13.8 to 609	130	-	Wilcoxon	0.5912	SN	0.2254
Beryllium	1/6	0.12	0.25 to 0.25	5/12	0.18	0.24 to 0.36	0.250	4	Wilcoxon	0.3061	SN	0.1879
Cadmium	9/9	0.79	0.65 to 1	11/12	0.88	0.18 to 2	1.26	~	t-Test	0.2836	SN	0.5211
Calcium	9/9	11016.67	9420 to 12800	12/12	14417.50	3520 to 27700	15400	2	t-Test	0.0678	NS	0.5464
Chromium	9/9	30.15	26.4 to 34.5	12/12	19.62	6.3 to 47.9	39.9	٠,	t-Test	0.5462	SN	0.7267
Cobalt	9/9	22.27	19.6 to 24.9	12/12	19.36	3.5 to 29	58.9	~	Wilcoxon	0.5000	SN.	0.2102
Copper	9/9	100.73	90 to 115	12/12	96.91	7.5 to 150	134	4	Wilcoxon	0.2753	SN	0.1835
Iron	9/9	44316.67	38000 to 50600	12/12	42425.00	11100 to 64400	00909	-	Wilcoxon	0.3065	NS	0.1875
Lead	9/9	37.80	13.8 to 57.3	12/12	23.58	3 to 97.5	95.5	-	Wilcoxon	0.9699	SN	0.3185
Magnes i um	9/9	11400.00	11000 to 11700	12/12	8112.50	2450 to 11700	12400	0	Wilcoxon	0.9857	NS	0.3407
Manganese	9/9	796.67	682 to 875	12/12	766.00	173 to 1200	1050	4	Wilcoxon	0.2754	SN	0.1834
Mercury	9/9	0.11	0.06 to 0.14	9/12	0.02	0.03 to 0.14	0.228	0	t-Test	0.9973	SN	0.8920
Nickel	9/9	33.43	30.5 to 35.4	12/12	25.68	5.7 to 38.8	39.5	0	Wilcoxon	0.8416	SH	0.2654
Potassium	9/9	409.50	362 to 525	12/12	661.58	198 to 989	643	7	t-Test	0.0036	s	0.5592
Selenium	9/9	0.54	0.43 to 0.61	2/12	0.25	0.4 to 0.74	0.794	0	Wilcoxon	0.9934	SN	0.3625
Silver	9/9	0.37	0.27 to 0.61	9/12	0.26	0.2 to 0.43	0.610	0	Wilcoxon	0.8623	NS	0.2708
Sodium	9/9	1758.33	1470 to 1990	12/12	1135.92	533 to 1970	2430	0	t-Test	9666.0	SE	0.9964
Thallium	9/9	1.11	0.85 to 1.3	7/12	1.15	1 to 2.5	1.82	4	t-Test	0.4426	SE	0.4700
Vanadium	9/9	182.33	148 to 215	12/12	172.86	34.8 to 287	268	-	t-Test	0.6284	SH.	0.7248
Zinc	9/9	106.88	71 to 156	12/12	95.80	25.5 to 223	524	0	t-Test	0.6959	SE	0.6344

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

09:46 Tuesday, July 28, 1998 63

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

N = 23

----- AOC=Towers Area DEPTH=Surface Method=OLMO3.2.Units=mg/kg --------

Test	(a)	꾶	0.2166	0.1996	옻	¥	꾶	S	꾶	오	S	S	S	S	Š	Š	S	꾩	꾩
Test	Conclusion	NC	NS	SN	S	N	S	NC	N	NC	N	Š	NC	NC	Š	잁	မှ	SK SK	꾩
P-Value for	Test	S	0.5184	0.4088	오	S	SC	S	오	S	S	S	ž	ž	3 2	NC	2	2	¥
Test	Type	None	Wilcoxon	Wilcoxon	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
* UTL for	Bkgrd	Ş	0	-	Ş	皇	皇	皇	2	2	2	2	2	S	2	2	S	2	S
REF	UTL	Š	0.990	0.200	Ş	¥C	2¥	£	꾩	皇	皇	皇	오	皇	皇	¥	¥	2	S
Site	Range	0.0044 to 0.015	0.0016 to 0.17	0.0015 to 0.24	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND
Site	Mean	0.003667	0.047615	0.047357	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126	0.000126
Site	Hits	5/12	10/12	10/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12	0/12
REF	Range	ND to ND	0.00086 to 0.99	0.0069 to 0.2	ND to ND	*ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to MD	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND
REF	Mean	0.00016			0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016
REF	Hits	9/0	9/9	9/9	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0						9/0	9/0
	Analyte	4'4'-000	4,4'-DDE	4,4'-DDT	Aldrin	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroctor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Dieldrin	Endosul fan 1	Endosulfan 11	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

			-	Area C)EPTH=Surfa (con1	NOC=Towers Area DEPTH=Surface Method=OLMO3.2 Units=mg/kg	Inits=mg/kg					
								^ ~				
								UTL		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UT.	Bkgrd	Type	Test	Conclusion	(a)
Heptachlor	9/0	.00015500	ND to ND	1/12	.0001879	0.00088 to 0.00088	NC NC	S	None	오	S	NC
Heptachlor epoxide	9/0	.00015500	ND to ND	1/12	.0002304	0.0014 to 0.0014	2	NC	None	呈	S	S
Methoxychlor	9/0	.00015500	ND to ND	0/12	,0001258	AD to ND	오	N.	None	오	N	잁
Toxaphene	9/0	.00015500	ND to ND	0/12	.0001258	MD to ND	S S	S	None	¥	S	ž
alpha-BHC	9/0	.00015500	ND to ND	0/12	.0001258	MD to ND	⊋	皇	None	2	NC	¥
alpha-Chlordane	9/1	.00027833	00027833 0.00087 to 0.00087	4/12	.0014475	0.002 to 0.0078	0.000870	4	Wilcoxon	0.5000	SN	0.2106
beta-BHC	9/0	.00015500	ND to ND	0/12	.0001258	ND to ND	오	皇	None	呈	S	皇
del ta-BHC	9/0	.00015500	ND to MD	0/12	.0001258	ND to ND	¥	ž	None	呈	S	오
gamma-BKC(Lindane)	9/0	.00015500	ND to ND	0/12	.0001258	ND to ND	ž	Š	None	웆	NC	웊
gamma-Chlordane	9/0	.00015500	ND to ND	4/12	.0014392	.0014392 0.0023 to 0.0082	S	皇	None	웊	S	NC

N = 28

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

								^ =				
								JTU		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	Π	Bkgrd	Type	Test	Conclusion	(a)
1 2 4-Trichlorohenzene	9/0	0.026417	NO to NO	0/12	0.025167	ND to ND	Ş	오	None	SC	NC	SK SK
1 2-Dichlorobenzene	9/0	0.026417	Ş	0/12	0.025167	ND to ND	오	Ş	None	S	SN	S
1.3-Dichlorobenzene	9/0	0.026417		0/12	0.025167	ND to ND	Ş	皇	None	오	NC C	ž
1 4-Dichlorobenzene	9/0	0.026417	\$	0/12	0.025167	ND to ND	잁	S	None	¥C	Ş	S
2.2'-oxybis(1-chloropropane)	9/0	0.026417		0/12	0.025167	ND to ND	S	S	None	읒	NC	오
2,4,5-Trichtorophenol	9/0	0.026417	\$	0/12	0.025167	ND to ND	2	Š	None	오	NC	ž
2.4.6-Trichlorophenol	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	¥	오	None	Ş	ž	ž
2.4-Dichlorophenol	9/0	0.026417		0/12	0.025167	ND to ND	Š	오	None	S.	S	皇
2.4-Dimethylphenol	9/0	0.026417		0/12	0.025167	ND to ND	NC	읒	None	S	2	ž
2.4-Dinitrophenol	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	S	呈	None	S	Ş	Ş
2.4-Dinitrotoluene	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	S	皇	None	¥C	S	2
2.6-Dinitrotoluene	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	S	오	None	S	S	¥
2-chloronaphthalene	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	Š	오	None	S	웆	皇
2-Chlorophenol	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	일	皇	None	ž	S	2
2-Methylmachthalene	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	S	오	None	皇	N.	2
2-Nitroaniline	9/0	0.026417		0/12	0.025167		2	꽃	None	Ş	20	오
2-witrophenol	9/0	0.026417		0/12	0.025167	ND to ND	¥	오	None	ž	S	ž
3.3'-Dichtorobenzidine	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	皇	S	None	S	S	S.
3-Nitroaniline	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	S	S	None	2	S	Ş
4.6-Dinitro-2-methylphenol	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	Š	옻	None	¥	S	皇
4-Bromophenyl-phenylether	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	꽃	읒	None	웆	S	2
4-Chloro-3-methylphenol	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	S	S	None	S	NC	皇
4-Chloroaniline	9/0	0.026417	ND to ND	0/12	0.025167	ND to ND	皇	S	None	Š	오	呈

Site vs. Reference: Means Comparisons and UTL Statistics

	(continued)	
--	-------------	--

	Test	Power		i R	2	2	2	2	NC NC	S	2	2	2	Ş	0.2786	옾	NC	S	NC	0.3218	NC	0.1980	S	S	Š
		Test	Conclusion	Ş	2	웆	2	2	Š	2	皇	皇	윷	오	SN	Ş	皇	윭	呈	SE	오	SE	皇	Š	S
	P-Value	for	Test	ž	2	오	S	呈	SK	웆	꽃	ž	2	2	0.8892	웊	呈	Ş	Ş	0.9727	Ş	0.3908	呈	ž	S.
		Test	Туре	None	None	None	None	None	None	None	None	None	None	None	Wilcoxon	None	None	None	None	Wilcoxon	None	Wilcoxon	None	None	None
^ = :	Ħ	for	Bkgrd	2	呈	웆	ž	呈	皇	Š	S	皇	웆	꾩	-	皇	∑	Š	Š	0	S	m	¥	皇	2
		REF	UTL	Ş	ş	呈	¥	£	¥	皇	오	皇	꾩	¥	0.0830	S	¥C	ž	S	0.194	닺	0.0600	잁	S.	МC
		Site	Range	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	0.14 to 0.14	0.23 to 0.23	0.18 to 0.18	0.17 to 0.17	0.2 to 0.2	0.09 to 0.09	ND to ND	0.051 to 0.17	ND to ND	ND to ND	0.077 to 0.11	ND to ND	0.055 to 0.11	ND to ND	ND to ND	ND to ND
		Site	Mean	0.025167	0.025167	0.025167	0.025167	0.025167	0.025167	0.034833	0.042333	0.038167	0.037333	0.039833	0.030250	0.025167	0.039458	0.025167	0.025167	0.036333	0.025167	0.043958	0.025167	0.025167	0.025167
		Site	Hits	0/12	0/12	0/12	0/12	0/12	0/12	1/12	1/12	1/12	1/12	1/12	1/12	0/12	2/12	0/12	0/12	2/12	0/12	5/12	0/12	0/12	0/12
		REF	Range	AS to AS	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	MD to ND	0.076 to 0.083	ND to ND	ND to MD	ND to ND	ND to ND	0.058 to 0.13	ND to ND	0.055 to 0.06	ND to ND	ND to ND	ND to ND
		Æ	Mean	0.026417	0.026417	0.026417	0.026417	0.026417	0.026417	0.026417	0.026417	0.026417	0.026417	0.026417	0.044167	0.026417	0.026417	0.026417	0.026417	0.069167	0.026417	0.036583	0.026417	0.026417	0.026417
		REF	Hits	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/2	9/0	9/0	9/0	9/0	9/9	9/0	5/6	9/0	9/0	9/0
			Analyte	4-Chlorophenyl-phenylether	4-Nitroanaline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butylbenzylphthalate	Carbazole	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Diethylphthalate	Dimethylphthalate	Fluoranthene	Fluorene	Nexachloro-1,3-butadiene	Hexachlorobenzene

WS = one-tailed test not statistically significant at the alpha = 0.05 significance level S = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^ =		9		1001
						•	ļ	, ii		r-varue	,	200
	REF	REF	REF	Site	Site	Site	REF	for	Test	ţoţ	fest	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Туре	Test	Conclusion	(a)
Hexachlorocyclopentadiene	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	S	Ä	None	오	NC	Š
Hexachloroethane	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	皇	Ş	None	ž	NC	Š
Indeno(1,2,3-cd)pyrene	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	ž	Ş	None	꾩	SC	Š
Isophorone	9/0	0.02642	ND to ND	0/12	0,02517	ND to ND	오	Š	None	꽃	S	웆
N-Nitroso-di-n-propylamine	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	2	몵	None	웊	NG	呈
N-Nitrosodiphenylamine	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	S	S	None	오	SC	웆
Naphthalene	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	오		None	2	SC	웆
Nitrobenzene	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	NC	S	None	물	分	皇
Pentachlorophenol	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	S	S.	None	S	S	Ş
Phenanthrene	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	옷	몵	None	SC	S	물
Phenol	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	잁	잁	None	오	¥	S
Pyrene	5/6	0.03792	0.053 to 0.07	7/12	0.05433	0.056 to 0.16	0.0700	2	Wilcoxon	0.2455	SN	0.1799
bis(2-Chloroethoxy)methane	9/0	0.02642		0/12	0.02517	ND to ND	S	Š	None	S	S	
bis(2-Chloroethyl)ether	9/0	0.02642		0/12	0.02517	ND to ND	NC	¥C	None	잁	Š	2
bis(2-Ethylhexyl)phthalate	9/9	0.27333		12/12	0.27400	0.056 to 0.76		0	Wilcoxon	0.7397	SN	0.2461
di-n-Butylphthalate	9/9	0.14650		6/12	0.06742	0.058 to 0.2	0.280	0	Lox	0.9856	NS	0.3402
di-n-Octylphthalate	9/0	0.02642		0/12	0.02517	ND to ND	皇	Ş	None	¥	NC	S
o-Cresol	9/0	0.02642	ND to ND	0/12	0.02517	ND to ND	오	S	None	×	NC	욽
p-Cresol	9/0	0.02642		0/12	0.02517	ND to ND	윷	S	None	ջ	S	오

79 = N

09:46 Tuesday, July 28, 1998 69

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

	Test	Power	(a)	0.3028
		Test	Conclusion (a)	S S
	P-Value	for	Test	0.9494
		Test	Type	Wilcoxon 0.9494 Wilcoxon 0.9856
	V JT	for	Bkgrd	-0
s=mg/kg	4	REF	UTL	0.000152
AOC≈Towers Area DEPIH=Surface Method=SW8290 Units=mg/kg		Site	Range	.9E-7 to 0.000278 E-6 to 0.000413
IH=Surface Met (continued)		Site	Mean	.00004973 2
trea DEP		Site	Hits	2 12/12 12/12
		REF	Range	6/6 .00005538 0.000021 to 0.000152 12/12 .00004973 2.9E-7 to 0.000278 6/6 .00019707 0.00006 to 0.000522 12/12 .00007782 1E-6 to 0.000413
		REF	Mean	.000005538
		REF	Hits	9/9
			Analyte	Total TCDD Total TCDF

N = 25

....... AOC≕Trend Analysis DEPTH=Subsurface Method⇒300.0 Units=mg/kg

Test	Power	(a)	0.1963 NC
	Test	Conclusion	N NS
P-Value	for	Test	0.5000 NC
	Test	Туре	Wilcoxon None
× n	for	Bkgrd	0 Y
	REF	Į,	9.64 NC
	Site		7.68 to 7.68 ND to ND
	Site	Mean	7.68 0.76
	Site	Hits	1/1
	REF	Range	2.25 to 9.64 ND to ND
	REF	Mean	5.39667
	REF	Hits	3/3 0/3
		Analyte	Chloride Fluoride

2 || Z

iugi

N > UTL P-Value Test Power Analyte Hits Mean Range UTL Bkgrd Type Test Conclusion (a) Nitrate 3/3 4.77667 3.5 to 6.74 1/1 8.38 8.38 to 8.38 6.74 1 Wilcoxon 0.2185 WS 0.1666	# % t
--	-------

Test	(9)	0.1485
Test	Conclusion	NS
P-Value for	Test	0.1836
mg/kg ·····	Туре	Wilcoxon
f.O Units= N > UTL for	Bkgrd	īU
thod=1LM0	JT.	0.390
AOC=Trend Analysis DEPTH=Subsurface Method=ILMO4.0 Units=mg/kg N > UTL Site Site Site REF for Test	Range	0.45091 0.51 to 1.3 0.390
nlysis DEPTI	Mean	0,45091
Trend And	Hits Tits	9 5/11
	Range	Ď.
REF	X ean	0.24833 0.39 to
REF	±its	1/3
1 1 1 1 1 1 1	Analyte	Cyanide

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

.

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

Test	Power	(a)	0.1401	0.1817	0.1202	0.1239	S	0.0958	0.2838	0.1091	0.1401	0.090	0.1317	0.1057	0.3512	0.1023	0.0993	0.1163	0.1761	0.1239	SK SK	0.4294	0.2296	0.1399	0.0779
	Test	Conclusion	SX	SN	SN	SN	S	s	SN	SN	SN	v	SN	s	S	s	s	X.S	SH	S#	Š	S≠	S	SN	S
P-Value	for	Test	0.1475	0.3512	0.0812	0.0923	¥	0.0319	9962.0	0.0553	0.1475	0.0366	0.1174	0.0482	0.9374	0.0421	0.0361	0.0717	0.3241	0.0923	皇	0.9865	0.5608	0.1478	0.0135
	Test	Type	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	None	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon	None	Wilcoxon	Wilcoxon	Wilcoxon	Wilcoxon
× L	for	Bkgrd	€	M	7	æ	သ္ဆ	9	7	٥	80	٥	∞	ထ	-	٥	ထ	٥	9	ထ	SC	0	m	€0	=
	REF	占	57700	1.50	5.60	72.3	S	0.530	11600	30.8	25.0	116	51800	8.70	12200	890	0.0400	32.9	285	0.600	呈	2030	1.70	219	9.87
	Site	Range	41900 to 116000	1.1 to 22.5	1.7 to 8.9	55 to 606	0.28 to 0.92	0.35 to 10.4	3090 to 13900	20.6 to 77.5	18.8 to 42.3	103 to 1290	40300 to 97100	5.5 to 869	8260 to 15100	771 to 1540	0.04 to 1.2	22.9 to 72	172 to 1080	0.67 to 3	0.33 to 53.3	116 to 1700	3.3 to 5.2	143 to 484	50.2 to 1710
	Site	Mean	76445.45	3.16	3.93	129.52	0.37	1.79	8961.82	48.05	28.95	257.00	65081.82	116.38	10230.00	1167.91								280.36	247.33
	Site	Hits	11/11	11/1	11/11	11/11	7/11	11/11	11/11	11/11	11/11	11/11	11/11	11/11	11/11	11/11	10/11	11/11	11/11	8/11	4/11	11/11	3/11	11/11	11/11
	REF	Range	52300 to 57700	1 to 1.5	1.3 to 2.6	67.9 to 72.3	ND to ND	0.47 to 0.53	9380 to 11600	24.9 to 30.8	22.2 to 25	103 to 116	45100 to 51800	5.4 to 8.7	10900 to 12200	800 to 890	0.02 to 0.04	28.5 to 32.9	263 to 285	0.58 to 0.6	ND to ND	1750 to 2030	1.4 to 1.7	185 to 219	40 to 48.6
	REF	Mean	54100.00	0.93	2.03	69.87	0.10	0.49	10726.67	27.13	23.33	107.67	47666.67	7.33	11700.00	830.67	0.03	30.77	273.33	0.46	0.10	1890.00	1.17	197.67	44.33
	REF	Hits	3/3	2/3	3/3	3/3	0/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	2/3	0/3	3/3	2/3	3/3	3/3
		Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobal t	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

N = 23

								v T		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hīts	Mean	Range ·	Hits	Mean	Range	ΙΙ	Bkgrd	Type	Test	Conclusion	(a)
4,4'-000	6/3	.0001267	ND to ND	2/11	0.001045	0.0039 to 0.0062	¥	S	None	꽃	NC	NC SC
4'4'-DDE	3/3	.0029200	0.00099 to 0.0058	7/11	0.098845	0.00073 to 0.69	0.00580	ις.	Wilcoxon	0.5607	NS	0.2290
4,4'-DDT	2/3	.0008750	0.0008 to 0.0017	6/11	0.068349	0.001 to 0.32	0.00170	7	Wilcoxon	0.2717	NS	0.1669
Aldrin	0/3	.0001267		0/11	0.000151	ND to ND	웆	ž	None	SC	NC	S
Aroctor-1016	0/3	.0001267		11/0	0.000151	ND to ND	¥	ž	None	꾶	NC	S
Aroclor-1221	0/3	.0001267		11/0	0.000151	ND to ND	웆	ž	None	꽃	NC SC	오
Aroclor-1232	0/3	.0001267		11/0	0.000151	ND to ND	SC	皇	None	ž	¥C	皇
Aroclor-1242	0/3	.0001267	ND to ND	0/11	0.000151	ND to ND	윷	皇	None	왍	NC	皇
Aroclor-1248	0/3	.0001267		0/11	0.000151	ND to ND	웆	오	None	S	NC	오
Aroclor-1254	0/3	.0001267		0/11	0.000151	ND to ND	오	¥	None	깆	NC	ž
Aroctor-1260	0/3	.0001267	ND to ND	2/11	0.029943	0.028 to 0.3	오	ž	None	옷	S	오
Dieldrin	0/3	.0001267	ND to ND	11/0	0.000151	ND to ND	皇	오	None	呈	Š	웊
Endosulfan I	0/3	.0001267	ND to ND	11/0	0.000151	ND to ND	皇	¥	None	오	N	꽃
Endosulfan II	0/3	.0001267	ND to ND	1,0	0.000151	ND to ND	皇	¥	None	오	NC	웆
Endosulfan sulfate	0/3	.0001267	ND to ND	11/0	0.000151	ND to ND	2	皇	None	¥	S.	\$
Endrin	0/3	.0001267	ND to ND	71,	0.000151	ND to ND	皇	皇	None	오	S.	皇
Endrin aldehyde	0/3	.0001267	ND to ND	0/11	0.000151	ND to ND	오	皇	None	呈	꾶	일
Endrin ketone	0/3	.0001267	ND to ND	0/11	0.000151	ND to ND	S	오	None	皇	皇	Š

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

Test	(e)	윤	皇	읒	ž	S	웊	SK.	SE SE	S	NC .
Test	Conclusion	N.	SC	S	S	S	Š	오	S	S	NC
P-Value for	Test	Š	오	오	皇	皇	皇	皇	S	ž	S
Test	Type	None	None	None	None	None	None	None	None	None	None
₹ UTL for	Bkgrd	皇	S	오	S	오	오	오	오	오	S
REF	Th	2	Ş	Š	Š	ž	ñ	ջ	Š	ջ	N
Site	Range	ND to ND	ND to ND	ND to KD	ND to ND	ND to ND	0.0076 to 0.0076	ND to ND	ND to ND	ND to ND	ND to ND
Site	Mean	.00015136	.00015136	.00015136	.00015136	.00015136	.00082864	.00015136	.00015136	.00015136	.00015136
Site	Hits	0/11	0/11	0/11	0/11	0/11	1/11	0/11	0/11	0/11	0/11
REF	Range	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ţ	ND to ND	ND to ND	ND to ND
REF	Mean	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667	.00012667
REF	Kits stits	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3
	Analyte	Heptachior	Heptachlor epoxide	Methoxychlor	Toxaphene	alpha-BMC	alpha-Chlordane	beta-8HC	delta-BHC	gamma-BHC(Lindane)	gamma-Chlordane

N = 28

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

----- A0C=Trend Analysis DEPTH=Subsurface Method=DLM03.2 Units=mg/kg

								* 1En		p-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UIL	Bkgrd	Type	Test	Conclusion	<u>e</u>
1,2,4-Trichlorobenzene	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	긏	2	None	Š	SC	Š
1,2-Dichlorobenzene	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	ž	2	None	S	NC	S
1,3-Dichlorobenzene	0/3	0.0255	ND to ND	0/11	0.030182		¥	皇	None	몵	SK.	오
1,4-Dichlorobenzene	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	ş	2	None	呆	S.	S
2,2'-oxybis(1-chloropropane)	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	2	皇	None	오	NC N	皇
2,4,5-Trichlorophenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	2	皇	None	꾶	SC	오
2,4,6-Trichlorophenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	2	2	None	ž	NC	S
2,4-Dichlorophenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	¥	2	None	S	NC	皇
2,4-Dimethylphenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	皇	皇	None	Ş	SH.	오
2,4-Dinitrophenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	Ş	2	None	呆	S.	S
2,4-Dinitrotoluene	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	2	皇	None	S.	NC	오
2,6-Dinitrotoluene	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	S	皇	None	웆	皇	오
2-Chloronaphthalene	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	Ş	오	Hone	皇	NC NC	오
2-Chlorophenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	Š	2	None	오	NC	皇
2-Methylnaphthalene	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	Š	2	None	皇	28	오
2-Nitroaniline	6/3	0,0255	ND to ND	0/11	0.030182	ND to ND	S	2	None	Ş	SK	오
2-Nitrophenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	SC	2	None	ž	NC	S
3,3'-Dichlorobenzidine	0/3	0.0255	ND to ND	11/0	0.030182	ND to ND	NC NC	오	None	오	SN	皇
3-Nitroaniline	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	S.	¥	None	오	SN	¥
4,6-Dinitro-2-methylphenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	¥	∑	None	ž	N	오
4-Bromophenyl-phenylether	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	오	¥	None	2	NC	웊
4-Chloro-3-methylphenol	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	2	ž	None	S	NC	웆
4-Chloroaniline	0/3	0.0255	ND to ND	0/11	0.030182	ND to ND	S.	NC	None	Ş	NC	<u> </u>

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

	Test	Power		!	2	S	S	S	S	S	NC	S	S	NC	S	S	NC	NC	NC	S	0.1970	S	S	NC	NC	1
		Test	Conclusion	!	S	皇	2	呈	皇	呈	오	오	皇	皇	2	잁	2	呈	. 9	皇	S	呈	오	오	S	-
	P-Value	for	Test	!	2	NC NC	2	¥	오	2	5	S	꽃	2€	2	2	3	오	S	S	0.4391	Š	¥	Ş	꾶	4
				:	None	Kone	None	None	None	None	None	None	None	¥one	None	None	¥one	None	None	None	Wilcoxon	None	None	None	None	Money
^	ΙŢ	for	Bkgrd	9	2	일	Š	S	S	2	ž	Š	ž	Š	일	S	S	잂	Š	잁	_	S	꾶	ž	S	5
		REF	댸	1	<u>د</u>	Ş	S	S	S	N	S	S	S	S	잁	S	S	S	S	S	0.0580	¥C	SC SC	S	NC	2
		Site	Range	<u> </u>	ND to KD	ND to ND	ND to ND	ND to ND	ND to ND	0.074 to 0.074	0.063 to 0.55	0.066 to 0.42	0.069 to 0.8	0.051 to 0.31	0.067 to 0.21	0.071 to 0.071	0.074 to 0.074	0.059 to 0.56	0.096 to 0.096	ND to ND	0.16 to 0.16	ND to ND	0.064 to 0.89	ND to ND	ND to ND	ON OF ON
		Site	Mean	04040	0.02018	0.03018	0.03018	0.03018	0.03018	0.03418		0.09186	0.13891			0.03391			0.03618	0.03018	0.04168	0.03018	0.13300	0.03018	0.03018	0 03018
		Site	Hits		=	0/11	0/11	0/11	0/11	1/11	4/11	4/11	4/11	4/11	3/11	1/11	1/11	4/11	1/11	0/11		0/11	4/11	0/11	0/11	0/11
		REF	Range		#D TO ND	ND to ND	₩D to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	₩D to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	0.058 to 0.058	ND to ND	ND to ₩D	ND to ND	ND to ND	NO to NO
		REF	Mean	000000	0.05530.0	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.025500	0.036333	0.025500	0.025500	0.025500	0.025500	0.025500
		REF	Hits		2/2	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	1/3	0/3	0/3	0/3	0/3	2/0
			Analyte		*-curo obneny (-bneny terner	4-Nitroanaline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butylbenzylphthalate	Carbazole	Chrysene	Dibenz(a,h)anthracene	Dibenzofuran	Diethylphthalate	Dimethylphthalate	Fluoranthene	Fluorene	Hexachloro-1,3-butadiene	Hexachlorobenzene

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

	(continued)	
--	-------------	--

								^=				
						•		ᆵ		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Kean	Range	Hits	Mean	Range	占	Bkgrd	Type	Test	Conclusion	(B)
Hexach Lorocycl opentadiene	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	NC NC	Ş	None	SC	Š	SC
Hexachloroethane	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	NC	S	None	2	Š	SC SC
Indeno(1,2,3-cd)pyrene	0/3	0.025500	ND to ND	3/11	0.07041	0.12 to 0.28	잁	2	None	2	S	
Isophorone	0/3	0.025500	ND to ND	0/11		ND to ND	S	Š	None	Ş	Š	S
N-Nitroso-di-n-propyใสกine	0/3	0.025500	MD to ND	0/11	0.03018	ND to ND	잁	2	None	2	NC	S
N-Witrosodiphenylamine	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	잁	S	None	2	NC	S
Naphthalene	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	잁	NC NC	None	오	NC S	S
Nitrobenzene	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	웊	읓	Kone	오	2	S
Pentachlorophenol	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	읓	S.	None	오	S	S
Phenanthrene	0/3	0.025500	ND to ND	3/11	0.06182	0.058 to 0.31	ž	Ş	Kone	오	Ş	Ş
Phenol	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	꾩	NC NC	None	교	S.	S
Pyrene	0/3	0.025500	ND to NO	5/11	0.12645	0.061 to 0.76	¥	2	None	皇	S	S
bis(2-Chloroethoxy)methane	0/3	0.025500	ND to MD	0/11		ND to ND	SC.	오	None	오	SZ.	¥C
bis(2-Chloroethyl)ether	0/3	0.025500	ND to ND	0/11		ND to ND	왍	꽃	None	꾩	N	2
bis(2-Ethylhexyl)phthalate	0/3	0.025500	ND to ND	3/11	0.06827	0.088 to 0.3	¥	꽃	None	2	무	웊
di-n-Butylphthalate	1/3	0.042667	0.077 to 0.077	1/11	0.19205	0.068 to 0.64	0.0770	9	Wilcoxon	0.1167	SN	0.1321
di-n-Octylphthalate	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	皇	S	None	오	Š	皇
o-Cresol	0/3	0.025500	ND to ND	0/11	0.03018	ND to ND	皇	S	None	웆	NC	꾶
p-Cresol	0/3	0.025500	ND to ND	11/0	0.03018	ND to ND	Ş	皇	None	皇	Š	呈

19 = N

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) S = one-tailed test statistically significant at the alpha = 0.05 significance level

Atsugi

							× 15	P-Value	Q	Test
	REF	REF	REF	Site	Site Site	REF	ρ	Test for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean Range	UTL	Bkgrd Type	Type Test	Conclusion	ı (a)
1,2,3,4,6,7,8,9-0000 3/3	3/3	.000037967	.000037967 0.000035 to 0.00004	11/11	.0011463 8.5E-6 to 0.0058	0.0000396	٥	Wilcoxon 0.0717	S.	0.1163
1,2,3,4,6,7,8,9-0CDF 3/3	3/3	.000004333 3.9E-6	3.9E-6 to 4.6E-6	11/11	.0000796 2.5E-6 to 0.000334	0.00000460	٥	Wilcoxon 0.0717	SN.	0.1163
1,2,3,4,6,7,8-Hpc0D	3/3	.000005867 5.7E-6	5.7E-6 to 6E-6	11/11	.0001445 2.2E-6 to 0.000997	0.00000000	٥	Wilcoxon 0.0482	S	0.1057
1,2,3,4,6,7,8-HpcDF	3/3	.000004867 4.7E-6	4.7E-6 to 5.1E-6	11/11	.0000628 ZE-6 to 0.000291	0.00000510	۰	Wilcoxon 0.0717	SN .	0.1163
1,2,3,4,7,8,9-HpcDF	1/3	.000000467	000000467 1E-6 to 1E-6	9/11	.0000081 6.3E-7 to 0.000048	0.00000100	^	Wilcoxon 0.0421	w	0.1023
1,2,3,4,7,8-HxCDD	0/3	.000000150 ND to ND	ND to ND	7/11	.0000037 5E-7 to 0.000021	NC ON	엁	None NC	2	ž
1,2,3,4,7,8-HxCDF	3/3	.000002033 1.9E-6	1.9E-6 to 2.1E-6	11/11	.0000195 8.9E-7 to 0.000092	0.00000210	٥	Wilcoxon 0.0626	SN	0.1129
1,2,3,6,7,8-HxCDD	3/3	.000001367 1.2E-6	1.2E-6 to 1.5E-6	10/11	.0000104 9.4E-7 to 0.000066	0.00000150	80	Wilcoxon 0.1038	NS	0.1280
1,2,3,6,7,8-HxCDF	3/3	.0000000970 8.5E-7	8.5E-7 to 1.1E-6	11/11	.0000076 5.3E-7 to 0.000035	0,00000110	٥	Wilcoxon 0.0551	SN	0.1092
1,2,3,7,8,9-HxCDD	3/3	.000004867	000004867 4E-6 to 5.3E-6	11/11	.0000167 3.2E-6 to 0.000078	0.00000530	~	Wilcoxon 0.1475	SE	0.1401
1,2,3,7,8,9-HxCDF	0/3	.000000183 ND to ND	ND to ND	6/11	.0000020 5E-7 to 7.3E-6	NC	皇	None NC	S	S
1,2,3,7,8-PeCDD	3/3	.000001467 1.3E-6	1.3E-6 to 1.6E-6	11/11	.0000039 7.2E-7 to 0.000019	0.00000160	9	Wilcoxon 0.2714	SE	0.1671
1,2,3,7,8-PeCDF	3/3	.000000667 5.4E-7	5.4E-7 to 8E-7	9/11	.0000056 9.5E-7 to 0.000027	0.0000000800	٥	Wilcoxon 0.0717	SN.	0.1163
2,3,4,6,7,8-HxCDF	3/3	.000002000 1.8E-6	1.8E-6 to 2.2E-6	11/11	.0000133 9.7E-7 to 0.000057	0.000000220	80	Wilcoxon 0.0713	SE	0.1165
2,3,4,7,8-PeCDF	3/3	.000001060 8.8E-7	8.8E-7 to 1.2E-6	10/11	.0000074 7.2E-7 to 0.000036	0.00000120	٥	Wilcoxon 0.0715	SR	0.1164
2,3,7,8-1000	0/3	.0000000150 ND to N	ND to ND	6/11	.0000007 2E-7 to 4E-6	NC	잁	None NC	S	Ş.
2,3,7,8-TCDF	3/3	.000000007 7.9E-7	7.9E-7 to 9.9E-7	10/11	.0000051 5.6E-7 to 0.000026	0.0000000000000000000000000000000000000	œ	Wilcoxon 0.1172	S	0.1318
Total MpCDD	3/3	.000011500 0.00001	0.00001 to 0.000013	11/11	.0002887 3.9E-6 to 0.00205	0.0000131	٥	Wilcoxon 0.0422	ဟ	0.1023
Total MpCDF	3/3	.000007933 5.6E-6	5.6E-6 to 0.00001	11/11	.0001334 2E-6 to 0.000696	0.0000100	٥	Wilcoxon 0.0553	Ş	0.1091
Total HxCDD	3/3	.000016767	000016767 0.000014 to 0.000019	11/11	.0001213 0.000016 to 0.000697	7 0.0000191	2	Wilcoxon 0.0241	S	0.0895
Total HxCDF	3/3	.000010400 8.7E-6	8.7E-6 to 0.000012	11/11	.0001055 3.6E-6 to 0.000488	0.0000115	ထ	Wilcoxon 0.1040	NS	0.1279
Total PeCDD	3/3	.000003300 1.6E-6	1.6E-6 to 4.9E-6	11/11	.0000379 1.2E-6 to 0.000253	0.00000490	æ	Wilcoxon 0.0923	NS.	0.1239
Total PeCDF	3/3	.000009733 7.4E-6	7.4E-6 to 0.000012	11/11	.0000898 4.4E-7 to 0.000461	0.0000121	6 0	Wilcoxon 0.0923	SN	0.1239

<u>5</u>

Site vs. Reference: Means Comparisons and UTL Statistics

:Trend Analysis DEPTH=Subsurface Method=SW8290 Units=mg/kg	M > UTL P-Value Test Site Site REF for Test Power Hits Mean Range UTL Bkgrd Type Test Conclusion (a)	.3E-6 11/11 .0000298 5.3E-7 to 0.000152 0.00000230 9 Wilcoxon 0.0715 NS 0.1164 .000013 11/11 .0000778 5.6E-7 to 0.000522 0.0000133 6 Wilcoxon 0.1834 NS 0.1486
AOC=Trend Analysis DE	REF Site Mean Range Hits	3/3 .000001900 1.7E-6 to 2.3E-6 11/11 3/3 .000008967 4.9E-6 to 0.000013 11/11
	REF Hits	3/3
	Analyte	Total TCDD Total TCDF

N = 25

Test Power (a)	0.3984
Test Conclusion	S S
P-Value for Test	0.0640
Test Type	t-Test Wilcoxon
N > UTL for Bkgrd	0 4
REF	5.16
Site Range	3.91 to 5 1.8 to 3.53
Site	3.689
Site Hits	4/5
REF Range	1.56 to 3.76 0.763 to 0.763
REF Mean	2.2550
REF	6/6 1/6
Analyte	Chloride Fluoride

N = 2

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

	Test Power (a)	0.1860
1	Test Conclusion	N
	P-Value for Test	0.2686
9/kg	Test Type	Wilcoxon
2 Units≖m	N > UTL for Bkgrd	-
:hod=353.	REF UTL	15.5
AOC=Trend Analysis DEPTH=Surface Method=353.2 Units=mg/kg	Site Range	6.65 to 43.9 15.5 N = 1
Analysis D	Site Mean	12.483
C=Trend	Site	3/5
A0	REF Range	3.33 to 8.33
	REF	5.0625
	REF Hits	9/9
	Analyte	Nitrate

Test Power (a)	0.3414
Test Conclusion	Ø
P-Value for Test	0.0023
Test Type	t-Test
N > UTL for Bkgrd	9
REF	1.08
Site Range	28/33 0.73136 0.34 to 1.5 1.08
Site Mean	0.73136
Site Hits	
RE.F Range	0.43 to 0.6
REF Mean	0.39667
REF Hits	9/4
Analyte	Cyanide
	N > UTL P-Value REF REF Site Site REF for Test for Test I

" **z** S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics Atsugi

AOC=Trend Analysis DEPTH=Surface Method=1LWO4.0 Units=mg/kg ------- AOC=Trend Analysis DEPTH=Surface

								^				
								Ή.		P-Value		Test
	7	9. 11.	1110	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	JL T	Bkgrd	Type	Test	Conclusion	(a)
	**	22 22707	20000 +0 57200		65330.39	40800 to 90700	74000	Ξ	Wilcoxon	0.0142	w	0.1123
Attimition	9/9	49033.33	1 4 +0 2 4		3.88	0.73 to 57.6	2.40	1	Wilcoxon	0.3639	¥S	0.1935
Antimony	0/0	2 2	20 40 5 2		6.7	2.6 to 14.7	49.6	м	Wilcoxon	0.0422	s	0.1308
Arsenic	9/9	, K	60 2 to 96.9		126.73	56.7 to 1380	130	m	Wilcoxon	0.1033	NS NS	0.1504
Barium Servici	9/0		0.25 to 0.25		0.29	0.24 to 0.63	0.250	6	Wilcoxon	0.0021	s	0.0882
perytt ium	9/4	. 6	0.65 to 1		2.11	0.71 to 23	1.26	6	Wilcoxon	0.0015	w	0.0843
	7,4	11016.67	9420 to 12800		8597.58	2710 to 16500	15400	-	t-Test	0.9984	NS	0.9958
Chronium	2 4	30.15	26.4 to 34.5		42.55	20.6 to 95.9	39.9	17	Wilcoxon	0.0114	S	0.1089
	9/9	22.22	19.6 to 24.9		35.65	17.8 to 36.4	28.9	6	Wilcoxon	0.1067	SN	0.1512
Compar	9,4	֓֞֞֜֞֜֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	90 to 115		154.49	95.3 to 591	134	18	Wilcoxon	0.0023	v	0.0887
ropper	2,4	24.001	38000 to 50600		56581.82	36800 to 78500	00909	Ξ	Wilcoxon	0.0114	s	0.1089
5 -	9,3	37.80	13.8 to 57.3		107.23	15.1 to 1420	95.5	æ	Wilcoxon	0.0457	w	0.1322
Magnestin	9/9	11400.00	11000 to 11700		9497.27	7380 to 15600	12400	2	Wilcoxon	7966.0	SE	0.3899
	2/4	79 407	682 to 875		1024.33	733 to 1380	1050	17	t-Test	0.000.0	Ø	0.9993
Harigariese	2/4	11.0	0.06 to 0.14		0.19	0.04 to 2.5	0.228	2	Wilcoxon	0.3858	SN	0.1965
nci cui y	9,9	33.43	30.5 to 35.4		38.18	23 to 68.3	39.5	13	t-Test	0.0107	ဟ	0.9804
Potassium	9/9	609,50	362 to 525		702.70	315 to 1840	643	16	Wilcoxon	0.0038	w	0.0945
Solonium	4,4	0.54	0.43 to 0.61		1.09	0.52 to 2	0.794	92	Wilcoxon	0.0142	s	0.1123
361611G	2,4	77.0	0.27 to 0.61		4,12	0.25 to 123	0.610	7	Wilcoxon	0.5767	SN.	0.2239
STIVET	9/9	1758 44	1470 to 1990		825,00	344 to 1630	2430	0	Wilcoxon	0.9997	SX	0.4572
sodium The Firm	0/0	111	0 85 to 1.3		1.48	2.2 to 4.3	1.82	12	Wilcoxon	0.8457	SN	0.2717
ווייין	0/0	182 77	148 to 215		234,42	141 to 351	892	•	Wilcoxon	0.0361	S	0.1278
venacium	9/9	106.88	71 to 156	33/33	258.96	84.8 to 3010	524	٥	Wilcoxon	0.0156	w	0.1136
?	ì	i i										

S= one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

₩ = 23

Test Power (a)	NC 0.2967	0.2579	<u> </u>	S	S	몵	웆	¥	몵	윭	꾩	2	오	꾶	웊	N
Test Conclusion	S S	2 S Z	2 ≥	S	Š	S	Ş	S	S	Ş	S	S	S	S	SS	NC NC
P-Value for Test	NC 0.9210	0.7852 NC	2	ž	NC	Š	Š	S	Š	Š	Š	ž	Š	ž	오	S
Test Type	Kone Wilcoxon	Wilcoxon	None	None	None	None	None	None	None	None						
N V UTL for Bkgrd	ž 0	~ ~ <u>~</u>		ž	오	皇	옾	읓	꽃	ž	S.	ž	SC SC	SK SK	ž	ž
REF UTL	NC 0.990	0.200	<u> </u>	NC NC	NC NC	ž	×	SK KC	SK SK	S S	ž	NC.	S	SK SK	S	S
Site Range	0,0097 to 0,018 0,00053 to 0,73	0.00084 to 0.84	ND to ND	0.21 to 0.21	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND					
Site Mean	0.000976	0.054017	0.000144	0.000144	0.000144	0.000144	0.000144	0.000144	0.006503	0.000144	0.000144	0.000144	0.000144	0.000144	0.000144	0.000144
Site Hits	2/33	19/33	0/33	0/33	0/33	0/33	0/33	0/33	1/33	0/33	0/33	0/33	0/33	0/33	0/33	0/33
REF Range	ND to ND 0.00086 to 0.99	0.0069 to 0.2 ND to ND	ND to ND	WD to ND	ND to ND	ND to ND	₩D to ND	ND to ND	ND to ND	¥D to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to ND	ND to MD
REF Hean	0.00016	0.04476	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016	0.00016
REF	9/0	5/6	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0	9/0
Analyte	4,4'-DDD 4,4'-DDE	4,4'-DDT Aldrin	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulfate	Endrin	Endrin aldehyde	Endrin ketone

S = one-tailed test statistically significant at the alpha = 0.05 significance level

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level

(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

09:46 Tuesday, July 28, 1998

Site vs. Reference: Means Comparisons and UTL Statistics

						(continued)	(continued)		ı				
									^ -				
									Ţ		P-Value		Test
	REF	REF	REF		Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range		Hits	Mean	Range	UI.	Bkgrd	Type	Test	Conclusion	(a)
Heptachlor	9/0	.00015500	寄さぎ	2	0/33	.00014439	ND to ND	S.	×	None	꽃	Ź	ž
Heptachlor epoxide	9/0	.00015500	NO to NO	⊋	0/33	.00014439	MD to ND	呈	¥ 2	None	오	NC C	꽃
Methoxychlor	9/0	.00015500	もない	Ş	0/33	.00014439	ND to ND	皇	2	Hone	웊	S.	꽃
Toxaphene	9/0	.00015500	MD to MD	Ş	0/33	.00014439	ND to ND	皇	皇	None	¥	SC SC	꾶
alpha-BHC	9/0	.00015500	ND to K	읒	0/33	.00014439	ND to ND	오	2	None	꽃	오	윷
atpha-chlordane	1/6	.00027833 0.00087	0.000	87 to 0.00087	1/33	.00022167	0.0027 to 0.0027	0.000870	-	Wilcoxon	0.3858	S.W.	0.1965
beta-BHC	9/0	.00015500 ND to ND	AB to	₽	0/33	.00014439	ND to ND	皇	오	Hone	呈	웆	¥
del ta-BHC	9/0	.00015500	NO to NO	윷	0/33	.00014439	ND to ND	呈	皇	None	오	2	웆
gamma-BHC(Lindane)	9/0	.00015500	ND to ND	9	0/33	.00014439	NO to MD	꽃	Ş	None	웆	웊	웆
gamma-Chlordane	9/0	.00015500	ND to ND	<u>Q</u>	1/33	.00020348	0.0021 to 0.0021	오	皇	None	呈	呈	웆

N = 28

NS = one-tailed test not statistically significant at the alpha = 0.05 significance level \$ = one-tailed test statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi Site vs. Reference: Means Comparisons and UTL Statistics

,								^ *				
								J.		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type	Test	Conclusion	(a)
1,2,4-Trichlorobenzene	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	S	2	None	Ş	N	S
1,2-Dichlorobenzene	9/0	0.026417	¥D to ND	0/33	0.028909	ND to ND	皇	S	None	오	N	皇
1,3-Dichlorobenzene	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	S	S	None	오	S	오
1,4-Dichlorobenzene	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	皇	皇	None	일	ž	오
2,2'-oxybis(1-chtoropropane)	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	Ş	S	None	S	SK SK	皇
2,4,5-Trichlorophenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	皇	잁	None	S	ž	皇
2,4,6-Trichlorophenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	皇	모	None	S	¥	오
2,4-Dichlorophenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	ž	잁	None	皇	SK	S.
2,4-Dimethylphenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	잁	S	None	오	S¥	S.
2,4-Dinitrophenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	잁	S	None	S	χÇ	Š
2,4-Dinitrotoluene	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	S	S	None	S	SK SK	SC SC
2,6-Dinitrotoluene	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	2	S	None	S	SK	Ş
2-Chloronaphthalene	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	S	S	None	S	Ş	SK.
2-Chlorophenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	잁	S	None	S	¥C	S.
2-Methylnaphthalene	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	皇	오	None	S	S	Ş
2-Witroaniline	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	S	S	None	S	읓	NC NC
2-∦itrophenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	¥	S	None	S	»C	S.
3,3'-Dichlorobenzidine	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	S	S	None	S	ŞÇ	ž
3-Nitroaniline	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	S	잁	None	S	Ş.	×
4,6-Dinitro-2-methylphenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	2	S	None	S	SK SK	ş
4-Bromophenyl-phenylether	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	잁	잁	None	오	꽃	잁
4-Chloro-3-methylphenol	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	Š	S	None	S	S	皇
4-Chloroaniline	9/0	0.026417	ND to ND	0/33	0.028909	ND to ND	오	S S	None	S	SK	NC

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

---- AOC=Trend Analysis DEPIH=Surface Method=OLMO3.2 Units=mg/kg ------ (continued)

								^ æ				
								ij		P-Value		Test
	Æ	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	Ę	Bkgrď	Type	Fest	Conclusion	(e)
4-Chlorophenyl-phenylether	9/0	0.026417	ND to ND	0/33	0.02891	ND to ND	S	Š	None	Š	Ş	ž
4-Nitroanaline	9/0	0.026417	ND to ND	0/33	0.02891	ND to ND	오	ž	None	잁	S	S
4-Nitrophenol	9/0	0.026417	ND to ND	0/33	0.02891	ND to ND	Š	ž	None	오	NC	오
Acenaphthene	9/0	0.026417	ND to ND	1/33	0.04106	0.43 to 0.43	皇	¥	None	오	NC	皇
Acenaphthylene	9/0	0.026417	ND to ND	1/33	0.03264	0.15 to 0.15	呈	SC	None	皇	웆	오
Anthracene	9/0	0.026417	ND to ND	2/33	0.05418	0.14 to 0.75	꾩	S	None	꽃	¥	皇
Benzo(a)anthracene	9/0	0.026417	ND to ND	6/33	0.35439	0.077 to 9.8	웆	S	Kone	웊	Š	皇
Benzo(a)pyrene	9/0	0.026417	ND to ND	10/33	0.42253	0.033 to 12	呈	S	None	呈	2	오
Benzo(b)fluoranthene	9/0	0.026417	ND to ND	9/33	0.53591	0.083 to 15	Ş	Š	None	S	S	오
Benzo(g,h,i)perylene	9/0	0.026417	ND to ND	7/33	0.24383	0.053 to 6.4	Ş	S.	None	¥	Ş	오
Benzo(k)fluoranthene	9/0	0.026417	ND to ND	4/33	0.12577	0.069 to 2.9	닱	Ş	None	웊	S	Ş
Butylbenzylphthalate	9/2	0.044167	0.076 to 0.083	8/33	0.04935	0.069 to 0.26	0.0830	•0	Wilcoxon	0.2748	SN	0.1812
Carbazole	9/0	0.026417	ND to ND	1/33	0.05288	0.82 to 0.82	윷	ž	None	¥	NC	오
Chrysene	9/0	0.026417	ND to ND	11/33	0.35194	0.051 to 9.4	皇	皇	None	皇	오	몵
Dibenz(a,h)anthracene	9/0	0.026417	ND to ND	1/33	0.09167	2.1 to 2.1	皇	2	None	오	Ş	Ş
Dibenzofuran	9/0	0.026417	ND to ND	1/33	0.03136	0.11 to 0.11	皇	2	None	皇	¥	皇
Diethylphthalate	9/9	0.069167	0.058 to 0.13	0/33	0.02891	ND to ND	0.194	0	None	오	<u>S</u>	皇
Dimethylphthalate	9/0	0.026417	ND to ND	0/33	0.02891	ND to ND	오	ž	None	皇	NC	오
Fluoranthene	9/2	0.036583	0.055 to 0.06	13/33	0.20000	0.054 to 3.5	0.0600	5	Wilcoxon	0.0736	SN	0.1424
Fluorene	9/0	0.026417	ND to ND	2/33	0.03964	0.17 to 0.24	잁	옾	None	皇	NC S	오
Hexachloro-1,3-butadiene	9/0	0.026417	ND to ND	0/33	0.02891	ND to ND	¥	呈	None	오	S	오
Hexachlorobenzene	9/0	0.026417	ND to ND	0/33	0.02891	ND to ND	Š	¥	None	ž	Š	Ş

S = one-tailed test statistically significant at the alpha = 0.05 significance level
NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
(a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Atsugi

Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^				
						•		5		P-Value		Test
	ÆF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	UTL	Bkgrd	Type	Test	Conclusion	(a)
Hexachlorocyclopentadiene	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	S	S	None	오	S	S
Hexachloroethane	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	2	Š	None	S	S	S
Indeno(1,2,3-cd)pyrene	9/0	0.02642	ND to ND	5/33	0.23695	0.062 to 6.3	S	NC	None	S	2	28.0
Isophorone	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	오	S	None	皇	오	윷
M-Nitroso-di-n-propylamine	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	S	S	None	오	Ş	웆
N-Witrosodiphenylamine	9/0	0.02642	ND to ND	1/33	0.03018	0.071 to 0.071	잁	Š	None	Ş	Š	오
Naphthalene	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	S	잁	None	옷	N S	ž
Nitrobenzene	9/0	0.02642	ND to ND	0/33		ND to ND	NC	S	None	Ş	SC	呈
Pentachlorophenol	9/0	0.02642	ND to ND		0.02891	ND to AD		Š	None	오	æ	웆
Phenanthrene	9/0	0.02642	ND to ND			0.077 to 2.1	皇	S	None	웆	SK SK	오
Phenot	9/0	0.02642	ND to ND		0.02891	ND to ND		ž	None	꽃	N.	2
Pyrene	9/2	0.03792	0.053 to 0.07		0.50424	0.05 to 13	0.0700	11	Wilcoxon	0.0295	v	0.1241
bis(2-Chloroethoxy)methane	9/0	0.02642	ND to ND		0.02891	ND to ND		S	None	₩	NC	¥
bis(2-Chloroethyl)ether	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	皇	오	None	물	S	꽃
bis(2-Ethylhexyl)phthalate	9/9	0.27333	0.13 to 0.5	32/33	0.29706	0.066 to 2.1	0.785	-	Witcoxon	0.7056	S¥	0.2433
di-n-Butylphthalate	9/9	0.14650	0.099 to 0.28	26/33	0.21515	0.069 to 0.71	0.280	ဆ	Witcoxon	0.3354	MS	0.1896
di-n-Octylphthalate	9/0	0.02642		0/33	0.02891	ND to ND	皇	皇	None	呆	2	NC NC
o-Cresol	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	ž	S	None	呈	¥C	ž
p-Cresol	9/0	0.02642	ND to ND	0/33	0.02891	ND to ND	SE SE	呈	None	몵	Š	ž

49 = N

S = one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Site vs. Reference: Means Comparisons and UTL Statistics

Atsugi

REF Site Site Site Fife For Test for Test for Test Test Test for Test Conclusion 100049350 0.0000254 1415 Mean Range UTL 8kgrd Type Test Conclusion 1000049350 0.0000254 0.0000214 0.0000254 0.0000254 0.0000257 0.0000254 0.0000257 0.0000057 0.0000057 0.0000057 0.0000057									<u>*</u> 5	α.	P-Value		Test
Hits Mean Range Hits Mean Range UTL Bkgrd Type Test Conclusion Hits Mean Range UTL Bkgrd Type Test Conclusion Hits Mean Range UTL Bkgrd Type Test Conclusion Test Complexes 0.00007485 0.0000738 133/33 .0004238 0.0000018 to 0.020096 0.000172 12 Milcoxon 0.0142 S CO0001948 0.0000194 to 0.000174 0.0000748 0.000024 14 Milcoxon 0.00074 15 Milcoxon 0.0170 S CO000195 E-6 to 0.0000174 15 Jay J. 0004290 0.000022 to 0.000274 14 Milcoxon 0.0261 S CO000195 E-6 to 0.000024 15 Jay J. 0004299 0.000027 15 Milcoxon 0.0186 S CO000195 E-6 to 0.000028 Jay J. 00000298 0.000027 15 Milcoxon 0.0261 S CO000195 E-6 to 0.000028 Jay J. 0000022 Jay J. E-6 to 0.000049		SE FF	Ē	REF	Site	Site	Site	ÆF	ţ ţ		for	Test	Power
-ccpb 6/6 .00004285 0.0000787 13373 .0004318 0.000019 to 0.02004 0.00118 13 Wilcoxon 0.0142 S -ccpc 6/6 .00007485 0.0000784 to 0.000176 3373 .0004318 0.000018 to 0.00029 0.00022 12 Wilcoxon 0.0170 S -ccpc 6/6 .0000928 0.000074 to 0.00015 3373 .0004290 0.00002 to 0.00023 13 Wilcoxon 0.0170 S -ccpc 6/6 .0000928 0.000042 to 0.000172 3373 .00002898 0.000022 to 0.00023 11 Wilcoxon 0.0186 S -ccpc 6/6 .00009132 5E-6 to 0.000078 3373 .0000289 0.000022 to 0.00024 0.000028 11 Wilcoxon 0.0186 S -ccc 6/6 .0000139 5E-6 to 0.00002 3373 .0000225 1.E-6 to 0.00174 0.0000137 14 Wilcoxon 0.0241 S -ccc 6/6 .0000137 6E-6 to 0.00002 3373 .0000420 3.ZE-6 to 0.00174 0.0000137 14 Wilcoxon 0.0241 S -ccc 6/6 .00001727 6E-6 to 0.00002 3373 .0000420 3.ZE-6 to 0.00014 0.000097 12 Wilcoxon 0.0241 S -ccc 6/6 .00001727 6E-6 to 0.00002 3373 .0000420 3.ZE-6 to 0.00014 0.000097 12 Wilcoxon 0.0346 NS -ccc 6/6 .00001727 6E-6 to 0.00002 3373 .0000420 3.ZE-6 to 0.000042 0.000039 14 Wilcoxon 0.0346 NS -ccc 6/6 .00001727 6E-6 to 0.00002 3373 .0000420 3.ZE-6 to 0.000042 0.000039 14 Wilcoxon 0.0346 NS -ccc 6/6 .00001727 6E-6 to 0.00002 3373 .0000430 1.E-6 to 0.000042 0.000039 14 Wilcoxon 0.0346 NS -ccc 6/6 .0000146 8.EE-6 to 0.00002 3373 .0000433 1.E-6 to 0.000042 0.000039 14 Wilcoxon 0.0346 NS -ccc 6/6 .0000146 8.EE-6 to 0.00002 3373 .0000433 1.E-6 to 0.00004 0.000039 14 Wilcoxon 0.0346 NS -ccc 6/6 .00001460 8.EE-6 to 0.00002 3373 .0000433 1.E-6 to 0.00004 0.000039 14 Wilcoxon 0.0346 NS -ccc 6/6 .00001460 8.EE-6 to 0.00002 4.E-6 to 0.00005 0.00001 10 Wilcoxon 0.0346 NS -ccc 6/6 .00001727 6E-6 to 0.00002 4.E-6 to 0.00005 0.00001 10 Wilcoxon 0.0346 NS -ccc 6/6 .00001727 6E-6 to 0.00002 4.E-6 to 0.00005 0.00001 10 Wilcoxon 0.0346 NS -ccc 6/6 .00001727 6E-6 to 0.00002 4.C-6 to 0.00005 0.00001 10 Wilcoxon 0.0346 NS -ccc 6/6 .00001727 6E-6 to 0.00002 4.C-6 to 0.00005 0.00003 14 Wilcoxon 0.0346 NS -ccc 6/6 .00001728 3373 .000042 0.00003 373 .000042 0.00003 11 Wilcoxon 0.0376 NS -ccc 6/6 .0000172 38 3733 .000042 0.00003		Hits	Mean	Range	Hits	Mean	Range		skgrd	Type	Test	Conclusion	(B)
00001465 0.00001465 0.0000156 33/33 .0004218 0.000012 0.000225 13 Wilcoxon 0.00230 Speed 6/6 .00009028 0.000054 to 0.000156 33/33 .0004290 0.000022 to 0.000235 13 Wilcoxon 0.00170 Speed 6/6 .00000132 0.000042 to 0.000172 33/33 .0000429 0.000022 to 0.000249 11 Wilcoxon 0.0024 Speed 6/6 .00001193 % to 0.0000149 31/33 .000022 1.1E-6 to 0.000049 9 Wilcoxon 0.00186 Speed 6/6 .00001193 % to 0.000098 31/33 .000022 1.1E-6 to 0.000049 9 Wilcoxon 0.0024 Speed 6/6 .00001193 % to 0.000098 31/33 .000022 1.1E-6 to 0.000049 9 Wilcoxon 0.0024 Speed 6/6 .00001193 % to 0.000098 31/33 .000022 1.1E-6 to 0.000044	.4.6.7.8.9-0CDD	9/9	.00049350 0.0	00257 to 0.000757		0018269 (0.00009 to 0.02004	0.00118	13	Wilcoxon (3.0142	s	0.1123
φcp 6/6 000009028 0.000054 to 0.000156 33/33 .0004290 0.000022 to 0.000278 13 Will coxon 0.0170 S pcp 6/6 .00000193 5F-6 to 0.000022 33/33 .000322 to 0.000274 1.0000193 11 Vill coxon 0.0201 S pcp 6/6 .0000193 5F-6 to 0.000028 33/33 .000028 1.E-6 to 0.000044 0.0000197 14 Vill coxon 0.0201 S pcp 6/6 .00000193 5F-6 to 0.000098 33/33 .0000280 1.E-6 to 0.000044 0.0000197 14 Vill coxon 0.0201 S pc 6/6 .000001329 E-6 to 0.000098 33/33 .0000642 3.E-6 to 0.000044 0.000097 14 Vill coxon 0.0011 S pc 6/6 .00001329 E-6 to 0.000092 33/33 .0000642 3.E-6 to 0.00004 3.Vill coxon 0.0512 NI pc 6/6 .00001460 8.E-6 to 0.000041 33/33 .0000642 3.E-6 to 0.000042 1.0000359 14 Vill coxon 0.0512 NIS pc 6/6 .00001460 8.E-6 to 0.000023 33/33 .0000462 3.E-6 to 0.000045 1.0000359 14 Vill coxon 0.0045 NIS pc 6/6 .00000140 8.E-6 to 0.00002 33/33 .0000462 3.E-6 to 0.00004 1.000049	.4.6.7.8.9-0CDF	9/9	.00007485 0.0	00038 to 0.000136		0004318 (0.000018 to 0.00396	0.000212	7	Wilcoxon (0.0230	ဟ	0.1198
pdp 6/6 .000008132 0.000042 to 0.000172 33/33 .0003628 0.000022 to 0.000574 0.0000499 9 wilcoxon 0.0261 S 5 pcp 6/6 .0000193 5E-6 to 0.000028 33/33 .0000762 3.3E-6 to 0.0000499 9 wilcoxon 0.0186 S 5 pcp 6/6 .0000193 5E-6 to 0.000028 33/33 .0000225 1.1E-6 to 0.000049 13 wilcoxon 0.0493 S 5 pcp 6/6 .00001935 5.6E-6 to 0.000028 33/33 .0000225 1.1E-6 to 0.000044 0.0000137 14 wilcoxon 0.0493 S 5 pcp 6/6 .00001035 5.6E-6 to 0.000028 33/33 .0000428 3.2E-6 to 0.000042 0.000042 12 wilcoxon 0.0493 S 5 pcp 6/6 .00001035 5.6E-6 to 0.000023 33/33 .0000428 3.2E-6 to 0.000042 0.000042 12 wilcoxon 0.0564 NS 6/6 .00001046 0.2E-6 to 0.000023 33/33 .0000403 7.5E-6 to 0.000042 0.000042 12 wilcoxon 0.0156 S 6/6 .00000104 0.2E-6 to 0.000023 3.2E-6 to 0.000042 0.000042 0.000042 14 wilcoxon 0.0156 S 6/6 .00000104 0.2E-6 to 0.00002 3.2E-6 to 0.00004 0.000042 0.000043 14 wilcoxon 0.0156 S 6/6 .00000104 0.2E-6 to 0.00002 3.2E-6 to 0.00004 0.00004 0.00004 0.00004 0.00004 0.000004 0.00004 0.00004 0.000004 0.00004 0.000004 0.00004 0.0000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.	3.4.6.7.8-HpcDD	9/9	0.0009028 0.0	00054 to 0.000156		0004290 (0.00002 to 0.00429	0.000235	7	Wilcoxon (0.0170	S	0.1150
ΦOD 6/6 .00000193 5E-6 to 0.000028 33/33 .0000762 3.3E-6 to 0.000044 0.0000149 0.0000193 0.0000463 2.5E-6 to 9E-6 32/33 .0000225 1.1E-6 to 0.000144 0.0000137 14 Wilcoxon 0.0211 S DF 6/6 .00003988 0.000019 to 0.000098 33/33 .0000780 7E-6 to 0.000144 0.0000177 14 Wilcoxon 0.0493 S DF 6/6 .00001727 RE-6 to 0.00004 33/33 .0000648 3.RE-6 to 0.000042 1.2 Wilcoxon 0.0512 NS DF 6/6 .00001727 RE-6 to 0.00004 33/33 .0000648 3.RE-6 to 0.000042 1.2 Wilcoxon 0.0512 NS DF 6/6 .00000146 B.RE-7 to 3.RE-6 to 0.000029 33/33 .0000648 3.RE-6 to 0.000042 1.2 Wilcoxon 0.0493 S DF 6/6 .00000146 B.RE-7 to 3.RE-6 to 0.000029 33/33 .0000648 1.RE-6 to 0.0000409 1.4 Wilcoxon 0.00176 S F 6/6 .00000502 3.RE-6 to 0.00002 33/33 .0000648 1.RE-6 to 0.000046 0.0000046 1.4 Wilcoxon 0.0068 S F 6/6 .00000502 3.RE-6 to 0.000023 33/33 .0000648 1.RE-6 to 0.000036 1.4 Wilcoxon 0.01736 NS <		9/9	.00008132 0.0	00042 to 0.000172	33/33	0003898	0.000022 to 0.00274		=	Wilcoxon (0.0261	s	0.1220
6/6 .00000463 2.5E-6 to 9E-6 32/33 .0000225 1.1E-6 to 0.00014 0.000078 14 wilcoxon 0.0493 S 6/6 .0000398 0.000019 to 0.000098 33/33 .0000420 7.5E-6 to 0.00016 0.0000978 13 wilcoxon 0.0493 S 6/6 .00001727 8E-6 to 0.00004 33/33 .0000420 3.2E-6 to 0.000364 0.0000291 12 wilcoxon 0.0512 NS 6/6 .00001460 8.2E-6 to 0.00004 33/33 .000069 7.5E-6 to 0.000047 0.0000359 14 wilcoxon 0.0156 NS 6/6 .000001460 8.2E-6 to 0.000023 33/33 .0000129 1.3E-6 to 0.000047 0.0000359 14 wilcoxon 0.0156 S 6/6 .000001460 8.2E-6 to 9.8E-6 33/33 .0000129 1.3E-6 to 0.000048 0.0000359 14 wilcoxon 0.0156 S 6/6 .00000502 3.2E-6 to 9.8E-6 33/33 .0000483 1.3E-6 to 0.000039 0.0000390 0.000039 0.000039 0.0000390 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039 0.000039		9/9	.00001193 5E-	6 to 0.000028		. 2920000	3.3E-6 to 0.000857	0.0000419	٥	Wilcoxon (0.0186	ဟ	0.1163
b/6 00000398 B 0.000019 to 0.000098 B 33/33 .0001780 Te-6 to 0.000364 0.0000978 B 13 wilcoxon 0.0542 13 wilcoxon 0.0542 8 b/6 .00001727 BE-6 to 0.000041 33/33 .0000648 3.8E-6 to 0.000424 0.00004291 12 wilcoxon 0.0512 NS b/6 .00001727 BE-6 to 0.000041 33/33 .0000648 3.8E-6 to 0.000427 0.00004291 12 wilcoxon 0.0546 NS b/6 .00001460 B.2E-6 to 0.000023 33/33 .0000649 7.5E-6 to 0.0000472 0.0000359 14 wilcoxon 0.0156 NICoxon 0.0156 S b/6 .00000502 3.2E-6 to 9.8E-6 31/33 .0000483 1.3E-6 to 0.000048 0.0000380 15 wilcoxon 0.0138 NICoxon 0.0136 S b/6 .00000502 3.2E-6 to 9.8E-6 31/33 .0000483 1.3E-6 to 0.000048 0.0000390 13 wilcoxon 0.0138 NICoxon 0.0138 NICoxon 0.0138 b/6 .00000502 3.8E-6 to 0.000042 3.34E-6 0.000048 0.0000360 13 wilcoxon 0.0138 NICoxon 0.0138 NICoxon 0.0138 NICoxon 0.0138 b/6 .00000502 3.8E-6 to 0.000037 33/33 .0000483 1.3E-6 to 0.000054 0.000037 33/33 .0000556 0.000037 33/33 .0000556 0.000037 NICoxon 0.000037 NICoxon 0.000036 NICoxon 0.000037 NICoxon 0.000036 NICoxon 0.000038 NICoxon 0.000036 NICoxon 0.000036 NICoxon 0.000036 NICoxon 0.000036 NICoxon 0.00036 NICoxon 0.000036		9/9	.000000463 2.5	E-6 to 9E-6		. 00000225	1.1E-6 to 0.000144	0.0000137	14	Wilcoxon (0.0211	s	0.1184
DD 6/6 .00001035 5.6E-6 to 0.00002 33/33 .0000420 3.2E-6 to 0.000041 31/33 .0000420 0.000024 0.0000412 12 Wilcoxon 0.0546 NS DF 6/6 .00001460 8.2E-6 to 0.000042 3.373 .0000648 3.8E-6 to 0.000042 0.0000412 12 Wilcoxon 0.0366 NS DF 6/6 .000001460 8.2E-6 to 0.000023 33/33 .0000129 1.3E-6 to 0.0000380 16 Wilcoxon 0.0156 S 6/6 .00000502 3.2E-6 to 9.8E-6 33/33 .0000148 0.00000380 16 Wilcoxon 0.0156 S 6/6 .00000502 3.2E-6 to 0.000023 33/33 .0000483 1.3E-6 to 0.000039 Wilcoxon 0.0138 NI 6/6 .0000075 0.000075 2.EE-6 to 0.000074 0.000052 0.000075 Wilcoxon 0.0068 S 6/6 .0000075 0.000075 3.000077 0.000037 33/33 .0000052 0.000037 0.000077	3,4,7,8-HxCDF	9/9	.00003988 0.0	019 to 0.000098		.0001780	7E-6 to 0.0016	0.0000978	5	Wilcoxon (0.0493	s	0.1337
DF 6/6 .00001727 8E-6 to 0.000041 33/33 .0000648 3.8E-6 to 0.000424 0.0000412 12 Wilcoxon 0.0156 NS DD 6/6 .00001460 8.2E-6 to 0.000023 33/33 .0000609 7.5E-6 to 0.0000422 0.0000359 14 Wilcoxon 0.0156 S 6/6 .00000146 8.8E-7 to 3.8E-6 30/33 .0000129 1.3E-6 to 0.000163 12-6 to 0.0000380 15 Wilcoxon 0.0136 S 6/6 .00000920 3.8E-6 to 0.000012 33/33 .0000483 1.3E-6 to 0.000045 0.00000980 13 Wilcoxon 0.0138 NS 6/6 .00000920 3.8E-6 to 0.000017 33/33 .0000483 1.3E-6 to 0.000055 0.00000980 13 Wilcoxon 0.0138 NS 6/6 .00000973 4.7E-7 to 1.5E-6 30/33 .0000374 .2E-7 to 0.000037 31/33 .0000374 .2E-7 to 0.000037 0.0000374 .0000037 Wilcoxon 0.0736 NS 6/6 .00001700 3.6E-6 to 0.000021 33/33 .0000375 1.5E-6 to 0.000024 0.0000037 Wilcoxon 0.0736 NI S 6/6 .0001700 3.6E-6 to 0.000021 33/33 .0000375 1.5E-6 to 0.000038 0.0000480 13 Wilcoxon 0.0136 S 6/6 .00017983 0.000049 to 0.000328 33/33 .0000486 0.000048 to 0.000480 0.000488 13 Wilcoxon 0.0240 NI 6/6 .00017453 0.000069 to 0.000253 33/33 .0005468 0.000048 to 0.000425 0.0000355 14 Wilcoxon 0.0100 NI	3.6.7.8-HxCDD	9/9	.000001035 5.6	E-6 to 0.00002		0250000	3.2E-6 to 0.000364	0.0000291	15	Wilcoxon (0,0512	NS	0.1345
DF 6/6 .00001460 B.2E-6 to 0.000023 33/33 .0000609 7.5E-6 to 0.000045 0.0000380 14 wilcoxon 0.0156 S 6/6 .00000146 B.RE-7 to 3.RE-6 30/33 .0000129 1.3E-6 to 0.000165 0.00000380 16 wilcoxon 0.0068 S 6/6 .00000502 3.2E-6 to 9.RE-6 33/33 .0000148 ZE-6 to 0.000018 0.00000980 13 wilcoxon 0.1138 NS 6/6 .00000502 3.RE-6 to 0.00002 33/33 .0000483 1.3E-6 to 0.000041 13 wilcoxon 0.0138 NS 6/6 .000001568 6.JE-6 to 0.00002 33/33 .0000535 2.1E-6 to 0.000037 10 wilcoxon 0.1103 NS 6/6 .000001768 6.JE-6 to 0.000021 33/33 .0000535 2.1E-6 to 0.000037 10 wilcoxon 0.1103 NS 6/6 .00001100 3.6E-6 to 0.000021 33/33 .0000536 0.0000324 0.00000224 0.00000224 0.00000224 0.00000228 0.00000228 0.00000228 0.00000228 0.00000228 0.00000228 0.00000228 0.00000228 0.00000228 0.00000228 0.00000229 0.0000229 0.00	3.6.7.8-HXCDF	9/9	.00001727 8E-	6 to 0.000041		. 00000648	3.8E-6 to 0.000424	0.0000412	15	Wilcoxon (0.0846	HS	0.1455
6/6 .00000146 B.RE-7 to 3.8E-6 30/33 .0000129 1.3E-6 to 0.0000165 0.00000380 16 Wilcoxon 0.0068 S 6/6 .00000502 3.2E-6 to 9.8E-6 33/33 .0000163 2E-6 to 0.000108 0.00000980 13 Wilcoxon 0.1138 NS 6/6 .00000502 3.8E-6 to 0.00002 33/33 .0000483 1.3E-6 to 0.0000161 0.000036 9 Wilcoxon 0.0817 NS 6/6 .00003915 0.000015 to 0.000010 33/33 .0000483 1.3E-6 to 0.000562 0.000101 10 Wilcoxon 0.0905 NS 6/6 .00001568 6.3E-6 to 0.000037 33/33 .0000535 2.1E-6 to 0.000024 0.0000374 10 Wilcoxon 0.0736 NS 6/6 .00001100 3.6E-6 to 0.000021 33/33 .0000375 1.5E-6 to 0.000024 0.0000240 6 Wilcoxon 0.0736 NS 6/6 .00001100 3.6E-6 to 0.000021 33/33 .0000375 1.5E-6 to 0.000376 0.0000388 7 Wilcoxon 0.0736 NS 6/6 .00017983 0.000107 to 0.000318 33/33 .0000426 0.000042 to 0.000489 13 Wilcoxon 0.0240 S 6/6 .00015158 0.000079 to 0.000233 33/33 .0005896 0.000048 to 0.00428 0.000488 13 Wilcoxon 0.0260 S 6/6 .00015453 0.000096 to 0.000233 33/33 .0005896 0.000048 to 0.00428 0.000048 14 Wilcoxon 0.0662 NS 6/6 .00012453 0.000096 to 0.000239 33/33 .0005426 0.000048 0.000035 11 Wilcoxon 0.0260 S 6/6 .00001888 0.000025 to 0.000205 33/33 .0005426 0.00017 0.00037 0.00037 14 Wilcoxon 0.0170 S 6/6 .0000188 0.000025 to 0.000208 33/33 .0006420 0.000031 to 0.00053 0.000088 8 Wilcoxon 0.0170 S	3,7,8,9-HxCDD	9/9	.00001460 8.2	E-6 to 0.000023		6090000	7.5E-6 to 0.000472	0.0000359	4	Wilcoxon (0.0156	s	0.1136
6/6 ,00000502 3.2E-6 to 9.8E-6 33/33 .0000483 1.3E-6 to 0.0000980 13 Wilcoxon 0.1138 NS 6/6 .00000920 3.8E-6 to 0.0000483 1.3E-6 to 0.000615 0.0000306 9 Wilcoxon 0.0817 NS 6/6 .000003915 0.0000101 33/33 .0000483 1.3E-6 to 0.000052 0.000101 10 Wilcoxon 0.0905 NS 6/6 .00001568 6.3E-6 to 0.0001120 6.2E-6 to 0.000552 0.000101 10 Wilcoxon 0.0905 NS 6/6 .00001568 6.3E-6 to 0.000037 33/33 .0000535 2.1E-6 to 0.000024 0.0000374 10 Wilcoxon 0.0103 NS 6/6 .0001100 3.6E-6 to 0.000027 4.2E-7 to 1.5E-6 to 0.000024 0.0000328 7 Wilcoxon 0.0736 NS 6/6 .000117983 0.000107 to 0.000375 1.5E-6 to 0.00054 0.0000328 7 Wilcoxon 0.0156 S 6/6 .00015158 0.0000079 to 0.000375 1.5E-6 to 0.00054 0.000038 13 Wilcoxon 0.0156 S 6/6 .00012453 0.0000099 to 0.000323 33/33 .0005896 0.000048 to 0.000428 0.000048	3,7,8,9-HXCDF	9/9	.000000146 8.8	E-7 to 3.8E-6	30/33	.0000129	1.3E-6 to 0.000165	0.00000380	9	Wilcoxon (9,000.0	S	0.1019
6/6 .0000920 3.8E-6 to 0.00002 33/33 .0000483 1.3E-6 to 0.000615 0.0000306 9 Wilcoxon 0.0817 NS 6/6 .00003915 0.000015 to 0.000101 33/33 .0001120 6.2E-6 to 0.0000562 0.000101 10 Wilcoxon 0.0905 NS 6/6 .00001568 6.3E-6 to 0.000037 33/33 .0000535 2.1E-6 to 0.0000374 10 Wilcoxon 0.1103 NS 6/6 .00001100 3.6E-6 to 0.000037 33/33 .0000535 2.1E-6 to 0.000024 0.0000240 6 Wilcoxon 0.0736 NS 6/6 .00001100 3.6E-6 to 0.000021 33/33 .000037 1.5E-6 to 0.000054 0.0000240 6 Wilcoxon 0.0736 NS 6/6 .00017983 0.000107 to 0.000318 33/33 .0008462 0.000054 0.000836 7 Wilcoxon 0.0156 S 6/6 .00015458 0.000079 to 0.000323 33/33 .0007015 0.000048 to 0.000480 13 Wilcoxon 0.0240 S 6/6 .00012453 0.000096 to 0.000239 33/33 .0007015 0.000048 to 0.00426 0.000352 13 Wilcoxon 0.0262 S 6/6 .00012453 0.000096 to 0.000239 33/33 .0007468 0.000028 to 0.00432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .000021335 0.000026 to 0.000231 6.1E-6 to 0.00179 0.000535 11 Wilcoxon 0.0170 S 6/6 .00002183 0.000076 to 0.000209 33/33 .0005420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.0173 NS	3,7,8-Pec00	9/9	.000000502 3.2	E-6 to 9.8E-6		.0000163	2E-6 to 0.000108	0.00000980	13	Wilcoxon (0.1138	¥	0.1529
6/6 .00001568 6.3E-6 to 0.000101 33/33 .0001120 6.2E-6 to 0.0000374 10 Wilcoxon 0.0905 NS 6/6 .00001568 6.3E-6 to 0.000037 33/33 .0000535 2.1E-6 to 0.0000374 10 Wilcoxon 0.1103 NS 6/6 .0000100 3.6E-6 to 0.000037 33/33 .000030 4.2E-7 to 0.000024 0.00000240 6 Wilcoxon 0.0736 NS 6/6 .00001100 3.6E-6 to 0.000021 33/33 .000030 4.2E-7 to 0.000024 0.00000240 6 Wilcoxon 0.0736 NS 6/6 .00017983 0.000107 to 0.000318 33/33 .000042 to 0.000536 0.000488 13 Wilcoxon 0.0156 S 6/6 .00012453 0.000069 to 0.000323 33/33 .0007015 0.000048 to 0.00426 0.000487 9 Wilcoxon 0.0240 S 6/6 .00012453 0.000069 to 0.000239 33/33 .0007015 0.000028 to 0.00426 0.000352 13 Wilcoxon 0.0202 S 6/6 .00013159 0.000059 to 0.000239 33/33 .0007468 0.000028 to 0.00432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000246 0.000028 to 0.000432 0.000535 11 Wilcoxon 0.0170 S 6/6 .00006188 0.000025 to 0.000240 0.00031 to 0.0035 0.000608 8 Wilcoxon 0.0173 NS	3,7,8-PecoF	9/9	.000000920 3.8	E-6 to 0.00002		.0000483	1.3E-6 to 0.000615	0.0000306	٥	Wilcoxon (0.0817	S	0.1447
6/6 .00001568 6.3E-6 to 0.000037 33/33 .0000535 2.1E-6 to 0.0000374 10 Wilcoxon 0.1103 NS 5/6 .00000073 4.7E-7 to 1.5E-6 30/33 .000030 4.2E-7 to 0.000024 0.00000240 6 Wilcoxon 0.0736 NS 6/6 .00001100 3.6E-6 to 0.000021 33/33 .0000375 1.5E-6 to 0.000054 0.0000328 7 Wilcoxon 0.4769 NS 6/6 .00017983 0.000107 to 0.000318 33/33 .0000375 1.5E-6 to 0.00054 0.0000480 13 Wilcoxon 0.0156 S 6/6 .00012453 0.000079 to 0.000323 33/33 .0007015 0.000038 to 0.00476 0.000487 9 Wilcoxon 0.0240 S 6/6 .00012453 0.000069 to 0.000239 33/33 .0007015 0.000048 to 0.00426 0.000535 11 Wilcoxon 0.0202 S 6/6 .000021335 0.000096 to 0.000535 33/33 .0007468 0.000028 to 0.00432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000246 0.1E-6 to 0.0019 0.000535 11 Wilcoxon 0.0170 S 6/6 .00006188 0.000026 33/33 .0005420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.0173 NS	4,6,7,8-HxCDF	9/9	.00003915 0.0	100015 to 0.000101		0211000.	6.2E-6 to 0.000562	0.000101	9	Wilcoxon (0.0905	Ş	0.1471
5/6 .00000073 4.7E-7 to 1.5E-6 30/33 .0000030 4.2E-7 to 0.000024 0.00000240 6 Wilcoxon 0.0736 NS 6/6 .00001100 3.6E-6 to 0.000021 33/33 .0000375 1.5E-6 to 0.00054 0.0000328 7 Wilcoxon 0.4769 NS 6/6 .00017983 0.000107 to 0.000318 33/33 .0008462 0.000042 to 0.00836 0.000488 13 Wilcoxon 0.0156 S 6/6 .00015158 0.000079 to 0.000323 33/33 .0007015 0.000048 to 0.00426 0.000487 9 Wilcoxon 0.0240 S 6/6 .00012453 0.000069 to 0.000239 33/33 .0005896 0.000048 to 0.00426 0.000352 13 Wilcoxon 0.0202 S 6/6 .0001335 0.000096 to 0.000535 33/33 .0007468 0.000028 to 0.000435 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000205 33/33 .0003166 6.1E-6 to 0.0019 0.000205 11 Wilcoxon 0.0170 S 6/6 .00021375 0.000074 to 0.000648 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.0173 NS	4,7,8-PeCDF	9/9	.00001568 6.3	E-6 to 0.000037	33/33	00000535	2.1E-6 to 0.000311	0.0000374	9	Wilcoxon (0.1103	SS	0.1520
6/6 .00001100 3.6E-6 to 0.000021 33/33 .0000375 1.5E-6 to 0.000054 0.0000328 7 Wilcoxon 0.4769 NS 6/6 .00017983 0.000107 to 0.000318 33/33 .0008462 0.000042 to 0.000836 0.000488 13 Wilcoxon 0.0156 S 6/6 .00012453 0.0000079 to 0.000323 33/33 .0007015 0.000038 to 0.00476 0.000487 9 Wilcoxon 0.0240 S 6/6 .00012453 0.000069 to 0.000239 33/33 .0005896 0.000048 to 0.00426 0.000362 13 Wilcoxon 0.0202 S 6/6 .00021335 0.000096 to 0.000535 33/33 .0007468 0.000028 to 0.00432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000205 33/33 .0003466 6.1E-6 to 0.0019 0.000205 11 Wilcoxon 0.0170 S 6/6 .00005182 0.000076 to 0.000688 33/33 .0006420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.0173 NS	7,8-1000	9/9	.000000073 4.7	E-7 to 1.5E-6	30/33	.00000030	4.2E-7 to 0.000024	0.00000240	9	Wilcoxon (0.0736	S¥.	0.1423
6/6 .00017983 0.000107 to 0.000318 33/33 .0008462 0.000042 to 0.000388 13 Wilcoxon 0.0156 S 6/6 .00015158 0.000079 to 0.000323 33/33 .0007015 0.000038 to 0.00476 0.000487 9 Wilcoxon 0.0240 S 6/6 .00012453 0.000069 to 0.000239 33/33 .0005896 0.000048 to 0.00426 0.000362 13 Wilcoxon 0.0202 S 6/6 .00021335 0.000096 to 0.000535 33/33 .0007468 0.000028 to 0.00432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000205 33/33 .0003166 6.1E-6 to 0.0019 0.000205 11 Wilcoxon 0.0170 S 6/6 .00005182 0.000076 to 0.000608 33/33 .0006420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.0173 NS	7,8-TCDF	9/9	.00001100 3.6	E-6 to 0.000021	33/33	.0000375	1.5E-6 to 0.00054	0.0000328	~	Wilcoxon (0.4769	SE	0.2082
6/6 .00015158 0.000079 to 0.000323 33/33 .0007015 0.000038 to 0.000487 9 Wilcoxon 0.0240 S 6/6 .00012453 0.000069 to 0.000239 33/33 .0005896 0.000048 to 0.000426 0.000362 13 Wilcoxon 0.0202 S 6/6 .00021335 0.000096 to 0.000535 33/33 .0007468 0.000028 to 0.000432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000205 33/33 .0003468 6.1E-6 to 0.0019 0.000205 11 Wilcoxon 0.0170 S 6/6 .00006188 0.000025 to 0.000608 33/33 .0006420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.01213 NS	I HpC0D	9/9	.00017983 0.0	00107 to 0.000318	33/33	.0008462	0,000042 to 0,00836	0.000488	13	Wilcoxon	0.0156	Ś	0.1136
6/6 .00012453 0.000069 to 0.000239 33/33 .0005896 0.000048 to 0.00426 0.000362 13 Wilcoxon 0.0202 S 6/6 .00021335 0.000096 to 0.000535 33/33 .0007468 0.000028 to 0.000432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000205 33/33 .0003166 6.1E-6 to 0.0019 0.000205 11 Wilcoxon 0.0170 S 6/6 .00006188 0.000025 to 0.000608 33/33 .0006420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.1213 NS	HocoF	9/9	.00015158 0.0	00079 to 0.000323		.0007015	0.000038 to 0.00476	0.000487	ο.	Wilcoxon	0.0240	w	0.1205
6/6 .00021335 0.000096 to 0.000535 33/33 .0007468 0.000028 to 0.00432 0.000535 11 Wilcoxon 0.0662 NS 6/6 .00006188 0.000025 to 0.000205 33/33 .0003166 6.1E-6 to 0.0019 0.000205 11 Wilcoxon 0.0170 S 6/6 .00005180 0.000076 to 0.000608 33/33 .0006420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.1213 MS	L HXCDD	9/9	.00012453 0.0	100069 to 0.000239	33/33	.0005896	0.000048 to 0.00426	0.000362	5	Wilcoxon	0.0202	S	0.1177
6/6 .00006188 0.000025 to 0.000205 33/33 .0003166 6.1E-6 to 0.0019 0.000205 11 Wilcoxon 0.0170 S 6/6 .0002182 0.000076 to 0.000608 33/33 .0006420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.1213 WS	1 HXCDF	9/9	.00021335 0.0	100096 to 0.000535	33/33	8972000	0.000028 to 0.00432	0.000535	Ξ	Wilcoxon	0.0662	SN	0.1399
4/4 nnn22182 0.000076 to 0.000608 33/33 0006420 0.000031 to 0.0035 0.000608 8 Wilcoxon 0.1213 WS	1 PecDD	9/9	.00006188 0.0	100025 to 0.000205		.0003166	6.1E-6 to 0.0019	0.000205	F	Wilcoxon	0.0170	ဟ	0.1150
	Dech F	9/9	.00022182 0.0	000076 to 0.000608	33/33	.0006420	0,000031 to 0.0035	0.000608	∞	Wilcoxon	0.1213	SM	0.1545

S= one-tailed test statistically significant at the alpha = 0.05 significance level NS = one-tailed test not statistically significant at the alpha = 0.05 significance level (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05) Atsugi

09:46 Tuesday, July 28, 1998 87

Site vs. Reference: Means Comparisons and UTL Statistics

(continued)

								^				
								붐		P-Value		Test
	REF	REF	REF	Site	Site	Site	REF	for	Test	for	Test	Power
Analyte	Hits	Mean	Range	Hits	Mean	Range	TI.	Bkgrd	Туре	Test	Conclusion (a)	(e)
Total TCDD	9/9		.000021 to 0.000152	33/33 .	0002037 7.76	:-6 to 0.00122		5	Wilcoxon	0.0439	ဟ	0.1315
Total TCDF	9/9	.00019707 0	.00019707 0.00006 to 0.000522 33/33 .0004414 0.000011 to 0.00333 0.000522	33/33	00004414 0.00	00011 to 0.00333		9	6 Wilcoxon 0.3011	0.3011	SN	0.1848

N = 25

S = one-tailed test statistically significant at the alpha = 0.05 significance level
 NS = one-tailed test not statistically significant at the alpha = 0.05 significance level
 (a) = Power to detect a difference of 50% between reference and the site (alpha=0.05)

Reference Area 1 UTLs

12:51 Tuesday, July 28, 1998 1												
		Coverage (%)	36.84031	1 4 1 1 1 2 3 3 3 4 2 4 2 4 5	Coverage (%)	36.84031		Coverage (%)	36.84031		Coverage (%)	36.84031 36.84031
Reference 1	Units=mg/kg -	Confidence (%)	95	DEPTH=Subsurface Method=353.2 Units=mg/kg -	Confidence (%)	95	DEPTH-Subsurface Method=1LMO4.0 Units=mg/kg	Confidence (%)	95	DEPTH=Subsurface Method=1LMO4.0 Units=mg/kg	Confidence (%)	99.
its for	od=300.0	UTL Type	훋	od=353.2	UTL Type	ξ	d=11M04.	UTL Type	₹	id=1LM04.	UTL Type	d d
Upper Tolerance Limits for Reference 1	DEPTH=Subsurface Method=300.0 Units=mg/kg	Upper Tolerance Łimit	9.6	bsurface Meth	Upper Tolerance Limit	6.74	surface Metho	Upper Tolerance Limit	0.390	surface Metho	Upper Tolerance Limit	57700 1.50
Upper	DEPTH=Sul	REF1 Det/N	3/3	DEPTH=Su	REF1 Det/W	3/3)EPTH≂Sub	REF1 Det/N	1/3	DEPTH=Sub	REF1 Det/N	3/3
		Analyte	Chloride		Analyte	Nitrate	G	Analyte	Cyanide		Analyte	Aluminum Antimony

	Coverage	8	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	•
	Confidence	(%)	55	95	35	\$	35	35	95	95	5	95	95	95	55	ጵ	ጵ	55	95	£	ጽ	
	UTL	Type	₹	₽	₽	¥	₹	ş	₽	₹	₽	₹	₽	₽	₽	₽	호	₹	₹	윺	皇	
Upper	Tolerance	Limit	2.60	72.3	0.530	11600	30.8	25.0	116	51800	8.70	12200	890	0.0400	32.9	285	0.600	2030	1.70	219	48.6	
	REF1	Det/N	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	2/3	3/3	2/3	3/3	3/3	
		Analyte	Arsenic	Barium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Setenium	Sodium	Thallium	Vanadium	Zinc	

		Upper			
	REF1	Tolerance	౼	Confidence	Coverage
Analyte	Det/N	Limit	Type	8	8
4,4'-DDE	3/3	0.00580	ş	8	36.84031

Coverage (%) 36.84031	Coverage (%) 36.84031
Confidence Cov (%) (95 36.	:s=mg/kg Confidence (%) 95
	3.2 Unit UTL Type NP
UTL Type NP	Method=OLMO Upper Tolerance Limit 0.0580
Tolerance Limit 0.00170	face Method= Upper Toleranc Limit 0.0580
	=Subsurf REF1 Det/N
REF1 Analyte Det/N 4,4'-DDT 2/3	Upper Upper Where Analyte Det/N Limit Type (%) Diethylphthalate 1/3 0.0580 NP 95 36

Coverage (%)	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	36.84031	
Confidence (%)	55	95	56	95	95	95	95	95	;
UTL Type	2	ď	₹	₹	₽	Ā	₹	ď	
Upper Tolerance Limit	0.0000396	0.00000460	0.000000000	0.00000510	0.00000100	0.00000210	0.00000150	0.00000110	
REF1 Det/N	3/3	3/3	3/3	3/3	1/3	3/3	3/3	3/3	
Analyte	1,2,3,4,6,7,8,9-0cbD	1,2,3,4,6,7,8,9-0CDF	1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpcDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	

		Upper			
	REF1	Tolerance	UTL	Confidence	Coverage
Analyte	Det/N	Limit	Type	8	ઈ
1,2,3,7,8-PeCDD	3/3	0.00000160	₽	8	36.84031
1,2,3,7,8-PeCDF	3/3	0.000000000	슾	95	36.84031
2,3,4,6,7,8-HxCDF	3/3	0.00000220	윷	95	36.84031
2,3,4,7,8-PeCDF	3/3	0.00000120	2	95	36.84031
2,3,7,8-TCDF	3/3	0.000000000	₹	95	36.84031
Total MpCDD	3/3	0.0000131	ě	95	36.84031
Total MpCDF	3/3	0.0000100	₹	95	36.84031
Total HxCDD	3/3	0.0000191	₹	8	36.84031
Total HxCDF	3/3	0.0000115	₹	\$	36.84031
Total PeCDD	3/3	0.00000490	₹	8	36.84031
Total PeCD⊱	3/3	0.0000121	¥	35	36.84031
Total TCDD	3/3	0.00000230	₹	95	36.84031
Total TCDF	3/3	0.0000133	웊	95	36.84031

...... DEPTH=Surface Method=300.0 Units=mg/kg ------

Coverage	95
(%)	60.69622
Confidence (%)	ጽ ጽ
UTL	Normal
Type	NP
Upper Tolerance Limit	5.16 0.763
REF1	6/6
Det/N	1/6
Analyte	Chloride Fluoride

Coverage	Coverage
(%)	(%)
95	95
Upper Det/N Limit Type (%) 5/6 15.5 Normal 95	Confidence Co
UTL	UTL
Type	Type
Normal	Normal
Upper	Upper
Tolerance	Tolerance
Limit	Limit
15.5	1.08
REF1 Det/N 5/6	REF1 Det/N
Analyte	Analyte
Nitrate	Cyanide

Coverage (%)	8	60.69622	95	95	60.69622	95	95	95	95	95	ጽ
Confidence (%)	95	25	25	95	95	8	8	8	95	95	95
UTL Type	Normal	Q.	Normal	Normal	d#	Normal	Normal	Normal	Normal	Normal	Normal
Upper Tolerance Limit	24000	2.40	9.94	130	0.250	1.26	15400	39.9	28.9	134	60600
REF1 Det/N	9/9	9/9	9/9	9/9	1/6	9/9	9/9	9/9	9/9	9/9	9/9
Analyte	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron

,	
5	
Inits=mg/kg	
크 은	
3 0	4
Method=[
DEPTH=Surface	
-	

(continued)

	ŭ	દ		95 95						5 60.69622			95 95	
	Confidence	8	6	0.	D	•	0	5	5	5	5	5	•	•
		Type	Normal	Normal	Normal	Normal	Normal	Normal	Normal	¥	Normal	Normal	Normat	Normal
Upper	Tolerance	Limit	95.5	12400	1050	0.228	39.5	643	0.794	0.610	2430	1.82	268	524
	REF1	Det/N	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9
		Analyte	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Setenium	Silver	Sodium	Thallium	Vanadium	Zinc

Coverage (%)	60.69622 60.69622 60.69622
Confidence (%)	ጽ ጽ ጽ
UTL Type	<u>*</u> * *
Upper Tolerance Limit	0.990 0.200 0.000870
REF1 Det/N	6/6 5/6 1/6
Analyte	4,4'-DDE 4,4'-DDT alpha-Chlordane

Upper Tolerance Limits for Reference 1

٠
k 8
ts=mg/kg
:=
Unit
Ŋ
DEPTH=Surface Method=OLMO3.2
ㅈ
ĭ
φ
2
₽
Ψ
Ξ
ė
×
÷
<u>_</u>
₹
<u> 11</u>
亡
۵
W
0
:

Upper			76 0.0830 NP 95 60.69622		./6 0.0600 NP 95 60.69622	//6 0.785 Normal 95 95	76 0.280 NP 95 60.69622
	REF1	Analyte Det/N	Butylbenzylphthalate 2/6	2/6	2/6	bis(2-Ethylhexyl)phthalate 6/6	di-n-Butylphthalate 6/6

------ DEPTH=Surface Method=SWB290 Units=mg/kg

Coverage (%)	95	95	95	95	95	95	60.69622	95	60.69622	95	60.69622	60.69622	25	60.69622	60.69622
Confidence (%)	\$	95	95	8	85	95	95	95	95	95	95	95	95	95	95
UTL Type	Normal	Norma!	Normal	Normal	Normal	Normal	₽	Normal	₹	Normal	₽	€	Normal	웊	₽
Upper Tolerance Limit	0.00118	0.000212	0.000235	0.000258	0.0000419	0.0000137	0.0000978	0.0000291	0.0000412	0.0000359	0.00000380	0.00000980	0.0000306	0.000101	0.0000374
REF1 Det/N	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9
Analyte	1,2,3,4,6,7,8,9-0000	1,2,3,4,6,7,8,9-0CDF	1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpcDF	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	2,3,4,6,7,8-HXCDF	2,3,4,7,8-PeCDF

(continued)

	Coverage	8	8	95	95	56	25	60.69622	60.69622	60.69622	60.69622	60.69622
	Confidence	(%)	ጵ	95	55	8	55	88	95	95	95	55
	UTL	Туре	Norma!	Normal	Normal	Normal	Hormal	물	₽	全	윷	윺
Upper	Tolerance	Limit	0.00000240	0.0000328	0.000488	0.000487	0.000362	0.000535	0.000205	0.000608	0.000152	0.000522
	REF1	Det/N	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9	9/9
		Analyte	2,3,7,8-TCDD	2,3,7,8-TCDF	Total MpCDD	Total MpCDF	Total HxCDD	Total HXCDF	Total PeCDD	Total PeCDF	Total TCDD	Total TCDF

Surface Soil vs. Subsurface Soil Scatterplots

APPENDIX F

Soil Results vs. RBCs

•						
						,
						:
						1
						_
					·	
			•			

Appendix F-1
Child Development Center - Surface Soil

						i					Means
											Comparison Conclusion
				ļ		Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	4,4'-DDD	NA-DVCT-SO01-31	ug/kg	0.21	ND	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-DVCT-SO02-01	ug/kg	0.18		24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-DVCT-SO03-01	ug/kg	0.18		24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-DVCT-SO04-01	ug/kg	0.19		24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-DVCT-SO05-01	ug/kg	0.21	ND	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-DVCT-SO06-01	ug/kg	0.28	ND	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-DVCT-SO07-01	ug/kg	0.18	ND	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-DVCT-SO08-01	ug/kg	0.22	ND	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDE	NA-DVCT-SO01-31	ug/kg	0.21	2	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-DVCT-SO02-01	ug/kg	0.18	34	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-DVCT-SO03-01	ug/kg	0.18	ND	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-DVCT-SO04-01	ug/kg	0.19	ND	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-DVCT-SO05-01	ug/kg	0.21	32	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-DVCT-SO06-01	ug/kg	0.28	14	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-DVCT-SO07-01	ug/kg	0.18	0.63	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-DVCT-SO08-01	ug/kg	0.22	12	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDT	NA-DVCT-SO01-31	ug/kg	0.21	2.2	17000	17000	1900	1900	200	NS
OLM03.2	4,4'-DDT	NA-DVCT-SO02-01	ug/kg	0.18	51	17000	17000	1900	1900	200	NS NS
	4,4'-DDT	NA-DVCT-SO03-01	ug/kg	0.18	ND	17000	17000	1900	1900	200	NS
	4,4'-DDT	NA-DVCT-SO04-01	ug/kg	0.19	ND	17000	17000	1900	1900	200	NS NS
	4,4'-DDT	NA-DVCT-SO05-01	ug/kg	0.21	18	17000	17000	1900	1900	200	NS
	4,4'-DDT	NA-DVCT-SO06-01	ug/kg	0.28		17000	17000	1900	1900	200	NS
	4,4'-DDT	NA-DVCT-SO07-01	ug/kg	0.18	1.7	17000	17000	1900	1900	200	NS NS
	4,4'-DDT	NA-DVCT-SO08-01	ug/kg	0.22	17	17000	17000	1900	1900	200	NS NS
M03.2	Aldrin	NA-DVCT-SO01-31	ug/kg	0.21	ND	340	340	38	38	NC NC	NC NC
OLM03.2	Aldrin	NA-DVCT-SO02-01	ug/kg	0.18	ND	340	340	38	38	NC	NC NC
OLM03.2	Aldrin	NA-DVCT-SO03-01	ug/kg	0.18	ND	340	340	38	38	NC	NC NC
OLM03.2	Aldrin	NA-DVCT-SO04-01	ug/kg	0.19	ND	340	340	38	38	NC	NC NC
OLM03.2	Aldrin	NA-DVCT-SO05-01	ug/kg	0.21	ND	340	340	38	38	NC NC	NC NC
OLM03.2	Aldrin	NA-DVCT-SO06-01	ug/kg	0.28	ND	340	340	38	38	NC	NC NC
	Aldrin	NA-DVCT-SO07-01	ug/kg	0.18	ND	340	340	38	38	NC	NC NC
OLM03.2	Aldrin	NA-DVCT-SO08-01	ug/kg	0.22	ND	340	340	38	38	NC NC	NC NC
OLM03.2	Aroclor-1016	NA-DVCT-SO01-31	ug/kg	0.21	ND	2900	2900	320	320	NC	NC NC
OLM03.2	Aroclor-1016	NA-DVCT-SO02-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
OLM03.2	Aroclor-1016	NA-DVCT-SO03-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO04-01	ug/kg	0.19	ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO05-01	ug/kg	0.19	ND ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO06-01	ug/kg	0.28	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1016	NA-DVCT-SO07-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1016	NA-DVCT-SO08-01	ug/kg	0.22	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1221	NA-DVCT-SO01-31	ug/kg	0.21	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1221	NA-DVCT-SO02-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1221	NA-DVCT-SO03-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1221	NA-DVCT-SO04-01	ug/kg	0.19	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1221	NA-DVCT-SO05-01	ug/kg	0.13	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1221	NA-DVCT-SO06-01	ug/kg	0.21	ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO07-01	ug/kg	0.28	ND	2900	2900	320	320	NC NC	
		NA-DVCT-SO08-01	ug/kg ug/kg	0.18	ND	2900	2900	320	320		NC NC
		NA-DVCT-SO01-31	ug/kg ug/kg	0.22	ND ND	2900				NC NC	NC NC
		NA-DVCT-SO02-01	ug/kg	0.21	ND ND	2900	2900 2900	320	320	NC NC	NC NC
		NA-DVCT-SO03-01		0.18	ND	2900		320	320	NC NC	NC NC
		NA-DVCT-SO03-01	ug/kg	0.18	ND ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO05-01	ug/kg	0.19	ND		2900	320	320	NC NC	NC NC
103.2	1100101-1202	112-D 4 C 1-3003-01	ug/kg	Ų.∠I	אט	2900	2900	320	320	NC	NC

Appendix F-1
Child Development Center - Surface Soil

		- ···					strial		lential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Aroclor-1232	NA-DVCT-SO06-01	ug/kg	0.28	ND	2900	2900		320	NC	NC
OLM03.2	Aroclor-1232	NA-DVCT-SO07-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1232	NA-DVCT-SO08-01	ug/kg	0.22	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO01-31	ug/kg	0.21	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO02-01	ug/kg	0.18	ND	2900	2900	320	320	NĆ	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO03-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO04-01	ug/kg	0.19	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO05-01	ug/kg	0.21	ND	2900	2900			NC	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO06-01	ug/kg	0.28	ND	2900	2900		320	NC	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO07-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-DVCT-SO08-01	ug/kg	0.22	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1248	NA-DVCT-SO01-31	ug/kg	0.21	ND	2900	2900			NC	NC
OLM03.2	Aroclor-1248	NA-DVCT-SO02-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1248	NA-DVCT-SO03-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1248	NA-DVCT-SO04-01	ug/kg	0.19	ND	2900	2900	320	320	NC	NC
	Aroclor-1248	NA-DVCT-SO05-01	ug/kg	0.21	ND	2900	2900	320	320	NC	NC
	Aroclor-1248	NA-DVCT-SO06-01	ug/kg	0.28	ND	2900	2900		320	NC	NC
		NA-DVCT-SO07-01	ug/kg	0.18	ND	2900	2900		320	NC	NC
		NA-DVCT-SO08-01	ug/kg	0.22	ND	2900	2900	320	320	NC	NC NC
	Aroclor-1254	NA-DVCT-SO01-31	ug/kg	0.21	ND	2900	2900	320	320	NC	NC NC
	Aroclor-1254	NA-DVCT-SO02-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC NC
	Aroclor-1254	NA-DVCT-SO03-01	ug/kg	0.18	ND	2900	2900		320	NC	NC NC
		NA-DVCT-SO04-01	ug/kg	0.19	ND	2900	2900	320	320	NC	NC NC
		NA-DVCT-SO05-01	ug/kg	0.21	ND	2900	2900	320	320	NC	NC NC
	Aroclor-1254	NA-DVCT-SO06-01	ug/kg	0.28	ND	2900	2900	320	320	NC	NC NC
	Aroclor-1254	NA-DVCT-SO07-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO08-01	ug/kg	0.22	ND	2900	2900		320		NC NC
		NA-DVCT-SO01-31	ug/kg	0.21	ND	2900	.2900	320	320	NC	NC NC
		NA-DVCT-SO02-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1260	NA-DVCT-SO03-01	ug/kg	0.18	ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO04-01	ug/kg	0.19	ND	2900	2900	320	320	NC NC	NC NC
	Aroclor-1260	NA-DVCT-SO05-01	ug/kg	0.13	ND	2900	2900	320	320		NC NC
		NA-DVCT-SO06-01	ug/kg	0.28	ND	2900	2900	320	320	NC NC	NC NC
		NA-DVCT-SO07-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC
		NA-DVCT-SO08-01	ug/kg	0.22	ND	2900	2900				NC NC
		NA-DVCT-SO01-31	ug/kg	0.21	ND	360	360		40		NC NC
	Dieldrin	NA-DVCT-SO02-01	ug/kg	0.18	ND	360	360		40		NC
	Dieldrin	NA-DVCT-SO03-01	ug/kg	0.18	ND	360	360	40	40	NC	NC NC
		NA-DVCT-SO04-01	ug/kg	0.19		360	360		40	NC	NC NC
	Dieldrin	NA-DVCT-SO05-01	ug/kg	0.21	2.3	360	360	40	40	NC	NC NC
	Dieldrin	NA-DVCT-SO06-01	ug/kg	0.28	ND	360	360		40	NC NC	NC
	Dieldrin	NA-DVCT-SO07-01	ug/kg	0.18	ND	360			40	NC	NC NC
		NA-DVCT-SO08-01	ug/kg	0.22	ND	360		40	40	NC NC	NC NC
	Endosulfan I	NA-DVCT-SO01-31	ug/kg	0.21	ND	1E+07		470000			
		NA-DVCT-S002-01	ug/kg	0.21	ND	1E+07		470000	47000	NC NC	NC NC
	Endosulfan I	NA-DVCT-S002-01		0.18	ND	1E+07		470000	47000	NC	NC
		NA-DVCT-S003-01	ug/kg						47000	NC	NC NC
		NA-DVCT-S005-01	ug/kg	0.19	ND	1E+07		470000			NC
	Endosulfan I		ug/kg	0.21	ND	1E+07		470000	47000	NC	NC
		NA-DVCT-SO06-01	ug/kg	0.28	ND	1E+07		470000	47000	NC	NC
		NA-DVCT-SO07-01	ug/kg	0.18	ND	1E+07		470000		NC	NC
		NA-DVCT-SO08-01	ug/kg	0.22	ND	1E+07		470000	47000	NC	NC
		NA-DVCT-SO01-31 NA-DVCT-SO02-01	ug/kg ug/kg	0.21 0.18	ND ND	1E+07 1E+07		470000 470000		NC NC	NC NC

							strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method		Sample ID		MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2		NA-DVCT-SO03-01	ug/kg	0.18	ND	1E+07		470000		NC	NC
OLM03.2		NA-DVCT-SO04-01	ug/kg	0.19	ND	1E+07		470000		NC	NC
OLM03.2		NA-DVCT-SO05-01	ug/kg	0.21	ND	1E+07		470000		NC	NC
OLM03.2		NA-DVCT-SO06-01	ug/kg	0.28	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2		NA-DVCT-SO07-01	ug/kg	0.18	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2		NA-DVCT-SO08-01	ug/kg	0.22	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2		NA-DVCT-SO01-31	ug/kg	0.21	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan sulfate	NA-DVCT-SO02-01	ug/kg	0.18	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan sulfate	NA-DVCT-SO03-01	ug/kg	0.18	ND	1E+07		470000	47000	NC	NC
OLM03.2	Endosulfan sulfate	NA-DVCT-SO04-01	ug/kg	0.19	ND	1E+07		470000	47000	NC	NC
OLM03.2	Endosulfan sulfate	NA-DVCT-SO05-01	ug/kg	0.21	ND	1E+07		470000	47000	NC	NC
OLM03.2	Endosulfan sulfate	NA-DVCT-SO06-01	ug/kg	0.28	ND	1E+07		470000	47000	NC	NC NC
OLM03.2	Endosulfan sulfate	NA-DVCT-SO07-01	ug/kg	0.18	ND	1E+07		470000	47000	NC	NC
OLM03.2	Endosulfan sulfate	NA-DVCT-SO08-01	ug/kg	0.22	ND	1E+07		470000	47000	NC	NC
OLM03.2	Endrin	NA-DVCT-SO01-31	ug/kg	0.21	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin	NA-DVCT-SO02-01	ug/kg	0.18	ND	610000	61000	23000	2300	NC	NC NC
OLM03.2	Endrin	NA-DVCT-SO03-01	ug/kg	0.18	ND	610000	61000	23000	2300	NC	NC NC
OLM03.2	Endrin	NA-DVCT-SO04-01	ug/kg	0.19	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin	NA-DVCT-SO05-01	ug/kg	0.21		610000	61000	23000	2300	NC	NC NC
OLM03.2	Endrin	NA-DVCT-SO06-01	ug/kg	0.28		610000	61000	23000	2300	NC NC	
OLM03.2	Endrin	NA-DVCT-SO07-01	ug/kg	0.18		610000	61000	23000	2300	NC NC	NC NC
OLM03.2	Endrin	NA-DVCT-SO08-01	ug/kg	0.18		610000	61000				NC
OLM03.2	Endrin aldehyde	NA-DVCT-S001-31		0.22		610000		23000	2300	NC	NC
M03.2	Endrin aldehyde	NA-DVCT-S002-01	ug/kg				61000	23000	2300	NC	NC
M03.2	Endrin aldehyde	NA-DVCT-S002-01	ug/kg	0.18		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde		ug/kg	0.18		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde	NA-DVCT-SO04-01	ug/kg	0.19		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde Endrin aldehyde	NA-DVCT-SO05-01	ug/kg	0.21		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde	NA-DVCT-SO06-01	ug/kg	0.28		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde	NA-DVCT-SO07-01	ug/kg	0.18		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO08-01	ug/kg	0.22		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO01-31	ug/kg	0.21		610000	61000	23000	2300	NC	NC
		NA-DVCT-SO02-01	ug/kg	0.18		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO03-01	ug/kg	0.18		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO04-01	ug/kg	0.19		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO05-01	ug/kg	0.21		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO06-01	ug/kg	0.28		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO07-01	ug/kg	0.18		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-DVCT-SO08-01	ug/kg	0.22		610000	61000	23000	2300	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO01-31	ug/kg	0.21	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO02-01	ug/kg	0.18	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO03-01	ug/kg	0.18	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO04-01	ug/kg	0.19	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO05-01	ug/kg	0.21	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO06-01	ug/kg	0.28	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO07-01	ug/kg	0.18	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO08-01	ug/kg	0.22	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor epoxide	NA-DVCT-SO01-31	ug/kg	0.21	ND	630	630	70	70	NC	NC
OLM03.2	Heptachlor epoxide	NA-DVCT-SO02-01	ug/kg	0.18	ND	630	630	70	70	NC	NC
OLM03.2	Heptachlor epoxide	NA-DVCT-SO03-01	ug/kg	0.18	ND	630	630	70	70	NC	NC NC
OLM03.2	Heptachlor epoxide	NA-DVCT-SO04-01	ug/kg	0.19	ND	630	630	70	70	NC	NC NC
OLM03.2	Heptachlor epoxide	NA-DVCT-SO05-01	ug/kg	0.21	ND	630	630	70	70	NC	NC NC
M03.2	Heptachlor epoxide	NA-DVCT-SO06-01	ug/kg	0.28	ND	630	630	70	70	NC NC	NC NC
M03.2	Heptachlor epoxide	NA-DVCT-SO07-01	ug/kg	0.18	ND	630	630	70	70	NC	NC NC

Appendix F-1
Child Development Center - Surface Soil

						Indus		Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	Heptachlor epoxide	NA-DVCT-SO08-01	ug/kg	0.22	ND	630	630		70	NC	NC
OLM03.2	Methoxychlor	NA-DVCT-SO01-31	ug/kg	0.21	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO02-01	ug/kg	0.18	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO03-01	ug/kg	0.18	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO04-01	ug/kg	0.19	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO05-01	ug/kg	0.21	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO06-01	ug/kg	0.28	ND	1E+07		390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO07-01	ug/kg	0.18	ND	1E+07		390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO08-01	ug/kg	0.22	ND	1E+07		390000	39000	NC	NC
	Toxaphene	NA-DVCT-SO01-31	ug/kg	0.21	ND	5200	5200	580	580	NC	NC
	Toxaphene	NA-DVCT-SO02-01	ug/kg	0.18	ND	5200	5200	580	580	NC	NC
	Toxaphene	NA-DVCT-SO02-01	ug/kg	0.18	ND	5200	5200		580	NC	NC NC
	Toxaphene	NA-DVCT-SO04-01	ug/kg	0.19	ND	5200	5200	580	580	NC	NC
		NA-DVCT-SO05-01	ug/kg	0.19	ND	5200	5200	580	580	NC	NC NC
	Toxaphene	NA-DVCT-SO06-01		0.21	ND	5200	5200	580	580	NC	NC NC
	Toxaphene	NA-DVCT-S006-01	ug/kg	0.28	ND ND	5200	5200		580	NC NC	NC NC
	Toxaphene		ug/kg	0.18	ND	5200	5200	580	580	NC NC	NC NC
	Toxaphene	NA-DVCT-SO08-01 NA-DVCT-SO01-31	ug/kg	0.22	ND ND	910	910		100	NC NC	NC NC
	alpha-BHC		ug/kg						100		1
	alpha-BHC	NA-DVCT-SO02-01	ug/kg	0.18	ND	910	910			NC	NC NC
	alpha-BHC	NA-DVCT-SO03-01	ug/kg	0.18	ND	910	910		100	NC	NC
	alpha-BHC	NA-DVCT-SO04-01	ug/kg	0.19	ND	910	910		100	NC	NC
	alpha-BHC	NA-DVCT-SO05-01	ug/kg	0.21	ND	910	910		100	NC	NC
	alpha-BHC	NA-DVCT-SO06-01	ug/kg	0.28	ND	910	910		100	NC	NC
	alpha-BHC	NA-DVCT-SO07-01	ug/kg	0.18	ND	910	910		100	NC	NC
	alpha-BHC	NA-DVCT-SO08-01	ug/kg	0.22	ND	910	910		100	NC	NC
	alpha-Chlordane	NA-DVCT-SO01-31	ug/kg	0.21	ND	16000	16000		1800	0.87	NS
	alpha-Chlordane	NA-DVCT-SQ02-01	ug/kg	0.18	0.97	16000	16000		1800	0.87	NS
	alpha-Chlordane	NA-DVCT-SO03-01	ug/kg	0.18	ND	16000	16000		1800	0.87	NS
	alpha-Chlordane	NA-DVCT-SO04-01	ug/kg	0.19	ND	16000	16000		1800	0.87	NS
	alpha-Chlordane	NA-DVCT-SO05-01	ug/kg	0.21	0.81	16000	16000		1800	0.87	NS
OLM03.2	alpha-Chlordane	NA-DVCT-SO06-01	ug/kg	0.28	0.9	16000	16000		1800	0.87	NS
OLM03.2	alpha-Chlordane	NA-DVCT-SO07-01	ug/kg	0.18	ND	16000	16000		1800	0.87	NS
	alpha-Chlordane	NA-DVCT-SO08-01	ug/kg	0.22	ND	16000	16000		1800	0.87	NS
OLM03.2	beta-BHC	NA-DVCT-SO01-31	ug/kg	0.21	ND	3200	3200		350		NC
	beta-BHC	NA-DVCT-SO02-01	ug/kg	0.18	ND	3200	3200				NC
	beta-BHC	NA-DVCT-SO03-01	ug/kg	0.18		3200					NC
	beta-BHC	NA-DVCT-SO04-01	ug/kg	0.19	ND	3200	3200				NC
	beta-BHC	NA-DVCT-SO05-01	ug/kg	0.21	ND	3200	3200				NC
	beta-BHC	NA-DVCT-SO06-01	ug/kg	0.28	ND	3200	3200	350			NC
	beta-BHC	NA-DVCT-SO07-01	ug/kg	0.18		3200	3200		350	NC	NC
	beta-BHC	NA-DVCT-SO08-01	ug/kg	0.22	ND	3200	3200	350	350	NC	NC
	delta-BHC	NA-DVCT-SO01-31	ug/kg	0.21	ND	3200	3200	350	350	NC	NC
	delta-BHC	NA-DVCT-SO02-01	ug/kg	0.18	ND	3200	3200				NC
	delta-BHC	NA-DVCT-SO03-01	ug/kg	0.18		3200	3200				NC
	delta-BHC	NA-DVCT-SO04-01	ug/kg	0.19		3200					NC
	delta-BHC	NA-DVCT-SO05-01	ug/kg	0.21		3200	3200				NC
	delta-BHC	NA-DVCT-SO06-01	ug/kg	0.28		3200					NC
	delta-BHC	NA-DVCT-SO07-01	ug/kg	0.18		3200					NC
	delta-BHC	NA-DVCT-SO08-01	ug/kg			3200					NC NC
OLM03.2	gamma-BHC(Lindane)	NA-DVCT-S001-31	ug/kg	_	ND	4400					NC NC
OLM03.2 OLM03.2	gamma-BHC(Lindane)	NA-DVCT-SO02-01	ug/kg ug/kg			4400					NC NC
	gamma-BHC(Lindane)	NA-DVCT-SO02-01	ug/kg	_		4400					NC A
	CEAUTHA-DEN ALABORIE		K O	- υ. ι Δ	LINIJ			47()	. 450	. (34)	

L	T				Т	Т				T	
				1							Means
T		ļ		1		Ì		İ			Comparison
	1										Conclusion
	Í					Indu	strial	Resid	lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	gamma-BHC(Lindane)	NA-DVCT-SO05-01	ug/kg	0.21	ND	4400	4400	490		NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-DVCT-SO06-01	ug/kg	0.28	ND	4400	4400		L	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-DVCT-SO07-01	ug/kg	0.18	ND	4400	4400	490		NC	NC NC
OLM03.2	gamma-BHC(Lindane)	NA-DVCT-SO08-01	ug/kg	0.22	ND	4400	4400			NC	NC NC
OLM03.2	gamma-Chlordane	NA-DVCT-SO01-31	ug/kg	0.21	ND	16000	16000	1800		NC NC	NC NC
OLM03.2	gamma-Chlordane	NA-DVCT-SO02-01	ug/kg	0.18	1.1	16000	16000	1800		NC NC	NC NC
OLM03.2	gamma-Chlordane	NA-DVCT-SO03-01	ug/kg	0.18	ND	16000	16000	1800		NC	NC
OLM03.2	gamma-Chlordane	NA-DVCT-SO04-01	ug/kg	0.19	ND	16000	16000	1800		NC NC	NC NC
OLM03.2	gamma-Chlordane	NA-DVCT-SO05-01	ug/kg	0.13	ND	16000	16000	1800		NC NC	
OLM03.2	gamma-Chlordane	NA-DVCT-SO06-01	ug/kg	0.21	0.85		16000	1800			NC NC
OLM03.2	gamma-Chlordane	NA-DVCT-S007-01		0.28	ND	16000	16000			NC	NC
OLM03.2	gamma-Chlordane	NA-DVCT-S008-01	ug/kg	0.18	ND			1800		NC	NC
OLMO3.2	1,2,4-Trichlorobenzene	NA-DVCT-SO01-31	ug/kg			16000	16000	1800		NC	NC
OLMO3.2	1,2,4-Trichlorobenzene		ug/kg	41	ND	2E+07		780000		NC	NC
OLMO3.2	1,2,4-Trichlorobenzene	NA-DVCT-SO02-01	ug/kg	37	ND	2E+07		780000		NC	NC
OLMO3.2		NA-DVCT-SO03-01	ug/kg	35	ND	2E+07		780000		NC	NC
		NA-DVCT-SO04-01	ug/kg	38	ND	2E+07		780000	78000	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO05-01	ug/kg	42	ND	2E+07		780000	78000	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO06-01	ug/kg	56	ND	2E+07		780000	78000	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO07-01	ug/kg	36	ND	2E+07		780000	78000	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO08-01	ug/kg	44	ND	2E+07		780000	78000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO01-31	ug/kg	41	ND	2E+08	2E+07		700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO02-01	ug/kg	37	ND	2E+08	2E+07		700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO03-01	ug/kg	35	ND	2E+08	2E+07		700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO04-01	ug/kg	38	ND	2E+08	2E+07		700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO05-01	ug/kg	42	ND	2E+08	2E+07	7E+06	700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO06-01	ug/kg	56	ND	2E+08	2E+07	7E+06	700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO07-01	ug/kg	36	ND	2E+08	2E+07	7E+06	700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO08-01	ug/kg	44	ND	2E+08	2E+07	7E+06	700000	·NC	NC
	1,3-Dichlorobenzene	NA-DVCT-SO01-31	ug/kg	41	ND	6E+07	6E+06	2E+06	230000	NC	NC
OLMO3.2	1,3-Dichlorobenzene	NA-DVCT-SO02-01	ug/kg	37	ND	6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-DVCT-SO03-01	ug/kg	35	ND	6E+07	6E+06	2E+06	230000	NC	NC
OLMO3.2	1,3-Dichlorobenzene	NA-DVCT-SO04-01	ug/kg	38	ND	6E+07	6E+06		230000	NC	NC
OLMO3.2	1,3-Dichlorobenzene	NA-DVCT-SO05-01	ug/kg	42	ND	6E+07	6E+06		230000	NC	NC
OLMO3.2	1,3-Dichlorobenzene	NA-DVCT-SO06-01	ug/kg	56	ND	6E+07	6E+06		230000	NC	NC
	1,3-Dichlorobenzene	NA-DVCT-SO07-01	ug/kg	36	ND	6E+07	6E+06		230000	NC	NC
OLMO3.2	1,3-Dichlorobenzene	NA-DVCT-SO08-01	ug/kg	44	ND	6E+07	6E+06	2E+06		NC	NC
OLMO3.2	1,4-Dichlorobenzene	NA-DVCT-SO01-31	ug/kg	41	ND	240000		27000	27000	NC	NC
OLMO3.2	1,4-Dichlorobenzene	NA-DVCT-SO02-01	ug/kg	37	ND	240000		27000	27000	NC	NC
OLMO3.2	1,4-Dichlorobenzene	NA-DVCT-SO03-01	ug/kg	35	ND	240000		27000	27000	NC	NC
OLMO3.2	1,4-Dichlorobenzene	NA-DVCT-SO04-01	ug/kg	38	ND	240000		27000	27000	NC	NC
OLMO3.2	1,4-Dichlorobenzene	NA-DVCT-SO05-01	ug/kg	42		240000		27000	27000	NC NC	NC
OLMO3.2	1,4-Dichlorobenzene	NA-DVCT-SO06-01	ug/kg	56		240000		27000	27000	NC	NC NC
	1,4-Dichlorobenzene	NA-DVCT-S007-01	ug/kg	36		240000		27000	27000	NC	NC NC
	1,4-Dichlorobenzene	NA-DVCT-SO08-01	ug/kg	44		240000		27000	27000	NC NC	NC NC
	2,2'-oxybis(1-chloropropane)	NA-DVCT-SO01-31	ug/kg	41	ND	82000	82000	9100	9100	NC	NC NC
	2,2'-oxybis(1-chloropropane)		ug/kg	37	ND	82000	82000	9100	9100	NC	NC NC
	2,2'-oxybis(1-chloropropane)		ug/kg	35	ND	82000	82000	9100	9100	NC NC	NC NC
	2,2'-oxybis(1-chloropropane)		ug/kg	38	ND	82000	82000	9100	9100	NC NC	NC NC
	2,2'-oxybis(1-chloropropane)		ug/kg	42	ND	82000	82000	9100	9100	NC NC	NC NC
	2,2'-oxybis(1-chloropropane)		ug/kg	56	ND	82000	82000	9100	9100	NC NC	NC NC
	2,2'-oxybis(1-chloropropane)		ug/kg	36	ND	82000	82000	9100	9100	NC NC	NC NC
	2,2'-oxybis(1-chloropropane)		ug/kg	44	ND	82000	82000	9100	9100		
			ug/kg	41	ND					NC NC	NC NC
	-,,,-	2 4 01 3001-31	45/48	71	117	4LTU0	2E+07	8E+06	/00000	NC	NC

						Indu	strial	Resid	lential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	2,4,5-Trichlorophenol	NA-DVCT-SO02-01	ug/kg	37	ND	2E+08	2E+07	8E+06	780000	NC	NC
	2,4,5-Trichlorophenol	NA-DVCT-SO03-01	ug/kg	35	ND	2E+08			780000		NC
	4	NA-DVCT-SO04-01	ug/kg	38	ND	2E+08			780000	NC	NC
		NA-DVCT-SO05-01	ug/kg	42	ND	2E+08			780000	NC	NC
		NA-DVCT-SO06-01	ug/kg	56	ND	2E+08			780000	NC	NC
		NA-DVCT-SO07-01	ug/kg	36	ND	2E+08			780000	NC	NC
	2,4,5-Trichlorophenol	NA-DVCT-SO08-01	ug/kg	44	ND	2E+08		8E+06		NC	NC
	2,4,6-Trichlorophenol	NA-DVCT-SO01-31	ug/kg	41	ND		520000	58000	58000		NC NC
		NA-DVCT-SO02-01	ug/kg	37	ND		520000	58000		NC NC	NC
	2,4,6-Trichlorophenol	NA-DVCT-SO03-01	ug/kg	35	ND		520000	58000		NC	NC
	2,4,6-Trichlorophenol	NA-DVCT-S003-01		38	ND		520000	58000	58000	NC NC	NC NC
	*	NA-DVCT-S005-01	ug/kg	42	ND		520000	58000	58000	NC NC	NC NC
			ug/kg	56							
	2,4,6-Trichlorophenol	NA-DVCT-SO06-01	ug/kg		ND		520000	58000	58000	NC	NC
	2,4,6-Trichlorophenol	NA-DVCT-SO07-01	ug/kg	36	ND		520000	58000		NC	NC
		NA-DVCT-SO08-01	ug/kg	44	ND		520000	58000	58000	NC ,	NC
		NA-DVCT-SO01-31	ug/kg	41	ND	1	610000		23000	NC	NC
	2,4-Dichlorophenol	NA-DVCT-SO02-01	ug/kg	37	ND		610000		23000	NC	NC
	2,4-Dichlorophenol	NA-DVCT-SO03-01	ug/kg	35	ND		610000			NC	NC
		NA-DVCT-SO04-01	ug/kg	38	ND		610000			NC	NC
		NA-DVCT-SO05-01	ug/kg	42	ND		610000			NC	NC
	2,4-Dichlorophenol	NA-DVCT-SO06-01	ug/kg	56	ND		610000			NC	NC
	2,4-Dichlorophenol	NA-DVCT-SO07-01	ug/kg	36	ND		610000		23000	NC	NC
OLMO3.2	2,4-Dichlorophenol	NA-DVCT-SO08-01	ug/kg	44	ND	6E+06	610000	230000	23000	NC	NC
OLMO3.2	2,4-Dimethylphenol	NA-DVCT-SO01-31	ug/kg	41	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	2,4-Dimethylphenol	NA-DVCT-SO02-01	ug/kg	37	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	2,4-Dimethylphenol	NA-DVCT-SO03-01	ug/kg	35	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	2,4-Dimethylphenol	NA-DVCT-SO04-01	ug/kg	38	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	2,4-Dimethylphenol	NA-DVCT-SO05-01	ug/kg	42	ND	4E+07	4E+06		160000	NC	NC
	2,4-Dimethylphenol	NA-DVCT-SO06-01	ug/kg	56	ND	4E+07	4E+06		160000	NC	NC
	2,4-Dimethylphenol	NA-DVCT-SO07-01	ug/kg	36	ND	4E+07	4E+06		160000	NC	NC
OLMO3.2	2,4-Dimethylphenol	NA-DVCT-SO08-01	ug/kg	44	ND	4E+07	4E+06		160000	NC	NC
	2,4-Dinitrophenol	NA-DVCT-SO01-31	ug/kg	41	ND	4E+06	410000				NC
	2,4-Dinitrophenol	NA-DVCT-SO02-01	ug/kg	37	ND		410000				NC
	2,4-Dinitrophenol	NA-DVCT-SO03-01	ug/kg	35	ND		410000			NC	NC
	<u>-</u>	NA-DVCT-SO04-01	ug/kg	38			410000				NC
		NA-DVCT-SO05-01	ug/kg	42	ND				16000		NC
	2,4-Dinitrophenol	NA-DVCT-SO06-01	ug/kg	56					16000		NC
	2,4-Dinitrophenol	NA-DVCT-SO07-01	ug/kg	36			410000				NC
		NA-DVCT-SO08-01	ug/kg	44					16000		NC
	2,4-Dinitrotoluene	NA-DVCT-SO01-31	ug/kg	41	ND		410000				NC
	2,4-Dinitrotoluene	NA-DVCT-SO02-01	ug/kg	37	ND		410000				NC NC
	2,4-Dinitrotoluene	NA-DVCT-SO03-01	ug/kg	35	ND		410000				
		NA-DVCT-S004-01		38			410000				NC NC
	2,4-Dinitrotoluene	NA-DVCT-S004-01	ug/kg								NC NC
			ug/kg	42			410000				NC
	2,4-Dinitrotoluene	NA-DVCT-SO06-01	ug/kg	56			410000				NC
	2,4-Dinitrotoluene	NA-DVCT-SO07-01	ug/kg	36	1		410000				NC
	2,4-Dinitrotoluene	NA-DVCT-SO08-01	ug/kg				410000				NC
	2,6-Dinitrotoluene	NA-DVCT-SO01-31	ug/kg	41	ND		200000				NC
	2,6-Dinitrotoluene	NA-DVCT-SQ02-01	ug/kg	37	ND		200000				NC
	2,6-Dinitrotoluene	NA-DVCT-SO03-01	ug/kg	35		2E+06	200000	78000			NC
	2,6-Dinitrotoluene	NA-DVCT-SO04-01	ug/kg	38			200000				NC
	2,6-Dinitrotoluene	NA-DVCT-SO05-01	ug/kg				200000		7800	NC	NC A
OLMO3 2	2,6-Dinitrotoluene	NA-DVCT-SO06-01	ug/kg		ND	2E+06	200000	78000	7800		NC

					j							Means Comparison Conclusion
							Yeadaa	strial	Dogid	lential	Reference	
	Method	Analyte	Sample ID	W.T.	MATOT	D14	RBC	RBSL	RBC	RBSL	ł	Reference vs.
	LMO3.2	2,6-Dinitrotoluene	NA-DVCT-SO07-01	ug/kg	MDL 36	Result ND	L	200000	1	7800	UTL NC	Site
		2,6-Dinitrotoluene	NA-DVCT-S007-01		44	ND		200000			NC NC	NC
		2-Chloronaphthalene	NA-DVCT-S001-31	ug/kg ug/kg	41	ND	2E+08	2E+07		630000	NC NC	NC
		2-Chloronaphthalene	NA-DVCT-SO01-31	ug/kg	37	ND	2E+08	2E+07		630000	NC NC	NC
	LMO3.2	2-Chloronaphthalene	NA-DVCT-S002-01	ug/kg	35	ND	2E+08	2E+07		630000	NC NC	NC NC
		2-Chloronaphthalene	NA-DVCT-S003-01	ug/kg	38	ND	2E+08	2E+07		630000	NC NC	NC NC
		2-Chloronaphthalene	NA-DVCT-SO05-01	ug/kg	42	ND	2E+08	2E+07		630000	NC NC	NC NC
		2-Chloronaphthalene	NA-DVCT-SO06-01	ug/kg	56	ND	2E+08	2E+07		630000	NC NC	NC NC
		2-Chloronaphthalene	NA-DVCT-SO07-01	ug/kg	36	ND	2E+08	2E+07		630000	NC	NC NC
		2-Chloronaphthalene	NA-DVCT-SO08-01	ug/kg	44	ND	2E+08	2E+07		630000	NC	NC NC
		2-Chlorophenol	NA-DVCT-SO01-31	ug/kg	41	ND	1E+07		390000	39000	NC NC	NC NC
		2-Chlorophenol	NA-DVCT-SO02-01	ug/kg	37	ND	1E+07		390000	39000	NC	NC NC
		2-Chlorophenol	NA-DVCT-SO03-01	ug/kg	35	ND	1E+07		390000	39000	NC	NC NC
		2-Chlorophenol	NA-DVCT-SO04-01	ug/kg	38	ND	1E+07		390000		NC	NC
		2-Chlorophenol	NA-DVCT-SO05-01	ug/kg	42	ND	1E+07		390000	39000	NC NC	NC
		2-Chlorophenol	NA-DVCT-SO06-01	ug/kg	56	ND	1E+07		390000	39000	NC	NC NC
		2-Chlorophenol	NA-DVCT-SO07-01	ug/kg	36	ND	1E+07		390000	39000	NC	NC
		2-Chlorophenol	NA-DVCT-SO08-01	ug/kg	44	ND	1E+07		390000		NC	NC NC
		2-Methylnaphthalene	NA-DVCT-SO01-31	ug/kg	41	ND	8E+07	8E+06		310000	NC	NC NC
		2-Methylnaphthalene	NA-DVCT-SO02-01	ug/kg	37	ND	8E+07	8E+06		310000	NC	NC NC
		2-Methylnaphthalene	NA-DVCT-SO03-01	ug/kg	35	ND	8E+07	8E+06		310000	NC	NC
		2-Methylnaphthalene	NA-DVCT-SO04-01	ug/kg	38	ND	8E+07	8E+06		310000	NC	NC
		2-Methylnaphthalene	NA-DVCT-SO05-01	ug/kg	42	ND	8E+07	8E+06		310000	NC	NC
	MO3.2	2-Methylnaphthalene	NA-DVCT-SO06-01	ug/kg	56	ND	8E+07	8E+06		310000	NC	NC
	MO3.2	2-Methylnaphthalene	NA-DVCT-SO07-01	ug/kg	36	ND	8E+07	8E+06		310000	NC	NC
0	LMO3.2	2-Methylnaphthalene	NA-DVCT-SO08-01	ug/kg	44	ND	8E+07	8E+06		310000	NC	NC
O	LMO3.2	2-Nitroaniline	NA-DVCT-SO01-31	ug/kg	41	ND	120000	12000	4700	470	NC	NC
0	LMO3.2	2-Nitroaniline	NA-DVCT-SO02-01	ug/kg	37	ND	120000	12000	4700	470	NC	NC
O.	LMO3.2	2-Nitroaniline	NA-DVCT-SO03-01	ug/kg	35		120000	12000	4700	470	NC	NC
0	LMO3.2	2-Nitroaniline	NA-DVCT-SO04-01	ug/kg	38	ND	120000	12000	4700	470	NC	NC
				ug/kg	42	ND	120000	12000	4700	470	NC	NC
0			NA-DVCT-SO06-01	ug/kg	56	ND	120000	12000	4700	470	NC	NC
				ug/kg	36	ND	120000	12000	4700	470	NC	NC
			NA-DVCT-SO08-01	ug/kg	44	ND	120000	12000	4700	470	NC	NC
		2-Nitrophenol	NA-DVCT-SO01-31	ug/kg	41	ND	2E+07	2E+06	630000	63000	NC	NC
				ug/kg	37	ND	2E+07	2E+06	630000	63000	NC	NC
				ug/kg	35	ND	2E+07	2E+06	630000	63000	NC	NC
				ug/kg	38	ND	2E+07		630000	63000	NC	NC
				ug/kg	42	ND	2E+07		630000	63000	NC	NC
				ug/kg	56	ND	2E+07	2E+06	630000	63000	NC	NC
				ug/kg	36	ND	2E+07		630000	63000	NC	NC
				ug/kg	44	ND	2E+07		630000	63000	NC	NC
				ug/kg	41	ND	13000	13000	1400	1400	NC	NC
				ug/kg	37	ND	13000	13000	1400	1400	NC	NC
_				ug/kg	35	ND	13000	13000	1400	1400	NC	NC
				ug/kg	38	ND	13000	13000	1400	1400	NC	NC
				ug/kg	42	ND	13000	13000	1400	1400	NC	NC
				ug/kg	56	ND	13000	13000	1400	1400	NC	NC
				ug/kg	36	ND	13000	13000	1400	1400	NC	NC
				ug/kg	44	ND	13000	13000	1400	1400	NC	NC
[0]				ug/kg	41		120000	12000	4700	470	NC	NC
				ug/kg	37		120000	12000	4700	470	NC	NC
	мО3.2	3-Nitroaniline	NA-DVCT-SO03-01	ug/kg	35	ND	120000	12000	4700	470	NC	NC

			ľ		ľ			1		1	
											Means
			İ								Comparison
1											Conclusion
1	•						strial	Residential		Reference	Reference vs
Method	Analyte	Sample ID		MDL		RBC	RBSL	RBC	RBSL	UTL	Site
+		NA-DVCT-SO04-01	ug/kg	38	ND	120000		4700			NC
		NA-DVCT-SO05-01	ug/kg	42	ND	120000		4700			NC
		NA-DVCT-SO06-01	ug/kg	56	ND	120000	12000	4700			NC
		NA-DVCT-SO07-01	ug/kg	36		120000	12000	4700			NC
		NA-DVCT-SO08-01	ug/kg	44	ND	120000		4700			NC
		NA-DVCT-SO01-31	ug/kg	41	ND	200000	20000	7800			NC
		NA-DVCT-SO02-01	ug/kg	37	ND	200000	20000	7800			NC
		NA-DVCT-SO03-01	ug/kg	35	ND	200000	20000	7800			NC
		NA-DVCT-SO04-01	ug/kg	38	ND	200000	20000	7800			NC
		NA-DVCT-SO05-01	ug/kg	42	ND	200000	20000	7800			NC
		NA-DVCT-SO06-01	ug/kg	56	ND	200000	20000	7800	780		NC
		NA-DVCT-SO07-01	ug/kg	36	ND	200000	20000	7800			NC
		NA-DVCT-SO08-01	ug/kg	44	ND	200000	20000	7800			NC
		NA-DVCT-SO01-31	ug/kg	41	ND	1E+08	1E+07		450000		NC
		NA-DVCT-\$002-01	ug/kg	37	ND	1E+08	1E+07		450000		NC
		NA-DVCT-SO03-01	ug/kg	35	ND	1E+08	1E+07		450000		NC
		NA-DVCT-SO04-01	ug/kg	38	ND	1E+08	1E+07		450000		NC
		NA-DVCT-SO05-01	ug/kg	42	ND	1E+08	1E+07		450000		NC
		NA-DVCT-SO06-01	ug/kg	56	ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether		ug/kg	36		1E+08	1E+07		450000		NC
		NA-DVCT-SO08-01	ug/kg	44	ND	1E+08	1E+07		450000		NC
		NA-DVCT-SO01-31	ug/kg	41 37	ND	4E+07	4E+06		160000		NC
		NA-DVCT-SO02-01	ug/kg		ND ND	4E+07	4E+06		160000		NC
	T -	NA-DVCT-SO03-01 NA-DVCT-SO04-01	ug/kg	35 38	ND	4E+07 4E+07	4E+06 4E+06		160000 160000	NC NC	NC NC
		NA-DVCT-SO05-01	ug/kg	42	ND	4E+07	4E+06			NC NC	NC NC
		NA-DVCT-SO06-01	ug/kg ug/kg	56		4E+07	4E+06		160000 160000		NC NC
		NA-DVCT-SO07-01	ug/kg	36	ND	4E+07	4E+06		160000	NC NC	NC NC
		NA-DVCT-SO08-01	ug/kg	44	ND	4E+07	4E+06		160000	NC NC	NC NC
		NA-DVCT-SO08-01	ug/kg	41	ND		820000				NC NC
		NA-DVCT-S002-01	ug/kg	37	ND		820000			NC NC	NC NC
		NA-DVCT-SO03-01	ug/kg	35	ND		820000				NC NC
		NA-DVCT-SO04-01	ug/kg	38	ND		820000			NC	NC NC
		NA-DVCT-SO05-01	ug/kg	42	ND		820000			NC	NC NC
		NA-DVCT-SO06-01	ug/kg	56			820000				NC
		NA-DVCT-SO07-01	ug/kg	36	ND				31000		NC
		NA-DVCT-SO08-01	ug/kg	44					31000		NC NC
	4-Chlorophenyl-phenylether		ug/kg	41	ND				450000		NC
	4-Chlorophenyl-phenylether		ug/kg	37	ND				450000		NC
	4-Chlorophenyl-phenylether		ug/kg	35		1E+08			450000		NC
	4-Chlorophenyl-phenylether		ug/kg	38	ND	1E+08			450000		NC NC
	4-Chlorophenyl-phenylether		ug/kg	42	ND	1E+08			450000		NC
	4-Chlorophenyl-phenylether		ug/kg	56		1E+08	1E+07		450000		NC
	4-Chlorophenyl-phenylether		ug/kg	36		1E+08			450000		NC
		NA-DVCT-SO08-01	ug/kg	44		1E+08			450000		NC
		NA-DVCT-SO01-31	ug/kg	41	ND	120000	12000	4700			NC NC
		NA-DVCT-SO02-01	ug/kg	37	ND	120000	12000	4700			NC
		NA-DVCT-SO03-01	ug/kg	35		120000	12000	4700			NC
		NA-DVCT-SO04-01	ug/kg	38		120000	12000	4700			NC NC
		NA-DVCT-SO05-01	ug/kg	42	ND	120000	12000	4700			NC NC
		NA-DVCT-SO06-01	ug/kg	56		120000	12000	4700			NC NC
		NA-DVCT-SO07-01	ug/kg	36		120000	12000	4700			NC A
		NA-DVCT-SO08-01	ug/kg	44		120000	12000	4700			NC NC

Appendix F-1
Child Development Center - Surface Soil

											Means
											Comparison
											Conclusion
1			1			Industrial		Residential		Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	4-Nitrophenol	NA-DVCT-SO01-31	ug/kg	41	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO02-01	ug/kg	37	ND	2E+07	2E+06	630000		NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO03-01	ug/kg	35	ND	2E+07		630000		NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO04-01	ug/kg	38	ND	2E+07		630000		NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO05-01	ug/kg	42	ND	2E+07		630000	1	NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO06-01	ug/kg	56	ND	2E+07				NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO07-01	ug/kg	36	ND	2E+07		630000		NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO08-01	ug/kg	44	ND	2E+07		630000		NC	NC
OLMO3.2 OLMO3.2	Acenaphthene	NA-DVCT-SO01-31	ug/kg	41	ND	1E+08	1E+07		470000	NC	NC
OLMO3.2	Acenaphthene Acenaphthene	NA-DVCT-SO02-01	ug/kg	37	ND	1E+08	1E+07		470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO03-01 NA-DVCT-SO04-01	ug/kg	35	ND	1E+08	1E+07		470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO05-01	ug/kg	38 42	ND	1E+08	1E+07		470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO05-01	ug/kg	56	ND	1E+08	1E+07		470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-S000-01	ug/kg	36	ND DN	1E+08 1E+08	1E+07		470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO08-01	ug/kg	44	ND		1E+07		470000	NC	NC
OLMO3.2	Acenaphthylene	NA-DVCT-S008-01	ug/kg ug/kg	41	ND	1E+08 1E+08	1E+07		470000	NC	NC
	Acenaphthylene	NA-DVCT-S002-01	ug/kg	37	ND	1E+08	1E+07		470000 470000	NC	NC
	Acenaphthylene	NA-DVCT-S002-01	ug/kg	35	ND	1E+08	1E+07			NC NC	NC
	Acenaphthylene	NA-DVCT-S004-01	ug/kg	38	ND	1E+08	1E+07		470000 470000	NC	NC
	Acenaphthylene	NA-DVCT-SO05-01	ug/kg	42	ND	1E+08	1E+07		470000	NC NC	NC
	Acenaphthylene	NA-DVCT-SO06-01	ug/kg	56	ND	1E+08	1E+07		470000	NC NC	NC
	Acenaphthylene	NA-DVCT-SO07-01	ug/kg	36	ND	1E+08	1E+07	5E+06		NC NC	NC
	Acenaphthylene	NA-DVCT-SO08-01	ug/kg	44	ND	1E+08	1E+07	5E+06		NC NC	NC NC
	Anthracene	NA-DVCT-SO01-31	ug/kg	41	ND	6E+08	6E+07	2E+07	2E+06	NC NC	NC NC
	Anthracene	NA-DVCT-SO02-01	ug/kg	37	ND	6E+08	6E+07	2E+07	2E+06	NC NC	NC NC
OLMO3.2	Anthracene	NA-DVCT-SO03-01	ug/kg	35	ND	6E+08	6E+07	2E+07	2E+06	NC NC	NC NC
OLMO3.2	Anthracene	NA-DVCT-SO04-01	ug/kg	38	ND	6E+08	6E+07	2E+07	2E+06	NC	NC NC
OLMO3.2	Anthracene	NA-DVCT-SO05-01	ug/kg	42	ND	6E+08	6E+07	2E+07	2E+06	NC	NC NC
OLMO3.2	Anthracene	NA-DVCT-SO06-01	ug/kg	56	ND	6E+08	6E+07	2E+07	2E+06	NC	NC NC
OLMO3.2	Anthracene	NA-DVCT-SO07-01	ug/kg	36	ND	6E+08	6E+07	2E+07	2E+06	NC	NC NC
	Anthracene	NA-DVCT-SO08-01	ug/kg	44	ND	6E+08	6E+07	2E+07	2E+06	NC	NC NC
	Benzo(a)anthracene	NA-DVCT-SO01-31	ug/kg	41	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO02-01	ug/kg	37	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO03-01	ug/kg	35	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO04-01	ug/kg	38	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO05-01	ug/kg	42	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO06-01	ug/kg	56	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO07-01	ug/kg	36	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO08-01	ug/kg	44	ND	7800	7800	870	870	NC	NC
	Benzo(a)pyrene	NA-DVCT-SO01-31	ug/kg	41	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene	NA-DVCT-SO02-01	ug/kg	37	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene	NA-DVCT-SO03-01	ug/kg	35	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene	NA-DVCT-SO04-01	ug/kg	38	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene		ug/kg	42	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene		ug/kg	56	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene		ug/kg	36	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene Benzo(b)fluoranthene	NA-DVCT-SO08-01	ug/kg	44	ND	780	780	87	87	NC	NC
	Benzo(b)fluoranthene Benzo(b)fluoranthene		ug/kg	41	ND	7800	7800	870	870	NC	NC
	Benzo(b)fluoranthene		ug/kg	37	ND	7800	7800	870	870	NC	NČ
	Benzo(b)fluoranthene		ug/kg	35	ND	7800	7800	870	870	NC	NC
	Benzo(b)fluoranthene		ug/kg	38	ND	7800	7800	870	870	NC	NC
1.03.2		12-12-101-000-01	ug/kg	42	ND	7800	7800	870	870	NC	NC

Appendix F-1
Child Development Center - Surface Soil

											Means
											Comparison
									4	D.S	Conclusion
						Indu		Resid	RBSL	Reference	Reference vs.
Method	Analyte	Sample ID		MDL		RBC 7800	RBSL 7800	RBC 870	870	UTL NC	Site NC
	Benzo(b)fluoranthene	NA-DVCT-SO06-01	ug/kg	56 36	ND	7800	7800 7800	870 870	870	NC NC	NC NC
	Benzo(b)fluoranthene	NA-DVCT-SO07-01	ug/kg	44	ND ND	7800	7800	870 870	870	NC	NC NC
	Benzo(b)fluoranthene	NA-DVCT-SO08-01	ug/kg				6E+06		230000	NC NC	NC NC
	Benzo(g,h,i)perylene	NA-DVCT-SO01-31	ug/kg	41	ND	6E+07			230000	NC NC	NC NC
	Benzo(g,h,i)perylene	NA-DVCT-SO02-01 NA-DVCT-SO03-01	ug/kg	37 35	ND ND	6E+07	6E+06		230000	NC NC	NC NC
	Benzo(g,h,i)perylene	NA-DVCT-S003-01	ug/kg	38	ND	6E+07	6E+06		230000	NC NC	NC NC
	Benzo(g,h,i)perylene	NA-DVCT-SO05-01	ug/kg	42	ND	6E+07	6E+06		230000	NC NC	NC NC
	Benzo(g,h,i)perylene	NA-DVCT-S005-01	ug/kg ug/kg	56	ND	6E+07	6E+06		230000	NC NC	NC
	Benzo(g,h,i)perylene	NA-DVCT-S000-01	ug/kg	36	ND	6E+07	6E+06		230000	NC	NC NC
	Benzo(g,h,i)perylene Benzo(g,h,i)perylene	NA-DVCT-SO07-01	ug/kg	44	ND	6E+07	6E+06		230000	NC NC	NC NC
	Benzo(k)fluoranthene	NA-DVCT-SO01-31	ug/kg	41	ND	78000	78000	8700	8700	NC	NC NC
	Benzo(k)fluoranthene	NA-DVCT-SO01-31	ug/kg	37	ND	78000	78000	8700	8700	NC NC	NC NC
	Benzo(k)fluoranthene	NA-DVCT-SO02-01	ug/kg	35	ND	78000	78000	8700	8700	NC	NC
	Benzo(k)fluoranthene	NA-DVCT-S003-01	ug/kg	38	ND	78000	78000	8700	8700	NC	NC NC
	Benzo(k)fluoranthene	NA-DVCT-SO05-01	ug/kg	42	ND	78000	78000	8700	8700	NC	NC
	Benzo(k)fluoranthene	NA-DVCT-SO06-01	ug/kg	56	ND	78000	78000	8700	8700	NC	NC NC
	Benzo(k)fluoranthene	NA-DVCT-S007-01	ug/kg	36		78000	78000	8700	8700	NC	NC NC
	Benzo(k)fluoranthene	NA-DVCT-SO07-01	ug/kg	44	ND	78000	78000	8700	8700	NC	NC
	Butylbenzylphthalate	NA-DVCT-SO01-31	ug/kg	41	ND	4E+08		2E+07	2E+06	83	
	Butylbenzylphthalate	NA-DVCT-SO02-01	ug/kg	37	ND	4E+08	4E+07	2E+07	2E+06	83	
	Butylbenzylphthalate	NA-DVCT-SO03-01	ug/kg	35	ND	4E+08		2E+07	2E+06	83	
	Butylbenzylphthalate	NA-DVCT-SO04-01	ug/kg	38	ND	4E+08		2E+07	2E+06	83	
	Butylbenzylphthalate	NA-DVCT-SO05-01	ug/kg	42	ND	4E+08		2E+07	2E+06	83	
	Butylbenzylphthalate	NA-DVCT-SO06-01	ug/kg	56				2E+07	2E+06	83	
	Butylbenzylphthalate	NA-DVCT-SO07-01	ug/kg	36		4E+08		2E+07	2E+06		
	Butylbenzylphthalate	NA-DVCT-SO08-01	ug/kg	44	ND	4E+08		2E+07	2E+06		
	Carbazole	NA-DVCT-SO01-31	ug/kg	41	ND	L	290000	32000		NC	NC
	Carbazole	NA-DVCT-SO02-01	ug/kg	37	ND		290000	32000		NC	NC
	Carbazole	NA-DVCT-SO03-01	ug/kg	35			290000	32000		NC	NC
	Carbazole	NA-DVCT-SO04-01	ug/kg	38			290000	32000	32000	NC	NC
	Carbazole	NA-DVCT-SO05-01	ug/kg	42			290000	32000			NC
	Carbazole	NA-DVCT-SO06-01	ug/kg	56			290000	32000		NC	NC
OLMO3.2		NA-DVCT-SO07-01	ug/kg	36			290000	32000		NC	NC
OLMO3.2		NA-DVCT-SO08-01	ug/kg				290000				NC
OLMO3.2		NA-DVCT-SO01-31	ug/kg				780000				NC
OLMO3.2		NA-DVCT-SO02-01	ug/kg	,			780000				NC
OLMO3.2		NA-DVCT-SO03-01	ug/kg				780000				NC
OLMO3.2		NA-DVCT-SO04-01	ug/kg				780000		87000		NC
OLMO3.2		NA-DVCT-SO05-01	ug/kg		ND		780000		87000	NC	NC
OLMO3.2		NA-DVCT-SO06-01	ug/kg				780000		87000		NC
OLMO3.2		NA-DVCT-SO07-01	ug/kg				780000				NC
OLMO3.2		NA-DVCT-SO08-01	ug/kg				780000				NC
	Dibenz(a,h)anthracene	NA-DVCT-SO01-31	ug/kg	41	ND	780	780	87			NC
	Dibenz(a,h)anthracene	NA-DVCT-SO02-01	ug/kg			780					NC
	Dibenz(a,h)anthracene	NA-DVCT-SO03-01	ug/kg		ND	780	780			<u> </u>	NC
	Dibenz(a,h)anthracene	NA-DVCT-SO04-01	ug/kg			780					NC
	Dibenz(a,h)anthracene	NA-DVCT-SO05-01	ug/kg			780					NC
	Dibenz(a,h)anthracene	NA-DVCT-SO06-01	ug/kg			780	780		*		NC
	Dibenz(a,h)anthracene	NA-DVCT-SO07-01	ug/kg			780				والمستحدث والمستحدث	NC
	Dibenz(a,h)anthracene	NA-DVCT-SO08-01	ug/kg			780					NC
	Dibenzofuran	NA-DVCT-SO01-31	ug/kg	-			820000				NC A
	Dibenzofuran	NA-DVCT-SO02-01	ug/kg				820000			1	NC

				-		Indu		Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	Dibenzofuran	NA-DVCT-SO03-01	ug/kg	35	ND	8E+06	820000	310000	31000	NC	NC
	Dibenzofuran	NA-DVCT-SO04-01	ug/kg	38	ND			310000	31000	NC	NC
	Dibenzofuran	NA-DVCT-SO05-01	ug/kg	42	ND			310000		NC	NC
	Dibenzofuran	NA-DVCT-SO06-01	ug/kg	56				310000		NC	NC
	Dibenzofuran	NA-DVCT-SO07-01	ug/kg	36				310000		NC	NC
	Dibenzofuran	NA-DVCT-SO08-01	ug/kg	44	ND			310000	31000	NC	NC
	Diethylphthalate	NA-DVCT-SO01-31	ug/kg	41	ND	2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-DVCT-SO02-01	ug/kg	37	ND	2E+09	2E+08	6E+07	6E+06	194	NC NC
	Diethylphthalate	NA-DVCT-S002-01		35	ND ND	2E+09	2E+08	6E+07	6E+06	194	NC NC
			ug/kg								
	Diethylphthalate	NA-DVCT-SO04-01	ug/kg	38	ND	2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-DVCT-SO05-01	ug/kg	42	ND	2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-DVCT-SO06-01	ug/kg	56		2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-DVCT-SO07-01	ug/kg	36	ND	2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-DVCT-SO08-01	ug/kg	44	ND	2E+09	2E+08	6E+07	6E+06	194	NC
OLMO3.2	Dimethylphthalate	NA-DVCT-SO01-31	ug/kg	41	ND_	2E+10	2E+09	8E+08	8E+07	NC	NC
OLMO3.2	Dimethylphthalate	NA-DVCT-SO02-01	ug/kg	37	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
OLMO3.2	Dimethylphthalate	NA-DVCT-SO03-01	ug/kg	35	ND	2E+10	2E+09	8E+08		NC	NC
OLMO3.2	Dimethylphthalate	NA-DVCT-SO04-01	ug/kg	38	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
OLMO3.2	Dimethylphthalate	NA-DVCT-SO05-01	ug/kg	42	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
	Dimethylphthalate	NA-DVCT-SO06-01	ug/kg	56	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
	Dimethylphthalate	NA-DVCT-SO07-01	ug/kg	36	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
	Dimethylphthalate	NA-DVCT-SO08-01	ug/kg	44	ND	2E+10	2E+09	8E+08		NC	NC
	Fluoranthene	NA-DVCT-SO01-31	ug/kg	41	ND	8E+07	8E+06		310000	60	NC
	Fluoranthene	NA-DVCT-SO02-01	ug/kg	37	ND	8E+07	8E+06		310000	60	NC
	Fluoranthene	NA-DVCT-S002-01	ug/kg	35	ND	8E+07	8E+06		310000		NC
	Fluoranthene	NA-DVCT-S003-01		38	ND	8E+07	8E+06		310000	60	NC NC
	Fluoranthene		ug/kg	42	ND	8E+07	8E+06		310000		NC NC
		NA-DVCT-SO05-01	ug/kg	56	ND	8E+07	8E+06		310000	60	NC NC
	Fluoranthene	NA-DVCT-SO06-01	ug/kg	36						L	NC NC
	Fluoranthene	NA-DVCT-SO07-01	ug/kg			8E+07	8E+06		310000		
	Fluoranthene	NA-DVCT-SO08-01	ug/kg	44	ND	8E+07	8E+06		310000		NC
OLMO3.2		NA-DVCT-SO01-31	ug/kg	41	ND	8E+07	8E+06		310000	NC	NC
OLMO3.2		NA-DVCT-SO02-01	ug/kg	37	ND	8E+07	8E+06		310000	NC	NC
OLMO3.2		NA-DVCT-SO03-01	ug/kg	35	ND	8E+07	8E+06		310000	NC	NC
OLMO3.2		NA-DVCT-SO04-01	ug/kg	38		8E+07	8E+06		310000	NC	NC
OLMO3.2	Fluorene	NA-DVCT-SO05-01	ug/kg	42		8E+07			310000		NC
OLMO3.2		NA-DVCT-SO06-01	ug/kg	56		8E+07	8E+06		310000		NC
OLMO3.2		NA-DVCT-SO07-01	ug/kg	36		8E+07	8E+06		310000		NC
OLMO3.2	Fluorene	NA-DVCT-SO08-01	ug/kg	44	ND	8E+07	8E+06		310000		NC_
	Hexachloro-1,3-butadiene	NA-DVCT-SO01-31	ug/kg	41	ND	73000	73000	8200		NC	NC
	Hexachloro-1,3-butadiene	NA-DVCT-SO02-01	ug/kg	37	ND	73000	73000	8200		NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-DVCT-SO03-01	ug/kg	35	ND	73000		8200			NC
	Hexachloro-1,3-butadiene	NA-DVCT-SO04-01	ug/kg	38		73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-DVCT-SO05-01	ug/kg	42		73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene	NA-DVCT-SO06-01	ug/kg	56		73000	73000		8200	NC	NC
	Hexachloro-1,3-butadiene	NA-DVCT-SO07-01	ug/kg	36		73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-DVCT-SO08-01	ug/kg	44		73000	73000	8200	8200		NC
	Hexachlorobenzene	NA-DVCT-SO01-31	ug/kg	41	ND	3600	3600	400	400	NC	NC
	Hexachlorobenzene	NA-DVCT-SO02-01	ug/kg	37	1	3600	3600		400	NC	NC
	Hexachlorobenzene	NA-DVCT-S002-01	ug/kg	35	ND	3600	3600		400	NC	NC
	Hexachlorobenzene	NA-DVCT-SO03-01		38		3600	3600			NC NC	NC NC
			ug/kg		ND				400		
	Hexachlorobenzene	NA-DVCT-SO05-01	ug/kg	42		3600	3600				NC
	Hexachlorobenzene	NA-DVCT-SO06-01	ug/kg	56		3600	3600		400		NC NC
103.2	Hexachlorobenzene	NA-DVCT-SO07-01	ug/kg	36	ND	3600	3600	400	400	NC	NC

					T			1		, ·· <u>·</u> ·	
			1								Means
											Comparison
1				i							Conclusion
1				l	_		strial		dential	Reference	Reference vs
Method OLMO3.2	Analyte Hexachlorobenzene	Sample ID		MDL		RBC	RBSL	RBC	RBSL	UTL	Site
	Hexachlorocyclopentadiene	NA-DVCT-SO08-01 NA-DVCT-SO01-31	ug/kg	44		3600					NC
		NA-DVCT-SO02-01	ug/kg ug/kg		ND UJ	1E+07		550000		L	NC NC
		NA-DVCT-S002-01	ug/kg		ND UJ	1E+07		550000 550000			NC
		NA-DVCT-SO04-01	ug/kg		ND UJ	1E+07		550000			NC NC
	Hexachlorocyclopentadiene	NA-DVCT-SO05-01	ug/kg		ND UJ	1E+07		550000			NC NC
	Hexachlorocyclopentadiene	NA-DVCT-SO06-01	ug/kg	56		1E+07		550000			NC NC
OLMO3.2	Hexachlorocyclopentadiene	NA-DVCT-SO07-01	ug/kg	36		1E+07		550000			NC NC
OLMO3.2		NA-DVCT-SO08-01	ug/kg	44	ND	1E+07		550000			NC
	Hexachloroethane	NA-DVCT-SO01-31	ug/kg	41	ND		410000				NC
	Hexachloroethane	NA-DVCT-SO02-01	ug/kg	37	ND	410000	410000	46000	46000	NC	NC
	Hexachloroethane	NA-DVCT-SO03-01	ug/kg	35	ND		410000	46000	46000	NC	NC
	Hexachloroethane	NA-DVCT-SO04-01	ug/kg	38	ND		410000	46000		NC	NC
	Hexachloroethane	NA-DVCT-SO05-01	ug/kg	42	ND		410000				NC
	Hexachloroethane Hexachloroethane	NA-DVCT-SO06-01	ug/kg	56	ND		410000	46000		NC	NC
	Hexachloroethane	NA-DVCT-SO07-01 NA-DVCT-SO08-01	ug/kg	36 44	ND		410000	46000			NC
	Indeno(1,2,3-cd)pyrene	NA-DVCT-S008-01	ug/kg ug/kg	41	ND ND	7800	410000 7800	46000		NC NC	NC
		NA-DVCT-SO02-01	ug/kg	37	ND	7800	7800	870 870		NC	NC
	Indeno(1,2,3-cd)pyrene	NA-DVCT-S003-01	ug/kg	35	ND	7800	7800	870		NC NC	NC NC
	Indeno(1,2,3-cd)pyrene	NA-DVCT-SO04-01	ug/kg	38	ND	7800	7800	870		NC NC	NC NC
	Indeno(1,2,3-cd)pyrene	NA-DVCT-SO05-01	ug/kg	42	ND	7800	7800	870		NC	NC NC
		NA-DVCT-SO06-01	ug/kg	56	ND	7800	7800	870		NC	NC NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-DVCT-SO07-01	ug/kg	36	ND	7800	7800	870		NC	NČ
OLMO3.2		NA-DVCT-SO08-01	ug/kg	44	ND	7800	7800	870		NC	NC NC
		NA-DVCT-SO01-31	ug/kg	41	ND	6E+06	6E+06		670000	NC	NC
		NA-DVCT-SO02-01	ug/kg	37	ND	6E+06			670000	NC	NC
		NA-DVCT-SO03-01	ug/kg	35	ND	6E+06			670000	NC	NC
		NA-DVCT-SO04-01	ug/kg	38	ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone Isophorone	NA-DVCT-SO05-01	ug/kg	42	ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-DVCT-SO06-01 NA-DVCT-SO07-01	ug/kg	56	ND	6E+06			670000	NC	NC
$\overline{}$		NA-DVCT-SO08-01	ug/kg	36 44	ND	6E+06			670000	NC	NC
	N-Nitroso-di-n-propylamine		ug/kg ug/kg	41	ND ND	6E+06 820			670000	NC	NC
	N-Nitroso-di-n-propylamine		ug/kg	37	ND	820	820 820	91 91	91 91	NC NC	NC NC
	N-Nitroso-di-n-propylamine		ug/kg	35	ND	820	820	91	91	NC	NC NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-DVCT-SO04-01	ug/kg	38	ND	820	820	91	91	NC	NC NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-DVCT-SO05-01	ug/kg	42	ND	820	820	91	91	NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-DVCT-SO06-01	ug/kg	56	ND	820	820	91	91	NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-DVCT-SO07-01	ug/kg	36	ND	820	820	91	91	NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine		ug/kg	44	ND	820	820	91	91	NC	NC
		NA-DVCT-SO01-31	ug/kg	41	ND	1E+06			130000	NC	NC
		NA-DVCT-SO02-01	ug/kg	37	ND	1E+06			130000	NC	NC
	N-Nitrosodiphenylamine	NA-DVCT-SO03-01	ug/kg	35	ND		1E+06			NC	NC
	N-Nitrosodiphenylamine	NA-DVCT-SO04-01	ug/kg	38	ND	1E+06			130000	NC	NC
		NA-DVCT-S005-01	ug/kg	42	ND	1E+06			130000	NC	NC
	I	NA-DVCT-SO06-01	ug/kg	56	ND	1E+06			130000	NC	NC
		NA-DVCT-SO07-01	ug/kg	36	ND	1E+06			130000	NC	NC
OLMO3.2 I	 	NA-DVCT-SO08-01	ug/kg	44	ND	1E+06			130000	NC	NC
OLMO3.2 I	^	NA-DVCT-SO01-31 NA-DVCT-SO02-01	ug/kg	41	ND	8E+07			310000	NC	NC
OLMO3.2 I		NA-DVCT-SO02-01	ug/kg	37	ND	8E+07			310000	NC	NC
		NA-DVCT-SO03-01	ug/kg ug/kg	35 38	ND ND	8E+07 8E+07			310000 310000	NC NC	NC NC

						Indu	ıstrial	Resid	lential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2		NA-DVCT-SO05-01	ug/kg	42	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2		NA-DVCT-SO06-01	ug/kg	56	ND	8E+07	8E+06		310000	NC	NC
OLMO3.2	<u> </u>	NA-DVCT-SO07-01	ug/kg	36	ND	8E+07			310000	NC	NC
OLMO3.2		NA-DVCT-SO08-01	ug/kg	44	ND	8E+07	8E+06		310000	NC	NC
		NA-DVCT-SO01-31	ug/kg	41	ND	1E+06	100000			NC	NC
OLMO3.2	Nitrobenzene	NA-DVCT-SO02-01	ug/kg	37	ND	1E+06		39000		NC	NC NC
OLMO3.2	Nitrobenzene	NA-DVCT-SO03-01	ug/kg	35	ND	1E+06	100000	39000		NC	NC
OLMO3.2		NA-DVCT-SO04-01	ug/kg	38	ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-DVCT-SO05-01	ug/kg	42	ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-DVCT-SO06-01	ug/kg	56	ND	1E+06	100000	39000	3900	NC	NC
OLMO3.2	Nitrobenzene	NA-DVCT-SO07-01	ug/kg	36	ND		100000	39000	3900	NC	NC
OLMO3.2	Nitrobenzene	NA-DVCT-SO08-01	ug/kg	44	ND		100000	39000	3900	NC	NC
OLMO3.2	Pentachlorophenol	NA-DVCT-SO01-31	ug/kg	41	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-DVCT-SO02-01	ug/kg	37	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-DVCT-SO03-01	ug/kg	35	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-DVCT-SO04-01	ug/kg	38	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-DVCT-SO05-01	ug/kg	42	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-DVCT-SO06-01	ug/kg	56	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-DVCT-SO07-01	ug/kg	36	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-DVCT-SO08-01	ug/kg	44	ND	48000	48000	5300	5300	NC	NC
	Phenanthrene	NA-DVCT-S001-31	ug/kg	41	ND	6E+07	6E+06	2E+06	230000	NC	NC
OLMO3.2	Phenanthrene	NA-DVCT-SO02-01	ug/kg	37	ND	6E+07	6E+06	2E+06	230000	NC	NC
	Phenanthrene	NA-DVCT-SO03-01	ug/kg	35	ND	6E+07	6E+06	2E+06	230000	NC	NC
	Phenanthrene	NA-DVCT-SO04-01	ug/kg	38	ND	6E+07	6E+06		230000	NC	NC
	Phenanthrene	NA-DVCT-SO05-01	ug/kg	42	ND	6E+07	6E+06	2E+06	230000	NC	NC
	Phenanthrene	NA-DVCT-SO06-01	ug/kg	56	ND	6E+07	6E+06	2E+06	230000	NC	NC
	Phenanthrene	NA-DVCT-SO07-01	ug/kg	36	ND	6E+07	6E+06		230000	NC	NC
	Phenanthrene	NA-DVCT-SO08-01	ug/kg	44	ND	6E+07	6E+06		230000	NC	NC
	Phenol	NA-DVCT-SO01-31	ug/kg	41	ND	1E+09	1E+08	5E+07	5E+06	NC	NC
	Phenol	NA-DVCT-SO02-01	ug/kg	37	ND	1E+09	1E+08	5E+07	5E+06	NC	NC
	Phenol	NA-DVCT-SO03-01	ug/kg	35	ND	1E+09	1E+08	5E+07	5E+06	NC	NC
	Phenol	NA-DVCT-SO04-01	ug/kg	38	ND	1E+09	1E+08	5E+07	5E+06	NC	NC
	Phenol	NA-DVCT-SO05-01	ug/kg	42	ND	1E+09	1E+08	5E+07	5E+06	NC	NC
	Phenol Phenol	NA-DVCT-SO06-01	ug/kg	56	ND	1E+09	1E+08	5E+07	5E+06	NC	NC
		NA-DVCT-SO07-01	ug/kg	36	ND		1E+08	5E+07	5E+06	NC	NC
OLMO3.2	Phonon	NA-DVCT-SO08-01	ug/kg	44	ND		1E+08			NC	NC
OLMO3.2 OLMO3.2		NA-DVCT-SO01-31	ug/kg	41	ND	6E+07		2E+06		70	NC
OLMO3.2		NA-DVCT-SO02-01	ug/kg	37	ND	6E+07		2E+06		70	NC
OLMO3.2		NA-DVCT-SO03-01	ug/kg	35	ND	6E+07		2E+06		70	NC
OLMO3.2		NA-DVCT-SO04-01	ug/kg	38	ND			2E+06		70	NC
OLMO3.2		NA-DVCT-SO05-01	ug/kg	42		6E+07		2E+06		70	NC
OLMO3.2		NA-DVCT-SO06-01	ug/kg	56	ND	6E+07		2E+06		70	NC
		NA-DVCT-SO07-01	ug/kg	36				2E+06		70	NC
	Pyrene	NA-DVCT-SO08-01	ug/kg	44	ND			2E+06		70	NC
OLMO3.2	bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane	NA-DVCT-5001-31	ug/kg	41	ND	5200	5200	580	580	NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-DVCT-SO02-01	ug/kg	37	ND	5200	5200	580	580	NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-DVCT-5003-01	ug/kg	35	ND	5200	5200	580	580	NC	NC
OLMO3.2	bis(2 Chlorooth and bis(2)	NA-DVCT-S004-01	ug/kg	38	ND	5200	5200	580	580	NĆ	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-DVCT-SO05-01	ug/kg	42	ND	5200	5200	580	580	NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-DVCT-SO06-01	ug/kg	56	ND	5200	5200	580	580	NC	NC
CLMO3.2	bis(2-Chloroethoxy)methane	NA-DVCT-SO07-01	ug/kg	_ 36	ND	5200	5200	580	580	NC	NC
VIU3.2	bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether		ug/kg	44	ND	5200	5200	580	580	NC	NC
103.2	oracz-chioroeuryrjemer	NA-DVCT-SO01-31	ug/kg	41	ND	5200	5200	580	580	NC	NC

Appendix F-1
Child Development Center - Surface Soil

OLMO3.2 b	Analyte						strial	Resid		Reference	Comparison Conclusion Reference vs.
OLMO3.2 b		Sample ID			Result	RBC	RBSL	RBC	RBSL	UTL	Site
		NA-DVCT-SO02-01	ug/kg	37	ND	5200	5200	580	580	NC	NC
OT 14000 0 12	ois(2-Chloroethyl)ether	NA-DVCT-SO03-01	ug/kg	35	ND	5200	5200	580	580		NC
OLMO3.2 b	ois(2-Chloroethyl)ether	NA-DVCT-SO04-01	ug/kg	38	ND	5200	5200	580	580	NC	NC
OLMO3.2 b	ois(2-Chloroethyl)ether	NA-DVCT-SO05-01	ug/kg	42	ND	5200	5200	580	580	NC	NC
OLMO3.2 b	ois(2-Chloroethyl)ether	NA-DVCT-SO06-01	ug/kg	56	ND	5200	5200	580	580	NC	NC
		NA-DVCT-SO07-01	ug/kg	36	ND	5200	5200	580	580	NC	NC
		NA-DVCT-SO08-01	ug/kg	44	ND	5200	5200	580	580	NC	NC
		NA-DVCT-SO01-31	ug/kg	41			410000	46000	46000	785	NS
		NA-DVCT-SO02-01	ug/kg	37			410000	46000	46000	785	NS
		NA-DVCT-SO03-01	ug/kg	35			410000	46000	46000	785	NS
		NA-DVCT-SO04-01	ug/kg	38	ND		410000	46000	46000	785	NS
		NA-DVCT-S005-01		42			410000	46000	46000	785	NS NS
	ois(2-Ethylhexyl)phthalate		ug/kg	56			410000	46000	46000	785	NS NS
		NA-DVCT-SO06-01	ug/kg								<u> </u>
		NA-DVCT-SO07-01	ug/kg	36			410000	46000	46000	785	NS
		NA-DVCT-SO08-01	ug/kg	44			410000	46000	46000	785	NS
		NA-DVCT-SO01-31	ug/kg	41	47	2E+08			780000		NS
		NA-DVCT-SO02-01	ug/kg	37	93	2E+08			780000	280	NS
		NA-DVCT-SO03-01	ug/kg	35	ND	2E+08			780000		
		NA-DVCT-SO04-01	ug/kg	38	ND	2E+08			780000	L	
		NA-DVCT-SO05-01	ug/kg	42	ND	2E+08			780000		
OLMO3.2 d	li-n-Butylphthalate	NA-DVCT-SO06-01	ug/kg	56	ND	2E+08			780000		
OLMO3.2 d	li-n-Butylphthalate	NA-DVCT-SO07-01	ug/kg	36	ND	2E+08	2E+07	8E+06	780000		
OLMO3.2 d	li-n-Butylphthalate	NA-DVCT-SO08-01	ug/kg	44	200	2E+08	2E+07	8E+06	780000	280	NS
OLMO3.2 d	li-n-Octylphthalate	NA-DVCT-SO01-31	ug/kg	41	ND	4E+07	4E+06	2E+06	160000	NC	NC
		NA-DVCT-SO02-01	ug/kg	37	ND	4E+07	4E+06	2E+06	160000	NC	NC
		NA-DVCT-SO03-01	ug/kg	35	ND	4E+07	4E+06		160000		NC
		NA-DVCT-SO04-01	ug/kg	38	ND	4E+07	4E+06		160000		NC
		NA-DVCT-SO05-01	ug/kg	42	ND	4E+07	4E+06		160000	<u> </u>	NC
		NA-DVCT-SO06-01	ug/kg	56	ND	4E+07	4E+06		160000		NC
		NA-DVCT-SO07-01	ug/kg	36	ND	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-DVCT-SO08-01	ug/kg	44	54	1	4E+06		160000		NC NC
OLMO3.2 o		NA-DVCT-S001-31		41	ND	1E+08			390000		NC
OLMO3.2 o		NA-DVCT-S002-01	ug/kg	37	ND	1E+08			390000		NC NC
			ug/kg	35	ND	1E+08			390000		NC NC
OLMO3.2		NA-DVCT-SO03-01 NA-DVCT-SO04-01	ug/kg				1E+07		390000		NC NC
OLMO3.2			ug/kg								
OLMO3.2	1.11	NA-DVCT-SO05-01	ug/kg				1E+07				NC
OLMO3.2 o		NA-DVCT-SO06-01	ug/kg		ND		1E+07				NC_
OLMO3.2 o		NA-DVCT-SO07-01	ug/kg				1E+07				NC
OLMO3.2 o		NA-DVCT-SO08-01	ug/kg	44			1E+07				NC
OLMO3.2 p		NA-DVCT-SO01-31	ug/kg				1E+06				NC
OLMO3.2 p		NA-DVCT-SO02-01	ug/kg	37			1E+06				NC
OLMO3.2 p		NA-DVCT-SO03-01	ug/kg				1E+06				NC
OLMO3.2 p		NA-DVCT-SO04-01	ug/kg				1E+06				NC
OLMO3.2 p	p-Cresol	NA-DVCT-SO05-01	ug/kg			1E+07	1E+06	390000	39000	NC	NC
OLMO3.2 p	p-Cresol	NA-DVCT-SO06-01	ug/kg	56	ND	1E+07	1E+06	390000	39000		NC
OLMO3.2	p-Cresol	NA-DVCT-SO07-01	ug/kg	36	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2 p		NA-DVCT-SO08-01	ug/kg	1		1E+07		390000			NC
	1,2,3,4,6,7,8,9-OCDD	NA-DVCT-SO01-31	ng/kg							1	
	1,2,3,4,6,7,8,9-OCDD	NA-DVCT-SO02-01	ng/kg								k.
	1,2,3,4,6,7,8,9-OCDD	NA-DVCT-SO03-01	ng/kg	-							
	1,2,3,4,6,7,8,9-OCDD	NA-DVCT-\$004-01	ng/kg		10.5						
											.
	1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDD	NA-DVCT-SO05-01 NA-DVCT-SO06-01	ng/kg ng/kg								

Appendix F-1
Child Development Center - Surface Soil

						Indus	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
37.45.04	Amolesto	Sample ID	Tinite	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte 1,2,3,4,6,7,8,9-OCDD	NA-DVCT-SO07-01	ng/kg	1.3	22.7	38000	38000	4300	4300	1180	NS
SW8290				2.3	713	38000	38000	4300	4300	1180	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-DVCT-SO08-01	ng/kg	0.7	33.8	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO01-31	ng/kg	0.7	75.1	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO02-01	ng/kg	0.3	103	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO03-01	ng/kg		ND	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO04-01 NA-DVCT-SO05-01	ng/kg	1	50.8	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.6	21.7	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO06-01 NA-DVCT-SO07-01	ng/kg	1.1	1.8 J	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO08-01	ng/kg	2	81.7	38000	38000	4300	4300	212	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-S003-01	ng/kg ng/kg	0.8	42.6	3800	3800	430	430	235	NS NS
SW8290	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	NA-DVCT-S002-01		0.4	80.7	3800	3800	430	430	235	NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-DVCT-S002-01	ng/kg	0.4	27.4	3800	3800	430	430	235	NS NS
SW8290			ng/kg	0.8	1.3 J	3800	3800	430	430	235	NS NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-DVCT-SO04-01 NA-DVCT-SO05-01	ng/kg ng/kg	0.8	1.5 3	3800	3800	430	430	235	NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-DVCT-S005-01		0.5	35.7	3800	3800	430	430	235	NS
SW8290	1,2,3,4,6,7,8-HpCDD		ng/kg	0.9	2.7 J	3800	3800	430	430	235	NS NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-DVCT-SO07-01	ng/kg	1.4	117	3800	3800	430	430	235	NS NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-DVCT-SO08-01	ng/kg	0.6	30.2	3800	3800	430	430	258	NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-SO01-31	ng/kg	0.8	86.7	3800	3800	430	430	258	NS NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-SO02-01	ng/kg	0.5	59.2	3800	3800	430	430	258	NS NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-SO03-01	ng/kg		1.3 J	3800	3800	430	430	258	NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-SO04-01	ng/kg	0.5	34.5	3800	3800	430	430	258	NS NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-SO05-01	ng/kg	0.3	21.9	3800	3800	430	430	258	NS NS
8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-SO06-01 NA-DVCT-SO07-01	ng/kg	0.5	21.9 2.2 J	3800	3800	430	430	258	NS NS
8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-S007-01	ng/kg	0.8	86.4	3800	3800	430	430	258	NS NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-DVCT-S008-01	ng/kg	0.8	2.5 J	3800	3800	430	430	41.9	NS
SW8290	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	NA-DVCT-S002-01	ng/kg	0.3	16.1	3800	3800	430	430	41.9	
SW8290 SW8290	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S002-01	ng/kg ng/kg	0.8	19.2	3800	3800	430	430	41.9	
	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S003-01	ng/kg	0.7	ND	3800	3800	430	430	41.9	NS
SW8290 SW8290	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S005-01	ng/kg	0.7	6.1 J	3800	3800	430	430	41.9	NS
SW8290	1,2,3,4,7,8,9-HpCDF	NA-DVCT-SO06-01	ng/kg	0.5	3.7 J	3800	3800	430	430	41.9	NS
SW8290	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S007-01	ng/kg	0.8	ND	3800	3800	430	430	41.9	NS
SW8290	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S008-01	ng/kg	1.2	12.8	3800	3800	430		41.9	
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO01-31	ng/kg	0.7	1.9 J	380	380	43	43	13.7	NS
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO02-01	ng/kg			380		43			NS
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO03-01	ng/kg		1.8 J	380	380	43	43	13.7	NS
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO04-01	ng/kg		_	380	380	43	43		NS
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO05-01	ng/kg			380		43	43		NS
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO06-01	ng/kg		1.1 J	380	380	43	43	1	
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO07-01	ng/kg			380	380	43			
SW8290	1,2,3,4,7,8-HxCDD	NA-DVCT-SO08-01	ng/kg		4.5 J	380	380	43	43		
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO01-31	ng/kg				380	43	43		
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO02-01	ng/kg					43			
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO03-01	ng/kg		1	380	380	43	43		
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO04-01	ng/kg		0.77 J	380	380	43			
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO05-01	ng/kg				380	43	43	97.8	
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO06-01	ng/kg				380	43			
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO07-01	ng/kg		0.97 J	380	380	43			
SW8290	1,2,3,4,7,8-HxCDF	NA-DVCT-SO08-01	ng/kg				380	43		*	
SW8290	1,2,3,6,7,8-HxCDD	NA-DVCT-SO01-31	ng/kg			380	380	43			
9W8290	1,2,3,6,7,8-HxCDD	NA-DVCT-SO02-01	ng/kg	+			380	43			NS
8290	1,2,3,6,7,8-HxCDD	NA-DVCT-SO03-01	ng/kg			380	380	43			

Appendix F-1
Child Development Center - Surface Soil

Method				<u>-</u>	1	 	i		<u> </u>		<u> </u>	-
Method				i								Means
Method												Comparison
Method Analyte Sample ID Units MDL, Result RBC RBSL RBC RBSL VITL Streen SW8290 1,2,3,67,8-HxCDD NA.DVCT-SO04-01 ng/kg 0.6 6.8 380 380 43 43 29,1 NS SW8290 1,2,3,67,8-HxCDD NA.DVCT-SO05-01 ng/kg 0.6 6.8 380 380 43 43 29,1 NS SW8290 1,2,3,67,8-HxCDD NA.DVCT-SO05-01 ng/kg 0.4 3,1 380 380 43 43 29,1 NS SW8290 1,2,3,67,8-HxCDD NA.DVCT-SO07-01 ng/kg 0.4 3,1 380 380 43 43 29,1 NS SW8290 1,2,3,67,8-HxCDD NA.DVCT-SO07-01 ng/kg 0.4 3,1 380 380 43 43 29,1 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.5 5.4 380 380 43 43 29,1 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.5 5.4 380 380 43 43 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.5 5.4 380 380 43 43 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.5 10,8 380 380 43 43 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.4 8.1 380 380 43 43 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.4 8.1 380 380 43 44 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.3 11,1 380 380 43 44 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.4 8.1 380 380 43 44 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.4 8.1 380 380 43 44 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.6 5 380 380 43 44 41,2 NS SW8290 1,2,3,67,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.6 5 380 380 43 44 41,2 NS SW8290 1,2,3,7,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.6 5 380 380 43 44 41,2 NS SW8290 1,2,3,7,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.6 5 380 380 43 44 41,2 NS SW8290 1,2,3,7,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.6 5 380 380 43 44 41,2 NS SW8290 1,2,3,7,8-HxCDF NA.DVCT-SO07-01 ng/kg 0.6 N	İ			ł								Conclusion
SWE290 1,2,3,6,7,8,14CDD NA,DVCT-SOG-01 196,8 0.6 0.8	1										Reference	Reference vs
SW\$290 1,2,3,6,7,8,14xCDD NA_DVCT-\$005-01 100/Rg 0.6 N.												
\$\frac{\text{\$\$8\text{\$\$9\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$1\text{\$\$0\$}}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$1\text{\$\$0\$}}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$0\$}}}{2.3.67.8}\$\frac{\text{\$\$1\text{\$\$1\text{\$\$1\text{\$\$1\text{\$\$0\$}}}}{2.3.67.8}\$\text{\$\$1\text												
\$\frac{\text{SW290}}{20}\$ 1,2,3,6,7,8,HKCDD NA_DVCT-\$007-01 mg/kg 0.6 ND \$380 \$30 43 43 29.1 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDD NA_DVCT-\$008-01 mg/kg 0.5 5.4 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.5 5.4 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.5 1.0 8 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.5 1.0 8 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.4 ND 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.4 ND 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.4 ND 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.4 ND 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.6 16.2 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 1,2,3,6,7,8,HKCDF NA_DVCT-\$007-01 mg/kg 0.6 16.2 380 380 43 43 41.2 NS \$\frac{\text{SW290}}{30}\$ 1,2,3,7,8,9,HKCDD NA_DVCT-\$000-21 mg/kg 0.6 16.2 380 380 43 43 31.2 NS \$\frac{\text{SW290}}{30}\$ 1,2,3,7,8,9,HKCDD NA_DVCT-\$000-01 mg/kg 0.4 11.5 380 380 43 43 35.5 NS \$\frac{\text{SW290}}{30}\$ 1,2,3,7,8,9,HKCDD NA_DVCT-\$000-01 mg/kg 0.6 ND 380 380 43 43 35.5 NS \$\frac{\text{SW290}}{30}\$ 1,2,3,7,8,9,HKCDD NA_DVCT-\$000-01 mg/kg 0.6 ND 380 380 43 43 35.5 NS \$\frac{\text{SW290}}{30}\$ 1,2,3,7,8,9,HKCDD NA_DVCT-\$000-01 mg/kg 0.6 ND 380 380 43 43 35.5 NS \$\frac{\text{SW290}}{30}\$ 1,2,3,7,8,9,HKCDD NA_DVCT-\$000-01 mg/kg 0.6 ND 380 380 43 43 35.5 NS \$\frac{\text{SW290}}												
\$\frac{\frac												
\$\frac{\text{SW250}}{380}\$ 1,23,67,8 HxCDF \text{N.A.DVCT-S007-01} \text{Bigs} 0,5 5,4 380 380 43 43 41,2 NS 4												
\$\frac{\text{SW290}}{323.67.8.HACDF}\$ NA.DVCT-\$002-01 \(\text{picks} \) \(\text{picks} \) \(\text{SW290} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{picks} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{picks} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{2.3.67.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{2.3.1.1} \) \(\text{3.80} \) \(\text{3.80} \) \(\text{3.3.4.4.1} \) \(\text{NS.SW3290} \) \(\text{1.2.3.6.7.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{0.3.1.1} \) \(\text{3.80} \) \(\text{3.80} \) \(\text{3.3.4.4.3} \) \(\text{4.12. NS.SW3290} \) \(\text{1.2.3.6.7.8.HACDF} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{0.3.1.1} \) \(\text{3.80} \) \(\text{3.80} \) \(\text{3.3.4.4.3} \) \(\text{4.12. NS.SW3290} \) \(\text{1.2.3.7.8.9.HACDD} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{0.6.5} \) \(\text{3.80} \) \(\text{3.80} \) \(\text{4.33} \) \(\text{4.33} \) \(\text{3.5.5.7.8.HACDD} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{0.6.5} \) \(\text{3.80} \) \(\text{3.80} \) \(\text{3.3.8.9.HACDD} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{0.6.6.5} \) \(\text{3.80} \) \(\text{3.3.80} \) \(\text{4.33} \) \(\text{3.3.5.9.HACDD} \) \(\text{NA.DVCT-\$003-01} \) \(\text{picks} \) \(\text{0.6.6.8.6.5} \) \(\text{3.80} \) \(\text{3.3.80} \												
SW8290 1,2,3,6,7,8-HsCDF NA-DVCT-S003-01 ng/kg 0.4 ND 380 380 43 43 41,2 NS SW8290 1,2,3,6,7,8-HsCDF NA-DVCT-S006-01 ng/kg 0.4 ND 380 380 43 43 41,2 NS SW8290 1,2,3,6,7,8-HsCDF NA-DVCT-S006-01 ng/kg 0.3 41,1 380 380 43 43 41,2 NS SW8290 1,2,3,6,7,8-HsCDF NA-DVCT-S006-01 ng/kg 0.3 41,1 380 380 43 43 41,2 NS SW8290 1,2,3,6,7,8-HsCDF NA-DVCT-S006-01 ng/kg 0.4 ND 380 380 43 43 41,2 NS SW8290 1,2,3,6,7,8-HsCDF NA-DVCT-S006-01 ng/kg 0.4 ND 380 380 43 43 41,2 NS SW8290 1,2,3,6,7,8-HsCDF NA-DVCT-S007-01 ng/kg 0.6 16,2 380 380 43 43 41,2 NS SW8290 1,2,3,6,7,8-HsCDD NA-DVCT-S007-01 ng/kg 0.6 16,2 380 380 43 43 41,2 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S003-01 ng/kg 0.6 5 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S003-01 ng/kg 0.6 S 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDD NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDP NA-DVCT-S006-01 ng/kg 0.6 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDP NA-DVCT-S006-01 ng/kg 0.7 ND 380 380 43 43 35,9 NS SW8290 1,2,3,7,8,9-HsCDP NA-DVCT-S												
\$\text{SW8290}\$ 1,2,3,6,7,8+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.4 \text{ ND}\$ 380 380 43 43 41.2 \text{ NS}\$ \text{SW8290}\$ 1,2,3,6,7,8+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.3 41.1 380 380 43 43 41.2 \text{ NS}\$ \text{SW8290}\$ 1,2,3,6,7,8+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.3 41.1 380 380 43 43 41.2 \text{ NS}\$ \text{SW8290}\$ 1,2,3,6,7,8+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.4 \text{ ND}\$ 380 380 43 43 41.2 \text{ NS}\$ \text{SW8290}\$ 1,2,3,7,8,9+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 16.2 380 380 43 43 41.2 \text{ NS}\$ \text{SW8290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 16.2 380 380 43 43 35.9 \text{ NS}\$ \text{SW8290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 1.8 \text{ NS}\$ 380 43 43 35.9 \text{ NS}\$ \text{SW8290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$003-01 \text{ ng/kg} & 0.6 ND 380 380 43 43 35.9 \text{ NS}\$ \text{SW8290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 ND 380 380 43 43 35.9 \text{ NS}\$ \text{SW8290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 ND 380 380 43 43 35.9 \text{ NS}\$ \text{SW290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 ND 380 380 43 43 35.9 \text{ NS}\$ \text{SW290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 ND 380 380 43 43 35.9 \text{ NS}\$ \text{SW290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 ND 380 380 43 43 35.9 \text{ NS}\$ \text{SW290}\$ 1,2,3,7,8,9+hCDD\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.6 ND 380 380 43 43 35.9 \text{ NS}\$ \text{SW290}\$ 1,2,3,7,8,9+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.4 1.8 380 380 43 43 35.9 \text{ NS}\$ \text{SW290}\$ 1,2,3,7,8,9+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.4 1.8 380 380 43 43 35.9 \text{ NS}\$ \text{SW290}\$ 1,2,3,7,8,9+hCDF\$ NA-DVCT-\$006-01 \text{ ng/kg} & 0.5 ND 380 380 43 43 3.8 \text{ NS}\$	SW8290											
\$\frac{\text{SW8290}}{\text{12.3},6.7,8-HxCDF}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.4 \text{ 8.1} & 380 & 380 & 43 & 43 & 41.2 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,6.7,8-HxCDF}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.4 & ND & 380 & 380 & 43 & 43 & 41.2 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,6.7,8-HxCDF}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & 16.2 & 380 & 380 & 43 & 43 & 41.2 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,3.7,8-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & 16.2 & 380 & 380 & 43 & 43 & 41.2 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & 5 & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.4 & 11.5 & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDD}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{SW8290}\$ \text{12.3,7,8.9-HxCDP}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.6 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW8290}\$ \$\text{12.3,7,8.9-HxCDP}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.7 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW2900}\$ \$\text{12.3,7,8.9-HxCDP}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.7 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW2900}\$ \$\text{12.3,7,8.9-HxCDP}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.7 & ND & 380 & 380 & 43 & 43 & 35.9 & NS \text{SW2900}\$ \$\text{12.3,7,8.9-HxCDP}\$ NA-DVCT-SOO6-01 \text{ng/kg} & 0.7 & ND & 380 & 380 & 43 & 43 & 3												
\$\frac{\text{SW8290}}{\text{SW8290}}\$ 1,2,3,5,6,8+\text{BxCDF}\$ \text{NA-DVCT-SOO7-01}\$ \text{ng/kg}\$ 0.3 \ \ 4.1 \ 1 \ 380 \ 380 \ 43 \ 43 \ 41 \ 2 \ NS \ \end{align*}\$ \text{SW8290}\$ 1,2,3,5,6,8+\text{RxCDF}\$ \text{NA-DVCT-SOO8-01}\$ \text{ng/kg}\$ 0.4 \ ND \ 380 \ 380 \ 43 \ 43 \ 41 \ 2 \ NS \ \end{align*}\$ \text{SW8290}\$ 1,2,3,6,7,8+\text{RxCDF}\$ \text{NA-DVCT-SOO8-01}\$ \text{ng/kg}\$ 0.6 \ 16.2 \ 380 \ 380 \ 43 \ 43 \ 43 \ 35.9 \ NS \ \end{align*}\$ \text{SW8290}\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ 16.2 \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ \end{align*}\$ \text{SW8290}\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.8 \ 4.8 \ 1 \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDD}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDF}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 35.9 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDF}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 3.8 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDF}\$ \text{NA-DVCT-SOO3-01}\$ \text{ng/kg}\$ 0.6 \ ND \ 380 \ 380 \ 43 \ 43 \ 3.8 \ NS \ SW8290\$ 1,2,3,7,8,9+\text{RxCDF}					0.4							
\$\frac{\text{SW8290}}{\text{SW8290}}\$ 12,3,3,6,7,8-\text{HxCDF}\$ NA-DVCT-\$\frac{\text{SOO7-01}}{\text{Price}}\$ 19\text{Ps}\$ 6.6 \text{6.1} 380 380 43 43 41.2 NS \text{SW8290}\$ 12,3,3,6,7,8-\text{HxCDD}\$ NA-DVCT-\$\frac{\text{SOO3-01}}{\text{RyCDO}}\$ 19\text{Ps}\$ 6.6 \text{6.5} 5 380 380 43 43 35.9 NS \text{SW8290}\$ 12,3,3,7,8-\text{HxCDD}\$ NA-DVCT-\$\frac{\text{SOO3-01}}{\text{RyCDO}}\$ 19\text{Ps}\$ 6.6 \text{1.5} 5 380 380 43 43 35.9 NS \text{SW8290}\$ 12,3,3,7,8-\text{HxCDD}\$ NA-DVCT-\$\frac{\text{SOO3-01}}{\text{RyCDO}}\$ 19\text{Ps}\$ 6.6 \qq\q \qq\q\q\q\q\q \qq\q\qq\q\q\qq\					0.3	4.1 J	380					
SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO03-01 ng/kg 0.6 5 380 380 43 43 35.9 NS NS NS NS NS NS SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS NS NS NS NS NS N				ng/kg	0.4	ND	380	380	43	43		
SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO03-01 ng/kg 0.4 11.5 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO04-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO04-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO07-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS SW8290 1,2,3,7,8,9+HxCDD NA_DVCT-SO07-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.7 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.7 3.61 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA_DVCT-SO07-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+DD NA_DVCT-SO07-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+DD NA_						16.2			43	43	41.2	
SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO03-01 ng/kg 0.8 4.8 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDD NA-DVCT-SO05-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDP NA-DVCT-SO05-01 ng/kg 0.7 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.4 1.8 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.4 1.8 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+CDD NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+CDD NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+CDD NA-DVCT-SO05-01 ng/kg												NS
SW8290 1,2,37,8,9+RCDD NA-DVCT-SO04-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS NS NS NS NS NS NS N												
SW8290 1,2,3,7,8,9-HxCDD NA-DVCT-SO05-01 ng/kg 0.4 4,21 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9-HxCDD NA-DVCT-SO06-01 ng/kg 0.4 4,21 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9-HxCDD NA-DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 33.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.6 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PcCDF NA-DVCT-SO03-01 ng/kg 0.3 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3												
SW8290 1,2,3,7,8,9+lxCDD NA-DVCT-SO06-01 ng/kg 0.4 4.2 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+lxCDD NA-DVCT-SO08-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+lxCDD NA-DVCT-SO08-01 ng/kg 0.7 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.4 0.761 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.6 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+lxCDF NA-DVCT-SO06-01 ng/kg 0												
SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO07-01 ng/kg 0.6 ND 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.7 3.6 J 380 380 43 43 35.9 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.7 3.6 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.7 3.6 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.7 3.6 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.7 3.6 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO07-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.9 2.2 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.9 2.2 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9+kCDF NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 3.6 9.8 NS SW8290 1,2,3,7,8,9+kCDD NA-DVCT-SO03-01 ng/kg 0.7 ND 76 76 8.6 8.6 3.6 9.8 NS SW8290 1												
SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO08-01 ng/kg 0.7 ND 380 380 43 43 38.9 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.6 NB 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.6 NB 176 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.7 1,7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDD NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDF NA-DVCT-SO03-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8,P-CDF NA-DVCT-SO03-01 ng/												
SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO01-31 ng/kg 0.7 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO02-01 ng/kg 0.4 1.8 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.9 2.2 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO03-01 ng/kg 0.9 2.2 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.9 1.8 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.3 3.6 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76												
SW8290 1,2,3,7,8,9-HxCDF					_							
SW8290 1,2,3,7,8,9-HxCDF												
\$\text{SW8290} 1,2,3,7,8,9-HxCDF												
\$\text{SW8290}\$ 1,2,3,7,8,9-HxCDF\$ NA-DVCT-\$O06-01 \text{ng/kg} 0.5 1.4 1 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8,9-HxCDF\$ NA-DVCT-\$O07-01 \text{ng/kg} 0.4 0.76 1 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8,9-HxCDF\$ NA-DVCT-\$O07-01 \text{ng/kg} 0.6 ND 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8,9-HxCDF\$ NA-DVCT-\$O08-01 \text{ng/kg} 0.6 ND 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O08-01 \text{ng/kg} 0.9 2.2 1 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O01-31 \text{ng/kg} 0.9 2.2 1 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O02-01 \text{ng/kg} 0.9 1.2 1 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O04-01 \text{ng/kg} 0.5 ND 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O05-01 \text{ng/kg} 0.3 1.1 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O06-01 \text{ng/kg} 0.3 1.1 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O06-01 \text{ng/kg} 0.3 1.1 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O06-01 \text{ng/kg} 0.3 1.1 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-\$O06-01 \text{ng/kg} 0.4 1.1 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-\$O07-01 \text{ng/kg} 0.4 ND 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.4 ND 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.4 ND 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.4 15.9 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.4 15.9 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-\$O03-01 \text{ng/kg} 0.4 ND 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,					0.5							
\$\text{SW8290}\$ 1,2,3,7,8,9-HxCDF\$ NA-DVCT-SO06-01 \text{ng/kg} 0.4 \text{ 0.76 J} 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8,9-HxCDF\$ NA-DVCT-SO08-01 \text{ng/kg} 0.6 ND 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO08-01 \text{ng/kg} 0.9 2.2 J 380 380 43 43 3.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO01-31 \text{ng/kg} 0.6 1.8 J 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO03-01 \text{ng/kg} 0.3 3.6 J 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO03-01 \text{ng/kg} 0.7 1.7 J 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO03-01 \text{ng/kg} 0.5 ND 76 76 8.6 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 2 J 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO03-01 \text{ng/kg} 0.3 1J 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO06-01 \text{ng/kg} 0.3 1J 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO06-01 \text{ng/kg} 0.3 1J 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO06-01 \text{ng/kg} 0.4 ND 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO08-01 \text{ng/kg} 0.4 ND 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDD\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 ND 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 ND 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 ND 76 76 8.6 8.6 9.8 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 15.9 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 15.9 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 15.9 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 15.9 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.4 ND 760 760 86 86 30.6 NS\$ \text{SW8290}\$ 1,2,3,7,8-PcCDF\$ NA-DVCT-SO03-01 \text{ng/kg} 0.5 ND 380 380 43 43 101 NS\$ S				ng/kg	0.5	1.4 Ј	380					
SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO07-01 ng/kg 0.6 ND 380 380 43 43 3.8 NS SW8290 1,2,3,7,8,9-HxCDF NA-DVCT-SO01-31 ng/kg 0.9 2.2 J 380 380 43 43 3.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO01-31 ng/kg 0.6 1.8 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO04-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO06-01 ng/kg 0.4 2 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PcCDD NA-DVCT-SO06-01 ng/kg 0.4 ND 76 76 8.6 8.6 <				ng/kg			380	380	43			
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO01-31 ng/kg 0.6 1.8 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO02-01 ng/kg 0.3 3.6 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO04-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO08-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.									43	43	3.8	
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO02-01 ng/kg 0.3 3.6 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO05-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO05-01 ng/kg 0.4 2 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO07-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.7 5.5 76 76 8.6 8.6 30.												
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO03-01 ng/kg 0.7 1.7 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO04-01 ng/kg 0.5 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO05-01 ng/kg 0.4 2 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.4 2 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.7 5.5 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO01-31 ng/kg 0.4 3 J 760 760 86 86 30.6												
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO04-01 ng/kg 0.5 ND 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO05-01 ng/kg 0.4 2 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.3 1 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO08-01 ng/kg 0.7 5.5 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO02-01 ng/kg 0.7 5.5 76 76 8.6 8.6 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO02-01 ng/kg 0.2 6.5 760 760 86 86 30.6 NS<												
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO05-01 ng/kg 0.4 2 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.3 1 J 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO07-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO08-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO01-31 ng/kg 0.4 3 J 760 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO03-01 ng/kg 0.4 15.9 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO04-01 ng/kg 0.4 ND 760 760 86 86 30.6												
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO06-01 ng/kg 0.3 1 76 76 8.6 8.6 9.8 NS												
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO07-01 ng/kg 0.4 ND 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO08-01 ng/kg 0.7 5.5 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO01-31 ng/kg 0.4 3 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO02-01 ng/kg 0.2 6.5 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO03-01 ng/kg 0.4 15.9 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO04-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO05-01 ng/kg 0.4 ND 760 760 86 86 30												
SW8290 1,2,3,7,8-PeCDD NA-DVCT-SO08-01 ng/kg 0.7 5.5 76 76 8.6 8.6 9.8 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO01-31 ng/kg 0.4 3 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO02-01 ng/kg 0.2 6.5 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO03-01 ng/kg 0.4 15.9 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO04-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO06-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO06-01 ng/kg 0.3 1.9 J 760 760 86 86 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$\overline{}$</td><td></td><td></td></t<>										$\overline{}$		
SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO01-31 ng/kg 0.4 3 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO02-01 ng/kg 0.2 6.5 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO03-01 ng/kg 0.4 15.9 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO04-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO05-01 ng/kg 0.4 3.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO06-01 ng/kg 0.3 1.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO07-01 ng/kg 0.4 ND 760 760 86 86	SW8290	1,2,3,7,8-PeCDD										
SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO02-01 ng/kg 0.2 6.5 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO03-01 ng/kg 0.4 15.9 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO04-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO05-01 ng/kg 0.4 3.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO06-01 ng/kg 0.3 1.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO07-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.5 6.3 760 760 86 86			NA-DVCT-SO01-31		0.4							
SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO03-01 ng/kg 0.4 15.9 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO04-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO05-01 ng/kg 0.4 3.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO06-01 ng/kg 0.3 1.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO07-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.5 6.3 760 760 86 86 30.6 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO01-31 ng/kg 0.5 380 380 43			NA-DVCT-SO02-01									
SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO04-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO05-01 ng/kg 0.4 3.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO06-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO07-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.5 6.3 760 760 86 86 30.6 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO01-31 ng/kg 0.6 12.8 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO03-01 ng/kg 0.3 39.7 380 380 43 43				ng/kg	0.4	15.9	760					
SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO05-01 ng/kg 0.4 3.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO06-01 ng/kg 0.3 1.9 J 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO07-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.5 6.3 760 760 86 86 30.6 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO01-31 ng/kg 0.6 12.8 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO02-01 ng/kg 0.3 39.7 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO03-01 ng/kg 0.5 ND 380 380 43 43				ng/kg	0.4	ND	760	760	86			
SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO07-01 ng/kg 0.4 ND 760 760 86 86 30.6 NS SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.5 6.3 760 760 86 86 30.6 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO01-31 ng/kg 0.6 12.8 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO02-01 ng/kg 0.3 39.7 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 10.6 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO04-01 ng/kg 0.5 ND 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43								760	86	86	30.6	
SW8290 1,2,3,7,8-PeCDF NA-DVCT-SO08-01 ng/kg 0.5 6.3 760 760 86 86 30.6 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO01-31 ng/kg 0.6 12.8 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO02-01 ng/kg 0.3 39.7 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 10.6 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO04-01 ng/kg 0.5 ND 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO05-01 ng/kg 0.5 ND 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO06-01 ng/kg 0.4 9.4 380 380 43 43											30.6	
SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO01-31 ng/kg 0.6 12.8 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO02-01 ng/kg 0.3 39.7 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 10.6 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO04-01 ng/kg 0.5 ND 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO05-01 ng/kg 0.5 17 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO06-01 ng/kg 0.4 9.4 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 43 43 101 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO02-01 ng/kg 0.3 39.7 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 10.6 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO04-01 ng/kg 0.5 ND 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO05-01 ng/kg 0.5 17 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO06-01 ng/kg 0.4 9.4 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					_							
SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO03-01 ng/kg 0.6 10.6 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO04-01 ng/kg 0.5 ND 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO05-01 ng/kg 0.5 17 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO06-01 ng/kg 0.4 9.4 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS												
\$\begin{array}{c ccccccccccccccccccccccccccccccccccc												
SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO05-01 ng/kg 0.5 17 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO06-01 ng/kg 0.4 9.4 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO06-01 ng/kg 0.4 9.4 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS												
SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO06-01 ng/kg 0.4 9.4 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-SO07-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS												
SW8290 2,3,4,6,7,8-HxCDF NA-DVCT-S007-01 ng/kg 0.5 0.88 J 380 380 43 43 101 NS												
SW2200 2 3 4 6 7 8 H-CDE NA DVGT 2008 01 18 20 300 45 45 45 101 NS												
. 1///7:7* *******		2,3,4,6,7,8-HxCDF	NA-DVCT-SO08-01	ng/kg	0.8	36.1	380	380	43	43	101	NS NS

	·					Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDI.	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-SO01-31	ng/kg	0.4	5	76	76	8.6	8.6	37.4	NS
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-SO02-01	ng/kg	0.2	15.4	76	76	8.6	8.6	37.4	NS NS
\$W8290	2,3,4,7,8-PeCDF	NA-DVCT-SO03-01	ng/kg	0.5	8.2	76	76	8.6	8.6	37.4	NS NS
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-S003-01	ng/kg	0.3	ND	76	76	8.6	8.6	37.4	NS NS
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-S005-01		0.4	6.1	76	76	8.6	8.6	37.4	NS NS
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-SO06-01	ng/kg	_	3.1 J	76	76 76	8.6			
SW8290		NA-DVCT-S000-01	ng/kg	0.3	ND	76	76 76		8.6	37.4	NS
SW8290	2,3,4,7,8-PeCDF		ng/kg	0.4		76	76 76	8.6	8.6	37.4	NS
	2,3,4,7,8-PeCDF	NA-DVCT-SO08-01	ng/kg	0.5	13.3			8.6	8.6	37.4	NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO01-31	ng/kg	0.3	ND 0.55 T	38	38	4.3	4.3	2.4	NS NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO02-01	ng/kg	0.2	0.55 J	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO03-01	ng/kg	0.3	0.55 J	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO04-01	ng/kg	0.4	ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO05-01	ng/kg	0.3	0.42 J	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO06-01	ng/kg	0.3	ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO07-01	ng/kg	0.4	ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-DVCT-SO08-01	ng/kg	0.4	ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDF	NA-DVCT-SO01-31	ng/kg	0.3	3.3	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-DVCT-SO02-01	ng/kg	1	4.5	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-DVCT-SO03-01	ng/kg	0.5	10.3	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-DVCT-SO04-01	ng/kg	0.3	0.8 J	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-DVCT-SO05-01	ng/kg	0.7	2.6	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-DVCT-SO06-01	ng/kg	0.7	1.8	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-DVCT-SO07-01	ng/kg	0.3	0.69 J	380	380	43	43	32.8	NS
8290	2,3,7,8-TCDF	NA-DVCT-SO08-01	ng/kg	0.6	4.2	380	380	43	43	32.8	NS
8290	Total HpCDD	NA-DVCT-SO01-31	ng/kg	0.8	78.9					488	NS
SW8290	Total HpCDD	NA-DVCT-SO02-01	ng/kg	0.4	157					488	NS
SW8290	Total HpCDD	NA-DVCT-SO03-01	ng/kg	0.8	48.6					488	NS
SW8290	Total HpCDD	NA-DVCT-SO04-01	ng/kg	0.8	3		,			488	NS
SW8290	Total HpCDD	NA-DVCT-SO05-01	ng/kg	0.8	182			. 1		488	NS
SW8290	Total HpCDD	NA-DVCT-SO06-01	ng/kg	0.5	72.6		,			488	NS
SW8290	Total HpCDD	NA-DVCT-SO07-01	ng/kg	0.9	6.1					488	NS
SW8290	Total HpCDD	NA-DVCT-SO08-01	ng/kg	1,4	229					488	NS
SW8290	Total HpCDF	NA-DVCT-SO01-31	ng/kg	0.6	56.8			. 1		487	NS
SW8290	Total HpCDF	NA-DVCT-SO02-01	ng/kg	0.3	176					487	NS
SW8290	Total HpCDF	NA-DVCT-SO03-01	ng/kg	0.7	115					487	NS
SW8290	Total HpCDF	NA-DVCT-SO04-01	ng/kg	0.6	1.3					487	NS
SW8290	Total HpCDF	NA-DVCT-SO05-01	ng/kg	0.5	78.1				-	487	NS
SW8290	Total HpCDF	NA-DVCT-SO06-01	ng/kg	0.4	45.9					487	NS
SW8290	Total HpCDF	NA-DVCT-SO07-01	ng/kg	0.7	2.2					487	NS NS
SW8290	Total HpCDF	NA-DVCT-SO08-01	ng/kg	1	166					487	NS
SW8290	Total HxCDD	NA-DVCT-SO01-31	ng/kg	0.6	38.8				.	362	NS
SW8290	Total HxCDD	NA-DVCT-SO02-01	ng/kg	0.4	112					362	NS
SW8290	Total HxCDD	NA-DVCT-SO03-01	ng/kg	0.9	62.2					362	NS
SW8290	Total HxCDD	NA-DVCT-SO04-01	ng/kg	0.6	ND				·	362	NS
SW8290	Total HxCDD	NA-DVCT-SO05-01	ng/kg	0.6	71.8		-	1	-	362	NS NS
SW8290	Total HxCDD	NA-DVCT-SO06-01	ng/kg	0.4	34.4		 	·		362	NS NS
SW8290	Total HxCDD	NA-DVCT-SO07-01	ng/kg	0.4	2	-	-	·	·	362	NS NS
SW8290	Total HxCDD	NA-DVCT-SO08-01	ng/kg	1	161		<u>: </u>	·	•	362	NS NS
SW8290	Total HxCDF	NA-DVCT-SO01-31	ng/kg	0.6	66.2	•	•	·	· 	535	NS NS
SW8290	Total HxCDF	NA-DVCT-SO02-01	ng/kg	0.3	211	·	:	•	•	535	NS NS
SW8290	Total HxCDF	NA-DVCT-S002-01	ng/kg	0.5	103	<u>-</u>	•	•	·	535	NS NS
	Total HxCDF	NA-DVCT-SO03-01	ng/kg	0.6	1.7		•				
	Total HxCDF	NA-DVCT-SO05-01	ng/kg	0.4	104	<u> </u>	· -		•	535 535	NS NS
7230		1-111-2-1-2-003-01	146/4B	U.T	104		•			ددد	1/19

Appendix F-1
Child Development Center - Surface Soil

						Indu	ıstrial	Resid	iential	Reference	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDI.	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Total HxCDF	NA-DVCT-SO06-01	ng/kg	0.3			1000	100	1000	535	
SW8290	Total HxCDF	NA-DVCT-SO07-01	ng/kg	0.5			 	ļ:	1.	535	
SW8290	Total HxCDF	NA-DVCT-SO08-01	ng/kg	0.7	215	<u>:</u>		·	<u> </u>	535	
SW8290	Total PeCDD	NA-DVCT-SO01-31	ng/kg	0.6			ļ.	 	 	205	
SW8290	Total PeCDD	NA-DVCT-SO02-01	ng/kg	0.3			ļ•	 	<u> -</u>	205	NS NS
SW8290	Total PeCDD	NA-DVCT-SO03-01	ng/kg	0.7	45		 	<u>:</u>	ŀ	203	NS NS
SW8290	Total PeCDD	NA-DVCT-SO04-01	ng/kg	0.5	0.78	·	-	•	<u> </u>	205	NS NS
SW8290	Total PeCDD	NA-DVCT-SO05-01	ng/kg	0.3			<u> </u>	-	ļ.	205	
SW8290	Total PeCDD	NA-DVCT-SO06-01	ng/kg	0.3	11.8	ļ -	 -	<u> </u>	ļ.	205	NS NS
SW8290	Total PeCDD	NA-DVCT-S007-01	ng/kg	0.3		[-	 	•	ļ.	205	NS NS
SW8290	Total PeCDD	NA-DVCT-SO08-01	ng/kg	0.7	633	<u> </u>	 		ļ·	205	
	Total PeCDF	NA-DVCT-SO01-31	ng/kg	0.7	64.8	•		-	<u> </u>	608	NS NS
SW8290	Total PeCDF	NA-DVCT-SO02-01	ng/kg	0.2	194	•	<u> -</u>	ļ :	-	608	
SW8290	Total PeCDF	NA-DVCT-SO03-01	ng/kg	0.5	86.3	·	 	·	<u> - </u>	608	
SW8290	Total PeCDF	NA-DVCT-SO04-01	ng/kg	0.4	0.9		·	<u>-</u>	•	608	da
SW8290	Total PeCDF	NA-DVCT-SO05-01	ng/kg	0.4	88.9		<u> </u>	·	-	608	
SW8290	Total PeCDF	NA-DVCT-SO06-01	ng/kg	0.4	44.1		1	-	·	608	
SW8290	Total PeCDF	NA-DVCT-SO07-01	ng/kg	0.3	0.85	ļ•	<u> </u>	-	 -		NS
SW8290	Total PeCDF	NA-DVCT-SO08-01	ng/kg	0.5	216	•	-	<u>-</u>	·	608	I .
SW8290	Total TCDD	NA-DVCT-S008-01	ng/kg	0.3	13.8	•	 	-	-	608	NS
	Total TCDD	NA-DVCT-SO02-01	ng/kg	0.3	33.8	·	·	-	<u> </u>	152	L
SW8290	Total TCDD	NA-DVCT-SO02-01	ng/kg	0.2	24.3	<u>. </u>	-		·	152	
SW8290	Total TCDD	NA-DVCT-S004-01	ng/kg	0.3	ND	•	-	·	<u> -</u>	152	NS
SW8290	Total TCDD	NA-DVCT-SO05-01	ng/kg	0.4	22.3	·	·	-	<u> </u>	152	NS
SW8290	Total TCDD	NA-DVCT-SO05-01	ng/kg	0.3	16.1	•	-	-	· .	152	NS
SW8290	Total TCDD	NA-DVCT-S007-01	ng/kg	0.3	0.81	·	•	-	 	152	NS
SW8290	Total TCDD	NA-DVCT-SO08-01	ng/kg		3330 J	•	<u> </u>		 	152 152	
SW8290	Total TCDF	NA-DVCT-S008-01	ng/kg	0.4	58.5		<u> </u>	•	<u> </u>		NS
SW8290	Total TCDF	NA-DVCT-SO02-01	ng/kg	0.3	104	•	•	<u> </u>	<u> </u>	522 522	NS
SW8290	Total TCDF	NA-DVCT-SO02-01	ng/kg	0.1	49.6	•	•	•	-	522	NS
	Total TCDF	NA-DVCT-SO04-01	ng/kg	0.3	0.8	·	-	<u> </u>		522 522	NS NS
SW8290	Total TCDF	NA-DVCT-SO05-01	ng/kg	0.3	79.2	•	 	•	-	522	NS NS
	Total TCDF	NA-DVCT-SO06-01	ng/kg	0.2	41.3	·	-	-	•	522	NS NS
	Total TCDF	NA-DVCT-SO07-01	ng/kg	0.2	0.69	•	 	•	-	522	NS NS
	Total TCDF	NA-DVCT-SO08-01	ng/kg	0.3		<u> </u>		•		522	
	Cyanide	NA-DVCT-SO01-31	mg/kg	0.19	0.79		4100	1600	160		NS S
	Cyanide	NA-DVCT-SO02-01	mg/kg	0.23	0.75			1600			S
	Cyanide	NA-DVCT-SO03-01	mg/kg	0.16	0.43			1600	160		S
	Cyanide	NA-DVCT-SO04-01	mg/kg	0.22	0.54			1600			<u> </u>
	Cyanide	NA-DVCT-SO05-01	mg/kg	0.26	0.7	41000		1600			S
	Cyanide	NA-DVCT-SO06-01	mg/kg	0.34	0.97	41000		1600			S
	Cyanide	NA-DVCT-SO07-01	mg/kg	0.25	0.44	41000		1600			S
	Cyanide	NA-DVCT-SO08-01	mg/kg	0.31	0.69			1600	160	1.08	S
	Aluminum	NA-DVCT-SO01-31	mg/kg	2	29800		200000	78000	7800	74000	NS NS
	Aluminum	NA-DVCT-SO02-01	mg/kg	1.8	7240		200000	78000	7800	74000 74000	NS NS
	Aluminum	NA-DVCT-SO03-01	mg/kg	1.7	16200		200000		7800	74000	NS NS
	Aluminum	NA-DVCT-SO04-01	mg/kg	1.8	15600		200000	78000	7800	74000	NS NS
	Aluminum	NA-DVCT-SO05-01	mg/kg	2	35300		200000	78000	7800	74000	
	Aluminum	NA-DVCT-SO05-01	mg/kg	2.6	28700		200000	78000	7800		NS NC
	Aluminum	NA-DVCT-S007-01	mg/kg	1.7	9490		200000	78000	7800	74000	NS
	Aluminum	NA-DVCT-SO08-01		2.1	44000					74000	NS
LMO4.0	Antimony	NA-DVCT-S008-01	mg/kg mg/kg	0.49		820	200000	78000	7800	74000	NS
	Antimony	NA-DVCT-SO02-01	mg/kg		ND UL	820		31 31	3.1 3.1	2.4	NS NS

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Antimony	NA-DVCT-SO03-01	mg/kg		ND UL	820	82	31	3.1	2.4	NS
	Antimony	NA-DVCT-S004-01	mg/kg		ND UL	820	82	31	3.1	2.4	NS
ILMO4.0	Antimony	NA-DVCT-SO05-01	mg/kg		0.63 L	820	82	31	3.1	2.4	NS
ILMO4.0		NA-DVCT-SO06-01	mg/kg		ND UL	820	82	31	3.1	2.4	NS
ILMO4.0	Antimony Antimony	NA-DVCT-S007-01	mg/kg		ND UL	820	82	31	3.1	2.4	NS
ILMO4.0 ILMO4.0		NA-DVCT-SO08-01	mg/kg	0.52	1.8 J	820	82	31	3.1	2.4	NS
	Antimony	NA-DVCT-S008-01	mg/kg	0.66	3.3	3.8	3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-DVCT-S002-01	mg/kg	0.59	1.1	3.8	3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-DVCT-S002-01	mg/kg	0.55	3.3	3.8	3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-DVCT-SO03-01		0.55	3.6	3.8	3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-DVCT-SO05-01	mg/kg	0.66	2.7	3.8	3.8	0.43	0.43	6.64	
ILMO4.0	Arsenic		mg/kg	0.88	3.3	3.8	3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-DVCT-SO06-01 NA-DVCT-SO07-01	mg/kg	0.88	2.7	3.8	3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic		mg/kg			3.8	3.8	0.43	0.43	6.64	NS NS
ILMO4.0	Arsenic	NA-DVCT-SO08-01	mg/kg	0.69		140000	14000	5500	550		NS NS
ILMO4.0	Barium	NA-DVCT-SO01-31	mg/kg	0.16		140000	14000	5500	550		NS NS
ILMO4.0	Barium	NA-DVCT-SO02-01	mg/kg					5500	550	130	
ILMO4.0	Barium	NA-DVCT-SO03-01	mg/kg		17.6 L	140000	14000 14000	5500	550	130	
ILMO4.0	Barium	NA-DVCT-SO04-01	mg/kg	0.15		140000		5500	550	130	
ILMO4.0	Barium	NA-DVCT-SO05-01	mg/kg		48.7 L	140000	14000	5500	550 550		
ILMO4.0	Barium	NA-DVCT-SO06-01	mg/kg	0.22		140000	14000		550	130	NS NS
ILMO4.0	Barium	NA-DVCT-SO07-01	mg/kg	0.14		140000	14000	5500	550	130	NS NS
ILMO4.0	Barium	NA-DVCT-SO08-01	mg/kg	0.17		140000	14000	5500		l	NS NS
ILMO4.0	Beryllium	NA-DVCT-SO01-31	mg/kg	0.16		4100	410	160	16		
MO4.0	Beryllium	NA-DVCT-SO02-01	mg/kg			4100	410	160	16		NS
МО4.0	Beryllium	NA-DVCT-SO03-01	mg/kg	0.14		4100	410	160	16		
ILMO4.0	Beryllium	NA-DVCT-SO04-01	mg/kg			4100	410	160	16		NS
ILMO4.0	Beryllium	NA-DVCT-SO05-01	mg/kg	0.16		4100	410	160	16		NS
ILMO4.0	Beryllium	NA-DVCT-SO06-01	mg/kg	0.22	ND	4100		160	16		NS
ILMO4.0	Beryllium	NA-DVCT-SO07-01	mg/kg			4100	410	160	16		NS
ILMO4.0	Beryllium	NA-DVCT-SO08-01	mg/kg	0.17		4100	410	160	16		
ILMO4.0	Cadmium	NA-DVCT-SO01-31	mg/kg		0.87 K	1000		39	3.9		
ILMO4.0	Cadmium	NA-DVCT-SO02-01	mg/kg		0.27 K	1000	100	39	3.9		
ILMO4.0	Cadmium	NA-DVCT-SO03-01	mg/kg		0.43 K	1000	100	39	3.9		
ILMO4.0	Cadmium	NA-DVCT-SO04-01	mg/kg	,	0.37 K	1000	100	39	3.9		
ILMO4.0	Cadmium	NA-DVCT-SO05-01	mg/kg		1.1 K	1000		39			<u> </u>
ILMO4.0	Cadmium	NA-DVCT-SO06-01	mg/kg		0.87 K	1000		39			
ILMO4.0	Cadmium	NA-DVCT-SO07-01	mg/kg		ND	1000		39			
ILMO4.0	Cadmium	NA-DVCT-SO08-01	mg/kg		0.72 K	1000	100	39	3.9		
ILMO4.0	Calcium	NA-DVCT-SO01-31	mg/kg					-	-	15400	
ILMO4.0	Calcium	NA-DVCT-SO02-01	mg/kg				-	<u> </u>	·	15400	
ILMO4.0	Calcium	NA-DVCT-SO03-01	mg/kg				ļ:		-	15400	· · · · · · · · · · · · · · · · · · ·
ILMO4.0	Calcium	NA-DVCT-SO04-01	mg/kg					<u> </u>	<u></u>	15400	
ILMO4.0	Calcium	NA-DVCT-SO05-01	mg/kg				ļ-	·	·	15400	
ILMO4.0	Calcium	NA-DVCT-SO06-01	mg/kg				-	<u> -</u>	٠	15400	
ILMO4.0	Calcium	NA-DVCT-SO07-01	mg/kg				·	<u> -</u>	-	15400	
ILMO4.0	Calcium	NA-DVCT-SO08-01	mg/kg					·	-	15400	
ILMO4.0	Chromium	NA-DVCT-SO01-31	mg/kg			1					
ILMO4.0	Chromium	NA-DVCT-SO02-01	mg/kg								
ILMO4.0	Chromium	NA-DVCT-SO03-01	mg/kg								
ILMO4.0	Chromium	NA-DVCT-SO04-01	mg/kg								
ILMO4.0	Chromium	NA-DVCT-SO05-01	mg/kg								1
# MO4.0	Chromium	NA-DVCT-SO06-01	mg/kg								
IO4.0	Chromium	NA-DVCT-SO07-01	mg/kg	0.14	5.8	10000	1000	390	39	39.9	NS

						Indu	ıstrial	Docie	lential	Deference	Means Comparison Conclusion Reference v
Method	Analyte	Sample ID	Units	MDI.	Result		RBSL	RBC	RBSL	UTL	i
ILMO4.0	Chromium	NA-DVCT-SO08-01	mg/kg	0.17	26.1	1					Site NS
ILMO4.0	Cobalt	NA-DVCT-SO01-31	mg/kg	0.16		120000				28.9	NS NS
ILMO4.0	Cobalt	NA-DVCT-SO02-01	mg/kg	0.15		120000		4700		28.9	NS NS
ILMO4.0	Cobalt	NA-DVCT-SO03-01	mg/kg	0.14		120000		4700		28.9	NS NS
ILMO4.0	Cobalt	NA-DVCT-SO04-01	mg/kg	0.15		120000	12000	4700		28.9	NS NS
ILMO4.0	Cobalt	NA-DVCT-SO05-01	mg/kg	0.16		120000		4700		28.9	NS NS
ILMO4.0	Cobalt	NA-DVCT-SO06-01	mg/kg	0.22		120000		4700		28.9	NS NS
ILMO4.0	Cobalt	NA-DVCT-SO07-01	mg/kg	0.14		120000	12000	4700		28.9	NS NS
ILMO4.0	Cobalt	NA-DVCT-SO08-01	mg/kg	0.17		120000	12000	4700		28.9	NS NS
ILMO4.0	Соррег	NA-DVCT-SO01-31	mg/kg	0.16	50.9		8200	3100		134	NS
ILMO4.0	Copper	NA-DVCT-SO02-01	mg/kg	0.15	11.9		8200	3100	310	134	NS NS
ILMO4.0	Copper	NA-DVCT-SO03-01	mg/kg	0.14	14.2	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-DVCT-SO04-01	mg/kg	0.15	8.2	82000	8200	3100	310	134	NS NS
	Copper	NA-DVCT-SO05-01	mg/kg	0.16	67.3	82000	8200	3100	310	134	NS NS
ILMO4.0	Copper	NA-DVCT-SO06-01	mg/kg	0.22	55	82000	8200	3100		134	NS NS
ILMO4.0	Copper	NA-DVCT-S007-01	mg/kg	0.14	9.2	82000	8200	3100	310	134	NS NS
	Copper	NA-DVCT-SO08-01	mg/kg	0.17	92	82000	8200	3100	310	134	NS NS
ILMO4.0	Iron	NA-DVCT-SO01-31	mg/kg	2.3		610000	61000	23000	2300	60600	NS NS
ILMO4.0	Iron	NA-DVCT-SO02-01	mg/kg	2.1		610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-DVCT-SO03-01	mg/kg	1.9		610000	61000	23000	2300	60600	NS
ILMO4.0	Iron	NA-DVCT-SO04-01	mg/kg	2.1		610000	61000	23000	2300	60600	NS NS
	Iron	NA-DVCT-SO05-01	mg/kg	2.3		610000	61000	23000	2300		NS NS
ILMO4.0	Iron	NA-DVCT-SO06-01	mg/kg	3.1		610000	61000	23000		60600	NS
ILMO4.0	Iron	NA-DVCT-S007-01	mg/kg	2		610000	61000	23000	2300 2300	60600	NS
ILMO4.0	Iron	NA-DVCT-SO08-01	mg/kg	2.4		610000	61000	23000	2300	60600	NS
ILMO4.0	Lead	NA-DVCT-SO01-31	mg/kg	0.33	23.8	400	400			60600	NS
-	Lead	NA-DVCT-SO02-01	mg/kg	0.29	17.4	400	400	400 400	400	95.5	NS
ILMO4.0	Lead	NA-DVCT-SO03-01	mg/kg	0.28	3.8	400	400	400	400 400	95.5	NS NS
ILMO4.0	Lead	NA-DVCT-SO04-01	mg/kg	0.23	3.1	400	400	400	400	95.5	NS
ILMO4.0	Lead	NA-DVCT-SO05-01	mg/kg	0.33	14.5	400	400	400	400	95.5	NS
ILMO4.0	Lead	NA-DVCT-SO06-01	mg/kg	0.44	13.6	400	400	400	400	95.5 95.5	NS
	Lead	NA-DVCT-SO07-01	mg/kg	0.29	3.3	400	400	400	400	95.5	NS NS
ILMO4.0	Lead	NA-DVCT-SO08-01	mg/kg	0.35	21.4	400	400	400	400	95.5	
ILMO4.0	Magnesium	NA-DVCT-SO01-31	mg/kg	1.5	5360	700	400	700	400	12400	NS NS
ILMO4.0	Magnesium	NA-DVCT-SO02-01	mg/kg	1.3	1420		•	•	·	12400	NS NS
ILMO4.0	Magnesium	NA-DVCT-SO03-01	mg/kg	1.2	2800			<u> </u>	·	12400	NS NS
ILMO4.0	Magnesium	NA-DVCT-SO04-01	mg/kg	1.4	3050	·	-	·	•	12400	
ILMO4.0	Magnesium	NA-DVCT-SO05-01	mg/kg	1.5	6110	-	-	-	•		NS
ILMO4.0	Magnesium	NA-DVCT-SO06-01	mg/kg	2	6020	•	•	•		12400 12400	NS
ILMO4.0	Magnesium	NA-DVCT-SO07-01	mg/kg	1.3	2400	•	-	-		12400	NS
ILMO4.0	Magnesium	NA-DVCT-SO08-01	mg/kg	1.6	7400	-	•	·	·		NS
ILMO4.0	Manganese	NA-DVCT-SO01-31	mg/kg	0.16	452	41000	4100	1600	160	12400	NS
****	Manganese	NA-DVCT-SO02-01	mg/kg	0.15	89.2	41000	4100	1600	160	1050 1050	NS NC
	Manganese	NA-DVCT-SO03-01	mg/kg	0.14	203	41000	4100	1600	160	1050	NS NS
	Manganese	NA-DVCT-SO04-01	mg/kg	0.15	167	41000	4100	1600	160	1050	NS NC
	Manganese	NA-DVCT-SO05-01	mg/kg	0.16	557	41000	4100	1600	160		NS NC
	Manganese	NA-DVCT-SO06-01	mg/kg	0.22	470	41000	4100	1600		1050	NS
	Manganese	NA-DVCT-SO07-01	mg/kg	0.14	153	41000	4100	1600	160 160	1050	NS
	Manganese	NA-DVCT-SO08-01	mg/kg	0.17	767	41000	4100	1600		1050	NS NS
	Мегсигу	NA-DVCT-SO01-31	mg/kg	0.02	0.15	200	20		160	1050	NS
	Mercury	NA-DVCT-SO02-01	mg/kg	0.02	0.13	200		7.8	0.78	0.228	NS
	Mercury	NA-DVCT-S003-01	mg/kg	0.02	ND ND		20	7.8	0.78	0.228	N\$
	Mercury	NA-DVCT-S003-01	mg/kg	0.02	ND	200	20 20	7.8	0.78 0.78	0.228	NS 🔺

						Indu	strial	Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Mercury	NA-DVCT-SO05-01	mg/kg	0.02	0.03	200	20	7.8	0.78	0.228	NS
ILMO4.0	Mercury	NA-DVCT-SO06-01	mg/kg	0.03	0.05	200	20	7.8	0.78	0.228	NS
ILMO4.0	Mercury	NA-DVCT-SO07-01	mg/kg	0.02	ND	200	20	7.8	0.78	0.228	NS
ILMO4.0	Mercury	NA-DVCT-SO08-01	mg/kg	0.02	0.05	200	20	7.8	0.78	0.228	NS
ILMO4.0	Nickel	NA-DVCT-SO01-31	mg/kg	0.16	14.7	41000	4100	1600	160	39.5	NS
ILMO4.0	Nickel	NA-DVCT-SO02-01	mg/kg	0.15	4.2	41000	4100	1600	160	39.5	NS
ILMO4.0	Nickel	NA-DVCT-SO03-01	mg/kg	0.14	6.3	41000	4100	1600	160	39.5	NS
ILMO4.0	Nickel	NA-DVCT-SO04-01	mg/kg	0.15	6	41000	4100	1600	160	39.5	NS
ILMO4.0	Nickel	NA-DVCT-SO05-01	mg/kg	0.16	18.1	41000	4100	1600	160	39.5	
ILMO4.0	Nickel	NA-DVCT-SO06-01	mg/kg	0.22	17	41000	4100	1600	160	39.5	
ILMO4.0	Nickel	NA-DVCT-SO07-01	mg/kg	0.14	5.9	41000	4100	1600	160	39.5	
ILMO4.0	Nickel	NA-DVCT-SO08-01	mg/kg	0.35	24	41000	4100	1600	160	39.5	NS
ILMO4.0	Potassium	NA-DVCT-SO01-31	mg/kg	0.98	680	-			٠	643	S
ILMO4.0	Potassium	NA-DVCT-SO02-01	mg/kg	0.88	309	•				643	S
ILMO4.0	Potassium	NA-DVCT-SO03-01	mg/kg	0.83	669					643	S
ILMO4.0	Potassium	NA-DVCT-SO04-01	mg/kg	0.91	755					643	S
ILMO4.0	Potassium	NA-DVCT-SO05-01	mg/kg	0.99	456	•	i.		. •	643	S
ILMO4.0	Potassium	NA-DVCT-SO06-01	mg/kg	1.3	637					643	S
ILMO4.0	Potassium	NA-DVCT-SO07-01	mg/kg	0.86	510					643	S
ILMO4.0	Potassium	NA-DVCT-SO08-01	mg/kg	1	1000					643	S
ILMO4.0	Selenium	NA-DVCT-SO01-31	mg/kg		ND UL	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-DVCT-SO02-01	mg/kg		ND UL	10000	1000	390	39	0.794	NS
ILMO4.0	Selenium	NA-DVCT-SO03-01	mg/kg		ND UL	10000	1000	390	39	0.794	NS
MO4.0	Selenium	NA-DVCT-SO04-01	mg/kg		ND UL	10000	1000	390	39	0.794	
MO4.0	Selenium	NA-DVCT-SO05-01	mg/kg		ND UL	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-DVCT-SO06-01	mg/kg		ND UL	10000	1000	390	39	0.794	NS
ILMO4.0	Selenium	NA-DVCT-SO07-01	mg/kg	0.29	ND	10000	1000	390	39	0.794	l
ILMO4.0	Selenium	NA-DVCT-SO08-01	mg/kg		0.4 L	10000	1000	390	39	0.794	
ILMO4.0	Silver	NA-DVCT-SO01-31	mg/kg	0.16	0.19	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-DVCT-SO02-01	mg/kg	0.15	ND	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-DVCT-SO03-01	mg/kg		ND	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-DVCT-SO04-01	mg/kg	0.15	ND	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-DVCT-SO05-01	mg/kg		0.2	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-DVCT-SO06-01	mg/kg	0.22	ND	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-DVCT-SO07-01	mg/kg			10000	·	390	39	0.61	NS
ILMO4.0	Silver	NA-DVCT-SO08-01	mg/kg				1000	390	39		
ILMO4.0	Sodium	NA-DVCT-SO01-31	mg/kg				-			2430	
ILMO4.0	Sodium	NA-DVCT-SO02-01	mg/kg				<u> </u>	-		2430	
ILMO4.0	Sodium	NA-DVCT-SO03-01	mg/kg				-	-	-	2430	
ILMO4.0	Sodium	NA-DVCT-SO04-01	mg/kg				<u> </u>	·	<u>. </u>	2430	
ILMO4.0	Sodium	NA-DVCT-SO05-01	mg/kg				<u> -</u>	-		2430	L
ILMO4.0	Sodium	NA-DVCT-SO06-01	mg/kg				-	-	<u>.</u>	2430	
ILMO4.0	Sodium	NA-DVCT-SO07-01	mg/kg			•	-		•	2430	
ILMO4.0	Sodium	NA-DVCT-SO08-01	mg/kg							2430	
ILMO4.0	Thallium	NA-DVCT-SO01-31	mg/kg			140		5.5	0.55	1.82	
ILMO4.0	Thallium	NA-DVCT-SO02-01	mg/kg			140	14	5.5	0.55		
ILMO4.0	Thallium	NA-DVCT-SO03-01	mg/kg			140		5.5	0.55		
ILMO4.0	Thallium	NA-DVCT-SO04-01	mg/kg			140		5.5	0.55		
ILMO4.0	Thallium	NA-DVCT-SO05-01	mg/kg			140		5.5	0.55		
ILMO4.0	Thallium	NA-DVCT-SO06-01	mg/kg			140		5.5	0.55		
ILMO4.0	Thallium	NA-DVCT-SO07-01	mg/kg			140		5.5	0.55		
WMO4.0	Thallium	NA-DVCT-SO08-01	mg/kg		ND UL	140		5.5	0.55		
104.0	Vanadium	NA-DVCT-SO01-31	mg/kg	0.16	91.9	14000	1400	550	55	268	NS

							strial		ential	Reference	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID		MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Vanadium	NA-DVCT-SO02-01	mg/kg		19.1	14000	1400	550	55	268	NS
ILMO4.0	Vanadium	NA-DVCT-SO03-01	mg/kg	0.14		14000	1400	550	55	268	NS
ILMO4.0	Vanadium	NA-DVCT-SO04-01	mg/kg	0.15	40.8	14000	1400	550	55	268	NS
ILMO4.0	Vanadium	NA-DVCT-SO05-01	mg/kg	0.16	117	14000	1400	550	55	268	NS
ILMQ4.0	Vanadium	NA-DVCT-SO06-01	mg/kg	0.22	101	14000	1400	550	55	268	NS
ILMO4.0	Vanadium	NA-DVCT-SO07-01	mg/kg	0.14	26.8	14000	1400	550	55	268	NS
ILMO4.0	Vanadium	NA-DVCT-SO08-01	mg/kg	0.17	151	14000	1400	550	55	268	NS
ILMO4.0	Zinc	NA-DVCT-SO01-31	mg/kg	0.16	113	610000	61000	23000	2300	224	NS
ILMQ4.0	Zinc	NA-DVCT-SO02-01	mg/kg	0.15	119	610000	61000	23000	2300	224	NS
ILMO4.0	Zinc	NA-DVCT-SO03-01	mg/kg	0.14	30.1	610000	61000	23000	2300	224	NS
ILMO4.0	Zinc	NA-DVCT-SO04-01	mg/kg	0.15	26.5	610000	61000	23000	2300	224	NS
ILMO4.0	Zinc	NA-DVCT-SO05-01	mg/kg	0.16	58.5	610000	61000	23000	2300	224	NS
ILMO4.0	Zinc	NA-DVCT-SO06-01	mg/kg	0.22	63.2	610000	61000	23000	2300	224	NS
ILMO4.0	Zinc	NA-DVCT-SO07-01	mg/kg	0.14	45.6	610000	61000	23000	2300	224	NS
ILMO4.0	Zinc	NA-DVCT-SO08-01	mg/kg	0.17	125	610000	61000	23000	2300	224	NS
	Chloride	NA-DVCT-SO06-01	mg/kg	0.83		200000	20000	7800	780	5.16	NS
300	Fluoride	NA-DVCT-SO06-01	mg/kg	0.41		120000	12000	4700	470	0.763	NS
353.2	Nitrate	NA-DVCT-SO06-01	mg/kg	0.83	6.36	3E+06	330000	130000	13000	15.5	NS

Reference UTL abbreviations: NC = Not calculated because reference data were all non-detected results or were not analyzed.

Means Comparison Conclusion Reference vs. Site abbreviations:

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Significant. On average, site data were significantly greater than reference data.

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDI.	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	4,4'-DDD	NA-DVCT-SO01-02	ug/kg	0.26	ND	24000	24000	2700	2700	NC	NC
		NA-DVCT-SO03-02	ug/kg	0.18	ND	24000	24000	2700	2700	NC	NC
	4,4'-DDD	NA-DVCT-S005-02		0.13	ND ND	24000	24000	2700	2700	NC	NC
	4,4'-DDD		ug/kg	0.21	ND	24000	24000	2700	2700	NC	NC NC
	4,4'-DDD	NA-DVCT-SO07-02	ug/kg		2.2	17000	17000	1900	1900	5.8	
	4,4'-DDE	NA-DVCT-SO01-02	ug/kg	0.26				1900	1900		
	4,4'-DDE	NA-DVCT-SO03-02	ug/kg	0.18	ND	17000	17000	1900	1900		
	4,4'-DDE	NA-DVCT-SO05-02	ug/kg	0.27	6.8	17000	17000	1900	1900	5.8	
	4,4'-DDE	NA-DVCT-SO07-02	ug/kg	2.1	190	17000	17000				
	4,4'-DDT	NA-DVCT-SO01-02	ug/kg	0.26	2.5	17000	17000	1900	1900	1.7	NS
	4,4'-DDT	NA-DVCT-SO03-02	ug/kg	0.18	ND	17000	17000	1900	1900	1.7	NS
OLM03.2	4,4'-DDT	NA-DVCT-SO05-02	ug/kg		5.6 J	17000	17000	1900	1900		•
	4,4'-DDT	NA-DVCT-SO07-02	ug/kg	2.1	110	17000	17000	1900	1900		NS
	Aldrin	NA-DVCT-SO01-02	ug/kg	0.26	ND	340	340	38	38	NC	NC
OLM03.2	Aldrin	NA-DVCT-SO03-02	ug/kg	0.18	ND	340	340	38	38	NC	NC
	Aldrin	NA-DVCT-SO05-02	ug/kg	0.27	ND	340	340	38	38	NC	NC
OLM03.2	Aldrin	NA-DVCT-SO07-02	ug/kg	0.21	ND	340	340	38	38		NC
OLM03.2	Aroclor-1016	NA-DVCT-SO01-02	ug/kg	0.26	ND	2900	2900	320	320	NC	NC
	Aroclor-1016	NA-DVCT-SO03-02	ug/kg	0.18	ND	2900	2900	320	320	NC	NC
	Aroclor-1016	NA-DVCT-SO05-02	ug/kg	0.27	ND	2900	2900	320	320	NC	NC
	Aroclor-1016	NA-DVCT-SO07-02	ug/kg	0.21	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1221	NA-DVCT-SO01-02	ug/kg	0.26	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1221	NA-DVCT-SO03-02	ug/kg	0.18	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1221	NA-DVCT-SO05-02	ug/kg	0.27	ND	2900	2900	320	320		NC
M03.2	Aroclor-1221	NA-DVCT-SO07-02	ug/kg	0.21	ND	2900	2900	320	320		NC
M03.2	Aroclor-1232	NA-DVCT-S001-02	ug/kg	0.26		2900	2900	320	320	NC	NC
		NA-DVCT-SO03-02		0.20	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-DVCT-S005-02	ug/kg	0.18	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1232		ug/kg	0.21	ND	2900	2900	320	320		NC NC
OLM03.2	Aroclor-1232	NA-DVCT-SO07-02	ug/kg	0.21		2900	2900	320	320		NC NC
	Aroclor-1242	NA-DVCT-SO01-02	ug/kg							1	NC NC
	Aroclor-1242	NA-DVCT-SO03-02	ug/kg	0.18		2900	2900	320 320	320		NC NC
	Aroclor-1242	NA-DVCT-SO05-02	ug/kg	0.27	ND	2900	2900		320		
	Aroclor-1242	NA-DVCT-SO07-02	ug/kg	0.21	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1248	NA-DVCT-SO01-02	ug/kg	0.26		2900	2900	320	320		NC
	Aroclor-1248	NA-DVCT-SO03-02	ug/kg	0.18		2900	2900	320	320		NC
	Aroclor-1248	NA-DVCT-SO05-02	ug/kg	0.27		2900				t .	NC
OLM03.2	Aroclor-1248	NA-DVCT-SO07-02	ug/kg	0.21		2900					NC
OLM03.2	Aroclor-1254	NA-DVCT-SO01-02	ug/kg	0.26		2900	2900		320		NC
OLM03.2	Aroclor-1254	NA-DVCT-SO03-02	ug/kg	0.18		2900	2900	320			NC
OLM03.2	Aroclor-1254	NA-DVCT-SO05-02	ug/kg	0.27		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-DVCT-SO07-02	ug/kg	0.21		2900	2900				NC
OLM03.2	Aroclor-1260	NA-DVCT-SO01-02	ug/kg	0.26	ND	2900	2900	320	320	NC	NC
<u> </u>	Aroclor-1260	NA-DVCT-SO03-02	ug/kg	0.18		2900	2900	320	320	NC	NC
	Aroclor-1260	NA-DVCT-SO05-02	ug/kg	0.27		2900	2900		320		NC
	Aroclor-1260	NA-DVCT-SO07-02	ug/kg	0.21		2900	2900		320	1	NC
	Dieldrin	NA-DVCT-SO01-02	ug/kg	0.26		360	360				NC
	Dieldrin	NA-DVCT-SO03-02	ug/kg	0.18	I	360	360				NC
	Dieldrin	NA-DVCT-SO05-02	ug/kg	0.27		360	360				NC
	Dieldrin	NA-DVCT-SO07-02	ug/kg	0.21		360					NC
	Endosulfan I	NA-DVCT-SO01-02	ug/kg	0.26		1E+07		470000			NC
	Endosulfan I	NA-DVCT-SO03-02	ug/kg	0.20		1E+07		470000			NC
	<u> </u>	NA-DVCT-S005-02	ug/kg	0.18		1E+07		470000			NC NC
	Endosulfan I	NA-DVCT-SO03-02	ug/kg	0.27		1E+07	1E+06				NC
OLM03.2	Endosulfan I										

			1		1	-		[Ti	T
ł											Means
1											Compariso
!					ļ			ĺ			Conclusion
ŀ		İ				Indu	strial	Resid	lential	Reference	
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL		RBSL	UTL	Site
	Endosulfan II	NA-DVCT-SO03-02	ug/kg	0.18	ND	1E+07	1E+06	470000	47000		NC
	Endosulfan II	NA-DVCT-SO05-02	ug/kg	0.27	ND	1E+07	1E+06	470000	47000		NC
	Endosulfan II	NA-DVCT-SO07-02	ug/kg	0.21	ND	1E+07		470000			NC
	Endosulfan sulfate	NA-DVCT-SO01-02	ug/kg	0.26	ND	1E+07		470000		NC	NC
	Endosulfan sulfate	NA-DVCT-SO03-02	ug/kg	0.18	ND	1E+07		470000			NC
	Endosulfan sulfate	NA-DVCT-SO05-02	ug/kg	0.27	_ND	1E+07		470000			NČ
	Endosulfan sulfate Endrin	NA-DVCT-S007-02	ug/kg	0.21	ND	1E+07	-	470000			NC
	Endrin Endrin	NA-DVCT-SO01-02	ug/kg	0.26	ND	610000				NC	NC
	Endrin	NA-DVCT-SO03-02	ug/kg	0.18	ND	610000				NC	NC
	Endrin	NA-DVCT-SO05-02 NA-DVCT-SO07-02	ug/kg	0.27	ND	610000	61000				NC
	Endrin aldehyde	NA-DVCT-S007-02	ug/kg	0.21	ND	610000	61000			NC	NC
	Endrin aldehyde	NA-DVCT-S001-02	ug/kg	0.26	ND	610000	61000			NC	NC
	Endrin aldehyde Endrin aldehyde	NA-DVCT-S003-02	ug/kg ug/kg	0.18	ND ND	610000	61000			NC	NC
	Endrin aldehyde	NA-DVCT-S003-02	ug/kg ug/kg	0.27	ND	610000			2300		NC
	Endrin ketone	NA-DVCT-SO01-02	ug/kg	0.21		610000 610000	61000 61000			NC	NC
	Endrin ketone	NA-DVCT-SO03-02	ug/kg	0.18	ND	610000	61000			NC	NC
	Endrin ketone	NA-DVCT-SO05-02	ug/kg	0.13	ND	610000	61000			NC NC	NC
	Endrin ketone	NA-DVCT-SO07-02	ug/kg	0.21	ND	610000	61000		2300	NC NC	NC
OLM03.2	Heptachlor	NA-DVCT-SO01-02	ug/kg	0.26	ND	1300	1300		140	NC NC	NC NC
OLM03.2	Heptachlor	NA-DVCT-SO03-02	ug/kg	0.18	ND	1300	1300	140	140	NC NC	NC NC
	Heptachlor	NA-DVCT-SO05-02	ug/kg	0.27	ND	1300	1300	140	140	NC	NC NC
	Heptachlor	NA-DVCT-\$007-02	ug/kg	0.21	ND	1300	1300		140	NC	NC NC
	Heptachlor epoxide	NA-DVCT-SO01-02	ug/kg	0.26	ND	630	630		70	NC	NC
	Heptachlor epoxide	NA-DVCT-SO03-02	ug/kg	0.18	ND	630	630	70	70	NC	NC NC
	Heptachlor epoxide	NA-DVCT-SO05-02	ug/kg	0.27	ND	630	630	70	70	NC	NC NC
	Heptachlor epoxide	NA-DVCT-SO07-02	ug/kg	0.21	ND	630	630	70	70	NC NC	NC
	Methoxychlor	NA-DVCT-SO01-02	ug/kg	0.26	ND	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-DVCT-SO03-02	ug/kg	0.18	ND	1E+07		390000	39000	NC	NC
	Methoxychlor	NA-DVCT-SO05-02	ug/kg	0.27	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor	NA-DVCT-S007-02	ug/kg	0.21	ND	1E+07		390000	39000	NC	NC
	Toxaphene	NA-DVCT-SO01-02	ug/kg	0.26	ND	5200	5200	580	580	NC	NC
	Toxaphene	NA-DVCT-SO03-02	ug/kg	0.18	ND	5200	5200	580	580	NC	NC
	Toxaphene	NA-DVCT-SO05-02	ug/kg	0.27	ND	5200	5200	580	580	NC	NC
	Toxaphene		ug/kg	0.21	ND	5200	5200		580	NC	NC
OLM03.2 a	alpha-BHC		ug/kg	0.26	ND	910	910		100	NC	NC
OLM03.2 8			ug/kg	0.18	ND	910	910	100	100	NC	NC
	alpha-BHC	'' 	ug/kg	0.27	ND	910	910	100	100	NC	NC
	alpha-Chlordane		ug/kg	0.21	ND	910	910	100	100	NC	NC
	alpha-Chlordane	*1	ug/kg	0.26	ND	16000	16000	1800	1800	NC	NC
	alpha-Chlordane		ug/kg ug/kg	0.18	ND ND	16000	16000	1800	1800	NC	NC
	lpha-Chlordane		ug/kg	0.27	ND	16000 16000	16000	1800	1800	NC	NC
	peta-BHC		ug/kg	0.26	ND ND	3200	16000 3200	1800 350	1800	NC NC	NC
	eta-BHC		ug/kg	0.28	ND	3200	3200	350	350	NC NC	NC
	eta-BHC	T	ug/kg	0.17	ND	3200	3200	350	350	NC NC	NC
	eta-BHC		ug/kg	0.21	ND	3200	3200	350	350 350	NC NC	NC
	lelta-BHC		ug/kg	0.26	ND	3200	3200	350		NC NC	NC
	lelta-BHC		ug/kg	0.18	ND	3200	3200	350	350	NC NC	NC NC
	ielta-BHC		ug/kg	0.18	ND ND	3200	3200	350	350	NC NC	NC
	lelta-BHC		ug/kg	0.21	ND	3200	3200	350	350	NC NC	NC
	gamma-BHC(Lindane)		ug/kg	0.26	ND	4400	4400	490	350	NC NC	. NC
	gamma-BHC(Lindane)		ug/kg	0.18	ND	4400	4400	490	490 490	NC NC	NC NC

				· · · · · · · · · · · · · · · · · · ·	1	·				ľ	<u> </u>
											Means
			İ ,								Comparison
											Conclusion
						Industr	rial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result		BSL	RBC	RBSL	UTL	Site
OLM03.2	gamma-BHC(Lindane)	NA-DVCT-SO05-02	ug/kg	0.27	ND		4400	490	490	NC	NC NC
	gamma-BHC(Lindane)	NA-DVCT-SO07-02	ug/kg	0.21	ND		4400	490		NC	NC
	gamma-Chlordane	NA-DVCT-SO01-02	ug/kg	0.26	ND		16000	1800	1800	NC	NC
	gamma-Chlordane	NA-DVCT-SO03-02	ug/kg	0.18	ND	16000 1	16000	1800	1800	NC	NC
	gamma-Chlordane	NA-DVCT-SO05-02	ug/kg	0.27	ND	16000 1	16000	1800	1800	NC	NC
	gamma-Chlordane	NA-DVCT-SO07-02	ug/kg	0.21	ND	16000 1	6000	1800	1800	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO01-02	ug/kg	53	ND		E+06	780000	78000	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO03-02	ug/kg	36	ND	2E+07 2	E+06	780000	78000	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO05-02	ug/kg	55	ND			780000	78000	NC	NC
	1,2,4-Trichlorobenzene	NA-DVCT-SO07-02	ug/kg	43	ND			780000	78000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO01-02	ug/kg	53	ND		E+07		700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO03-02	ug/kg	36	ND		E+07		700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO05-02	ug/kg	55	ND		E+07		700000	NC	NC
	1,2-Dichlorobenzene	NA-DVCT-SO07-02	ug/kg	43	ND		E+07		700000	NC	NC
	1,3-Dichlorobenzene	NA-DVCT-SO01-02	ug/kg	53	ND		E+06		230000	NC	NC
	1,3-Dichlorobenzene	NA-DVCT-SO03-02	ug/kg	36	ND		E+06		230000	NC	NC
	1,3-Dichlorobenzene 1,3-Dichlorobenzene	NA-DVCT-SO05-02	ug/kg	55	ND		E+06		230000	NC	NC
	1,4-Dichlorobenzene	NA-DVCT-SO07-02	ug/kg	43	ND		E+06		230000	NC	NC
	1,4-Dichlorobenzene	NA-DVCT-SO01-02	ug/kg	53		240000 240		27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-DVCT-SO03-02 NA-DVCT-SO05-02	ug/kg	36		240000 240		27000	27000	NC	NC
		NA-DVCT-S003-02 NA-DVCT-S007-02	ug/kg	55		240000 240		27000	27000	NC	NC
	2,2'-oxybis(1-chloropropane)	NA DVCT 5001-02	ug/kg	43		240000 240		27000	27000	NC	NC
MO3.2	2,2'-oxybis(1-chloropropane)	NA DVCT 5002-02	ug/kg	53 36	ND		2000	9100	9100	NC	NC
	2,2'-oxybis(1-chloropropane)		ug/kg	55	ND		2000	9100	9100	NC	NC
OLMO3.2	2,2'-oxybis(1-chloropropane)	NA-DVCT-S003-02	ug/kg	43	ND ND		2000	9100	9100	NC	NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg ug/kg	53	ND		2000 E+07	9100 8E+06	9100	NC NC	NC
OLMO3.2		NA-DVCT-SO03-02	ug/kg	36	ND			8E+06		NC NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND			8E+06		NC NC	NC
		NA-DVCT-SO07-02	ug/kg	43	ND			8E+06		NC NC	NC NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53		520000 520		58000	58000	NC NC	NC NC
OLMO3.2		NA-DVCT-SO03-02	ug/kg	36		520000 520		58000	58000	NC NC	NC NC
OLMO3.2		NA-DVCT-SO05-02	ug/kg	55		520000 520		58000	58000	NC NC	NC NC
		NA-DVCT-SO07-02	ug/kg	43		520000 520		58000	58000	NC	NC NC
	2,4-Dichlorophenol	NA-DVCT-SO01-02	ug/kg	53	ND	6E+06 610			23000	NC	NC NC
	2,4-Dichlorophenol	NA-DVCT-SO03-02	ug/kg	36	ND	6E+06 610			23000	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	6E+06 610			23000	NC	NC NC
		NA-DVCT-SO07-02	ug/kg	43	ND	6E+06 610			23000	NC	NC
		NA-DVCT-SO01-02	ug/kg	53	ND			2E+06		NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND			2E+06		NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	4E+07 4E	3+06	2E+06	160000	NC	NC
		NA-DVCT-SO07-02	ug/kg	43		4E+07 4E	E+06	2E+06	160000	NC	NC
		NA-DVCT-SO01-02	ug/kg	53		4E+06 410			16000	NC	NC
		NA-DVCT-SO03-02	ug/kg	36		4E+06 410			16000	NC	NC
		NA-DVCT-SO05-02	ug/kg	55		4E+06 410			16000	NC	NC
		NA-DVCT-SO07-02	ug/kg	43		4E+06 410			16000	NC	NC
		NA-DVCT-SO01-02	ug/kg	53		4E+06 410			16000	NC	NC
		NA-DVCT-SO03-02	ug/kg	36		4E+06 410			16000	NC	NC
		NA-DVCT-SO05-02	ug/kg	55		4E+06 410			16000	NC	NC
		NA-DVCT-SO07-02	ug/kg	43		4E+06 410			16000	NC	NC
			ug/kg	53		2E+06 200		78000	7800	NC	NC
			ug/kg	36		2E+06 200		78000	7800	NC	NC
103.2 2	,o-zimuototuene	NA-DVCT-SO05-02	ug/kg	55	ND	2E+06 200	1000	78000	7800	NC	NC

						Indu			ential	Reference	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
		NA-DVCT-SO07-02	ug/kg	43	ND	2E+06	200000	78000	7800	NC	NC
		NA-DVCT-SO01-02	ug/kg	53	ND	2E+08	2E+07	6E+06	630000	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	2E+08	2E+07	6E+06	630000	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	2E+08	2E+07	6E+06	630000	NC	NC
	2-Chloronaphthalene	NA-DVCT-SO07-02	ug/kg	43	ND	2E+08	2E+07	6E+06	630000	NC	NC
		NA-DVCT-SO01-02	ug/kg	53	ND	1E+07		390000	39000		NC
		NA-DVCT-SO03-02	ug/kg	36		1E+07		390000		NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	1E+07		390000		NC	NC
		NA-DVCT-SO07-02	ug/kg	43	ND	1E+07		390000			NC
		NA-DVCT-SO01-02	ug/kg	53		8E+07	8E+06		310000	NC	NC
	<u> </u>	NA-DVCT-\$003-02		36		8E+07	8E+06		310000	NC	NC NC
		NA-DVCT-SO05-02	ug/kg	55	ND	8E+07	8E+06		310000		NC NC
	7 1		ug/kg	43	ND	8E+07	8E+06		310000		NC
		NA-DVCT-S007-02	ug/kg	53		120000			470		NC NC
		NA-DVCT-SO01-02	ug/kg		ND	120000		1	470		NC NC
		NA-DVCT-SO03-02	ug/kg	36							NC NC
		NA-DVCT-SO05-02	ug/kg	55	ND	120000					NC NC
		NA-DVCT-SO07-02	ug/kg	43	ND	120000					NC NC
		NA-DVCT-SO01-02	ug/kg	53	ND	2E+07		630000			
		NA-DVCT-SO03-02	ug/kg	36		2E+07		630000			NC
		NA-DVCT-SO05-02	ug/kg	55		2E+07		630000			NC
		NA-DVCT-SO07-02	ug/kg	43		2E+07		630000			NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53	1	13000					NC
		NA-DVCT-SO03-02	ug/kg	36		13000					NC
OLMO3.2		NA-DVCT-SO05-02	ug/kg	55		13000					NC
		NA-DVCT-SO07-02	ug/kg	43		13000					NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53		120000					NC
OLMO3.2		NA-DVCT-SO03-02	ug/kg	36		120000					NC
OLMO3.2	3-Nitroaniline	NA-DVCT-SO05-02	ug/kg	55		120000					NC
OLMO3.2	3-Nitroaniline	NA-DVCT-SO07-02	ug/kg	43		120000					NC
OLMO3.2	4,6-Dinitro-2-methylphenol	NA-DVCT-SO01-02	ug/kg	53		200000					NC
		NA-DVCT-SO03-02	ug/kg	36	ND	200000					NC
OLMO3.2	4,6-Dinitro-2-methylphenol	NA-DVCT-SO05-02	ug/kg	55	ND	200000	20000				NC
		NA-DVCT-SO07-02	ug/kg	43	ND	200000	20000	7800	780		NC
	4-Bromophenyl-phenylether		ug/kg	53	ND	1E+08	1E+07	5E+06	450000	NC	NC
	4-Bromophenyl-phenylether		ug/kg	36	ND	1E+08	1E+07	5E+06	450000	NC NC	NC
OLMO3.2	4-Bromophenyl-phenylether	NA-DVCT-SO05-02	ug/kg	55				5E+06			NC
	4-Bromophenyl-phenylether		ug/kg		+			5E+06			NC
		NA-DVCT-SO01-02	ug/kg			4E+07	4E+06	2E+06	160000	NC NC	NC
		NA-DVCT-SO03-02	ug/kg	36	}	4E+07		2E+06			NC
		NA-DVCT-SO05-02	ug/kg			4E+07		2E+06			NC
		NA-DVCT-SO07-02	ug/kg			4E+07		2E+06			NC
	4-Chloroaniline	NA-DVCT-SO01-02	ug/kg					310000			NC
	4-Chloroaniline	NA-DVCT-SO03-02	ug/kg					310000			NC
	4-Chloroaniline	NA-DVCT-\$005-02	ug/kg					310000			NC
	4-Chloroaniline	NA-DVCT-SO07-02	ug/kg					310000			NC
	4-Chlorophenyl-phenylether			53				5E+06			NC NC
			ug/kg								NC NC
	4-Chlorophenyl-phenylether		ug/kg					5E+06			
	4-Chlorophenyl-phenylether		ug/kg					5E+06			NC
	4-Chlorophenyl-phenylether		ug/kg			1E+08			450000		NC NC
	4-Nitroanaline	NA-DVCT-SO01-02	ug/kg			120000					NC
	4-Nitroanaline	NA-DVCT-SO03-02	ug/kg			120000					NC NC
	4-Nitroanaline	NA-DVCT-SO05-02	ug/kg			120000					NC
OLMO3 2	4-Nitroanaline	NA-DVCT-SO07-02	ug/kg	43	ND	120000	12000	4700	470) NC	NC

		1	Т	ſ	ī			_			
						· .					Moomo
								}			Means
								İ			Comparison
1											Conclusion
							ıstrial		lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	4-Nitrophenol	NA-DVCT-SO01-02	ug/kg	53	ND	2E+07	2E+06	630000	63000	NC	NC
	4-Nitrophenol	NA-DVCT-SO03-02	ug/kg	36	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO05-02	ug/kg	55	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-DVCT-SO07-02	ug/kg	43	ND	2E+07		630000		NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO01-02	ug/kg	53	ND	1E+08			470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO03-02	ug/kg	36	ND	1E+08			470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO05-02	ug/kg	55	ND	1E+08			470000	NC	NC
OLMO3.2	Acenaphthene	NA-DVCT-SO07-02	ug/kg	43	ND	1E+08			470000	NC	NC
	Acenaphthylene	NA-DVCT-SO01-02	ug/kg	53	ND	1E+08			470000	NC	NC
	Acenaphthylene	NA-DVCT-SO03-02	ug/kg	36	ND	1E+08			470000	NC	NC
	Acenaphthylene	NA-DVCT-SO05-02	ug/kg	55	ND	1E+08			470000	NC	NC
	Acenaphthylene	NA-DVCT-SO07-02	ug/kg	43	ND	1E+08			470000	NC	NC NC
	Anthracene	NA-DVCT-SO01-02	ug/kg	53	ND	6E+08		2E+07	2E+06	NC	NC NC
OLMO3.2	Anthracene	NA-DVCT-SO03-02	ug/kg	36	ND	6E+08	6E+07	2E+07	2E+06	NC NC	
	Anthracene	NA-DVCT-S005-02	ug/kg	55	ND	6E+08			2E+06		NC
	Anthracene	NA-DVCT-S003-02		43	ND	6E+08	6E+07	2E+07 2E+07		NC	NC
	Benzo(a)anthracene		ug/kg	53						NC	NC
	Benzo(a)anthracene	NA-DVCT-SO01-02	ug/kg		ND	7800	7800	870	870	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-DVCT-SO05-02	ug/kg	55	ND	7800	7800	870		NC	NC
	Benzo(a)anthracene	NA-DVCT-SO07-02	ug/kg	43	ND	7800	7800	870	870	NC	NC
	Benzo(a)pyrene	NA-DVCT-SO01-02	ug/kg	53	ND	780		87	87	NC	NC
	Benzo(a)pyrene	NA-DVCT-SO03-02	ug/kg	36	ND	780	780	87	87	NC	NC
_	Benzo(a)pyrene	NA-DVCT-SO05-02	ug/kg	55	ND	780	780	87	87	NC	NC
	Benzo(a)pyrene	NA-DVCT-SO07-02	ug/kg	43	ND	780	780	87	87	NC	NC
	Benzo(b)fluoranthene	NA-DVCT-SO01-02	ug/kg	53	ND	7800	7800	870	870	NC	NC
	Benzo(b)fluoranthene	NA-DVCT-SO03-02	ug/kg	36	ND	7800	7800	870	870	NC	NC
	Benzo(b)fluoranthene	NA-DVCT-SO05-02	ug/kg	55	ND	7800	7800	870	870	NC	NC
OLMO3.2	Benzo(b)fluoranthene	NA-DVCT-SO07-02	ug/kg	43	ND	7800	7800	870	870	NC	NC
	Benzo(g,h,i)perylene	NA-DVCT-SO01-02	ug/kg	53	ND	6E+07	6E+06	2E+06	230000	NC	NC
OLMO3.2	Benzo(g,h,i)perylene	NA-DVCT-SO03-02	ug/kg	36	ND	6E+07	6E+06	2E+06	230000	ŃĊ	NC
OLMO3.2	Benzo(g,h,i)perylene	NA-DVCT-SO05-02	ug/kg	55	ND	6E+07	6E+06		230000	NC	NC
OLMO3.2	Benzo(g,h,i)perylene	NA-DVCT-SO07-02	ug/kg	43	ND	6E+07	6E+06		230000	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-DVCT-SO01-02	ug/kg	53	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-DVCT-SO03-02	ug/kg	36	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-DVCT-SO05-02	ug/kg	55	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-DVCT-SO07-02	ug/kg	43	ND	78000		8700	8700	NC	NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53	ND	4E+08	4E+07	2E+07	2E+06	NC	NC
	Butylbenzylphthalate	NA-DVCT-SO03-02	ug/kg	36	ND	4E+08		2E+07	2E+06	NC	NC NC
	Butylbenzylphthalate	NA-DVCT-SO05-02	ug/kg	55	ND	4E+08		2E+07	2E+06	NC	NC
	Butylbenzylphthalate	NA-DVCT-SO07-02	ug/kg	43	ND	4E+08		2E+07	2E+06	NC	NC NC
			ug/kg	53		290000		32000	32000	NC	NC NC
		NA-DVCT-SO03-02	ug/kg	36	ND	290000	290000	32000	32000	NC	NC
		NA-DVCT-SO05-02	ug/kg	55		290000		32000	32000	NC	
			ug/kg	43		290000		32000	32000	NC NC	NC NC
		NA-DVCT-SO01-02	ug/kg	53			780000	87000	87000		NC NC
			ug/kg	36			780000	87000		NC NC	NC NC
	· <u>· · · · · · · · · · · · · · · · · · </u>	NA-DVCT-SO05-02		55		780000			87000	NC NC	NC
			ug/kg					87000	87000	NC NC	NC NC
			ug/kg	43		780000		87000	87000	NC NC	NC
			ug/kg	53	ND ND	780	780	87	87	NC NC	NC NC
			ug/kg	36	ND	780	780	87	87	NC	NC
			ug/kg	55	ND	780	780	87	87	NC	NC
			ug/kg	43	ND	780	780	87	87	NC	NC
103.2	Dibenzofuran	NA-DVCT-SO01-02	ug/kg	53	ND	8E+06	820000	310000	31000	NC	NC

			1					1			
								ļ			Means
-						•					Comparison
								l			Conclusion
						Indu	strial	Resid	lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Dibenzofuran	NA-DVCT-SO03-02	ug/kg	36	ND			310000		NC	NC
-	Dibenzofuran	NA-DVCT-SO05-02	ug/kg	55	ND			310000		NC	NC NC
	Dibenzofuran	NA-DVCT-SO07-02	ug/kg	43	ND			310000		NC	NC
OLMO3.2	Diethylphthalate	NA-DVCT-SO01-02	ug/kg	53	ND	2E+09	2E+08		6E+06	58	NC
	Diethylphthalate	NA-DVCT-SO03-02	ug/kg	36	ND	2E+09				58	NC
	Diethylphthalate	NA-DVCT-SO05-02	ug/kg	55	ND	2E+09			6E+06	58	NC
	Diethylphthalate	NA-DVCT-SO07-02	ug/kg	43	ND	2E+09	2E+08	6E+07	6E+06	58	NC
OLMO3.2	Dimethylphthalate	NA-DVCT-SO01-02	ug/kg	53	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
	Dimethylphthalate	NA-DVCT-SO03-02	ug/kg	36	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
	Dimethylphthalate	NA-DVCT-SO05-02	ug/kg	55	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
OLMO3.2	Dimethylphthalate	NA-DVCT-SO07-02	ug/kg	43	ND	2E+10	2E+09	8E+08	8E+07	NC	NC
	Fluoranthene	NA-DVCT-SO01-02	ug/kg	53	ND	8E+07	8E+06		310000	NC	NC
	Fluoranthene	NA-DVCT-SO03-02	ug/kg	36	ND	8E+07	8E+06		310000	NC	NC
+	Fluoranthene	NA-DVCT-SO05-02	ug/kg	55	ND	8E+07	8E+06	l.	310000	NC	NC
	Fluoranthene	NA-DVCT-SO07-02	ug/kg	43	ND	8E+07	8E+06		310000	NC	NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53	ND	8E+07	8E+06		310000	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	8E+07	8E+06		310000	NC	NC
	Fluorene	NA-DVCT-SO05-02	ug/kg	55	ND	8E+07	8E+06		310000	NC	NC
OLMO3.2		NA-DVCT-SO07-02	ug/kg	43	ND	8E+07	8E+06	<u> </u>	310000	NC	NC
		NA-DVCT-SO01-02	ug/kg	53	ND	73000	73000	8200	8200	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	73000	73000	8200	8200	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-DVCT-SO07-02	ug/kg	43	ND	73000	73000	8200	8200	NC	NC
	Hexachlorobenzene Hexachlorobenzene	NA-DVCT-SO01-02 NA-DVCT-SO03-02	ug/kg	53 36	ND	3600	3600		400	NC	NC
	Hexachlorobenzene	NA-DVCT-SO05-02	ug/kg	55	ND ND	3600 3600	3600 3600	400	400	NC	NC NC
	Hexachlorobenzene	NA-DVCT-S003-02 NA-DVCT-S007-02	ug/kg	43	ND	3600	3600	400	400	NC NC	NC
	Hexachlorocyclopentadiene	NA-DVCT-S001-02	ug/kg ug/kg		ND UJ	1E+07		550000	55000	NC NC	NC NC
		NA-DVCT-SO03-02	ug/kg		ND UJ	1E+07		550000	55000	NC NC	NC NC
OLMO3.2		NA-DVCT-SO05-02	ug/kg		ND UJ	1E+07		550000	55000	NC NC	NC NC
		NA-DVCT-SO07-02	ug/kg	43	ND	1E+07		550000	55000	NC NC	NC
	Hexachloroethane	NA-DVCT-SO01-02	ug/kg	53	ND	410000				NC NC	NC NC
	Hexachloroethane	NA-DVCT-SO03-02	ug/kg	36	ND		410000		46000	NC	NC NC
	Hexachloroethane	NA-DVCT-SO05-02	ug/kg	55	ND		410000		46000	NC	NC
		NA-DVCT-SO07-02	ug/kg	43		410000				NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-DVCT-SO01-02	ug/kg	53		7800	7800		870	NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-DVCT-SO03-02	ug/kg	36		7800	7800			NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-DVCT-SO05-02	ug/kg	55	ND	7800	7800			NC	NC
	Indeno(1,2,3-cd)pyrene	NA-DVCT-SO07-02	ug/kg	43	ND	7800	7800			NC	NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53	ND	6E+06	6E+06	670000	670000	NC	NC
OLMO3.2		NA-DVCT-SO03-02	ug/kg	36	ND	6E+06	6E+06	670000	670000	NC	NC
OLMO3.2		NA-DVCT-SO05-02	ug/kg	55	ND	6E+06			670000	NC	NC
OLMO3.2		NA-DVCT-SO07-02	ug/kg	43		6E+06			670000	NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-DVCT-SO01-02	ug/kg	53	ND	820	820		91	NC	NC
	N-Nitroso-di-n-propylamine		ug/kg	36		820	820	91	91	NC	NC
	N-Nitroso-di-n-propylamine	NA-DVCT-SO05-02	ug/kg	55	ND	820	820		91	NC	NC
	N-Nitroso-di-n-propylamine		ug/kg	43	ND	820	820	1	91	NC	NC
	N-Nitrosodiphenylamine	NA-DVCT-SO01-02	ug/kg	53	ND	1E+06			130000	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND				130000	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND				130000	NC	NC
	N-Nitrosodiphenylamine	NA-DVCT-SO07-02	ug/kg	43	ND				130000	NC	NC
	Naphthalene	NA-DVCT-SO01-02	ug/kg	53	ND	8E+07			310000	NC	NC
OLMO3.2	Naphthalene	NA-DVCT-SO03-02	ug/kg	36	ND	8E+07	8E+06	3E+06	310000	NC	NC

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Naphthalene	NA-DVCT-SO05-02	ug/kg	55	ND	8E+07	8E+06	3E+06	310000	NC	NC
		NA-DVCT-SO07-02	ug/kg	43	ND	8E+07	8E+06	3E+06	310000	NC	NC
		NA-DVCT-SO01-02	ug/kg	53	ND	1E+06	100000	39000	3900	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	1E+06	100000	39000	3900	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND		100000	39000	3900	NC	NC
		NA-DVCT-SO07-02	ug/kg	43	ND	1E+06	100000	39000	3900	NC	NC
	Pentachlorophenol	NA-DVCT-SO01-02	ug/kg	53	ND	48000	48000	5300	5300	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	48000	48000	5300	5300	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	48000	48000	5300	5300	NC	NC
		NA-DVCT-SO07-02	ug/kg	43	ND	48000		5300	5300	NC	NC
		NA-DVCT-SO01-02	ug/kg	53	ND	6E+07	6E+06		230000	NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	6E+07	6E+06		230000	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	6E+07	6E+06		230000	NC	NC
		NA-DVCT-S003-02	ug/kg	43	ND	6E+07	6E+06		230000	NC	NC
				53	ND	1E+09	1E+08	5E+07	5E+06	NC NC	NC NC
		NA-DVCT-SO01-02	ug/kg						5E+06		NC NC
		NA-DVCT-SO03-02	ug/kg	36	ND	1E+09	1E+08	5E+07		NC	NC NC
		NA-DVCT-SO05-02	ug/kg	55	ND	1E+09	1E+08	5E+07	5E+06	NC	NC NC
		NA-DVCT-SO07-02	ug/kg	43	ND	1E+09	1E+08	5E+07	5E+06	NC	
		NA-DVCT-SO01-02	ug/kg	53	ND	6E+07	6E+06		230000	NC	NC NC
		NA-DVCT-SO03-02	ug/kg	36	ND	6E+07	6E+06		230000	NC	NC
	·	NA-DVCT-SO05-02	ug/kg	55	ND	6E+07	6E+06		230000	NC	NC
		NA-DVCT-SO07-02	ug/kg	43	ND	6E+07	6E+06		230000	NC	NC
	bis(2-Chloroethoxy)methane		ug/kg	53	ND	5200	5200	580		NC	NC
	bis(2-Chloroethoxy)methane		ug/kg	36	ND	5200	5200	580	580	NC	NC
	bis(2-Chloroethoxy)methane		ug/kg	55	ND	5200	5200	580	580	NC	NC
	bis(2-Chloroethoxy)methane		ug/kg	43	ND	5200	5200	580	580	NC	NC
	, , ,	NA-DVCT-SO01-02	ug/kg	53	ND	5200	5200	580		NC	NC
		NA-DVCT-SO03-02	ug/kg	36	ND	5200	5200	580	580	NC	NC
		NA-DVCT-SO05-02	ug/kg	55	ND	5200	5200	580		NC	NC
OLMO3.2	· • • • • • • • • • • • • • • • • • • •	NA-DVCT-SO07-02	ug/kg	43	ND	5200	5200	580		NC	NC
		NA-DVCT-SO01-02	ug/kg	53			410000	46000	L	NC	NC
OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-DVCT-SO03-02	ug/kg	36			410000	46000		NC	NC
OLMO3.2		NA-DVCT-SO05-02	ug/kg	55	ND		410000	46000		NC	NC
OLMO3.2		NA-DVCT-SO07-02	ug/kg	43			410000			NC	NC
OLMO3.2	di-n-Butylphthalate	NA-DVCT-SO01-02	ug/kg	53	180	2E+08	2E+07		780000		
		NA-DVCT-SO03-02	ug/kg	36	ND	2E+08			780000		
OLMO3.2	di-n-Butylphthalate	NA-DVCT-SO05-02	ug/kg	55	ND	2E+08			780000		
		NA-DVCT-SO07-02	ug/kg	43	ND	2E+08	2E+07		780000		NS
OLMO3.2	di-n-Octylphthalate	NA-DVCT-SO01-02	ug/kg	53	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	di-n-Octylphthalate	NA-DVCT-SO03-02	ug/kg	36	ND	4E+07	4E+06	2E+06	160000	NC	NC
	di-n-Octylphthalate	NA-DVCT-SO05-02	ug/kg	55	ND	4E+07	4E+06	2E+06	160000	NC	NC
	di-n-Octylphthalate	NA-DVCT-SO07-02	ug/kg	43	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53			1E+07				NC
OLMO3.2		NA-DVCT-SO03-02	ug/kg	36	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2		NA-DVCT-SO05-02	ug/kg	55			1E+07				NC
OLMO3.2		NA-DVCT-SO07-02	ug/kg	43			1E+07				NC
OLMO3.2		NA-DVCT-SO01-02	ug/kg	53			1E+06				NC
OLMO3.2	1.	NA-DVCT-SO03-02	ug/kg	36			1E+06				NC
OLMO3.2		NA-DVCT-SO05-02	ug/kg	55		1E+07		390000			NC
OLMO3.2		NA-DVCT-SO07-02	ug/kg	43		1E+07		390000			NC NC
SW8290		NA-DVCT-SO01-02	ng/kg	1.5							
		NA-DVCT-SO03-02	ng/kg	0.4			*				
027U		NA-DVCT-SO05-02	ng/kg	1.6							

											Means Comparison Conclusion
Method	A 1	6				Indu			lential	1	Reference vs
SW8290	Analyte 1,2,3,4,6,7,8,9-OCDD	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO07-02	ng/kg	1	99.7	38000	38000	4300		39.6	NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-SO01-02 NA-DVCT-SO03-02	ng/kg	1.2		38000	38000	4300		4.6	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-S005-02	ng/kg	0.3	1	38000	38000	4300		4.6	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-DVCT-S003-02	ng/kg		7.9 J 6.2 J	38000	38000	4300	4300	4.6	S
	1,2,3,4,6,7,8-HpCDD	NA-DVCT-S001-02	ng/kg	1.3		38000	38000	4300		4.6	
	1,2,3,4,6,7,8-HpCDD	NA-DVCT-S003-02	ng/kg	0.4	28.8 5.1	3800	3800	430		6	
	1,2,3,4,6,7,8-HpCDD	NA-DVCT-SO05-02	ng/kg	1.2		3800	3800	430	430	6	NS
	1,2,3,4,6,7,8-HpCDD	NA-DVCT-S003-02	ng/kg	0.7	15.6	3800	3800	430	430	6	NS
	1,2,3,4,6,7,8-HpCDF	NA-DVCT-S007-02	ng/kg		10.8	3800	3800	430	430	6	NS
	1,2,3,4,6,7,8-HpCDF	NA-DVCT-S003-02	ng/kg	0.9	20.1	3800	3800	430	430	5.1	S
***	1,2,3,4,6,7,8-HpCDF	NA-DVCT-S005-02	ng/kg	0.3	11.2	3800	3800	430	430	5.1	S
	1,2,3,4,6,7,8-HpCDF	NA-DVCT-S003-02	ng/kg	0.8	6.3 6.9	3800	3800	430	430	5.1	S
	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S007-02	ng/kg ng/kg		2.3 J	3800 3800	3800 3800	430	430	5.1	S
	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S003-02	ng/kg	0.4		3800	3800	430	430	1	NS
	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S005-02		1.1	ND ND			430	430	1	NS
	1,2,3,4,7,8,9-HpCDF	NA-DVCT-S003-02	ng/kg ng/kg		0.75 J	3800 3800	3800 3800	430 430	430	1	NS
	1,2,3,4,7,8-HxCDD	NA-DVCT-SO01-02	ng/kg	1.3	ND	380	380	430	430	1	NS
	1,2,3,4,7,8-HxCDD	NA-DVCT-SO03-02	ng/kg	0.4	NDJ	380	380	43	43	NC NC	NC
	1,2,3,4,7,8-HxCDD	NA-DVCT-SO05-02	ng/kg	1	ND	380	380	43	43 43	NC	NC
	1,2,3,4,7,8-HxCDD	NA-DVCT-S007-02	ng/kg	0.5	ND	380	380	43	43	NC NC	NC
	1,2,3,4,7,8-HxCDF	NA-DVCT-SO01-02	ng/kg	0.9	6.6	380	380			NC	NC
	1,2,3,4,7,8-HxCDF	NA-DVCT-S003-02	ng/kg	0.3	6.8	380	380	43	43	2.1	s
	1,2,3,4,7,8-HxCDF	NA-DVCT-SO05-02	ng/kg		2.5 J	380		43	43	2.1	S
	1,2,3,4,7,8-HxCDF	NA-DVCT-S003-02	ng/kg		2.8 J		380	43	43	2.1	S
	1,2,3,6,7,8-HxCDD	NA-DVCT-S001-02			2.5 J	380 380	380	43	43	2.1	S
	1,2,3,6,7,8-HxCDD	NA-DVCT-S003-02	ng/kg		0.56 J	380	380 380	43	43	1.5	NS
	1,2,3,6,7,8-HxCDD	NA-DVCT-S005-02	ng/kg ng/kg		2.4 J	380	380	43	43	1.5	NS
	1,2,3,6,7,8-HxCDD	NA-DVCT-S007-02	ng/kg		1.1 J	380	380	43	43 43	1.5	NS
	1,2,3,6,7,8-HxCDF	NA-DVCT-SO01-02	ng/kg		2.8 J	380	380	43	43	1.5	NS
	1,2,3,6,7,8-HxCDF	NA-DVCT-SO03-02	ng/kg		2.4 J	380	380	43	43	1.1	S
	1,2,3,6,7,8-HxCDF	NA-DVCT-SO05-02	ng/kg		1.3 J	380	380	43	43	1.1	S
	1,2,3,6,7,8-HxCDF	NA-DVCT-SO07-02	ng/kg		1.3 J	380	380	43	43	1.1	S
	1,2,3,7,8,9-HxCDD	NA-DVCT-SO01-02	ng/kg	1	5.5	380	380	43	43	1.1 5.3	S
	1,2,3,7,8,9-HxCDD		ng/kg		0.88 J	380	380	43	43	5.3	NS
	1,2,3,7,8,9-HxCDD		ng/kg	1	8.2	380	380	43	43	5.3	NS
	1,2,3,7,8,9-HxCDD		ng/kg		3.3 J	380	380	43	43	5.3	NS NG
	1,2,3,7,8,9-HxCDF		ng/kg	1.1	ND	380	380	43	43		NS NC
	1,2,3,7,8,9-HxCDF		ng/kg		0.7 J	380	380	43	43	NC NC	NC
	1,2,3,7,8,9-HxCDF		ng/kg		ND	380	380	43	43	NC NC	NC
	1,2,3,7,8,9-HxCDF		ng/kg	0.5	ND	380	380	43	43	NC	NC NC
	1,2,3,7,8-PeCDD		ng/kg		1.8 J	76	76	8.6	8.6		
	1,2,3,7,8-PeCDD		ng/kg		ND UJ	76	76	8.6	8.6	1.6	NS
	1,2,3,7,8-PeCDD		ng/kg	0.7		76	76	8.6	8.6	1.6 1.6	NS NS
SW8290	1,2,3,7,8-PeCDD	 	ng/kg		1.2 J	76	76	8.6	8.6		NS
	1,2,3,7,8-PeCDF		ng/kg		2.5 J	760	760	86	86	0.8	NS S
	1,2,3,7,8-PeCDF		ng/kg		2.2 J	760	760	86			S
	1,2,3,7,8-PeCDF	 	ng/kg		1.2 J	760	760	86	86	0.8	S
	1,2,3,7,8-PeCDF		ng/kg		0.87 J	760	760	86	86 86	0.8	<u>S</u>
	2,3,4,6,7,8-HxCDF		ng/kg		4.4 J	380	380	43		0.8	S
	2,3,4,6,7,8-HxCDF		ng/kg	0.3		380	380		43	2.2	NS
	2,3,4,6,7,8-HxCDF		ng/kg	0.3				43	43	2.2	NS
	2,3,4,6,7,8-HxCDF	+	ng/kg	0.7		380	380 380	43 43	43	2.2	NS NS

Appendix F-2
Child Development Center - Subsurface Soil

											Means Comparison Conclusion
İ				ļ		Ind	ustrial	Resid	lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDI.	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-SO01-02	ng/kg		3.4 J	76					S
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-SO03-02	ng/kg		1.3 J	76					
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-SO05-02	ng/kg		1.4 J	76					S
SW8290	2,3,4,7,8-PeCDF	NA-DVCT-SO07-02	ng/kg		1.4 J	76				J	S
SW8290	2,3,7,8-TCDD	NA-DVCT-SO01-02	ng/kg	0.5		38				1.2	S
SW8290	2,3,7,8-TCDD	NA-DVCT-SO03-02	ng/kg	0.3		38				NC NC	NC
SW8290	2,3,7,8-TCDD	NA-DVCT-SO05-02	ng/kg	0.2		38				NC NC	NC
SW8290	2,3,7,8-TCDD	NA-DVCT-SO07-02	ng/kg	0.3	ND	38				NC NC	NC
SW8290	2,3,7,8-TCDF	NA-DVCT-SO01-02	ng/kg	0.5	4.2						NC
SW8290	2,3,7,8-TCDF	NA-DVCT-SO03-02	ng/kg	0.7	1.5	380			1	0.99	S
SW8290	2,3,7,8-TCDF	NA-DVCT-SO05-02	ng/kg	0.7	1.3	380				0.99	S
SW8290	2,3,7,8-TCDF	NA-DVCT-SO07-02	ng/kg	0.5	1.3	380				0.99	S
SW8290	Total HpCDD	NA-DVCT-SO01-02					380	43	43	0.99	S
SW8290	Total HpCDD		ng/kg	1.3	54.4				-	13.1	NS
SW8290	Total HpCDD	NA-DVCT-SO03-02	ng/kg	0.4	10.4		•	<u> </u>		13.1	NS
SW8290	Total HpCDD	NA-DVCT-SO05-02 NA-DVCT-SO07-02	ng/kg	1.2	33.4	<u></u>	<u> -</u>	ļ		13.1	NS
SW8290	Total HpCDF		ng/kg	0.7	24		ļ:	· .		13.1	NS
SW8290		NA-DVCT-SO01-02	ng/kg	1	48.5		ļ			10	S
	Total HpCDF	NA-DVCT-SO03-02	ng/kg	0.3	21.9					10	S
SW8290	Total HpCDF	NA-DVCT-SO05-02	ng/kg	0.9	12		-			10	S
SW8290	Total HpCDF	NA-DVCT-SO07-02	ng/kg	0.5	11.4	-				10	S
SW8290	Total HxCDD	NA-DVCT-SO01-02	ng/kg	1.1	32.6			-	•	19.1	NS
SW8290	Total HxCDD	NA-DVCT-SO03-02	ng/kg	0.4	. 9					19.1	NS
SW8290	Total HxCDD	NA-DVCT-SO05-02	ng/kg	1	33.6					19.1	NS
8290	Total HxCDD	NA-DVCT-SO07-02	ng/kg	0.5	16.7		1.			19.1	NS
8290	Total HxCDF	NA-DVCT-SO01-02	ng/kg	0.9	31.1					11.5	S
SW8290	Total HxCDF	NA-DVCT-SO03-02	ng/kg	0.3	22.7					11.5	S
SW8290	Total HxCDF	NA-DVCT-SO05-02	ng/kg	0.7	13.4		Ĭ.			11.5	S
SW8290	Total HxCDF	NA-DVCT-SO07-02	ng/kg	0.4	12.1					11.5	S
SW8290	Total PeCDD	NA-DVCT-SO01-02	ng/kg	0.9	6.1					4.9	NS
	Total PeCDD	NA-DVCT-SO03-02	ng/kg	0.3	5.9					4.9	NS
SW8290	Total PeCDD	NA-DVCT-SO05-02	ng/kg	0.7	4.7					4.9	NS
SW8290	Total PeCDD	NA-DVCT-SO07-02	ng/kg	0.8	5.6					4.9	NS
SW8290	Total PeCDF	NA-DVCT-SO01-02	ng/kg	0.7	38.9		<u>. </u>			12.1	NS
SW8290	Total PeCDF	NA-DVCT-SO03-02	ng/kg	0.2	16.2				.	12.1	NS
SW8290	Total PeCDF	NA-DVCT-SO05-02	ng/kg	0.5	9.8					12.1	NS
SW8290	Total PeCDF	NA-DVCT-SO07-02	ng/kg	0.4	13					12.1	NS
SW8290	Total TCDD	NA-DVCT-SO01-02	ng/kg	0.5	8.2		<u>. </u>	_		2.3	S
SW8290	Total TCDD	NA-DVCT-SO03-02	ng/kg	0.2	4.5					2.3	<u> </u>
SW8290	Total TCDD	NA-DVCT-SO05-02	ng/kg	0.5	3.4	<u>. </u>			-	2.3	s
SW8290	Total TCDD	NA-DVCT-SO07-02	ng/kg	0.3	4.5	<u>. </u>			•	2.3	<u> </u>
SW8290	Total TCDF	NA-DVCT-SO01-02	ng/kg	0.4	18.4	-	·	•	•	13.3	NS
	Total TCDF	NA-DVCT-SO03-02	ng/kg	0.2	10.8	-		·	·	13.3	NS NS
	Total TCDF	NA-DVCT-SO05-02	ng/kg	0.4	23.5	<u></u>		 	-	13.3	NS NS
	Total TCDF	NA-DVCT-SO07-02	ng/kg	0.4	17.6	•	-	•		13.3	NS NS
	Cyanide		mg/kg	0.27	0.97	41000	4100	1600	160	0.39	
	Cyanide		mg/kg	0.17	0.37	41000	4100	1600	160	0.39	NS NC
	Cyanide		mg/kg	0.17	0.37	41000	4100				NS
	Cyanide	NA-DVCT-S003-02	mg/kg	0.30	0.97	41000	4100	1600	160	0.39	NS NS
	Aluminum		mg/kg	2.5	53700		200000	78000	160	0.39	NS
	Aluminum							78000	7800	57700	NS
	Aluminum		mg/kg	1.7	22700		200000	78000	7800	57700	NS
	Aluminum		mg/kg	2.6	60300		200000	78000	7800	57700	NS
			mg/kg	2	43300		200000	78000	7800	57700	NS
U+1.U	Antimony	NA-DVCT-SO01-02	mg/kg	0.62	1.2 L	820	82	31	3.1	1.5	NS

Appendix F-2
Child Development Center - Subsurface Soil

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDI	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Antimony	NA-DVCT-SO03-02	mg/kg		ND UL	820	82	31	3.1	1.5	
	Antimony	NA-DVCT-SO05-02	mg/kg		0.84 L	820	82	31	3.1	1.5	
	Antimony	NA-DVCT-SO07-02	mg/kg		0.83 L	820	82	31	3.1	1.5	
	Arsenic	NA-DVCT-SO01-02	mg/kg	0.82	3.1	3.8	3.8	0.43	0.43		
		NA-DVCT-SO03-02	mg/kg	0.82	2.4	3.8	3.8	0.43	0.43	2.6	
	Arsenic	NA-DVCT-SO05-02		0.37	3.4	3.8	3.8	0.43	0.43		
	Arsenic Arsenic	NA-DVCT-SO03-02	mg/kg mg/kg	0.67	4.3	3.8	3.8	0.43	0.43		
		NA-DVCT-SO01-02			81 L	140000	14000	5500			
	Barium	NA-DVCT-SO03-02	mg/kg		31.1 L	140000	14000	5500	550		
	Barium	NA-DVCT-SO05-02	mg/kg		81.9 L	140000	14000	5500	550		
	Barium	NA-DVCT-SO03-02	mg/kg			140000	14000	5500	550		
	Barium		mg/kg		118 L					NC /2.3	NC NC
	Beryllium	NA-DVCT-SO01-02	mg/kg	0.21	ND	4100	410	160			
	Beryllium	NA-DVCT-SO03-02	mg/kg	0.14		4100	410	160		NC	NC
	Beryllium	NA-DVCT-SO05-02	mg/kg	0.22	ND	4100	410	160		NC	NC
	Beryllium	NA-DVCT-SO07-02	mg/kg	0.17	ND	4100	410	160		NC	NC
	Cadmium	NA-DVCT-SO01-02	mg/kg		1.3 K	1000	100	39	3.9		1
	Cadmium	NA-DVCT-SO03-02	mg/kg		0.52 K	1000	100	39	3.9		
ILMO4.0	Cadmium	NA-DVCT-SO05-02	mg/kg		1.6 K	1000	100	39	3.9		
	Cadmium	NA-DVCT-SO07-02	mg/kg		1.3 K	1000	100	39	3.9	1 .	
ILMO4.0	Calcium	NA-DVCT-SO01-02	mg/kg	5.3						11600	
ILMO4.0	Calcium	NA-DVCT-SO03-02	mg/kg	3.7					<u> - </u>	11600	
ILMO4.0	Calcium	NA-DVCT-SO05-02	mg/kg	5.7						11600	
ILMO4.0	Calcium	NA-DVCT-SO07-02	mg/kg	4.3						11600	
ILMO4.0	Chromium	NA-DVCT-SO01-02	mg/kg	0.21	25.4	10000		390	39		
ILMO4.0	Chromium	NA-DVCT-SO03-02	mg/kg	0.14		10000		390			
ILMO4.0	Chromium	NA-DVCT-SO05-02	mg/kg	0.22	29.3	10000		390			
ILMO4.0	Chromium	NA-DVCT-SO07-02	mg/kg	0.17	20.6	10000	1000	390			NS
ILMO4.0	Cobalt	NA-DVCT-SO01-02	mg/kg	0.21	20.4	120000	12000	4700	470	25	NS
ILMO4.0	Cobalt	NA-DVCT-SO03-02	mg/kg	0.14	5.9	120000	12000	4700		25	NS
ILMO4.0	Cobalt	NA-DVCT-SO05-02	mg/kg	0.22	23.8	120000	12000	4700	470	25	NS
ILMO4.0	Cobalt	NA-DVCT-SO07-02	mg/kg	0.17	15.7	120000	12000	4700	470	25	NS
ILMO4.0	Copper	NA-DVCT-SO01-02	mg/kg	0.21	110	82000	8200	3100	310	116	NS
ILMO4.0	Copper	NA-DVCT-SO03-02	mg/kg	0.14	18.1	82000	8200	3100	310	116	NS
ILMO4.0	Copper	NA-DVCT-SO05-02	mg/kg	0.22		82000	8200	3100	310	116	NS
ILMO4.0	Copper	NA-DVCT-SO07-02	mg/kg	0.17	84.2	82000	8200	3100	310	116	NS
ILMO4.0	Iron	NA-DVCT-SO01-02	mg/kg	2.9	43600		61000				
ILMO4.0	Iron	NA-DVCT-SO03-02	mg/kg			610000					
	Iron	NA-DVCT-SO05-02	mg/kg			610000					
	Iron	NA-DVCT-SO07-02	mg/kg			610000					
	Lead	NA-DVCT-SO01-02		-				400			
ILMO4.0	Lead	NA-DVCT-SO03-02									
	Lead	NA-DVCT-SO05-02									
	Lead	NA-DVCT-SO07-02	mg/kg					400	1		
	Magnesium	NA-DVCT-SO01-02								12200	
	Magnesium	NA-DVCT-SO03-02	mg/kg				<u> </u>	-	i	12200	
	Magnesium	NA-DVCT-SO05-02	mg/kg				 	 	 	12200	
	Magnesium	NA-DVCT-S007-02	mg/kg				<u> </u>	-	l'	12200	
		NA-DVCT-SO01-02	mg/kg				4100	1600	160		
	Manganese	NA-DVCT-SO03-02		1							
	Manganese										
	Manganese	NA-DVCT-SO05-02									
	Manganese	NA-DVCT-SO07-02									
ILMO4.0	Mercury	NA-DVCT-SO01-02 NA-DVCT-SO03-02		0.02		200 200			0.78	3] 0.04	NS A

Method Analyte Sample ID Units MDL Result Res RBSL RBS												Means Comparison
Method												Conclusion
ILMO4.0 Mercury NA-DVCT-SO05-02 mg/kg 0.03 0.05 200 20 7.8 0.78 0.04 NS ILMO4.0 Mercury NA-DVCT-SO07-02 mg/kg 0.02 0.08 200 20 7.8 0.78 0.04 NS ILMO4.0 Nickel NA-DVCT-SO01-02 mg/kg 0.21 24.7 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO03-02 mg/kg 0.14 9.6 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO05-02 mg/kg 0.14 9.6 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO05-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO07-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Potassium NA-DVCT-SO01-02 mg/kg 0.35 852 2855 S ILMO4.0 Potassium NA-DVCT-SO03-02 mg/kg 0.35 852 2855 S ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 1.3 382 2855 S ILMO4.0 Potassium NA-DVCT-SO07-02 mg/kg 0.41 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO03-02 mg/kg 0.41 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO03-02 mg/kg 0.28 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO03-02 mg/kg 0.28 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 0.6 NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC IL	Mothod	Amoluto	Samuela ID	TT-84	MATERIA	Dagueld					1	
ILMO4.0 Mercury								L				
ILMO4.0 Nickel NA-DVCT-SO01-02 mg/kg 0.21 24.7 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO03-02 mg/kg 0.14 9.6 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO03-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO01-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Potassium NA-DVCT-SO01-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Potassium NA-DVCT-SO03-02 mg/kg 0.85 852												
ILMO4.0 Nickel NA-DVCT-SO03-02 mg/kg 0.14 9.6 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO05-02 mg/kg 0.22 29.1 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO07-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Potassium NA-DVCT-SO01-02 mg/kg 1.2 417												
ILMO4.0 Nickel NA-DVCT-SO05-02 mg/kg 0.22 29.1 41000 4100 1600 160 32.9 NS ILMO4.0 Nickel NA-DVCT-SO07-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Potassium NA-DVCT-SO01-02 mg/kg 1.2 417 285 S ILMO4.0 Potassium NA-DVCT-SO03-02 mg/kg 0.85 852 285 S ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 0.85 852 285 S ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 1 1370 285 S ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 1 1370 285 S ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 0.41 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO05-02 mg/kg 0.28 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO05-02 mg/kg 0.38 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO05-02 mg/kg 0.33 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO05-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO05-02 mg/kg 0.15 1480 2030 NS ILMO4.0 Sodium NA-DVCT-SO07-02 mg/kg 0.82 2 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO07-02 mg/kg 0.87 2.4 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO07-02 mg/kg 0.87 2.4 140 14 5.5 0.55 1.7 NS ILMO4.0 Vanadium NA-DVCT-SO07-02 mg/kg 0.21 174		<u> </u>										
ILMO4.0 Nickel NA-DVCT-SO07-02 mg/kg 0.17 21.8 41000 4100 1600 160 32.9 NS ILMO4.0 Potassium NA-DVCT-SO01-02 mg/kg 1.2 417 ILMO4.0 Potassium NA-DVCT-SO03-02 mg/kg 0.85 852 ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 1.3 382 ILMO4.0 Potassium NA-DVCT-SO07-02 mg/kg 1.3 382 ILMO4.0 Potassium NA-DVCT-SO07-02 mg/kg 1.3 382 ILMO4.0 Selenium NA-DVCT-SO01-02 mg/kg 0.41 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO03-02 mg/kg 0.41 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO05-02 mg/kg 0.44 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO05-02 mg/kg 0.33 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Silver NA-DVCT-SO01-02 mg/kg 0.33 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Thallium NA-DVCT-SO03-02 mg/kg 0.82 2 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO03-02 mg/kg 0.87 2.4 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO03-02 mg/kg 0.67 1.8 1400 1400 550 55 219 NS ILMO4.0 Vanadium NA-DVCT-SO01-02 mg/kg												
ILMO4.0 Potassium NA-DVCT-SO01-02 mg/kg 1.2 417 2855 S ILMO4.0 Potassium NA-DVCT-SO03-02 mg/kg 0.85 852 285 S ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 1.3 382 285 S ILMO4.0 Potassium NA-DVCT-SO07-02 mg/kg 1 1370 285 S ILMO4.0 Potassium NA-DVCT-SO07-02 mg/kg 1 1370 285 S ILMO4.0 Selenium NA-DVCT-SO03-02 mg/kg 0.41 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO03-02 mg/kg 0.41 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO03-02 mg/kg 0.44 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Selenium NA-DVCT-SO05-02 mg/kg 0.33 ND UL 10000 1000 390 39 0.6 NC ILMO4.0 Silver NA-DVCT-SO01-02 mg/kg 0.33 ND UL 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 20.5 2100 2030 NS ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 14.2 1480 2030 NS ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 0.82 2 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO03-02 mg/kg 0.87 0.58 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO03-02 mg/kg 0.67 1.8 140 14 5.5 0.55 1.7 NS ILMO4.0 NA-DVCT-SO03-02 mg/kg 0.67 1.8 140 14 5.5 0.55 1.7 NS ILMO4.0 NA-DVCT-SO03-02 mg/kg 0.67 1.8 140 14 5.5 0.55 1.7 NS ILMO4.0 NA-DVCT-SO03-02 mg/kg 0.67 1.8 140 14 5.5 0.55 1.7 NS	l											
ILMO4.0 Potassium NA-DVCT-SO03-02 mg/kg 0.85 852								4100	1000	100		
ILMO4.0 Potassium NA-DVCT-SO05-02 mg/kg 1.3 382								•	-	<u> </u>		
ILMO4.0 Potassium							-	-	•			
ILMO4.0 Selenium							-	•	•	•		
ILMO4.0 Selenium								1000	. 200			
ILMO4.0 Selenium												
ILMO4.0 Selenium												
ILMO4.0 Silver NA-DVCT-SO01-02 mg/kg 0.21 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.22 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO07-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO01-02 mg/kg 20.5 2100 . . 2030 NS ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 14.2 1480 . . 2030 NS ILMO4.0 Sodium NA-DVCT-SO05-02 mg/kg 16.7 1500 . . 2030 NS ILMO4.0 Thallium NA-DVCT-SO01-02 mg/kg 0.												
ILMO4.0 Silver NA-DVCT-SO03-02 mg/kg 0.14 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.22 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO07-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO01-02 mg/kg 20.5 2100 . . 2030 NS ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 14.2 1480 . . 2030 NS ILMO4.0 Sodium NA-DVCT-SO05-02 mg/kg 21.9 1640 . . 2030 NS ILMO4.0 Thallium NA-DVCT-SO01-02 mg/kg 0.82 2 140 14 5.5 0.55 1.7 NS IO4.0 Thallium NA-DVCT-SO05-02 mg/kg 0.87												
ILMO4.0 Silver NA-DVCT-SO05-02 mg/kg 0.22 ND 10000 1000 390 39 NC NC ILMO4.0 Silver NA-DVCT-SO07-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO01-02 mg/kg 20.5 2100 . . 2030 NS ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 14.2 1480 . . 2030 NS ILMO4.0 Sodium NA-DVCT-SO05-02 mg/kg 21.9 1640 . . 2030 NS ILMO4.0 Sodium NA-DVCT-SO07-02 mg/kg 0.82 2 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO03-02 mg/kg 0.87 2.4 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO05-02 mg/kg 0.												
ILMO4.0 Silver NA-DVCT-SO07-02 mg/kg 0.17 0.18 10000 1000 390 39 NC NC ILMO4.0 Sodium NA-DVCT-SO01-02 mg/kg 20.5 2100 . </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> 1</td> <td></td> <td></td> <td></td>									1			
ILMO4.0 Sodium NA-DVCT-SO01-02 mg/kg 20.5 2100 .		L										
ILMO4.0 Sodium NA-DVCT-SO03-02 mg/kg 14.2 1480 .							10000	1000	390	39		
ILMO4.0 Sodium NA-DVCT-SO05-02 mg/kg 21.9 1640 .							<u>-</u>	•	•	<u>-</u>		
ILMO4.0 Sodium NA-DVCT-SO07-02 mg/kg 16.7 1500 .								<u></u>		-		
ILMO4.0 Thallium NA-DVCT-SO01-02 mg/kg 0.82 2								.	<u> </u>	·		
O4.0 Thallium NA-DVCT-SO03-02 mg/kg 0.57 0.58 140 14 5.5 0.55 1.7 NS IO4.0 Thallium NA-DVCT-SO05-02 mg/kg 0.87 2.4 140 14 5.5 0.55 1.7 NS ILMO4.0 Thallium NA-DVCT-SO07-02 mg/kg 0.67 1.8 140 14 5.5 0.55 1.7 NS ILMO4.0 Vanadium NA-DVCT-SO01-02 mg/kg 0.21 174 14000 1400 550 55 219 NS								•	<u></u> _	·		
NA-DVCT-SO05-02 mg/kg 0.87 2.4 140 14 5.5 0.55 1.7 NS ILMO4.0 Vanadium NA-DVCT-SO01-02 mg/kg 0.67 1.8 140 14 5.5 0.55 1.7 NS ILMO4.0 Vanadium NA-DVCT-SO01-02 mg/kg 0.21 174 14000 1400 550 55 219 NS NS NA-DVCT-SO01-02 mg/kg 0.21 174 14000 1400												
ILMO4.0 Thallium NA-DVCT-SO07-02 mg/kg 0.67 1.8 140 14 5.5 0.55 1.7 NS ILMO4.0 Vanadium NA-DVCT-SO01-02 mg/kg 0.21 174 14000 1400 550 55 219 NS												
ILMO4.0 Vanadium NA-DVCT-SO01-02 mg/kg 0.21 174 14000 1400 550 55 219 NS												
ILMO4.0 Vanadium NA-DVCT-SO03-02 mg/kg 0.14 56.1 14000 1400 550 55 219 NS												
ILMO4.0 Vanadium NA-DVCT-SO05-02 mg/kg 0.22 207 14000 1400 550 55 219 NS		L										
ILMO4.0 Vanadium NA-DVCT-S007-02 mg/kg 0.17 127 14000 1400 550 55 219 NS												
ILMO4.0 Zinc NA-DVCT-SO01-02 mg/kg 0.21 88.2 610000 61000 23000 2300 48.6 NS												
ILMO4.0 Zinc NA-DVCT-SO03-02 mg/kg 0.14 35.1 610000 61000 23000 2300 48.6 NS												
ILMO4.0 Zinc NA-DVCT-SO05-02 mg/kg 0.22 70.6 610000 61000 23000 2300 48.6 NS												
ILMO4.0 Zinc NA-DVCT-SO07-02 mg/kg 0.17 75.5 610000 61000 23000 2300 48.6 NS				mg/kg		75.5	610000	61000	23000	2300	48.6	NS
Reference UTL abbreviations: NC = Not calculated because reference data were all non-detected results or were not analyzed. Means Comparison Conclusion Reference vs. Site abbreviations:	Reference U	TL abbreviations: $NC = Not$	calculated because ref	erence d	ata were	all non-	detected	results of	were no	ot analyz	ed.	

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Significant. On average, site data were significantly greater than reference data.

		I				 					
						Indu	strial	Resid	lential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	4,4'-DDD	NA-ELEM-SO01-01	ug/kg	0.17		24000	24000	2700	2700		NC
OLM03.2	4,4'-DDD	NA-ELEM-SO02-01	ug/kg	0.19	ND	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-ELEM-SO03-01	ug/kg	2.2	120	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-ELEM-SO04-01	ug/kg	0.21	ND	24000	24000	2700	2700	NC	NC
OLM03.2	4,4'-DDD	NA-ELEM-SO05-01	ug/kg	0.18	ND	24000	24000	2700	2700		NC
OLM03.2	4,4'-DDD	NA-ELEM-SO06-01	ug/kg	0.18	ND	24000	24000	2700	2700		NC
OLM03.2	4,4'-DDD	NA-ELEM-SO07-01	ug/kg	0.33		24000	24000	2700	2700		NC
OLM03.2	4,4'-DDD	NA-ELEM-SO08-01	ug/kg	0.26		24000	24000	2700	2700		NC
OLM03.2	4,4'-DDE	NA-ELEM-SO01-01	ug/kg	0.17		17000		1900			NS
OLM03.2	4,4'-DDE	NA-ELEM-SO02-01	ug/kg	0.19		17000		1900			NS
	4,4'-DDE	NA-ELEM-SO03-01	ug/kg	0.22	39			1900	1900		NS
OLM03.2	4,4'-DDE	NA-ELEM-SO04-01	ug/kg	0.21	2.5	17000	17000	1900	1900		NS
	4,4'-DDE	NA-ELEM-SO05-01	ug/kg	0.18		17000	17000	1900	1900		NS
	4,4'-DDE	NA-ELEM-SO06-01	ug/kg	0.18		17000		1900	1900		NS
	4,4'-DDE	NA-ELEM-SO07-01	ug/kg	0.33	23	17000	17000	1900	1900		NS
	4,4'-DDE	NA-ELEM-SO08-01	ug/kg	0.26	9.4			1900			NS
OLM03.2	4,4'-DDT	NA-ELEM-SO01-01	ug/kg	0.17		17000	17000	1900	1900		NS
	4,4'-DDT	NA-ELEM-SO02-01	ug/kg	0.19		17000	17000	1900	1900		NS
	4,4'-DDT	NA-ELEM-SO03-01	ug/kg	0.22	47	17000		1900			NS
	4,4'-DDT	NA-ELEM-SO04-01	ug/kg	0.21	3.1	17000	17000	1900	1900		NS
	4,4'-DDT	NA-ELEM-SO05-01	ug/kg	0.18		17000	17000	1900	1900		NS
	4,4'-DDT	NA-ELEM-SO06-01	ug/kg	0.18		17000	17000	1900	1900		NS
	4,4'-DDT	NA-ELEM-SO07-01	ug/kg	0.33		17000	17000	1900			NS
	4,4'-DDT	NA-ELEM-SO08-01	ug/kg		7.8 J	17000	17000	1900			NS
	Aldrin	NA-ELEM-SO01-01	ug/kg	0.17		340	340	38		NC	NC
	Aldrin	NA-ELEM-SO02-01	ug/kg	0.19		340	340	38		NC	NC
	Aldrin	NA-ELEM-SO03-01	ug/kg	0.22		340	340	38		NC	NC
	Aldrin	NA-ELEM-SO04-01	ug/kg	0.21		340		38		NC	NC
	Aldrin	NA-ELEM-SO05-01	ug/kg	0.18		340		38		NC	NC
	Aldrin	NA-ELEM-SO06-01	ug/kg	0.18		340	340	38		NC	NC
	Aldrin	NA-ELEM-SO07-01	ug/kg	0.33		340	340	38		NC	NC
	Aldrin	NA-ELEM-SO08-01	ug/kg	0.26		340		38		NC	NC
OLM03.2	Aroclor-1016	NA-ELEM-SO01-01	ug/kg	0.17		2900				NC	NC
	Aroclor-1016	NA-ELEM-SO02-01	ug/kg	0.19		2900		320		NC	NC
	Aroclor-1016		ug/kg	0.22		2900			320	NC	NC
	Aroclor-1016	NA-ELEM-SO04-01 NA-ELEM-SO05-01	ug/kg	0.21		2900 2900				NC	NC
	Aroclor-1016	NA-ELEM-SO06-01	ug/kg	0.18 0.18		2900				NC NC	NC NC
	Aroclor-1016 Aroclor-1016	NA-ELEM-SO07-01	ug/kg	0.18		2900	1			NC	NC
	Aroclor-1016		ug/kg ug/kg	0.33		2900	<u> </u>	1		NC	NC
		NA-ELEM-SO01-01		0.20		2900				NC	NC NC
	Aroclor-1221 Aroclor-1221	NA-ELEM-SO02-01	ug/kg ug/kg	0.17		2900				NC NC	NC
	Aroclor-1221	NA-ELEM-SO03-01	ug/kg	0.19		2900				NC	NC
		NA-ELEM-SO04-01		0.22		2900			1	NC	NC
	Aroclor-1221	NA-ELEM-SO05-01	ug/kg	0.21							NC NC
	Aroclor-1221		ug/kg	<u> </u>		2900				NC NC	
	Aroclor-1221	NA-ELEM-SO06-01	ug/kg	0.18		2900					NC
	Aroclor-1221	NA-ELEM-SO07-01	ug/kg			2900				NC	NC
	Aroclor-1221	NA-ELEM-SO08-01	ug/kg			2900				NC	NC
	Aroclor-1232	NA-ELEM-SO01-01	ug/kg	0.17		2900				NC	NC NC
	Aroclor-1232	NA-ELEM-SO02-01	ug/kg			2900				NC	NC
	Aroclor-1232	NA-ELEM-SO03-01	ug/kg	0.22		2900				NC NC	NC
	Aroclor-1232	NA-ELEM-SO04-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1232	NA-ELEM-SO05-01	ug/kg	0.18	ND	2900	2900	320	320	NC	NC

Method Analyte Sample ID Units MDL Result RBC RBSL RBC OLM03.2 Aroclor-1232 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1232 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO01-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO03-01 ug/kg 0.19 ND 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO03-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 </th <th>320 320 320 320 320 320 320 320</th> <th>NC NC NC NC NC NC NC NC NC NC NC NC NC N</th> <th>NC NC NC NC NC NC NC NC NC NC NC NC NC N</th>	320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC NC NC NC NC N	NC NC NC NC NC NC NC NC NC NC NC NC NC N
OLM03.2 Aroclor-1232 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1232 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO03-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26	320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC NC NC NC NC N	NC NC NC NC NC NC NC NC NC NC NC NC NC N
OLM03.2 Aroclor-1232 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26	320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC NC NC NC NC N	NC NC NC NC NC NC NC NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO	320 320 320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC NC NC NC NC N	NC NC NC NC NC NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.21	320 320 320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC NC NC NC NC N	NC NC NC NC NC NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.21	320 320 320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC NC NC NC NC N	NC NC NC NC NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18	320 320 320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC	NC NC NC NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO	320 320 320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC NC	NC NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO	320 320 320 320 320 320 320 320 320	NC NC NC NC NC NC NC NC	NC NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO	320 320 320 320 320 320 320 320	NC NC NC NC NC NC	NC NC NC NC
OLM03.2 Aroclor-1242 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248	320 320 320 320 320 320 320 320	NC NC NC NC NC	NC NC
OLM03.2 Aroclor-1248 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320	320 320 320 320 320 320 320	NC NC NC NC	NC NC
OLM03.2 Aroclor-1248 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320	320 320 320 320 320	NC NC NC NC	NC
OLM03.2 Aroclor-1248 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320	320 320 320 320	NC NC NC	
OLM03.2 Aroclor-1248 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320	320 320 320	NC NC	INC I
OLM03.2 Aroclor-1248 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320	320 320	NC	
OLM03.2 Aroclor-1248 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320	320		NC
OLM03.2 Aroclor-1248 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320 OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320		+	NC
OLM03.2 Aroclor-1248 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320			NC
		NC	NC
OLM03.2 Aroclor-1254 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320		NC	NC
		NC	NC
OLM03.2 Aroclor-1254 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320		NC	NC
OLM03.2 Aroclor-1254 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320		NC	NC
OLM03.2 Aroclor-1254 NA-ELEM-SO04-01 ug/kg 0.21 42 2900 2900 320		NC	NC
M03.2 Aroclor-1254 NA-ELEM-S005-01 ug/kg 0.18 ND 2900 2900 320		NC	NC
M03.2 Aroclor-1254 NA-ELEM-SO06-01 ug/kg 0.18 ND 2900 2900 320		NC	NC
OLM03.2 Aroclor-1254 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320		NC	NC
OLM03.2 Aroclor-1254 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320		NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-SO01-01 ug/kg 0.17 ND 2900 2900 320	320	NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-SO02-01 ug/kg 0.19 ND 2900 2900 320	320	NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-SO03-01 ug/kg 0.22 ND 2900 2900 320	320	NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-SO04-01 ug/kg 0.21 ND 2900 2900 320		NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-SO05-01 ug/kg 0.18 ND 2900 2900 320	320	NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-S006-01 ug/kg 0.18 ND 2900 2900 320	320	NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-SO07-01 ug/kg 0.33 ND 2900 2900 320		NC	NC
OLM03.2 Aroclor-1260 NA-ELEM-SO08-01 ug/kg 0.26 ND 2900 2900 320	320	NC	NC
OLM03.2 Dieldrin NA-ELEM-S001-01 ug/kg 0.17 ND 360 360 40		NC	NC
OLM03.2 Dieldrin NA-ELEM-SO02-01 ug/kg 0.19 ND 360 360 40		NC	NC
OLM03.2 Dieldrin NA-ELEM-SO03-01 ug/kg 0.22 ND 360 360 40		NC	NC
OLM03.2 Dieldrin NA-ELEM-SO04-01 ug/kg 0.21 ND 360 360 40	40	NC	NC
OLM03.2 Dieldrin NA-ELEM-SO05-01 ug/kg 0.18 ND 360 360 40		NC	NC
OLM03.2 Dieldrin NA-ELEM-SO06-01 ug/kg 0.18 ND 360 360 40	40	NC	NC
OLM03.2 Dieldrin NA-ELEM-S007-01 ug/kg 0.33 ND 360 360 40	40	NC	NC
OLM03.2 Dieldrin NA-ELEM-SO08-01 ug/kg 0.26 ND 360 360 40	40	NC	NC
OLM03.2 Endosulfan I NA-ELEM-S001-01 ug/kg 0.17 ND 1E+07 1E+06 470000			NC
OLM03.2 Endosulfan I NA-ELEM-SO02-01 ug/kg 0.19 ND 1E+07 1E+06 470000			NC
OLM03.2 Endosulfan I NA-ELEM-SO03-01 ug/kg 0.22 ND 1E+07 1E+06 470000			NC
OLM03.2 Endosulfan I NA-ELEM-SO04-01 ug/kg 0.21 ND 1E+07 1E+06 470000			NC
OLM03.2 Endosulfan I NA-ELEM-SO05-01 ug/kg 0.18 ND 1E+07 1E+06 470000			NC
OLM03.2 Endosulfan I NA-ELEM-SO06-01 ug/kg 0.18 ND 1E+07 1E+06 470000			NC
OLM03.2 Endosulfan I NA-ELEM-S007-01 ug/kg 0.33 ND 1E+07 1E+06 470000			NC
OLM03.2 Endosulfan I NA-ELEM-SO08-01 ug/kg 0.26 ND 1E+07 1E+06 470000			NC
M03.2 Endosulfan II NA-ELEM-S001-01 ug/kg 0.17 ND 1E+07 1E+06 470000			NC
MO3.2 Endosulfan II NA-ELEM-SO02-01 ug/kg 0.19 ND 1E+07 1E+06 470000	47000		NC

		<u> </u>			1 -	1		,			
						Indu	ıstrial	Resid	lential	Reference	Means Comparison Conclusion Reference v
Method	Analyte	Sample ID	Units	MDL	Result	-	RBSL	RBC	RBSL	- i	Site
OLM03.2	Endosulfan II	NA-ELEM-SO03-01	ug/kg	0.22		1E+07		470000			NC
OLM03.2	Endosulfan II	NA-ELEM-SO04-01	ug/kg	0.21		1E+07	1	470000			NC
OLM03.2	Endosulfan II	NA-ELEM-SO05-01	ug/kg	0.18		1E+07		470000			NC NC
	Endosulfan II	NA-ELEM-SO06-01	ug/kg	0.18		1E+07		470000			NC
	Endosulfan II	NA-ELEM-SO07-01	ug/kg	0.33		1E+07		470000			NC
	Endosulfan II	NA-ELEM-SO08-01	ug/kg	0.26		1E+07		470000			NC
	Endosulfan sulfate	NA-ELEM-SO01-01	ug/kg	0.17		1E+07		470000			NC
OLM03.2	Endosulfan sulfate	NA-ELEM-SO02-01	ug/kg	0.19		1E+07		470000			NC
	Endosulfan sulfate	NA-ELEM-SO03-01	ug/kg	0.22		1E+07		470000			NC
	Endosulfan sulfate	NA-ELEM-SO04-01	ug/kg	0.21		1E+07		470000			NC NC
The second second	Endosulfan sulfate	NA-ELEM-SO05-01	ug/kg	0.18		1E+07		470000			NC
	Endosulfan sulfate	NA-ELEM-SO06-01	ug/kg	0.18		1E+07		470000			NC
	Endosulfan sulfate	NA-ELEM-SO07-01	ug/kg	0.33		1E+07		470000			NC
	Endosulfan sulfate	NA-ELEM-SO08-01	ug/kg	0.26		1E+07		470000			NC
OLM03.2	Endrin	NA-ELEM-SO01-01	ug/kg	0.17		610000	61000				NC
OLM03.2	Endrin	NA-ELEM-SO02-01	ug/kg	0.19		610000	61000				NC
OLM03.2	Endrin	NA-ELEM-SO03-01	ug/kg	0.22		610000	61000		2300		NC
OLM03.2	Endrin	NA-ELEM-SO04-01	ug/kg	0.21		610000	61000	23000	2300		NC
OLM03.2	Endrin	NA-ELEM-SO05-01	ug/kg	0.18		610000	61000	23000	2300		NC
OLM03.2	Endrin	NA-ELEM-SO06-01	ug/kg	0.18		610000	61000	23000			NC
	Endrin	NA-ELEM-SO07-01	ug/kg	0.33		610000	61000	23000	2300		NC
	Endrin	NA-ELEM-SO08-01	ug/kg	0.26		610000	61000	23000			NC
	Endrin aldehyde	NA-ELEM-SO01-01	ug/kg	0.17		610000	61000	23000	2300		NC
	Endrin aldehyde	NA-ELEM-SO02-01	ug/kg	0.19	ND	610000	61000	23000	2300		NC
	Endrin aldehyde	NA-ELEM-SO03-01	ug/kg	0.22		610000	61000	23000	2300		NC
	Endrin aldehyde	NA-ELEM-SO04-01	ug/kg	0.21	ND	610000	61000	23000	2300		NC
	Endrin aldehyde	NA-ELEM-SO05-01	ug/kg	0.18		610000	61000	23000	2300		NC
	Endrin aldehyde	NA-ELEM-SO06-01	ug/kg	0.18	ND	610000	61000	23000	2300		NC
	Endrin aldehyde	NA-ELEM-SO07-01	ug/kg	0.33	ND	610000	61000	23000	2300		NC
	Endrin aldehyde	NA-ELEM-SO08-01	ug/kg	0.26	ND	610000	61000	23000	2300		NC
	Endrin ketone	NA-ELEM-SO01-01	ug/kg	0.17		610000	61000	23000	2300		NC
	Endrin ketone	NA-ELEM-SO02-01	u g/k g	0.19		610000	61000	23000	2300		NC
	Endrin ketone	NA-ELEM-SO03-01	ug/kg	0.22		610000	61000	23000	2300		NC
	Endrin ketone	NA-ELEM-SO04-01	ug/kg	0.21		610000	61000	23000	2300	NC	NC
		NA-ELEM-SO05-01	ug/kg	0.18		610000	61000	23000	2300	NC	NC
	Endrin ketone	NA-ELEM-SO06-01	ug/kg	0.18		610000	61000	23000	2300	NC	NC
	Endrin ketone	NA-ELEM-SO07-01	ug/kg	0.33		610000	61000	23000			NC
		NA-ELEM-SO08-01	ug/kg	0.26		610000	61000	23000	2300	NC	NC
OLM03.2			ug/kg	0.17		1300	1300	140		NC	NC
			ug/kg	0.19		1300	1300	140		NC	NC
	Heptachlor		ug/kg	0.22		1300	1300	140	140	NC	NC
OLM03.2			ug/kg	0.21		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.18		1300	1300	140	140		NC
OLM03.2			ug/kg	0.18		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.33		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.26		1300	1300	140		NC	NC
			ug/kg	0.17		630	630	70	70	NC	NC
			ug/kg	0.19		630	630	70	70	ÑĊ	NC
			ug/kg	0.22		630	630	70		NC	NC
			ug/kg	0.21		630	630	70			NC
	Heptachlor epoxide		ug/kg	0.18	ND	630	630	70			NC
			ug/kg	0.18	ND	630	630	70			NC A
OLM03.2	Heptachlor epoxide	NA-ELEM-SO07-01	ug/kg	0.33	ND	630	630	70			NC

					-	Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Heptachlor epoxide	NA-ELEM-SO08-01	ug/kg	0.26	ND	630	630			NC	NC
	Methoxychlor	NA-ELEM-SO01-01	ug/kg	0.17		1E+07		390000	39000		NC
OLM03.2	Methoxychlor	NA-ELEM-SO02-01	ug/kg	0.19		1E+07		390000	39000		NC
	Methoxychlor	NA-ELEM-SO03-01	ug/kg	0.22	ND	1E+07		390000	39000		NC
	Methoxychlor	NA-ELEM-SO04-01	ug/kg	0.21	ND	1E+07		390000	39000		NC
OLM03.2	Methoxychlor	NA-ELEM-SO05-01	ug/kg	0.18	ND	1E+07		390000	39000		NC
OLM03.2	Methoxychlor	NA-ELEM-SO06-01	ug/kg	0.18		1E+07		390000	39000		NC
OLM03.2	Methoxychlor	NA-ELEM-SO07-01	ug/kg	0.33	ND	1E+07	1E+06	390000	39000		NC
OLM03.2	Methoxychlor	NA-ELEM-SO08-01	ug/kg	0.26	ND	1E+07	1E+06	390000	39000		NC
OLM03.2	Toxaphene	NA-ELEM-SO01-01	ug/kg	0.17	ND	5200	5200		580		NC
OLM03.2	Toxaphene	NA-ELEM-SO02-01	ug/kg	0.19	ND	5200	5200	580		NC	NC
OLM03.2	Toxaphene	NA-ELEM-SO03-01	ug/kg	0.22	ND	5200	5200	580	580	NC	NC
OLM03.2	Toxaphene	NA-ELEM-SO04-01	ug/kg	0.21		5200	5200	580	580	NC	NC
OLM03.2	Toxaphene	NA-ELEM-SO05-01	ug/kg	0.18	ND	5200	5200	580	580	NC	NC
OLM03.2	Toxaphene	NA-ELEM-SO06-01	ug/kg	0.18		5200	5200	580	580	NC	NC
OLM03.2	Toxaphene	NA-ELEM-SO07-01	ug/kg	0.33		5200	5200	580	580	NC	NC
OLM03.2	Toxaphene	NA-ELEM-SO08-01	ug/kg	0.26		5200	5200	580	580	NC	NC
OLM03.2	alpha-BHC	NA-ELEM-SO01-01	ug/kg	0.17		910	910	100	100	NC	NC
OLM03.2	alpha-BHC	NA-ELEM-SO02-01	ug/kg	0.19		910	910			NC	NC
OLM03.2	alpha-BHC	NA-ELEM-SO03-01	ug/kg		ND	910	910			NC	NC
OLM03.2	alpha-BHC	NA-ELEM-SO04-01	ug/kg		ND	910	910			NC	NC
OLM03.2	alpha-BHC	NA-ELEM-SO05-01	ug/kg	0.18		910	910			NC	NC
QLM03.2	alpha-BHC	NA-ELEM-SO06-01	ug/kg		ND	910	910			NC	NC
M03.2	alpha-BHC	NA-ELEM-SO07-01	ug/kg		ND	910	910			NC	NC
	alpha-BHC	NA-ELEM-SO08-01	ug/kg		ND	910	910			NC	NC
M03.2	alpha-Chlordane	NA-ELEM-SO01-01	ug/kg		ND	16000	16000		1800		
OLM03.2	alpha-Chlordane	NA-ELEM-SO02-01	ug/kg		ND	16000	16000		1800		
OLM03.2	1 1	NA-ELEM-SO03-01	ug/kg	2.2			16000		1800		
OLM03.2	alpha-Chlordane	NA-ELEM-SO04-01	ug/kg		ND	16000	16000		1800		
OLM03.2	alpha-Chlordane	NA-ELEM-SO05-01	ug/kg		ND	16000	16000		1800		
OLM03.2	alpha-Chlordane	NA-ELEM-SO06-01	ug/kg		ND	16000	16000		1800		
OLM03.2	alpha-Chlordane	NA-ELEM-SO07-01		0.13			16000		1800		
OLM03.2	alpha-Chlordane	NA-ELEM-SO08-01	ug/kg		ND 2.5	16000	16000		1800		
OLM03.2	alpha-Chlordane	NA-ELEM-SO01-01	ug/kg		ND	3200	3200			NC 0.57	NC
OLM03.2	beta-BHC		ug/kg			3200			1	NC	NC
OLM03.2	beta-BHC	NA-ELEM-SO02-01 NA-ELEM-SO03-01	ug/kg		ND ND	3200				NC	NC
OLM03.2	beta-BHC	1	ug/kg							NC	NC
OLM03.2	beta-BHC	NA-ELEM-SO04-01	ug/kg		ND	3200				NC	NC
OLM03.2	beta-BHC	NA-ELEM-SO05-01	ug/kg		ND	3200	<u> </u>				NC NC
OLM03.2	beta-BHC	NA-ELEM-SO06-01	ug/kg		ND	3200				NC NC	NC NC
OLM03.2	beta-BHC	NA-ELEM-SO07-01	ug/kg		ND	3200					NC NC
OLM03.2	beta-BHC	NA-ELEM-SO08-01	ug/kg		ND	3200				NC NC	NC NC
OLM03.2	delta-BHC	NA-ELEM-SO01-01	ug/kg		ND	3200				NC	NC
OLM03.2	delta-BHC	NA-ELEM-SO02-01	ug/kg		ND	3200					NC NC
OLM03.2	delta-BHC	NA-ELEM-SO03-01	ug/kg		ND	3200				NC	NC NC
OLM03.2	delta-BHC	NA-ELEM-SO04-01	ug/kg		ND	3200				NC NC	NC NC
OLM03.2	delta-BHC	NA-ELEM-SO05-01	ug/kg		ND	3200					
OLM03.2	delta-BHC	NA-ELEM-SO06-01	ug/kg		ND	3200				NC	NC
OLM03.2	delta-BHC	NA-ELEM-SO07-01	ug/kg		ND	3200				NC	NC
OLM03.2	delta-BHC	NA-ELEM-SO08-01	ug/kg		ND	3200				NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-ELEM-SO01-01	ug/kg		ND	4400				NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-ELEM-SO02-01	ug/kg		ND	4400				NC	NC
M03.2	gamma-BHC(Lindane)	NA-ELEM-SO03-01	ug/kg		ND	4400	1			NC	NC
И03.2	gamma-BHC(Lindane)	NA-ELEM-SO04-01	ug/kg	0.21	ND	4400	4400	490	490	NC	NC

						 		· · · · · · · · · · · · · · · · · · ·			
			1								
						ĺ		1		1	Means
											Comparison
İ										1.	Conclusion
Method	Analyte	Committe ID	TT	3.5D.5			strial		lential	Reference	Reference vs.
OLM03.2	gamma-BHC(Lindane)	NA-ELEM-SO05-01	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
	gamma-BHC(Lindane)	NA-ELEM-SO06-01	ug/kg	0.18 0.18		4400				NC	NC
	gamma-BHC(Lindane)	NA-ELEM-SO07-01	ug/kg ug/kg	0.18		4400		1		NC	NC
	gamma-BHC(Lindane)	NA-ELEM-SO08-01	ug/kg	0.33		4400 4400				NC	NC
	gamma-Chlordane	NA-ELEM-SO01-01	ug/kg	0.20		16000	1			NC	NC
	gamma-Chlordane	NA-ELEM-SO02-01	ug/kg	0.17		16000					NC
	gamma-Chlordane	NA-ELEM-SO03-01	ug/kg	2.2	220						NC
	gamma-Chlordane	NA-ELEM-SO04-01	ug/kg	0.21		16000		1800 1800	1800		NC
	gamma-Chlordane	NA-ELEM-SO05-01	ug/kg	0.18		16000					NC
	gamma-Chlordane	NA-ELEM-SO06-01	ug/kg	0.18		16000		1800			NC
	gamma-Chlordane	NA-ELEM-SO07-01	ug/kg	0.33		16000		1800	1800		NC
OLM03.2	gamma-Chlordane	NA-ELEM-SO08-01	ug/kg	0.26		16000		1800	1800		NC NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO01-01	ug/kg		ND	2E+07		780000	78000		NC NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO02-01	ug/kg		ND	2E+07		780000	78000		NC .
OLMO3.2	1,2,4-Trichlorobenzene	NA-ELEM-SO03-01	ug/kg		ND	2E+07		780000			NC NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO04-01	ug/kg		ND	2E+07		780000	78000		NC NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO05-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO06-01	ug/kg		ND	2E+07		780000	78000		NC NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO07-01	ug/kg		ND	2E+07	2E+06		78000		NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO08-01	ug/kg	52	ND	2E+07		780000	78000		NC
	1,2-Dichlorobenzene	NA-ELEM-SO01-01	ug/kg	35	ND	2E+08	2E+07	7E+06			NC
	1,2-Dichlorobenzene	NA-ELEM-SO02-01	ug/kg	37	ND	2E+08	2E+07		700000		NC
	1,2-Dichlorobenzene	NA-ELEM-SO03-01	ug/kg	45	ND	2E+08	2E+07		700000		NC
	1,2-Dichlorobenzene	NA-ELEM-SO04-01	ug/kg	43	ND	2E+08	2E+07		700000		NC
	1,2-Dichlorobenzene	NA-ELEM-SO05-01	ug/kg	35		2E+08	2E+07		700000		NC
	1,2-Dichlorobenzene	NA-ELEM-SO06-01	ug/kg	37		2E+08	2E+07		700000		NC
	1,2-Dichlorobenzene	NA-ELEM-SO07-01	ug/kg	67		2E+08	2E+07	7E+06	700000		NC
	1,2-Dichlorobenzene	NA-ELEM-SO08-01	ug/kg	52		2E+08	2E+07	7E+06	700000		NC
-	1,3-Dichlorobenzene	NA-ELEM-SO01-01	ug/kg	35		6E+07	6E+06		230000		NC
	1,3-Dichlorobenzene	NA-ELEM-SO02-01	ug/kg	37		6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-ELEM-SO03-01	ug/kg	45		6E+07	6E+06		230000		NC
	1,3-Dichlorobenzene	NA-ELEM-SO04-01	ug/kg	43		6E+07	6E+06		230000		NC
	1,3-Dichlorobenzene	NA-ELEM-SO05-01	ug/kg	35		6E+07	6E+06		230000		NC
	1,3-Dichlorobenzene 1,3-Dichlorobenzene	NA-ELEM-SO06-01	ug/kg	37		6E+07	6E+06		230000		NC
	1,3-Dichlorobenzene	NA-ELEM-SO07-01	ug/kg	67			6E+06		230000		NC
	1,4-Dichlorobenzene		ug/kg	52			6E+06		230000		NC
	,4-Dichlorobenzene		ug/kg	35		240000					NC
	,4-Dichlorobenzene	NA-ELEM-SO03-01	ug/kg	37		240000		27000	27000		VC
	,4-Dichlorobenzene	NA-ELEM-SO04-01	ug/kg ug/kg	45 I		240000			27000		NC
	,4-Dichlorobenzene	NA-ELEM-SO05-01	ug/kg ug/kg	35	מא	240000	240000	27000	27000		NC
	,4-Dichlorobenzene		ug/kg	37 1		240000			27000		VC
	,4-Dichlorobenzene		ug/kg ug/kg	67		240000	240000	27000	27000 1		VC
	,4-Dichlorobenzene		ug/kg	52 1		240000		27000	27000		VC
OLMO3.2 2			ug/kg	35 1		240000		27000	27000 1		VC
	2,2'-oxybis(1-		ug/kg	37 1		82000		9100	9100 1	I	VC
OLMO3.2 2			ug/kg	45 1		82000	82000	9100	9100		VČ
OLMO3.2 2			ug/kg	43 1		82000	82000	9100	9100 1		VC
	· · · · · · · · · · · · · · · · · · ·		ug/kg ug/kg	35 1		82000 82000	82000 82000	9100	9100		VC
OLMO3.2 2			ug/kg	37 1		82000		9100	9100		VC
OLMO3.2 2			ug/kg	67		82000	82000 82000	9100	9100		√C
OLMO3.2 2			ug/kg	52 N		82000	82000	9100 9100	9100		VC I
			ug/kg	35 N					9100 1		VC
			-55		120	2LTV0	4ETU/	0E+00	780000 1	۲C []	NC

Method Analyte Sample ID Units MDL Result RBC RBSL RBC RBSL UTL COLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 2E+08 2E+07 8E+06 780000 NC NC COLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 45 ND 2E+08 2E+07 8E+06 780000 NC COLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 2E+08 2E+07 8E+06 780000 NC COLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 2E+08 2E+07 8E+06 780000 NC COLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 2E+08 2E+07 8E+06 780000 NC COLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 2E+08 2E+07 8E+06 780000 NC COLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 2E+08 2E+07 8E+06 780000 NC COLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 520000 520000 58000 58000 NC COLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 520000 520000 58000 58000 NC COLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 520000 520000 58000 58000 NC COLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 37 ND 520000 520000 58000 58000 NC COLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 35 ND 520000 520000 58000 58000 NC COLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 53 ND 520000 520000 58000 58000 NC COLMO3.2 2.4-0-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 53 ND 520000 520000 58000 58000 NC COLMO3.2 2.4-0-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 53 ND 520000 520000 58000 58000 NC COLMO3.2 2.4-0-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 53 ND 56000 58000 58000 S8000 NC COLMO3.2 2.4-0-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 53 ND 56000 58000 58000 S8000 NC COLMO3.2 2.4-0-Trichlorophenol NA-ELEM-SOO3-01 ug/kg 53 ND 56000 58000 58000	Means Comparison Conclusion Reference vs.
DLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO04-01 ug/kg 33 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E-08 2E+07 8E-06 780000 NC OLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO09-01 ug/kg 35 ND 2E-09	Site NC
DLMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO04-01 ug/kg 33 ND 2E-08 2E+07 8E-06 780000 NC NC NC NC NA-ELEM-SO05-01 ug/kg 35 ND 2E-08 2E+07 8E-06 780000 NC NC NC NC NA-ELEM-SO06-01 ug/kg 37 ND 2E-08 2E+07 8E-06 780000 NC NC NC NC NC NC NC	NC
DLM03.2 2,4,5-Trichlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E-08 2E+07 8E-06 780000 NC OLM03.2 2,4,5-Trichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E-08 2E+07 8E-06 780000 NC OLM03.2 2,4,5-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E-08 2E+07 8E-06 780000 NC OLM03.2 2,4,5-Trichlorophenol NA-ELEM-SO01-01 ug/kg 52 ND 2E-08 2E+07 8E-06 780000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO01-01 ug/kg 33 ND 2E-08 2E+07 8E-06 780000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO02-01 ug/kg 33 ND 250000 520000 58000 58000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 33 ND 520000 520000 58000 S8000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO04-01 ug/kg 43 ND 520000 520000 58000 S8000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO06-01 ug/kg 33 ND 520000 520000 58000 S8000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO06-01 ug/kg 33 ND 520000 520000 58000 S8000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 520000 520000 58000 S8000 NC OLM03.2 2,4,6-Trichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 520000 520000 58000 S8000 NC OLM03.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 520000 520000 58000 S8000 NC OLM03.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 6E-06 610000 230000 58000 NC OLM03.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 6E-06 610000 230000 23000 NC OLM03.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 6E-06 610000 230000 23000 NC OLM03.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 6E-06 610000 230000 23000 NC OLM03.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 6E-06 610000 230000 23000 NC OLM03.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 6E-06 610000 230000 23000 NC OLM03.2 2,4-Dichlorophenol NA-ELE	NC
DLMO3.2 2.4,5-Trichlorophenol NA-ELEM-SO06-01 ug/kg 67 ND 2E+08 2E+07 8E+06 780000 NC NC OLMO3.2 2.4,5-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+08 2E+07 8E+06 780000 NC OLMO3.2 2.4,5-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+08 2E+07 8E+06 780000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO02-01 ug/kg 37 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 57 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 57 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 57 ND 520000 520000 58000 S8000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO02-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol	NC
DLMO3.2 2.4,5-Trichlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 2E+08 2E+07 8E+06 780000 NC NC OLMO3.2 2.4,5-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 520000 520000 58000 58000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 520000 520000 58000 58000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 520000 520000 58000 58000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 57 ND 6E+06 610000 23000 23000 NC OLMO3.2 2.4-Dimethylphenol NA-ELE	NC
DIMO3.2 2.4.5-Trichlorophenol NA-ELEM-SO08-01 ug/kg 35 ND 2E-068 2E-077 8E-06 780000 NC NC OLM03.2 2.4.6-Trichlorophenol NA-ELEM-SO01-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLM03.2 2.4.6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 S8000 NC OLM03.2 2.4.6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 520000 520000 58000 S8000 NC OLM03.2 2.4.6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 520000 520000 58000 S8000 NC OLM03.2 2.4.6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 S8000 NC OLM03.2 2.4.6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 S8000 NC OLM03.2 2.4.6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 520000 520000 58000 S8000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 57 ND 520000 520000 58000 S8000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 6E-066 610000 230000 S8000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 6E-066 610000 230000 CR OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E-066 610000 230000 CR OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E-066 610000 230000 CR OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E-066 610000 230000 CR OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E-066 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E-066 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E-066 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E-066 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E-066 610000 230000 23000 NC OLM03.2 2.4-Dichloro	NC
DLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO02-01 ug/kg 35 ND 520000 520000 58000 NC OLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 520000 520000 58000 S8000 NC OLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 520000 520000 58000 58000 NC OLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 520000 520000 58000 58000 NC OLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 520000 520000 58000 58000 NC OLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLM03.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 664-06 610000 230000 23000 NC OLM03.2 2.4-Dichlorophenol NA-ELEM-SO03	NC
DLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 520000 520000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,6-Trichlorophenol NA-ELEM-SO07-01 ug/kg 67 ND 520000 520000 58000 58000 NC OLMO3.2 2.4,5-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 520000 520000 58000 58000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg	NC
DLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO04-01 ug/kg 35 ND 520000 520000 58000 NC	NC
DLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO05-01 ug/kg 35 ND \$20000 \$20000 \$8000 \$8000 NC OLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND \$20000 \$20000 \$8000 \$8000 NC OLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO07-01 ug/kg 57 ND \$20000 \$20000 \$8000 \$8000 NC OLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND \$20000 \$20000 \$8000 \$8000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37	NC
DLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO06-01 ug/kg 67 ND 520000 520000 58000 NC	NC
OLMO3.2 2.4.6-Trichlorophenol NA-ELEM-SO07-01 ug/kg 57 ND 520000 520000 58000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 520000 520000 58000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO07-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO07-01 ug/kg 67 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 6E+06 610000 230000 23000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 53 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2.4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06	NC
OLMO3.2 2,4,6-Trichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 520000 520000 520000 520000 S0000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 35 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO04-01 ug/kg 43 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 33 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO07-01 ug/kg 67 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 6E-06 610000 230000 23000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO01-01 ug/kg 35 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 35 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 43 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 33 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 33 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 33 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 33 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO06-01 ug/kg 33 ND 4E-07 4E-06 2E-06 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO06-01 ug/kg 33 ND 4E-06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol	NC
OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO01-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 43 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO07-01 ug/kg 67 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 6E+06 610000 230000 23000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO04-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 41000	NC
OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 6E+06 610000 230000 230000 NC	NC
OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 6E+06 610000 230000 C23000 NC	NC
OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 33 ND 6E-06 610000 23000 NC	NC
OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC	NC
OLMO3.2 Z.4-Dichlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 6E+06 610000 230000 23000 NC	NC
OLMO3.2 2,4-Dichlorophenol NA-ELEM-SO07-01 ug/kg 52 ND 6E+06 610000 230000 23000 NC	NC
OLMO3.2 2,4-Dicklorophenol NA-ELEM-SO08-01 ug/kg 35 ND 6E+06 610000 230000 23000 NC MO3.2 2,4-Dimethylphenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC MO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 43 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 43 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO07-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 67 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO01-01 ug/kg 37 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO05-01 ug/kg 43 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO05-01 ug/kg 37 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO05-01 ug/kg 37 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrotoluene NA-ELEM-SO03-01 ug/kg 37 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dimitrotoluene NA-ELEM-SO03-01 ug	NC NC
MO3.2 2,4-Dimethylphenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC	NC NC
MO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+07 4E+06 2E+06 160000 NC	NC NC
OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO04-01 ug/kg 43 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 67 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 1600	NC
OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO04-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC	NC
OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO06-01<	NC
OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dimitrophenol NA-ELEM-SO07-01 ug/kg <td>NC</td>	NC
OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO03-01 ug/kg 37 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO08-01 ug/kg 52 N	NC
OLMO3.2 2,4-Dimethylphenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+07 4E+06 2E+06 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 16000 NC OLMO3.2	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO08-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitroto	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitroto	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitro	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitr	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinit	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dini	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 4E+06 410000 160000 160000 160000 NC OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 160000 NC	NC
OLMO3.2 2,4-Dinitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 160000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 160000 NC	NC
OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 160000 NC	NC
OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC	NC
OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 16000 NC	NC
OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 4E+06 410000 160000 16000 NC OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 160000 160000 NC	NC
OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO06-01 ug/kg 37 ND 4E+06 410000 160000 160000 NC	NC
	NC
OLMO3.2 2.4-Dinitrotoluene NA-ELEM-SO07-01 \(\pu\end{g} \)	NC
	NC
OLMO3.2 2,4-Dinitrotoluene NA-ELEM-SO08-01 ug/kg 52 ND 4E+06 410000 160000 160000 NC	NC
OLMO3.2 2,6-Dinitrotoluene NA-ELEM-SO01-01 ug/kg 35 ND 2E+06 200000 78000 NC	NC
OLMO3.2 2,6-Dinitrotoluene NA-ELEM-SO02-01 ug/kg 37 ND 2E+06 200000 7800 NC	NC
OLMO3.2 2,6-Dinitrotoluene NA-ELEM-SO03-01 ug/kg 45 ND 2E+06 200000 78000 7800 NC	NC NC
OLMO3.2 2,6-Dinitrotoluene NA-ELEM-SO04-01 ug/kg 43 ND 2E+06 200000 78000 NC	NC NC
MO3.2 2,6-Dinitrotoluene NA-ELEM-SO05-01 ug/kg 35 ND 2E+06 200000 7800 NC 103.2 2,6-Dinitrotoluene NA-ELEM-SO06-01 ug/kg 37 ND 2E+06 200000 7800 NC	NC NC

Method OLMO3.2 2.6-Dimitrotoluene N.4-ELEM-SOO9.01 ug/kg 57 ND 2E-66 200000 7800 NC OLMO3.2 2.6-Dimitrotoluene N.4-ELEM-SOO9.01 ug/kg 52 ND 2E-66 200000 7800 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 53 ND 2E-66 200000 7800 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 53 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 43 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 43 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 43 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 33 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 33 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 33 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chloronaphthalene N.4-ELEM-SOO3.01 ug/kg 33 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 2E-68 2E-67 6E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-ELEM-SOO3.01 ug/kg 33 ND 1E-67 1E-66 630000 NC OLMO3.2 2.Chlorophenol N.4-EL		,										
Method	Mean							•				
Method	Compari								•			
Method	Conclus											
DLM03.2 2.6-Dimitotoluene	ference Reference	Reference							l		A .	36-41-3
CLM03.2 2.6-Dimitrotoluene		UTL			1					Sample ID		
CLM03.2 2-Chloronaphthalene NA-ELEM-SO02-01 ug/kg 35 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 57 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 52 ND 2E-08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 53 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylaphthalene NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylaphthalene NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylaphthalene NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylaphthalene NA-ELEM-SO03-01 ug/kg												
CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 2E+08 2E+07 6E+06 630000 NC												
CLM03.2 2-Chloronaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO05-01 ug/kg 33 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO05-01 ug/kg 33 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO05-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Nethylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Nethylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 1E+07 1E+06 390000							ND	33				
OLM03.2 2-Chloronaphthalene NA-ELEM-SO04-01 ug/kg 33 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO06-01 ug/kg 37 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chloronaphthalene NA-ELEM-SO07-01 ug/kg 67 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO01-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND												
OLM03.2 2-Chloronaphthalene NA-ELEM-SO05-01 ug/kg 37 NID 2E+08 2E+07 6E+06 630000 NC					t							
CLM03.2 2-Chloronaphthalene NA-ELEM-SO06-01 ug/kg 37 ND 2E+08 2E+07 6E+06 630000 NC NC CLM03.2 2-Chloronaphthalene NA-ELEM-SO07-01 ug/kg 57 ND 2E+08 2E+07 6E+06 630000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO01-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO02-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC CLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 120000 120												
OLM03.2 2-Chloronaphthalene NA-ELEM-SO07-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 45 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 52 ND 1E+07 1E+06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 43 ND 8E+07 8E+06 3E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 37 ND 8E+07 8E+06 3E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000											2-Chloronaphthalene	OLMO3.2
OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 35 ND 1E+07 1E+06 390000 39000 NC												
OLM03.2 2-Chlorophenol NA-ELEM-SO02-01 ug/kg 35 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 43 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 37 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 35 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 35 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 1E407 1E406 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 1E407 1E406 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 1E407 1E406 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E407 1E406 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E407 1E406 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E407 1E406 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 1E407 1E406 310000 NC OLM03.2 2-										NA-ELEM-SO08-01		
DLM03.2 2-Chlorophenol NA-ELEM-SO03-01 ug/kg 45 ND IE-07 IE-06 39000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO04-01 ug/kg 43 ND IE-07 IE-06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 37 ND IE-07 IE-06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO07-01 ug/kg 37 ND IE-07 IE-06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO07-01 ug/kg 37 ND IE-07 IE-06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 37 ND IE-07 IE-06 390000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 35 ND E8-07 IE-06 390000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO01-01 ug/kg 35 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 35 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 35 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND SE+07 SE+06 3E+06 310000 NC OLM03.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120						1E+07			ug/kg	NA-ELEM-SO01-01		
DLM03.2 2-Chlorophenol NA-ELEM-SO04-01 ug/kg 43 ND 1E+07 1E+06 39000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 1E+07 1E+06 39000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 1E+07 1E+06 39000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO06-01 ug/kg 67 ND 1E+07 1E+06 39000 39000 NC OLM03.2 2-Chlorophenol NA-ELEM-SO07-01 ug/kg 52 ND 1E+07 1E+06 39000 39000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO01-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO02-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLM03.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLM03.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000		NC	39000	390000	1E+06	1E+07			ug/kg			
OLMO3.2 2-Chlorophenol NA-ELEM-SO05-01 ug/kg 35 ND 1E+07 1E+06 39000 39000 NC OLMO3.2 2-Chlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 1E+07 1E+06 39000 39000 NC OLMO3.2 2-Chlorophenol NA-ELEM-SO07-01 ug/kg 57 ND 1E+07 1E+06 39000 39000 NC OLMO3.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 1E+07 1E+06 39000 39000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO07-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO07-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO08-01 ug/kg 35 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-S						1E+07					2-Chlorophenol	OLMO3.2
CLMO3.2 2-Chlorophenol NA-ELEM-SO06-01 ug/kg 37 ND 1E+07 1E+06 390000 39000 NC OLMO3.2 2-Chlorophenol NA-ELEM-SO07-01 ug/kg 67 ND 1E+07 1E+06 390000 39000 NC OLMO3.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 52 ND 1E+07 1E+06 390000 39000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO01-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO02-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO07-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO07-01 ug/kg 52 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO01-01 ug/kg 52 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO02-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 45 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-S												
OLMO3.2 2-Chlorophenol NA-ELEM-SO07-01 ug/kg 57 ND 1E+07 1E+06 390000 39000 NC												
OLMO3.2 2-Chlorophenol NA-ELEM-SO08-01 ug/kg 33 ND 1E+07 1E+06 39000 39000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO01-01 ug/kg 33 ND 8E+07 8E+06 31e-06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 8E+07 8E+06 31e-06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO04-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 43 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC												
OLMO3.2 2-Methylnaphthalene NA-ELEM-SO01-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 45 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 43 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 57 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 57 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 52 ND 8E+07 8E+06 3E+06 310000 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 35 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 43 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 43 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 35 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 35 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 37 ND 120000 12000 4700 470 NC O							ND	67			2-Chlorophenol	OLMO3.2
OLMO3.2 2-Methylnaphthalene NA-ELEM-SO03-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC												
OLMO3.2 2-Methylnaphthalene NA-ELEM-SOO3-01 ug/kg 43 ND 8E+07 8E+06 31-000 NC												
OLMO3.2 2-Methylnaphthalene NA-ELEM-SO04-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC	NC NC											
OLMO3.2 2-Methylnaphthalene NA-ELEM-SO05-01 ug/kg 35 ND 8E+07 8E+06 3E+06 310000 NC	NC NC											
OLMO3.2 2-Methylnaphthalene NA-ELEM-SO06-01 ug/kg 37 ND 8E+07 8E+06 3E+06 310000 NC	NC											DLMO3.2
OLMO3.2 2-Methylnaphthalene NA-ELEM-SO07-01 ug/kg 52 ND 8E+07 8E+06 3E+06 310000 NC	NC NC										2-Methylnaphthalene	DLMO3.2
OLMO3.2 2-Methylnaphthalene NA-ELEM-SO08-01 ug/kg 35 ND 120000 12000 4700 470 NC	NC NC									NA-ELEM-SO07-01		
OLMO3.2 2-Nitroaniline NA-ELEM-SO01-01 ug/kg 35 ND 120000 12000 4700 470 NC	NC					8E+07						
OLMO3.2 2-Nitroaniline NA-ELEM-SO03-01 ug/kg 45 ND 120000 12000 4700 470 NC	NC				12000	120000			ug/kg			
OLMO3.2 2-Nitroaniline NA-ELEM-SO04-01 ug/kg 43 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 35 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO07-01 ug/kg 67 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO08-01 ug/kg 52 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO02-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO03-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophen	NC		470	4700	12000	120000						
OLMO3.2 2-Nitroaniline NA-ELEM-SO05-01 ug/kg 35 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 A70 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO07-01 ug/kg 67 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO02-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol	NC	NC	470							1.1.0		
OLMO3.2 2-Nitroaniline NA-ELEM-SO06-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO07-01 ug/kg 67 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nit	NC											
OLMO3.2 2-Nitroaniline NA-ELEM-SO07-01 ug/kg 67 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitroaniline NA-ELEM-SO08-01 ug/kg 52 ND 120000 12000 4700 470 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E+07 2E+06 630000 6300 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 6300 NC OLMO3.2 2-Ni	NC											
OLMO3.2 2-Nitroaniline NA-ELEM-SO08-01 ug/kg 52 ND 120000 12000 4700 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO07-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3-Nitrophenol NA-ELEM-SO08-01 ug/kg 37 ND 13000 13000 1400 1400 NC OLMO3.2 3-Nitrophenol NA-ELEM-SO03-01 ug/kg 37 ND 13000 13000 1400 1400 NC </td <td>NC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NC											
OLMO3.2 2-Nitrophenol NA-ELEM-SO01-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 <t< td=""><td>NC</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	NC	4										
OLMO3.2 2-Nitrophenol NA-ELEM-SO02-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 67 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2	NC		4/0									
OLMO3.2 2-Nitrophenol NA-ELEM-SO03-01 ug/kg 45 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO01-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO02-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-	NC NG			630000					ng/kg			
OLMO3.2 2-Nitrophenol NA-ELEM-SO04-01 ug/kg 43 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E+07 2E+06 630000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO01-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO03-01 ug/kg 45 ND 13000 13000	NC NC											
OLMO3.2 2-Nitrophenol NA-ELEM-SO05-01 ug/kg 35 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 67 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO01-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO02-01 ug/kg 37 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO03-01 ug/kg 45 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 43 ND 13000 13000 1400	NC NC											
OLMO3.2 2-Nitrophenol NA-ELEM-SO06-01 ug/kg 37 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 2E+07 2E+06 630000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO01-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO02-01 ug/kg 37 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO03-01 ug/kg 45 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO04-01 ug/kg 43 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC	NC NC										2-Nitrophenol	DLMO3.2
OLMO3.2 2-Nitrophenol NA-ELEM-SO07-01 ug/kg 67 ND 2E+07 2E+06 63000 63000 NC OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO01-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO02-01 ug/kg 37 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO03-01 ug/kg 45 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO04-01 ug/kg 43 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO06-01 ug/kg 37 ND 13000 13000 1400 NC <td>NC NC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA-ELEM-SO06-01</td> <td></td> <td></td>	NC NC									NA-ELEM-SO06-01		
OLMO3.2 2-Nitrophenol NA-ELEM-SO08-01 ug/kg 52 ND 2E+07 2E+06 630000 63000 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO01-01 ug/kg 35 ND 13000 13000 1400 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO03-01 ug/kg 45 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO04-01 ug/kg 45 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO06-01 ug/kg 37 ND 13000 13000 1400 NC	NC					2E+07	ND	67				
OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO01-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO02-01 ug/kg 37 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO03-01 ug/kg 45 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO04-01 ug/kg 43 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO06-01 ug/kg 37 ND 13000 13000 1400 NC	NC					2E+07	ND	52	ug/kg			
OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO03-01 ug/kg 45 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO04-01 ug/kg 43 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO06-01 ug/kg 37 ND 13000 13000 1400 NC	NC			1400	13000	13000						The second second second
OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO04-01 ug/kg 43 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO06-01 ug/kg 37 ND 13000 13000 1400 NC	NC		1400	1400								
OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO05-01 ug/kg 35 ND 13000 13000 1400 NC OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO06-01 ug/kg 37 ND 13000 13000 1400 NC	NC	NC								·		
OLMO3.2 3,3'-Dichlorobenzidine NA-ELEM-SO06-01 ug/kg 37 ND 13000 13000 1400 NC	NC											
OT MOS C 2 3 P. W. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NC											
	NC											
OV MO2 0 2 21 Di-Line have 12 1944 TV TV TV TV TV TV TV TV TV TV TV TV TV	NC			1400	13000	13000			ug/kg			
OT MOS 2 2 No. 12	NC									·		
OT 1600 0 10 17 17 17 17 17 17 17 17 17 17 17 17 17	NC											
OLMO3.2 3-Nitroaniline NA-ELEM-SO02-01 ug/kg 37 ND 120000 12000 4700 470 NC OLMO3.2 3-Nitroaniline NA-ELEM-SO03-01 ug/kg 45 ND 120000 12000 4700 470 NC	NC NC											

Walani						Indu RBC	strial	Resid	lential	Reference	Means Comparison Conclusion Reference vs.
Method OLMO3.2	Analyte 3-Nitroaniline	Sample ID NA-ELEM-SO04-01	Units	MDL	Result ND	120000	12000	4700		UTL	Site
	3-Nitroaniline	NA-ELEM-SO05-01	ug/kg		ND	120000	12000	4700			NC NC
	3-Nitroaniline	NA-ELEM-SO06-01	ug/kg		ND	120000	12000	4700			NC NC
	3-Nitroaniline	NA-ELEM-SO07-01	ug/kg		ND	120000	12000	4700			NC NC
	3-Nitroaniline	NA-ELEM-SO08-01	ug/kg ug/kg		ND	120000	12000	4700	470		NC .
	4,6-Dinitro-2-	NA-ELEM-SO01-01	ug/kg		ND	200000	20000	7800	780		NC NC
	4,6-Dinitro-2-	NA-ELEM-SO02-01	ug/kg		ND	200000	20000	7800	780		NC NC
	4,6-Dinitro-2-	NA-ELEM-SO03-01	ug/kg		ND	200000	20000	7800	780		NC
	4,6-Dinitro-2-	NA-ELEM-SO04-01	ug/kg		ND	200000	20000	7800			NC
	4,6-Dinitro-2-	NA-ELEM-SO05-01	ug/kg		ND	200000	20000	7800	780		NC
	4,6-Dinitro-2-	NA-ELEM-SO06-01	ug/kg		ND	200000	20000	7800			NC NC
	4,6-Dinitro-2-	NA-ELEM-SO07-01	ug/kg		ND	200000	20000	7800			NC
	4,6-Dinitro-2-	NA-ELEM-SO08-01	ug/kg		ND	200000	20000	7800			NC
	4-Bromophenyl-	NA-ELEM-SO01-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-	NA-ELEM-SO02-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-	NA-ELEM-SO03-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-	NA-ELEM-SO04-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-	NA-ELEM-SO05-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-	NA-ELEM-SO06-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-	NA-ELEM-SO07-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-	NA-ELEM-SO08-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Chloro-3-methylphenol	NA-ELEM-SO01-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-ELEM-SO02-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-ELEM-SO03-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-ELEM-SO04-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-ELEM-SQ05-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-ELEM-SO06-01	ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	4-Chloro-3-methylphenol	NA-ELEM-SO07-01	ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	4-Chloro-3-methylphenol	NA-ELEM-SO08-01	ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	4-Chloroaniline	NA-ELEM-SO01-01	ug/kg		ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-ELEM-SO02-01	ug/kg	37	ND	8E+06	820000	310000	31000		NC
OLMO3.2	4-Chloroaniline	NA-ELEM-SO03-01	ug/kg	45	ND	8E+06	820000	310000	31000		NC
	4-Chloroaniline	NA-ELEM-SO04-01	ug/kg	43	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-ELEM-SO05-01	ug/kg		ND	8E+06	820000	310000	31000	NC	NC
	4-Chloroaniline	NA-ELEM-SO06-01	ug/kg	37	ND	8E+06	820000	310000	31000	NC	NC
	4-Chloroaniline	NA-ELEM-SO07-01	ug/kg		ND	8E+06	820000	310000	31000	NC	NC
	4-Chloroaniline	NA-ELEM-SO08-01	ug/kg		ND	8E+06	820000	310000	31000	NC	NC
	4-Chlorophenyl-	NA-ELEM-SO01-01	ug/kg		ND	1E+08			450000		NC
	4-Chlorophenyl-	NA-ELEM-SO02-01	ug/kg		ND	1E+08			450000		NC
	4-Chlorophenyl-	NA-ELEM-SO03-01	ug/kg		ND		1E+07		450000		NC
	4-Chlorophenyl-	NA-ELEM-SO04-01	ug/kg		ND	1E+08			450000		NC
	4-Chlorophenyl-	NA-ELEM-SO05-01	ug/kg		ND	1E+08			450000		NC
	4-Chlorophenyl-	NA-ELEM-SO06-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Chlorophenyl-	NA-ELEM-SO07-01	ug/kg		ND	1E+08			450000		NC
	4-Chlorophenyl-	NA-ELEM-SO08-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Nitroanaline	NA-ELEM-SO01-01	ug/kg			120000	12000	4700	470		NC
	4-Nitroanaline	NA-ELEM-SO02-01	ug/kg			120000	12000	4700	470		NC
	4-Nitroanaline	NA-ELEM-SO03-01	ug/kg			120000	12000	4700	470		NC
	4-Nitroanaline	NA-ELEM-SO04-01	ug/kg			120000	12000	4700	470		NC
	4-Nitroanaline	NA-ELEM-SO05-01	ug/kg			120000	12000	4700	470		NC
	4-Nitroanaline	NA-ELEM-SO06-01	ug/kg			120000	12000	4700	470		NC
	4-Nitroanaline	NA-ELEM-SO07-01	ug/kg			120000	12000	4700	470		NC
ИО3.2	4-Nitroanaline	NA-ELEM-SO08-01	ug/kg	52	ND	120000	12000	4700	470	NC	NC

						Inđu	strial	Resid	lential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	4-Nitrophenol	NA-ELEM-SO01-01	ug/kg	35	ND	2E+07	2E+06	630000	63000		NC
	4-Nitrophenol	NA-ELEM-SO02-01	ug/kg		ND	2E+07		630000			NC
	4-Nitrophenol	NA-ELEM-SO03-01	ug/kg		ND	2E+07		630000			NC
	4-Nitrophenol	NA-ELEM-SO04-01	ug/kg		ND	2E+07		630000			NC
	4-Nitrophenol	NA-ELEM-SO05-01	ug/kg		ND	2E+07		630000			NC
	4-Nitrophenol	NA-ELEM-SO06-01	ug/kg	37	ND	2E+07		630000			NC
	4-Nitrophenol	NA-ELEM-SO07-01	ug/kg		ND	2E+07		630000			NC
	4-Nitrophenol	NA-ELEM-SO08-01	ug/kg		ND	2E+07		630000			NC
	Acenaphthene	NA-ELEM-SO01-01	ug/kg		ND	1E+08			470000		NC
	Acenaphthene	NA-ELEM-SO02-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthene	NA-ELEM-SO03-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthene	NA-ELEM-SO04-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthene	NA-ELEM-SO05-01	ug/kg	35	ND	1E+08	1E+07		470000		NC
	Acenaphthene	NA-ELEM-SO06-01	ug/kg		ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-ELEM-SO07-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthene	NA-ELEM-SO08-01	ug/kg		ND	1E+08	1E+07		470000	1	NC
	Acenaphthylene	NA-ELEM-SO01-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-ELEM-SO02-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-ELEM-SO03-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-ELEM-SO04-01	ug/kg		ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthylene	NA-ELEM-SO05-01	ug/kg	35	ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-ELEM-SO06-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-ELEM-SO07-01	ug/kg		ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthylene	NA-ELEM-SO08-01	ug/kg		ND	1E+08	1E+07		470000		NC
OLMO3.2	Anthracene	NA-ELEM-SO01-01	ug/kg	35	ND	6E+08	6E+07	2E+07	2E+06		NC
OLMO3.2	Anthracene	NA-ELEM-SO02-01	ug/kg	37	ND	6E+08	6E+07	2E+07	2E+06		NC
OLMO3.2	Anthracene	NA-ELEM-SO03-01	ug/kg	45	ND	6E+08	6E+07	2E+07	2E+06		NC
OLMO3.2	Anthracene	NA-ELEM-SO04-01	ug/kg	43	ND	6E+08	6E+07	2E+07	2E+06	NC	NC
	Anthracene	NA-ELEM-SO05-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06	NC	NC
OLMO3.2	Anthracene	NA-ELEM-SO06-01	ug/kg	37	ND	6E+08	6E+07	2E+07	2E+06	NC	NC
OLMO3.2	Anthracene	NA-ELEM-SO07-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06	NC	NC
	Anthracene	NA-ELEM-SO08-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06	NC	NC
	Benzo(a)anthracene	NA-ELEM-SO01-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-ELEM-SO02-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-ELEM-SO03-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-ELEM-SO04-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-ELEM-SO05-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-ELEM-SO06-01	ug/kg		ND	7800	7800	870	870		NC
	Benzo(a)anthracene	NA-ELEM-SO07-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-ELEM-SO08-01	ug/kg		ND	7800	7800	870	870		NC
	Benzo(a)pyrene	NA-ELEM-SO01-01	ug/kg		ND	780	780	87		NC	NC
	Веп20(а)ругепе	NA-ELEM-SO02-01	ug/kg		ND	780	780	87			NC
	Benzo(a)pyrene		ug/kg		ND	780	780	87	87	NC	NC
	Benzo(a)pyrene		ug/kg		ND	780	780	87			NC
	Benzo(a)pyrene	NA-ELEM-SO05-01	ug/kg		ND	780	780	87	87	NC	NC
	Benzo(a)pyrene		ug/kg		ND	780	780	87			NC
	Benzo(a)pyrene	NA-ELEM-SO07-01	ug/kg		ND	780	780	87			NC
	Benzo(a)pyrene		ug/kg		ND	780	780	87			NC
	Benzo(b)fluoranthene	NA-ELEM-SO01-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(b)fluoranthene	NA-ELEM-SO02-01	ug/kg		ND	7800	7800	870			NC
	Benzo(b)fluoranthene		ug/kg		ND	7800	7800	870			NC
	Benzo(b)fluoranthene		ug/kg		ND	7800	7800	870			NC
OLMO3 2 T	Benzo(b)fluoranthene	NA-ELEM-SO05-01	ug/kg	35	ND	7800	7800	870			NC

						Indus	trial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
	A 9A -	CIs TD	Timito	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID	Units	_	ND	7800	7800	870	870		NC
	Benzo(b)fluoranthene	NA-ELEM-SO06-01	ug/kg		ND ND	7800	7800	870	870		NC
	Benzo(b)fluoranthene	NA-ELEM-SO07-01	ug/kg			7800	7800	870	870		NC
	Benzo(b)fluoranthene	NA-ELEM-SO08-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-ELEM-SO01-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-ELEM-SO02-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-ELEM-SO03-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-ELEM-SO04-01	ug/kg		ND ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-ELEM-SO05-01	ug/kg				6E+06		230000		NC NC
	Benzo(g,h,i)perylene	NA-ELEM-SO06-01	ug/kg		ND	6E+07			230000		NC
	Benzo(g,h,i)perylene	NA-ELEM-SO07-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-ELEM-SO08-01	ug/kg		ND	6E+07	6E+06		8700		NC NC
	Benzo(k)fluoranthene	NA-ELEM-SO01-01	ug/kg		ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-ELEM-SO02-01	ug/kg		ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-ELEM-SO03-01	ug/kg		ND	78000	78000	8700	8700		NC NC
	Benzo(k)fluoranthene	NA-ELEM-SO04-01	ug/kg		ND	78000	78000	8700			NC NC
	Benzo(k)fluoranthene	NA-ELEM-SO05-01	ug/kg		ND	78000	78000	8700	8700 8700		NC NC
OLMO3.2	Benzo(k)fluoranthene	NA-ELEM-SO06-01	ug/kg		ND	78000	78000	8700	8700		NC NC
OLMO3.2	Benzo(k)fluoranthene	NA-ELEM-SO07-01	ug/kg		ND	78000	78000	8700			NC
OLMO3.2	Benzo(k)fluoranthene	NA-ELEM-SO08-01	ug/kg		ND	78000	78000	8700	8700		
OLMO3.2	Butylbenzylphthalate	NA-ELEM-SO01-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06		NS NS
OLMO3.2	Butylbenzylphthalate	NA-ELEM-SO02-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06		
OLMO3.2	Butylbenzylphthalate	NA-ELEM-SO03-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06		NS
OLMO3.2	Butylbenzylphthalate	NA-ELEM-SO04-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06		NS
MO3.2	Butylbenzylphthalate	NA-ELEM-SO05-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06		NS
MO3.2	Butylbenzylphthalate	NA-ELEM-SO06-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06		NS
OLMO3.2	Butylbenzylphthalate	NA-ELEM-SO07-01	ug/kg	67			4E+07	2E+07	2E+06		NS
	Butylbenzylphthalate	NA-ELEM-SO08-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06		NS
OLMO3.2	<u> </u>	NA-ELEM-SO01-01	ug/kg		ND		290000	32000			NC
	Carbazole	NA-ELEM-SO02-01	ug/kg	1	ND		290000	32000			NC
OLMO3.2		NA-ELEM-SO03-01	ug/kg		ND		290000	32000			NC
OLMO3.2		NA-ELEM-SO04-01	ug/kg	43	ND		290000				NC
OLMO3.2		NA-ELEM-SO05-01	ug/kg	35	ND		290000				NC
OLMO3.2		NA-ELEM-SO06-01	ug/kg		ND		290000			1	NC
	Carbazole	NA-ELEM-SO07-01	ug/kg		ND		290000	32000			NC
	Carbazole	NA-ELEM-SO08-01	ug/kg		ND		290000				NC
	Chrysene	NA-ELEM-SO01-01	ug/kg		ND		780000			NC	NC
	Chrysene	NA-ELEM-SO02-01	ug/kg		ND		780000				NC
OLMO3.2		NA-ELEM-SO03-01	ug/kg	4.5	ND		780000				NC
OLMO3.2		NA-ELEM-SO04-01	ug/kg	43	ND		780000				NC
	Chrysene	NA-ELEM-SO05-01	ug/kg	35	ND		780000				NC
	Chrysene	NA-ELEM-SO06-01	ug/kg	37	ND		780000				NC
	Chrysene	NA-ELEM-SO07-01	ug/kg	63		780000					NC
	Chrysene	NA-ELEM-SO08-01	ug/kg		ND		780000				NC
OLMO3.2	Dibenz(a,h)anthracene	NA-ELEM-SO01-01	ug/kg	3.5	ND	780				NC NC	NC
	Dibenz(a,h)anthracene	NA-ELEM-SO02-01	ug/kg		ND ND	780				7 NC	NC
	Dibenz(a,h)anthracene	NA-ELEM-SO03-01	ug/kg	4:	ND	780				NC NC	NC
	Dibenz(a,h)anthracene	NA-ELEM-SO04-01	ug/kg	41	ND	780				7 NC	NC
	Dibenz(a,h)anthracene	NA-ELEM-SO05-01	ug/kg		ND	780	780			7 NC	NC
	Dibenz(a,h)anthracene	NA-ELEM-SO06-01	ug/kg		7 ND	780				7 NC	NC
	Dibenz(a,h)anthracene	NA-ELEM-SO07-01	ug/kg		7 ND	780	780			7 NC	NC
	Dibenz(a,h)anthracene	NA-ELEM-SO08-01	ug/kg		2 ND	780				7 NC	NC
	Dibenzofuran	NA-ELEM-SO01-01	ug/kg		ND		820000				NC
	Dibenzofuran	NA-ELEM-SO02-01	ug/kg		7 ND		820000			DINC	NC

				lace	0011						
						Indu	strial	Doci	dential	D. C	Means Comparison Conclusion
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	Reference	1
	Dibenzofuran	NA-ELEM-SO03-01	ug/kg		ND			310000		UTL	Site
OLMO3.2		NA-ELEM-SO04-01	ug/kg		ND			310000			NC
OLMO3.2		NA-ELEM-SO05-01	ug/kg		ND	8E+06	820000	310000	31000		NC
	Dibenzofuran	NA-ELEM-SO06-01	ug/kg		ND	8E+06	820000	310000	31000		NC NC
OLMO3.2		NA-ELEM-SO07-01	ug/kg		ND	8E+06	820000	310000	31000		NC NC
OLMO3.2		NA-ELEM-SO08-01	ug/kg		ND			310000			NC
OLMO3.2		NA-ELEM-SO01-01	ug/kg	35		2E+09	2E+08			194	
OLMO3.2		NA-ELEM-SO02-01	ug/kg	37	ND	2Ë+09	2E+08			194	
OLMO3.2	Diethylphthalate	NA-ELEM-SO03-01	ug/kg		ND	2E+09	2E+08			194	
	Diethylphthalate	NA-ELEM-SO04-01	ug/kg		ND	2E+09	2E+08			194	
OLMO3.2		NA-ELEM-SO05-01	ug/kg	35	ND	2E+09	2E+08		1.	194	
	Diethylphthalate	NA-ELEM-SO06-01	ug/kg	37	ND	2E+09	2E+08	6E+07	6E+06	194	
OLMO3.2	Diethylphthalate	NA-ELEM-SO07-01	ug/kg	67	ND	2E+09	2E+08	6E+07	6E+06	194	
	Diethylphthalate	NA-ELEM-SO08-01	ug/kg		ND	2E+09	2E+08	6E+07	6E+06	194	
OLMO3.2	Dimethylphthalate	NA-ELEM-SO01-01	ug/kg	35	ND	2E+10	2E+09	8E+08			NC NC
OLMO3.2	Dimethylphthalate	NA-ELEM-SO02-01	ug/kg	37	ND	2E+10	2E+09	8E+08			NC NC
OLMO3.2	Dimethylphthalate	NA-ELEM-SO03-01	ug/kg	45	ND	2E+10	2E+09	8E+08			NC NC
OLMO3.2	Dimethylphthalate	NA-ELEM-SO04-01	ug/kg		ND	2E+10	2E+09	8E+08	8E+07		NC NC
OLMO3.2	Dimethylphthalate	NA-ELEM-SO05-01	ug/kg		ND	2E+10	2E+09	8E+08	8E+07		NC
OLMO3.2	Dimethylphthalate	NA-ELEM-SO06-01	ug/kg	37	ND	2E+10	2E+09	8E+08			NC NC
OLMO3.2	Dimethylphthalate	NA-ELEM-SO07-01	ug/kg		ND	2E+10	2E+09	8E+08			NC NC
OLMO3.2	Dimethylphthalate	NA-ELEM-SO08-01	ug/kg	52	ND	2E+10	2E+09	8E+08	8E+07		NC NC
	Fluoranthene	NA-ELEM-SO01-01	ug/kg	35	ND	8E+07	8E+06		310000	60	
	Fluoranthene	NA-ELEM-SO02-01	ug/kg	37	ND	8E+07	8E+06		310000	60	
	Fluoranthene	NA-ELEM-SO03-01	ug/kg		ND	8E+07	8E+06		310000	60	
	Fluoranthene	NA-ELEM-SO04-01	ug/kg	43	ND	8E+07	8E+06		310000	60	
OLMO3.2	Fluoranthene	NA-ELEM-SO05-01	ug/kg		ND		8E+06	3E+06		60	
	Fluoranthene	NA-ELEM-SO06-01	ug/kg		ND		8E+06		310000	60 1	
	Fluoranthene	NA-ELEM-SO07-01	ug/kg	67		8E+07	8E+06	3E+06		60	
	Fluoranthene	NA-ELEM-SO08-01	ug/kg	52		8E+07	8E+06	3E+06		60 1	
	Fluorene	NA-ELEM-SO01-01	ug/kg	35	ND	8E+07	8E+06		310000		vC VC
	Fluorene	NA-ELEM-SO02-01	ug/kg	37	ND			3E+06	310000		VC -
	Fluorene	NA-ELEM-SO03-01	ug/kg	45	ND		8E+06		310000		<u>vc</u> —
OLMO3.2		NA-ELEM-SO04-01	ug/kg	43	NĎ				310000 1		VC -
OLMO3.2		NA-ELEM-SO05-01	ug/kg	35	ND			3E+06	310000 1		VC VC
OLMO3.2		NA-ELEM-SO06-01	ug/kg	37		8E+07			310000 1		VC VC
OLMO3.2		NA-ELEM-SO07-01	ug/kg	67	ND				310000 N		<u>vc</u>
OLMO3.2		NA-ELEM-SO08-01	ug/kg	52	ND	74			310000 N		<u>10</u>
	Hexachloro-1,3-butadiene	NA-ELEM-SO01-01	ug/kg	35	ND		73000	8200	8200 I		1 <u>C</u>
OLMO3.2	Hexachloro-1,3-butadiene	NA-ELEM-SO02-01	ug/kg	37	ND		73000	8200	8200 N		1C
OLMO3.2	Hexachloro-1,3-butadiene	NA-ELEM-SO03-01	ug/kg	45 1	ND		73000	8200	8200 N		1 <u>C</u>
OLMO3.2	Hexachloro-1,3-butadiene	NA-ELEM-SO04-01	ug/kg	43 1	NĎ		73000	8200	8200 N		1C
OLMO3.2	Hexachloro-1,3-butadiene	NA-ELEM-SO05-01	ug/kg	35 1	ND		73000	8200	8200 N		ic
OLMO3.2	Hexachloro-1,3-butadiene		ug/kg	37 [73000	8200	8200 N		1C
OLMO3.2	Hexachloro-1,3-butadiene		ug/kg	67 1	ND		73000	8200	8200 N		<u>1C</u>
	Hexachloro-1,3-butadiene	NA-ELEM-SO08-01	ug/kg	52 1			73000	8200	8200 N		ic
OLMO3.2	Hexachlorobenzene	NA-ELEM-SO01-01	ug/kg	35 1		3600	3600	400	400 N		ic
OLMO3.2	Hexachlorobenzene	NA-ELEM-SO02-01	ug/kg	37 N		3600	3600	400	400 N		ic
OLMO3.2	Hexachlorobenzene	NA-ELEM-SO03-01	ug/kg	45 N		3600	3600	400	400 N		ic
OLMO3.2	Hexachlorobenzene	NA-ELEM-SO04-01	ug/kg	43 N		3600	3600	400	400 N		ic
	lexachlorobenzene	NA-ELEM-SO05-01	ug/kg	35 N		3600	3600	400	400 N		ic
OLMO3.2	Iexachlorobenzene	NA-ELEM-SO06-01	ug/kg	37 N		3600	3600	400	400 N		IC A
OLMO3.2	Hexachlorobenzene		ug/kg	67 N		3600	3600	400	400 N	7.	
							2000	700	N	IC N	

			·					strial	1	lential	Reference	Means Comparison Conclusion Reference vs.
	Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
(OLMO3.2	Hexachlorobenzene	NA-ELEM-SO08-01	ug/kg	52	ND	3600	3600	400	400	NC	NC
1	OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO01-01	ug/kg	35	ND	1E+07	1E+06	550000	55000	NC	NC
I	OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO02-01	ug/kg		ND	1E+07	1E+06	550000	55000	NC	NC
1	OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO03-01	ug/kg	45	ND UJ	1E+07	1E+06	550000	55000	NC	NC
7	OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO04-01	ug/kg		ND UJ	1E+07	1E+06	550000	55000	NC	NC
C	OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO05-01	ug/kg	35	ND	1E+07	1E+06	550000	55000	NC	NC
(OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO06-01	ug/kg		ND	1E+07	1E+06	550000	55000	NC	NC
(OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO07-01	ug/kg	67	ND	1E+07	1E+06	550000	55000	NC	NC
C	OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO08-01	ug/kg	52	ND	1E+07	1E+06	550000	55000	NC	NC
1	OLMO3.2	Hexachloroethane	NA-ELEM-SO01-01	ug/kg	35	ND	410000	410000	46000	46000	NC	NC
1	OLMO3.2	Hexachloroethane	NA-ELEM-SO02-01	ug/kg		ND	410000	410000	46000	46000	NC	NC
Ī	OLMO3.2	Hexachloroethane	NA-ELEM-SO03-01	ug/kg	45	ND		410000	46000			NC
þ	OLMO3.2	Hexachloroethane	NA-ELEM-SO04-01	ug/kg	43	ND	410000	410000	46000	46000	NC	NC
k			NA-ELEM-SO05-01	ug/kg	35	ND		410000	46000			NC
k	OLMO3.2	Hexachloroethane	NA-ELEM-SO06-01	ug/kg	37	ND		410000	46000	46000		NC
Ī	OLMO3.2	Hexachloroethane	NA-ELEM-SO07-01	ug/kg	67	ND	410000	410000	46000	46000	NC	NC
ŀ	DLMO3.2	Hexachloroethane	NA-ELEM-SO08-01	ug/kg	52	ND	410000	410000	46000	46000	NC	NC
Ī	OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO01-01	ug/kg	35	ND	7800	7800	870	870	NC	NC
Ī	OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO02-01	ug/kg	37	ND	7800	7800	870	870	NC	NC
Ī	DLMO3.2	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO03-01	ug/kg	45	ND	7800	7800	870	870	NC	NC
Ī	OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO04-01	ug/kg		ND	7800	7800	870	870		NC
_		1 - +	NA-ELEM-SO05-01	ug/kg		ND	7800	7800	870	870		NC
			NA-ELEM-SO06-01	ug/kg		ND	7800	7800	870	870		NC
4		- 8 -	NA-ELEM-SO07-01	ug/kg		ND	7800	7800	870	870		NC
	∠MO3.2		NA-ELEM-SO08-01	ug/kg		ND	7800	7800	870	870		NC
Ī			NA-ELEM-SO01-01	ug/kg		ND	6E+06			670000		NC
_			NA-ELEM-SO02-01	ug/kg		ND	6E+06			670000		NC
		1	NA-ELEM-SO03-01	ug/kg		ND	6E+06			670000		NC
-		Isophorone	NA-ELEM-SO04-01	ug/kg		ND	6E+06			670000		NC
			NA-ELEM-SO05-01	ug/kg		ND	6E+06			670000		NC
			NA-ELEM-SO06-01	ug/kg		ND	6E+06			670000		NC
0	DLMO3.2	Isophorone	NA-ELEM-SO07-01	ug/kg	67	ND	6E+06			670000		NC
C	DLMO3.2	Isophorone	NA-ELEM-SO08-01	ug/kg	52	ND	6E+06	6E+06	670000	670000	NC	NC
Ī	DLMO3.2	N-Nitroso-di-n-	NA-ELEM-SO01-01	ug/kg	35	ND	820	820	91	91	NC	NC
C	DLMO3.2	N-Nitroso-di-n-	NA-ELEM-SO02-01	ug/kg	37	ND	820	820	91	91	NC	NC
Ī	DLMO3.2	N-Nitroso-di-n-	NA-ELEM-SO03-01	ug/kg		ND	820	820	91	91		NC
C	DLMO3.2		NA-ELEM-SO04-01	ug/kg		ND	820	820	91			NC
			NA-ELEM-SO05-01	ug/kg	35	ND	820	820	91			NC
			NA-ELEM-SO06-01	ug/kg	37	ND	820	820	91			NC
			NA-ELEM-SO07-01	ug/kg	67	ND	820	820	91			NC
			NA-ELEM-SO08-01	ug/kg		ND	820	820	91	91	NC	NC
			NA-ELEM-SO01-01	ug/kg	35	ND	1E+06	1E+06	130000	130000		NC
			NA-ELEM-SO02-01	ug/kg		ND	1E+06			130000		NC
			NA-ELEM-SO03-01	ug/kg		ND	1E+06	1E+06	130000	130000		NĈ
			NA-ELEM-SO04-01	ug/kg		ND	1E+06			130000		NC
			NA-ELEM-SO05-01	ug/kg		ND	1E+06			130000		NC
			NA-ELEM-SO06-01	ug/kg		ND	1E+06			130000		NC
			NA-ELEM-SO07-01	ug/kg	67	ND	1E+06			130000		NC
C	DLMO3.2	N-Nitrosodiphenylamine	NA-ELEM-SO08-01	ug/kg	52	ND	1E+06			130000		NC
C	DLMO3.2	Naphthalene	NA-ELEM-SO01-01	ug/kg		ND	8E+07			310000		NC
[DLMO3.2	Naphthalene	NA-ELEM-SO02-01	ug/kg		ND	8E+07			310000		NC
Į.	MO3.2	Naphthalene	NA-ELEM-SO03-01	ug/kg	45	ND	8E+07			310000		NC
	ИО3.2	Naphthalene	NA-ELEM-SO04-01	ug/kg		ND	8E+07			310000		NC

		· · · · · · · · · · · · · · · · · · ·		Iacc .							
							-				Means Comparison
						İ					Conclusion
				ļ			strial		lential	Reference	Reference vs.
Method	<u>Analyte</u>	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
The state of the s	Naphthalene	NA-ELEM-SO05-01	ug/kg		ND	8E+07	8E+06	3E+06	310000	NC	NC
	Naphthalene	NA-ELEM-SO06-01	ug/kg		ND	8E+07			310000	NC	NC
	Naphthalene	NA-ELEM-SO07-01	ug/kg		ND	8E+07	8E+06		310000		NC
	Naphthalene	NA-ELEM-SO08-01	ug/kg		ND	8E+07	8E+06	3E+06	310000	NC	NC
	Nitrobenzene	NA-ELEM-SO01-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-ELEM-SO02-01	ug/kg	37	ND	1E+06	100000	39000	3900	NC	NC
OLMO3.2	Nitrobenzene	NA-ELEM-SO03-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
OLMO3.2	Nitrobenzene	NA-ELEM-SO04-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
OLMO3.2	Nitrobenzene	NA-ELEM-SO05-01	ug/kg	35	ND	1E+06	100000	39000	3900	NC	NC
OLMO3.2	Nitrobenzene	NA-ELEM-SO06-01	ug/kg	37	ND	1E+06	100000	39000	3900		NC
OLMO3.2	Nitrobenzene	NA-ELEM-SO07-01	ug/kg	67	ND	1E+06	100000	39000	3900		NC
OLMO3.2	Nitrobenzene	NA-ELEM-SO08-01	ug/kg	52	ND	1E+06		39000	3900		NC
OLMO3.2	Pentachlorophenol	NA-ELEM-SO01-01	ug/kg		ND	48000	48000	5300			NC
OLMO3.2	Pentachlorophenol	NA-ELEM-SO02-01	ug/kg		ND	48000	48000	5300	5300		NC
OLMO3.2	Pentachlorophenol	NA-ELEM-SO03-01	ug/kg		ND	48000	48000	5300	5300		NC
OLMO3.2	Pentachlorophenol	NA-ELEM-SO04-01	ug/kg		ND	48000	48000	5300	5300		NC
OLMO3.2	Pentachlorophenol	NA-ELEM-SO05-01	ug/kg		ND	48000	48000	5300	5300		NC
	Pentachlorophenol	NA-ELEM-SO06-01	ug/kg		ND	48000	48000	5300	5300		NC
	Pentachlorophenol	NA-ELEM-SO07-01	ug/kg		ND	48000	48000	5300	5300		NC
	Pentachlorophenol	NA-ELEM-SO08-01	ug/kg		ND	48000	48000	5300	5300		NC
	Phenanthrene	NA-ELEM-SO01-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Phenanthrene	NA-ELEM-SO02-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Phenanthrene	NA-ELEM-SO03-01	ug/kg		ND	6E+07	6E+06		230000		NC .
	Phenanthrene	NA-ELEM-SO04-01	ug/kg		ND	6E+07	6E+06		230000		
	Phenanthrene	NA-ELEM-SO05-01	ug/kg		ND						NC
	Phenanthrene	NA-ELEM-SO06-01			ND	6E+07	6E+06		230000		NC
	Phenanthrene	NA-ELEM-S007-01	ug/kg	57	ND	6E+07	6E+06		230000		NC
	Phenanthrene	NA-ELEM-SO08-01	ug/kg		ND	6E+07 6E+07	6E+06		230000		NC
	Phenol	NA-ELEM-SO01-01	ug/kg	32	ND ND		6E+06		230000		NC
	Phenol	NA-ELEM-SO02-01	ug/kg		ND ND	1E+09	1E+08	5E+07	5E+06		NC
	Phenol	NA-ELEM-SO03-01	ug/kg			1E+09	1E+08	5E+07	5E+06		NC
	Phenol	NA-ELEM-SO04-01	ug/kg	43	ND	1E+09	1E+08	5E+07	5E+06		NC
			ug/kg		ND	1E+09	1E+08	5E+07	5E+06		NC
	Phenol	NA-ELEM-SO05-01	ug/kg		ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-ELEM-SO06-01	ug/kg		ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-ELEM-SO07-01	ug/kg		ND		1E+08				NC
OLMO3.2		NA-ELEM-SO08-01	ug/kg		ND		1E+08				NC
OLMO3.2		NA-ELEM-SO01-01	ug/kg		ND	6E+07			230000		NC
OLMO3.2		NA-ELEM-SO02-01	ug/kg		ND		6E+06				NC
OLMO3.2			ug/kg		ND	6E+07			230000		NC
OLMO3.2		NA-ELEM-SO04-01	ug/kg	43	ND	6E+07			230000		NC
OLMO3.2		NA-ELEM-SO05-01	ug/kg		ND	6E+07			230000		NC
OLMO3.2		NA-ELEM-SO06-01	ug/kg		ND	6E+07			230000		NC
OLMO3.2			ug/kg		ND	6E+07			230000		NC
OLMO3.2			ug/kg		ND	6E+07			230000		NC
OLMO3.2			ug/kg		ND	5200	5200	580			NC
OLMO3.2			ug/kg		ND	5200	5200	580	580		NC
OLMO3.2			ug/kg		ND	5200	5200	580	580	NC	NC
OLMO3.2			ug/kg		ND	5200	5200	580	580		NC
OLMO3.2		NA-ELEM-SO05-01	ug/kg	35	ND	5200	5200	580	580		NC
OLMO3.2			ug/kg		ND	5200	5200	580	580		NC
OLMO3.2			ug/kg		ND	5200	5200	580	580		NC
OLMO3.2	bis(2-	77711	ug/kg		ND	5200	5200	580	580		NC 4
	bis(2-Chloroethyl)ether		ug/kg		ND	5200	5200	580	580		NC -
	,		1-0'15	رر		2200	3200	700	200	110	170

							Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
	Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ŀ			NA-ELEM-SO02-01	ug/kg		ND	5200	5200	580	580	NC	NC
			NA-ELEM-SO03-01	ug/kg		ND	5200		580	580	NC	NC
_		l \	NA-ELEM-SO04-01	ug/kg		ND	5200	5200	580	580	NC	NC
		bis(2-Chloroethyl)ether	NA-ELEM-SO05-01	ug/kg		ND	5200	5200	580	580		NC
		bis(2-Chloroethyl)ether	NA-ELEM-SO06-01	ug/kg		ND	5200	5200	580	580	NC	NC
		bis(2-Chloroethyl)ether	NA-ELEM-SO07-01	ug/kg	67	ND	5200	5200	580	580	NC	NC
_		bis(2-Chloroethyl)ether	NA-ELEM-SO08-01	ug/kg	52	ND	5200	5200	580	580	NC	NC
		bis(2-Ethylhexyl)phthalate	NA-ELEM-SO01-01	ug/kg	35	210	410000	410000	46000	46000	785	
_		bis(2-Ethylhexyl)phthalate	NA-ELEM-SO02-01	ug/kg	37			410000	46000	46000	785	
			NA-ELEM-SO03-01	ug/kg	45			410000	46000	46000	785	
_		bis(2-Ethylhexyl)phthalate	NA-ELEM-SO04-01	ug/kg	43	590	410000	410000	46000	46000		
			NA-ELEM-SO05-01	ug/kg	35			410000	46000	46000		
			NA-ELEM-SO06-01	ug/kg	37			410000	46000	46000		
	OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-ELEM-SO07-01	ug/kg	67	980	410000	410000	46000	46000		
	OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-ELEM-SO08-01	ug/kg	52	230	410000	410000	46000	46000		
	OLMO3.2	di-n-Butylphthalate	NA-ELEM-SO01-01	ug/kg	35	ND	2E+08	2E+07	8E+06	780000	280	NS
		di-n-Butylphthalate	NA-ELEM-SO02-01	ug/kg	37	ND	2E+08	2E+07		780000		
	OLMO3.2	di-n-Butylphthalate	NA-ELEM-SO03-01	ug/kg	45					780000		
	OLMO3.2	di-n-Butylphthalate	NA-ELEM-SO04-01	ug/kg	43	350	2E+08			780000		
	OLMO3.2	di-n-Butylphthalate	NA-ELEM-SO05-01	ug/kg		ND	2E+08			780000		
	OLMO3.2	di-n-Butylphthalate	NA-ELEM-SO06-01	ug/kg	37	ND	2E+08	2E+07		780000		
Ī	OLMO3.2	di-n-Butylphthalate	NA-ELEM-SO07-01	ug/kg	67	89				780000		
Ī	OLMO3.2	di-n-Butylphthalate	NA-ELEM-SO08-01	ug/kg	52	ND	2E+08	2E+07		780000		
Ä	MO3.2	di-n-Octylphthalate	NA-ELEM-SO01-01	ug/kg		ND	4E+07	4E+06		160000		NC
7	MO3.2	di-n-Octylphthalate	NA-ELEM-SO02-01	ug/kg		ND	4E+07	4E+06		160000		NC
7		di-n-Octylphthalate	NA-ELEM-SO03-01	ug/kg		ND	4E+07	4E+06	2E+06	160000	NC	NC
7	OLMO3.2	di-n-Octylphthalate	NA-ELEM-SO04-01	ug/kg	43	ND	4E+07			160000		NC
1	OLMO3.2	di-n-Octylphthalate	NA-ELEM-SO05-01	ug/kg	35	ND	4E+07	4E+06		160000		NC
	OLMO3.2	di-n-Octylphthalate	NA-ELEM-SO06-01	ug/kg	37	ND	4E+07	4E+06		160000		NC
		di-n-Octylphthalate	NA-ELEM-SO07-01	ug/kg		ND	4E+07	4E+06		160000		NC
1	OLMO3.2	di-n-Octylphthalate	NA-ELEM-SO08-01	ug/kg		ND	4E+07		2E+06	160000	NC	NC
7	OLMO3.2	o-Cresol	NA-ELEM-SO01-01	ug/kg		ND	1E+08			390000		NC
1	OLMO3.2	o-Cresol	NA-ELEM-SO02-01	ug/kg		ND	1E+08	1E+07	4E+06	390000	NC	NC
- 17	OLMO3.2	o-Cresol	NA-ELEM-SO03-01	ug/kg		ND	1E+08	1E+07	4E+06	390000	NC	NC
10	OLMO3.2	o-Cresol	NA-ELEM-SO04-01	ug/kg		ND	1E+08			390000		NC
1	OLMO3.2	o-Cresol	NA-ELEM-SO05-01	ug/kg		ND		1E+07				NC
	OLMO3.2		NA-ELEM-SO06-01	ug/kg		ND		1E+07				NC
	OLMO3.2		NA-ELEM-SO07-01	ug/kg		ND		1E+07				NC
	OLMO3.2		NA-ELEM-SO08-01	ug/kg		ND	1E+08	1E+07				NC
1	OLMO3.2	p-Cresol	NA-ELEM-SO01-01	ug/kg		ND	1E+07		390000			NC
	OLMO3.2		NA-ELEM-SO02-01	ug/kg	37	ND	1E+07		390000			NC
	OLMO3.2		NA-ELEM-SO03-01	ug/kg		ND	1E+07		390000			NC
	OLMO3.2	12	NA-ELEM-SO04-01	ug/kg		ND	1E+07		390000			NC
	OLMO3.2	<u> </u>	NA-ELEM-SO05-01	ug/kg		ND	1E+07		390000			NC
	OLMO3.2		NA-ELEM-SO06-01	ug/kg		ND	1E+07		390000			NC
	OLMO3.2		NA-ELEM-SO07-01	ug/kg		ND	1E+07		390000			NC
	OLMO3.2		NA-ELEM-SO08-01	ug/kg		ND	1E+07		390000			NC
	SW8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO01-01	ng/kg		16.4 BJ						
	SW8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO02-01	ng/kg	0.4	26.1 J	38000	38000				
	SW8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO03-01	ng/kg	1.2	2370	38000	1	4300			
	SW8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO04-01	ng/kg	0.5				4300			
	9W8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO05-01	ng/kg	1.5	27.3	38000	38000	4300			
	290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO06-01	ng/kg	1.3	19.4	38000	38000	4300	4300	1180	NS

											Means Comparison
											Conclusion
						Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC		RBC	RBSL	UTL	Site
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO07-01	ng/kg	0.8		38000	L	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO08-01	ng/kg	0.5				4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO01-01	ng/kg	0.4	5.9 J	38000	38000	4300	4300	212	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO02-01	ng/kg		2.5 J	38000	38000	4300	4300	212	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO03-01	ng/kg		117 J	38000		4300	4300	212	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO04-01	ng/kg	0.4	36.6 J	38000	38000	4300	4300	212	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO05-01	ng/kg	1.3	3.6 J	38000	38000	4300	4300	212	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO06-01	ng/kg		3.5 J	38000	38000	4300	4300	212	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO07-01	ng/kg	0.7	339	38000	38000	4300	4300	212	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO08-01	ng/kg	0.4	36.5	38000	38000	4300	4300	212	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO01-01	ng/kg	0.4	3.2 BJ	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO02-01	ng/kg	0.3	3.7 BJ	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO03-01	ng/kg	0.7	133 J	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO04-01	ng/kg	0.3	41.2	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO05-01	ng/kg	1.4	5.2	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO06-01	ng/kg	1.4	5	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO07-01	ng/kg	0.8	365	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8- HpCDD	NA-ELEM-SO08-01	ng/kg	0.4	49.8	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO01-01	ng/kg	0.3	6.1	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO02-01	ng/kg	0.2	3.3 BJ	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO03-01	ng/kg	0.5	52.9	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO04-01	ng/kg	0.2	37.7	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO05-01	ng/kg	1.3	7.2	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO06-01	ng/kg	1	4.8 J	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO07-01	ng/kg	0.6	344	3800	3800	430	430	258	
	1,2,3,4,6,7,8- HpCDF	NA-ELEM-SO08-01	ng/kg	0.3	26.6	3800	3800	430	430	258	
	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO01-01	ng/kg	0.5	1.2 J	3800	3800	430	430	41.9	
	1,2,3,4,7,8,9- HpCDF	NA-ELEM-SO02-01	ng/kg	0.3	ND	3800	3800	430	430	41.9	
	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO03-01	ng/kg	0.7	5.9	3800	3800	430	430	41.9	
	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO04-01	ng/kg	0.3	6	3800	3800	430	430	41.9	
	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO05-01	ng/kg	1.7		3800	3800	430	430	41.9	NS
SW8290	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO06-01	ng/kg	1.3	ND	3800	3800	430	430	41.9	NS
	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO07-01	ng/kg	0.7	68.1	3800	3800	430	430	41.9	NS
	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO08-01	ng/kg		2.8 J	3800	3800	430	430	41.9	NS
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO01-01	ng/kg		ND UJ	380	380	43	43	13.7	NS
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO02-01	ng/kg	0.3		380	380	43	43	13.7	
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO03-01	ng/kg		1.9 J	380	380	43	43	13.7	
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO04-01	ng/kg		2.1 J	380	380	43	43	13.7	NS
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO05-01	ng/kg	1.3		380	380	43	43	13.7	NS
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO06-01	ng/kg	1.6		380	380	43	43	13.7	NS
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO07-01	ng/kg	1	20.2	380	380	43	43	13.7	NS
	1,2,3,4,7,8-HxCDD	NA-ELEM-SO08-01	ng/kg		1.1 J	380	380	43	43	13.7	NS
	1,2,3,4,7,8-HxCDF	NA-ELEM-SO01-01	ng/kg		2.8 J	380	380	43	43	97.8	
	1,2,3,4,7,8-HxCDF	NA-ELEM-SO02-01	ng/kg		0.97 J	380	380	43	43	97.8	NS
	1,2,3,4,7,8-HxCDF		ng/kg	0.4	16	380	380	43	43	97.8	
	1,2,3,4,7,8-HxCDF	NA-ELEM-SO04-01	ng/kg		15.2 J	380	380	43	43	97.8	
	1,2,3,4,7,8-HxCDF		ng/kg		2.7 J	380	380	43	43	97.8	
	1,2,3,4,7,8-HxCDF		ng/kg		2.5 J	380	380	43	43	97.8	
	1,2,3,4,7,8-HxCDF		ng/kg	0.6	134	380	380	43	43	97.8	NS
	1,2,3,4,7,8-HxCDF		ng/kg	0.2	7.5	380	380	43	43	97.8	NS
	1,2,3,6,7,8-HxCDD	NA-ELEM-SO01-01	ng/kg		0.44 J	380	380	43	43	29.1	
	1,2,3,6,7,8-HxCDD		ng/kg	0.2		380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-ELEM-SO03-01	ng/kg	0.4	7.5 J	380	380	43	43	29.1	

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
	4	G1- ID	Units	MIN	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID			4.2 J	380	380	43	43	29.1	
	1,2,3,6,7,8-HxCDD	NA-ELEM-SO04-01	ng/kg			380	380	43	43	29.1	
	1,2,3,6,7,8-HxCDD	NA-ELEM-SO05-01	ng/kg		ND	380	380	43	43	29.1	
	1,2,3,6,7,8-HxCDD	NA-ELEM-SO06-01	ng/kg		ND	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-ELEM-SO07-01	ng/kg	0.8	32		380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-ELEM-SO08-01	ng/kg		3.5 J	380	380	43	43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO01-01	ng/kg		1.3 JB	380	380	43	43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO02-01	ng/kg		0.49 J	380		43	43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO03-01	ng/kg	0.4	6.9	380	380		43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO04-01	ng/kg	0.1	6.7	380	380	43		41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO05-01	ng/kg		1.5 J	380	380	43	43 43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO06-01	ng/kg		1 J	380	380	43			
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO07-01	ng/kg	0.5		380	380	43	43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO08-01	ng/kg		3.4 J	380	380	43	43	41.2	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO01-01	ng/kg		0.5 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO02-01	ng/kg		ND	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO03-01	ng/kg		4.6 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO04-01	ng/kg		5 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO05-01	ng/kg		ND	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO06-01	ng/kg	i	ND	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO07-01	ng/kg		51.1 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO08-01	ng/kg	0.3			380	43		35.9	
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO01-01	ng/kg		ND	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO02-01	ng/kg		ND	380	380	43	43		NS
8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO03-01	ng/kg		3.3 J	380	380	43	43		NS
8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO04-01	ng/kg		0.56 J	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO05-01	ng/kg		ND	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO06-01	ng/kg		ND	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO07-01	ng/kg	0.6	.1	380		43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO08-01	ng/kg		0.54 J	380		43	43		NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO01-01	ng/kg		ND	76		8.6			NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO02-01	ng/kg		ND_	76		8.6			NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO03-01	ng/kg		1.8 J	76		8.6			NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO04-01	ng/kg		1.7 J	76					NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO05-01	ng/kg		ND UJ	76					NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO06-01	ng/kg	L	ND	76					NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO07-01	ng/kg		12.9 J	76					NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO08-01	ng/kg		2.6 J	76	1				NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO01-01	ng/kg		0.81 J	760					NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO02-01	ng/kg		ND	760		1			NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO03-01	ng/kg		28.4)	NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO04-01	ng/kg		2.4 J	760					NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO05-01	ng/kg		ND	760					NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO06-01	ng/kg		ND	760					NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO07-01	ng/kg								NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO08-01	ng/kg		2 1.9 J	760					NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO01-01	ng/kg		2.6 BJ	380	•				NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO02-01	ng/kg		2 1.1 BJ	380					NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO03-01	ng/kg		15.1 J	380					NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO04-01	ng/kg		16.6 J	380					NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO05-01	ng/kg		3 2.9 J	380		1			NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO06-01	ng/kg	_	2 2.2 J	380					l NS
ow8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO07-01	ng/kg								l NS
3290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO08-01	ng/kg	0.3	8 J	380	380	43	43	101	l NS

Method	
Method Sample D	Means
Method Manayte Sample ID Units MDL Result RRC RRSL CREST CREST SW8290 2,3.4.7,8-PeCDF NA-ELEM-SO01-01 ng/kg 0.3 0.37 J 76 76 8.6 8.6 37.4 37.4 37.5	Comparison
Method Sample D	Conclusion
SW8290 2.3.4,7.8-PCDF NA-ELEM-S003-01 ng/kg 0.4 0.57 76 76 8.6 8.6 37.4	i .
SW8290 2,3,4,7,8-PCDF NA-ELEM-S003-01 ng/kg 0,4 19.7 76 76 8.6 8.6 37.4	Site
SW8290 2,3,4,7,8-PCDF NA-ELEM-SO03-01 ng/kg 0.1 5.1 76 76 8.6 8.5 37.4	
SW8290 2,3,4,7,8-PCDF NA-ELEM-SO05-01 ng/kg 0,9 1,4 76 76 8,6 8,6 37,4	
SW8290 2,3,4,7,8-PCDF NA-ELEM-SOO5-01 ng/kg 0,9 1,4 76 76 8,6 8,6 37,4	
SW8290 2,3,4,7,8-PeCDF NA-ELEM-SO06-01 ng/kg 0.9 1.3 76 76 8.6 8.6 37.4	
SW8290	
SW8290 2,3,4,8-PcDP NA-ELEM-SO08-01 ng/kg 0.4 ND 38 38 4.3 4.3 2.4	
SW8290 2,3,7,8-TCDD	
SW8290 2,37,8-TCDD	
SW8290 2,3.7,8-TCDD NA-ELEM-SO03-01 ng/kg 0.4 ND 38 38 4.3 4.3 2.4	
SW8290 2,37,8-TCDD NA-ELEM-SO05-01 ng/kg 0.1 0.28 J 38 38 4.3 4.3 2.4	
SW8290 2,37,8-TCDD NA-ELEM-SO05-01 ng/kg 0.6 ND 38 38 4.3 4.3 2.4	
SW8290 2,37,8-TCDD	
SW8290 2,3,7,8-TCDD	
SW8290	
SW8290	
SW8290 2,3,7,8-TCDF NA-ELEM-SO03-01 ng/kg 0.07 0.17 380 380 43 43 32.8	
SW8290 2,3,7,8-TCDF	
SW8290 2,3,7,8-TCDF NA-ELEM-SO05-01 ng/kg 0.1 1.4 380 380 43 43 32.8	
SW8290 2,3,7,8-TCDF NA-ELEM-SO05-01 ng/kg 0.2 0.52 380 380 43 43 32.8 SW8290 2,3,7,8-TCDF NA-ELEM-SO06-01 ng/kg 0.7 14.6 380 380 43 43 32.8 32.8 380 380 43 43 32.8	
SW8290 Z.3.7,8-TCDF NA-ELEM-SO06-01 ng/kg 0.8 ND 380 380 43 43 32.8 SW8290 Z.3.7,8-TCDF NA-ELEM-SO07-01 ng/kg 0.7 14.6 380 380 43 43 32.8 SW8290 Z.3.7,8-TCDF NA-ELEM-SO08-01 ng/kg 0.2 1.9 380 380 43 43 32.8 SW8290 Total HpCDD NA-ELEM-SO01-01 ng/kg 0.4 6.6	
SW8290 Cotal HpCDD NA-ELEM-SO07-01 ng/kg 0.7 14.6 380 380 43 43 32.8	
SW8290 Total HpCDD NA-ELEM-SO08-01 ng/kg 0.2 1.9 380 380 43 43 32.8	
SW8290 Total HPCDD NA-ELEM-SO03-01 ng/kg 0.4 6.6	
SW8290 Total HpCDD NA-ELEM-SO03-01 ng/kg 0.3 8.9	
SW8290 Total HpCDD NA-ELEM-SO04-01 ng/kg 0.3 83.5	
SW8290 Total HpCDD NA-ELEM-SO05-01 ng/kg 1.4 5.7	NS
SW8290 Total HpCDD NA-ELEM-SO06-01 ng/kg 1.4 9.2	NS
SW8290 Total HpCDD NA-ELEM-SO07-01 ng/kg 0.4 90.4	NS
SW8290 Total HpCDF NA-ELEM-SO08-01 ng/kg 0.4 90.4	NS
SW8290 Total HpCDF NA-ELEM-SO01-01 ng/kg 0.4 9.4	NS
SW8290 Total HpCDF NA-ELEM-SO02-01 ng/kg 0.3 5.6	
SW8290 Total HpCDF NA-ELEM-SO03-01 ng/kg 0.6 153	
SW8290 Total HpCDF NA-ELEM-SO04-01 ng/kg 0.2 71.4	NS
SW8290 Total HpCDF NA-ELEM-SO05-01 ng/kg 1.5 9.6	NS
SW8290 Total HpCDF NA-ELEM-SO06-01 ng/kg 1.2 6.6 . . 487 SW8290 Total HpCDF NA-ELEM-SO07-01 ng/kg 0.6 700 . . 487 SW8290 Total HpCDF NA-ELEM-SO08-01 ng/kg 0.4 59.1 . . . 487 SW8290 Total HxCDD NA-ELEM-SO01-01 ng/kg 0.3 4.7 362 SW8290 Total HxCDD NA-ELEM-SO02-01 ng/kg 0.2 2.8 362 . </td <td></td>	
SW8290 Total HpCDF NA-ELEM-SO07-01 ng/kg 0.6 700 . 487 SW8290 Total HpCDF NA-ELEM-SO08-01 ng/kg 0.4 59.1 . . 487 SW8290 Total HxCDD NA-ELEM-SO01-01 ng/kg 0.3 4.7 . . 362 SW8290 Total HxCDD NA-ELEM-SO02-01 ng/kg 0.2 2.8 . . 362 SW8290 Total HxCDD NA-ELEM-SO03-01 ng/kg 0.5 40.5 . . . 362 SW8290 Total HxCDD NA-ELEM-SO04-01 ng/kg 0.1 48.8 . . . 362 1 SW8290 Total HxCDD NA-ELEM-SO05-01 ng/kg 1.1 4.6 . . 362 1 SW8290 Total HxCDD NA-ELEM-SO06-01 ng/kg 1.4 1.5 . . . 362 1 SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg </td <td></td>	
SW8290 Total HpCDF NA-ELEM-SO08-01 ng/kg 0.4 59.1 . 487 SW8290 Total HxCDD NA-ELEM-SO01-01 ng/kg 0.3 4.7 . . 362 SW8290 Total HxCDD NA-ELEM-SO02-01 ng/kg 0.2 2.8 . . 362 SW8290 Total HxCDD NA-ELEM-SO03-01 ng/kg 0.5 40.5 . . . 362 SW8290 Total HxCDD NA-ELEM-SO04-01 ng/kg 0.1 48.8 . . 362 SW8290 Total HxCDD NA-ELEM-SO05-01 ng/kg 1.1 4.6 . . 362 SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 1.4 1.5 . . . 362 SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487 </td <td></td>	
SW8290 Total HxCDD NA-ELEM-SO01-01 ng/kg 0.3 4.7 .	
SW8290 Total HxCDD NA-ELEM-SO02-01 ng/kg 0.5 4.7 .	
SW8290 Total HxCDD NA-ELEM-SO03-01 ng/kg 0.5 40.5 . . 362 I SW8290 Total HxCDD NA-ELEM-SO04-01 ng/kg 0.1 48.8 . . 362 I SW8290 Total HxCDD NA-ELEM-SO05-01 ng/kg 1.1 4.6 . . 362 I SW8290 Total HxCDD NA-ELEM-SO06-01 ng/kg 1.4 1.5 . . 362 I SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487 . . 362 I SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487 . . . 362 I	
SW8290 Total HxCDD NA-ELEM-SO04-01 ng/kg 0.1 48.8 . . 362 I SW8290 Total HxCDD NA-ELEM-SO05-01 ng/kg 1.1 4.6 . . 362 I SW8290 Total HxCDD NA-ELEM-SO06-01 ng/kg 1.4 1.5 . . 362 I SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487 . . 362 I SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487 . . . 362 I	
SW8290 Total HxCDD NA-ELEM-SO05-01 ng/kg 1.1 4.6 . . 362 I SW8290 Total HxCDD NA-ELEM-SO06-01 ng/kg 1.4 1.5 . . 362 I SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487 . . 362 I SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487 . . . 362 I	
SW8290 Total HxCDD NA-ELEM-SO06-01 ng/kg 1.4 1.5 .	
SW8290 Total HxCDD NA-ELEM-SO07-01 ng/kg 0.8 487	
SW8290 Total HyCDD NA FI EM SCOR 01 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
T 11 YEAR OF THE PARTY TO THE P	
SW8290 Total HyCDE NA ELEM SOOL 01 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
SW8290 Total HyCDE NA ELEM SCOO 01 144 03 13	
SW8290 Total HyCDE NA BY EM SCO2 01 1978 0.2 3.6	
SW8290 Total HyCDE NA ELEM SOO4 01 44 0 535 N	
SW8290 Total HxCDF NA-ELEM-SO04-01 ng/kg 0.1 84 . . 535 N SW8290 Total HxCDF NA-ELEM-SO05-01 ng/kg 0.7 14.2 . . . 535 N	

						Indus	strial	Resido	ential	Reference	Means Comparison Conclusion Reference vs.
Mathad	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method SW8290	Total HxCDF	NA-ELEM-SO06-01	ng/kg	1.1	5.4					535	NS
SW8290	Total HxCDF	NA-ELEM-SO07-01	ng/kg	0.6	767	-				535	NS
SW8290	Total HxCDF	NA-ELEM-SO08-01	ng/kg	0.2	44.8					535	
SW8290	Total PeCDD	NA-ELEM-SO01-01	ng/kg	0.4	0.68			. 1		205	NS
	Total PeCDD	NA-ELEM-SO02-01	ng/kg	0.2	0.61					205	
SW8290	Total PeCDD	NA-ELEM-SO03-01	ng/kg	0.5	9.9	•				205	
SW8290 SW8290	Total PeCDD	NA-ELEM-SO04-01	ng/kg	0.1	17.2			_	<u></u>	205	
	Total PeCDD	NA-ELEM-SO05-01	ng/kg	1	2.8	-	-			205	
SW8290	Total PeCDD	NA-ELEM-SO06-01	ng/kg	$\frac{1.1}{1.1}$	2.9			-	<u> </u>	205	
SW8290	Total PeCDD	NA-ELEM-SO07-01	ng/kg	0.6		•	•			205	
SW8290		NA-ELEM-SO08-01	ng/kg	0.3		<u> </u>	-	•		205	
SW8290	Total PeCDD	NA-ELEM-SO01-01	ng/kg	0.3		•	<u></u>	-	·	608	
SW8290	Total PeCDF	NA-ELEM-SO02-01		0.4					·	608	
SW8290	Total PeCDF	NA-ELEM-SO03-01	ng/kg	0.3		·		·	•	608	
SW8290	Total PeCDF	NA-ELEM-SO03-01	ng/kg	0.4	66.8	·	•	-	•	608	
SW8290	Total PeCDF	NA-ELEM-SO05-01	ng/kg ng/kg	0.1	5.9	-	·	-	·	608	
SW8290	Total PeCDF	NA-ELEM-SO06-01		0.9		•	-	•	-	608	
SW8290	Total PeCDF		ng/kg				-	•	•	608	
SW8290	Total PeCDF	NA-ELEM-SO07-01	ng/kg	0.4	1	•	*	•	•		NS
SW8290	Total PeCDF	NA-ELEM-SO08-01	ng/kg	0.2		-		-	•		NS
SW8290	Total TCDD	NA-ELEM-SO01-01	ng/kg	0.4		•		-	·		NS
SW8290	Total TCDD	NA-ELEM-SO02-01	ng/kg	0.3		<u> </u>		•	•		NS
SW8290	Total TCDD	NA-ELEM-SO03-01	ng/kg	0.4			•	-	·		NS
SW8290	Total TCDD	NA-ELEM-SO04-01	ng/kg	0.1			-	·	-		NS
8290	Total TCDD	NA-ELEM-SO05-01	ng/kg	0.6					•		
8290	Total TCDD	NA-ELEM-SO06-01	ng/kg	0.8					-		NS
SW8290	Total TCDD	NA-ELEM-SO07-01	ng/kg	0.4			-	·	<u>. </u>		NS NS
SW8290	Total TCDD	NA-ELEM-SO08-01	ng/kg	0.2			·				
SW8290	Total TCDF	NA-ELEM-SO01-01	ng/kg	0.3			ļ.				NS NS
SW8290	Total TCDF	NA-ELEM-SO02-01	ng/kg	0.3		<u> </u>	<u> </u>		•		
SW8290	Total TCDF	NA-ELEM-SO03-01	ng/kg	0.3		·		-			NS
SW8290	Total TCDF	NA-ELEM-SO04-01	ng/kg	0.09		<u> </u>		·			NS NS
SW8290	Total TCDF	NA-ELEM-SO05-01	ng/kg	0.6			<u>-</u>	-		1	
SW8290	Total TCDF	NA-ELEM-SO06-01	ng/kg	0.6		-		-	·		NS
SW8290	Total TCDF	NA-ELEM-SO07-01	ng/kg	0.3				-	ļ		NS
SW8290	Total TCDF	NA-ELEM-SO08-01	ng/kg								NS
ILM04.0	Cyanide	NA-ELEM-SO01-01	mg/kg		ND	41000					NC
ILM04.0	Cyanide	NA-ELEM-SO02-01	mg/kg		ND	41000					NC
ILM04.0	Cyanide	NA-ELEM-SO03-01	mg/kg	4	ND	41000					NC
ILM04.0	Cyanide	NA-ELEM-SO04-01	mg/kg		ND	41000					NC
ILM04.0	Cyanide	NA-ELEM-SO05-01	mg/kg	4	ND	41000					NC
ILM04.0	Cyanide	NA-ELEM-SO06-01	mg/kg		ND	41000					NC
ILM04.0	Cyanide	NA-ELEM-SO07-01	mg/kg	·	ND	41000					NC
ILM04.0	Cyanide	NA-ELEM-SO08-01	mg/kg		ND	41000					NC
ILMO4.0	Aluminum	NA-ELEM-SO01-01	mg/kg		15500		200000				
ILMO4.0	Aluminum	NA-ELEM-SO02-01	mg/kg				200000				
ILMO4.0	Aluminum	NA-ELEM-SO03-01	mg/kg				200000				
ILMO4.0	Aluminum	NA-ELEM-SO04-01	mg/kg				200000				
ILMO4.0	Aluminum	NA-ELEM-SO05-01	mg/kg				200000				
ILMO4.0	Aluminum	NA-ELEM-SO06-01	mg/kg	g 1.6			200000				
ILMO4.0	Aluminum	NA-ELEM-SO07-01	mg/kg				200000				
ILMO4.0	Aluminum	NA-ELEM-SO08-01	mg/kg		54100		200000				
MO4.0	Antimony	NA-ELEM-SO01-01	mg/kg	0.4	0.46 J	820					I NS
O4.0	Antimony	NA-ELEM-SO02-01	mg/kg	3 0.46	ND UL	820	82	31	3.1	2.4	NS

					1	1				· · · · · ·	
ļ											Means
			İ	ļ							
ł			1			1		1			Comparison Conclusion
1						Indu	strial	Posic	dential	Reference	
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Reference v
ILMO4.0	Antimony	NA-ELEM-SO03-01	mg/kg		0.99 J	820	82				Site NS
ILMO4.0	Antimony	NA-ELEM-SO04-01	mg/kg		0.49 J	820	82				NS
ILMO4.0	Antimony	NA-ELEM-SO05-01	mg/kg	0.41	0.46 J	820	82				NS
ILMO4.0	Antimony	NA-ELEM-SO06-01	mg/kg		ND UL	820	82				NS
ILMO4.0	Antimony	NA-ELEM-SO07-01	mg/kg		2.5 J	820	82	31	3.1		NS
ILMO4.0	Antimony Arsenic	NA-ELEM-SO08-01	mg/kg		1.5 J	820	82	31	3.1		NS
ILMO4.0	Arsenic	NA-ELEM-SO01-01	mg/kg	0.55		3.8	3.8	0.43		6.64	NS
ILMO4.0	Arsenic	NA-ELEM-SO02-01 NA-ELEM-SO03-01	mg/kg	0.61			3.8			6.64	NS
ILMO4.0	Arsenic	NA-ELEM-SO04-01	mg/kg	0.7	3.9	3.8	3.8	0.43		6.64	
ILMO4.0	Arsenic	NA-ELEM-SO05-01	mg/kg	0.62	3.8	3.8	3.8	0.43	1	6.64	
ILMO4.0	Arsenic	NA-ELEM-SO06-01	mg/kg mg/kg	0.55 0.54		3.8	3.8	0.43		6.64	
ILMO4.0	Arsenic	NA-ELEM-SO07-01	mg/kg	0.54		3.8	3.8		1	6.64	
ILMO4.0	Arsenic	NA-ELEM-SO08-01	mg/kg	0.78	3.1	3.8	3.8 3.8	0.43 0.43		6.64	
ILMO4.0	Barium	NA-ELEM-SO01-01	mg/kg			140000	14000	5500	550	6.64 130	
ILMO4.0	Barium	NA-ELEM-SO02-01	mg/kg			140000	14000	5500		130	
ILMO4.0	Barium	NA-ELEM-SO03-01	mg/kg				14000	5500	550	130	
ILMO4.0	Barium	NA-ELEM-SO04-01	mg/kg		35 K	140000	14000	5500	550	130	
ILMO4.0	Barium	NA-ELEM-SO05-01	mg/kg		18.8 K	140000	14000	5500		130	
ILMO4.0	Barium	NA-ELEM-SO06-01	mg/kg			140000	14000	5500	550	130	
ILMO4.0	Barium	NA-ELEM-SO07-01	mg/kg			140000	14000	5500	550	130	
ILMO4.0 ILMO4.0	Barium	NA-ELEM-SO08-01	mg/kg			140000	14000	5500	550	130	
ILMO4.0	Beryllium Beryllium	NA-ELEM-SO01-01	mg/kg	0.14		4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-ELEM-SO02-01	mg/kg	0.15		4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-ELEM-SO03-01 NA-ELEM-SO04-01	mg/kg	0.17	0.24	4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-ELEM-SO05-01	mg/kg	0.16		4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-ELEM-SO06-01	mg/kg mg/kg	0.14 0.13		4100 4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-ELEM-SO07-01	mg/kg	0.13	0.35	4100	410 410	160 160	16	0.25	
ILMO4.0	Beryllium	NA-ELEM-SO08-01	mg/kg	0.2		4100	410	160	16 16	0.25	
ILMO4.0	Cadmium	NA-ELEM-SO01-01	mg/kg		0.23 K	1000	100	39	3.9	0.25 1.26	
ILMO4.0	Cadmium	NA-ELEM-SO02-01	mg/kg		0.16 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-ELEM-SO03-01	mg/kg		0.59 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-ELEM-SO04-01	mg/kg		0.38 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-ELEM-SO05-01	mg/kg	0.14	0.25 K	1000	100	39	3.9	1.26	
	Cadmium	NA-ELEM-SO06-01	mg/kg	0.13	0.23 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-ELEM-SO07-01	mg/kg	0.24		1000	100	39	3.9	1.26	
ILMO4.0 ILMO4.0	Cadmium Calcium	NA-ELEM-SO08-01	mg/kg		0.89 K	1000	100	39	3.9	1.26	
ILMO4.0	Calcium	NA-ELEM-SO01-01	mg/kg		10600					15400 1	
ILMO4.0	Calcium	NA-ELEM-SO02-01 NA-ELEM-SO03-01	mg/kg	4	9570					15400 1	VS
ILMO4.0	Calcium	NA-ELEM-SO04-01	mg/kg	4.5	13700					15400 1	
	Calcium	† ************************************	mg/kg		10300				·	15400 1	
	Calcium	NA-ELEM-SO06-01	mg/kg mg/kg		11400 . 14300 .	- 				15400 1	
	Calcium		mg/kg		13100					15400	
ILMO4.0	Calcium		mg/kg	5.1	9890			} :	-	15400 N	
	Chromium	NA-ELEM-SO01-01	mg/kg	0.14		10000	1000	300	- 30	15400 1	
	Chromium	NA-ELEM-SO02-01	mg/kg	0.15		10000	1000	390	39	39.9	
	Chromium	NA-ELEM-SO03-01	mg/kg	0.17		10000	1000	390	39	39.9	
	Chromium	T	mg/kg	0.16		10000	1000	390	39	39.9 N	
	Chromium	NA-ELEM-SO05-01	mg/kg	0.14		10000	1000	390	39	39.9 N	
	Chromium	NA-ELEM-SO06-01	mg/kg	0.13		10000	1000	390	39	39.9 N	
ILMO4.0	Chromium		mg/kg	0.24		10000	1000	390	39	39.9 N	

						Indus	strial	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
		_		3 CDT	Descrit	RBC	RBSL		RBSL	UTL	Site
Method	Analyte	Sample ID	Units		Result	10000	1000	390	39	39.9	
LMO4.0	Chromium	NA-ELEM-SO08-01	mg/kg	0.2	26.7	120000	12000	4700	470		
LMO4.0	Cobalt		mg/kg				12000	4700	470		
ILMO4.0	Cobalt	NA-ELEM-SO02-01	mg/kg			120000	12000	4700	470		
ILMO4.0	Cobalt	NA-ELEM-SO03-01	mg/kg			120000	12000	4700	470		
ILMO4.0	Cobalt	NA-ELEM-SO04-01	mg/kg			120000		4700	470		
ILMO4.0	Cobalt	NA-ELEM-SO05-01	mg/kg			120000	12000 12000	4700	470		
ILMO4.0	Cobalt	NA-ELEM-SO06-01	mg/kg			120000		4700	470	·	
ILMO4.0	Cobalt	NA-ELEM-SO07-01	mg/kg			120000		4700	470		
ILMO4.0	Cobalt	NA-ELEM-SO08-01	mg/kg			120000		3100	310		NS
ILMO4.0	Copper	NA-ELEM-SO01-01	mg/kg		20.9	82000		3100	310		NS
ILMO4.0	Copper	NA-ELEM-SO02-01	mg/kg		7.1	82000	8200		310		NS
ILMO4.0	Copper	NA-ELEM-SO03-01	mg/kg		67.5	82000		3100	310		NS
ILMO4.0	Copper	NA-ELEM-SO04-01	mg/kg			82000		3100	310		NS
ILMO4.0	Copper	NA-ELEM-SO05-01	mg/kg			82000		3100			NS
ILMO4.0	Copper	NA-ELEM-SO06-01	mg/kg			82000		3100	310		NS
ILMO4.0	Copper	NA-ELEM-SO07-01	mg/kg			82000		3100	310		
ILMO4.0	Copper	NA-ELEM-SO08-01	mg/kg			82000			310		NS
ILMO4.0	Iron	NA-ELEM-SO01-01	mg/kg			610000			2300		
ILMO4.0	Iron	NA-ELEM-SO02-01	mg/kg			610000			2300		
ILMO4.0	Iron	NA-ELEM-SO03-01	mg/kg	2.4		610000			2300		
ILMO4.0	Iron	NA-ELEM-SO04-01	mg/kg	g 2.2		610000			2300	60600	
ILMO4.0	Iron	NA-ELEM-SO05-01	mg/kg	3 1.9		610000					
ILMO4.0	Iron	NA-ELEM-SO06-01	mg/k	1.9		610000					
MO4.0	Iron	NA-ELEM-SO07-01	mg/k			610000					
MO4.0	Iron	NA-ELEM-SO08-01	mg/k		47400	610000	61000				
ILMO4.0	Lead	NA-ELEM-SO01-01	mg/k		3.1						5 NS
ILMO4.0	Lead	NA-ELEM-SO02-01	mg/k		3						5 NS
ILMO4.0	Lead	NA-ELEM-SO03-01	mg/k		16	400					5 NS
ILMO4.0	Lead	NA-ELEM-SO04-01	mg/k		7.5	400	400	400			5 NS
ILMO4.0	Lead	NA-ELEM-SO05-01	mg/k			400					5 NS
		NA-ELEM-SO06-01	mg/k		7 3.3	400	400	400	40		5 NS
ILMO4.0	Lead	NA-ELEM-SO07-01	mg/k	<u></u>		400	400	400	40		5 NS
ILMO4.0	Lead Lead	NA-ELEM-SO08-01	mg/k				400	400	40		5 NS
ILMO4.0		NA-ELEM-SO01-01	mg/k) .					0 NS
ILMO4.0	Magnesium	NA-ELEM-SO02-01	mg/k).	1.		1.		0 NS
ILMO4.0	Magnesium	NA-ELEM-SO03-01	mg/k				1.	1.			0 NS
ILMO4.0		NA-ELEM-SO04-01	mg/k		1 5480).					0 NS
ILMO4.0		NA-ELEM-SO05-01	mg/k					1.	1.		0 NS
ILMO4.0		NA-ELEM-SO06-01	mg/k					i			0 NS
ILMO4.0		NA-ELEM-SO07-01	mg/k				1.	1.			0 NS
ILMO4.0		NA-ELEM-SO08-01	mg/k					ļ.	1.		0 NS
ILMO4.0		NA-ELEM-SO01-01	mg/k				0 410	0 1600	16	0 105	0 NS
ILMO4.0		NA-ELEM-SO02-01	mg/l							105	0 NS
ILMO4.0				<u> </u>							0 NS
ILMO4.0		NA-ELEM-SO03-01	mg/l						_ L		0 NS
ILMO4.0		NA-ELEM-S004-01	mg/l								0 NS
ILMO4.0		NA-ELEM-S005-01									ONS
ILMO4.0		NA-ELEM-SO06-01	mg/l	10							SOINS
ILMO4.0		NA-ELEM-SO07-01	mg/l								ONS
ILMO4.0		NA-ELEM-SO08-01		_=-		20		0 7.			28 NS
ILMO4.0		NA-ELEM-SO01-01			2 ND			0 7.			28 NS
ILMO4.0	Mercury	NA-ELEM-SO02-01			2 ND	20		0 7.			28 NS
W MO4.0	Mercury	NA-ELEM-SO03-01						20 7.			28 NS
104.0	Mercury	NA-ELEM-SO04-01	mg/	kg 0.0	2 ND	20	JU 2	<u>.vj /.</u>	<u>0</u> υ.	10 0.2.	20 110

Math						Indu	strial	Resid	dential	Potonomas	Means Comparison Conclusion
Method ILMO4.0	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Reference ve
ILMO4.0	Mercury	NA-ELEM-SO05-01	mg/kg	0.02		200	20				Site
ILMO4.0	Mercury	NA-ELEM-SO06-01	mg/kg	0.02	ND	200	20				
ILMO4.0	Mercury	NA-ELEM-SO07-01	mg/kg	0.03	0.13		20			0.228 0.228	
LMO4.0	Mercury Nickel	NA-ELEM-SO08-01	mg/kg	0.02	0.07	200	20	7.8		0.228	NC
LMO4.0	Nickel	NA-ELEM-SO01-01	mg/kg	0.27	8.4		4100	1600		39.5	NC
LMO4.0	Nickel	NA-ELEM-SO02-01	mg/kg	0.3	4.9	41000	4100	1600		39.5	NS
LMO4.0	Nickel	NA-ELEM-SO03-01	mg/kg	0.35	17.3	41000	4100	1600		39.5	NS
LMO4.0	Nickel	NA-ELEM-SO04-01	mg/kg	0.31	13.6	41000	4100	1600	160	39.5	
LMO4.0	Nickel	NA-ELEM-SO05-01	mg/kg	0.28	14.1	41000	4100	1600	160	39.5	
LMO4.0	Nickel	NA-ELEM-SO06-01	mg/kg	0.27	7.8	41000	4100	1600	160	39.5	
LMO4.0	Nickel	NA-ELEM-SO07-01	mg/kg	0.47	37.5	41000	4100	1600	160	39.5	
LMO4.0		NA-ELEM-SO08-01	mg/kg	0.39	29.1	41000	4100	1600	160	39.5	
LMO4.0	Potassium	NA-ELEM-SO01-01	mg/kg	0.82	688				100	643	
	Potassium	NA-ELEM-SO02-01	mg/kg	0.91	553	.	_		-	643	
LMO4.0	Potassium	NA-ELEM-SO03-01	mg/kg	1	890	.		-	-	643	
	Potassium	NA-ELEM-SO04-01	mg/kg	0.93	1060			-		643	
LMO4.0	Potassium	NA-ELEM-SO05-01	mg/kg	0.83	640				· 	643	
LMO4.0	Potassium	NA-ELEM-SO06-01	mg/kg	0.81	612	. —	·	-	·	643	
	Potassium	NA-ELEM-SO07-01	mg/kg	1.4	1020	<u> </u>	· - 1	 	`	643 5	
	Potassium	NA-ELEM-SO08-01	mg/kg	1.2	554	·			•		
	Selenium	NA-ELEM-SO01-01	mg/kg		ND UL	10000	1000	390	39	643 5	<u> </u>
_MO4.0	Selenium	NA-ELEM-SO02-01	mg/kg		ND UL	10000	1000	390		0.794 1	VS
	Selenium	NA-ELEM-SO03-01	mg/kg		ND UL	10000	1000	390	39	0.794	
	Selenium	NA-ELEM-SO04-01	mg/kg	0.31 1	ND UL	10000	1000	390	39	0.794	
	Selenium	NA-ELEM-SO05-01	mg/kg	0.281	ND UL	10000	1000	390	39	0.794 N	
	Selenium	NA-ELEM-SO06-01	mg/kg		VD UL	10000	1000	390	39	0.794 N	
	Selenium	NA-ELEM-SO07-01	mg/kg	0.47		10000	1000	390	39	0.794 N	
	Selenium	NA-ELEM-SO08-01	mg/kg	0.39		10000	1000	390	39	0.794 N	
	Silver	NA-ELEM-SO01-01	mg/kg	0.14 N		10000	1000		39	0.794 N	
	Silver	NA-ELEM-SO02-01	mg/kg	0.15 N		10000		390	39	0.61 N	
	Silver	NA-ELEM-SO03-01	mg/kg	0.17	0.18	10000	1000	390	39	0.61 N	
	Silver	NA-ELEM-SO04-01	mg/kg	0.17 0.16 N			1000	390	39	0.61 N	
	Silver	NA-ELEM-SO05-01	mg/kg	0.14 N		10000	1000	390	39	0.61 N	
	Silver	NA-ELEM-SO06-01	mg/kg	0.13 N		10000	1000	390	39	0.61 N	
MO4.0	Silver	NA-ELEM-SO07-01	mg/kg	0.13			1000	390	39	0.61 N	
	Silver		mg/kg	0.24	0.3	10000	1000	390	39	0.61 N	
MO4.0	Sodium	NA-ELEM-SO01-01				10000	1000	390	39	0.61 N	
	Sodium	NA-ELEM-SO02-01	mg/kg	13.7	821 .			<u> </u>		2430 N	S
	Sodium		mg/kg	15.2	601 .	<u> </u>				2430 N	S
	Sodium		mg/kg	17.4	613	<u>.</u>	<u>.</u>			2430 N	s
	Sodium		mg/kg	15.5	1190 .		_ <u> .</u>			2430 N	Š
MO4.0 S	Sodium		mg/kg	13.8	781 .	<u> -</u>				2430 N	S
	Sodium		mg/kg	13.5	872 .	<u> </u>				2430 N	
	Sodium	3 1 A THE CO	mg/kg	23.6	569 .					2430 N	
	Thallium	2.7.4	mg/kg	19.6	1210			1.		2430 N	
	Thallium		mg/kg	0.55 N		140	14	5.5	0.55	1.82 N	
	hallium		mg/kg	0.61 N		140	14	5.5	0.55	1.82 N	
	hallium		mg/kg	0.7 N		140	14	5.5	0.55	1.82 N	
	hallium		mg/kg	0.62 N		140	14	5.5	0.55	1.82 N	
	hallium		mg/kg	0.55 N		140	14	5.5	0.55	1.82 N	
	hallium		mg/kg	0.54 N		140	14	5.5	0.55	1.82 NS	
			mg/kg	0.94 1.		140	14	5.5	0.55	1.82 NS	
	hallium	NA-ELEM-SO08-01	mg/kg	0.78 1.4	4 L	140	14	5.5	0.55		
104.0 V	anadium	NA-ELEM-SO01-01	mg/kg	0.14		14000	1400	550	55	1.82 NS 268 NS	

						Indus	atrial	Resid	_	Reference	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
LMO4.0	Vanadium	NA-ELEM-SO02-01	mg/kg	0.15	25.1	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-ELEM-SO03-01	mg/kg	0.17	117	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-ELEM-SO04-01	mg/kg	0.16	56.4	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-ELEM-SO05-01	mg/kg	0.14	60.2	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-ELEM-SO06-01	mg/kg	0.13	46	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-ELEM-SO07-01	mg/kg	0.24	263	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-ELEM-SO08-01	mg/kg	0.2	192	14000	1400	550	55	268	
LMO4.0	Zinc	NA-ELEM-SO01-01	mg/kg	0.14		610000		23000		224	
LMO4.0	Zinc	NA-ELEM-SO02-01	mg/kg	0.15		610000	61000	23000	2300	224	
LMO4.0	Zinc	NA-ELEM-SO03-01	mg/kg	0.17		610000	61000	23000	2300		NS
LMO4.0	Zinc	NA-ELEM-SO04-01	mg/kg			610000	61000	23000	2300		NS NS
LMO4.0	Zinc	NA-ELEM-SO05-01	mg/kg			610000		23000	2300		NS
LMO4.0	Zinc	NA-ELEM-SO06-01	mg/kg			610000		23000	2300		NS
ILMO4.0	Zinc	NA-ELEM-SO07-01	mg/kg			610000	61000	23000			NS
ILMO4.0	Zinc	NA-ELEM-SO08-01	mg/kg			610000	61000	23000	2300 780		
300	Chloride	NA-ELEM-SO02-01	mg/kg			200000	20000				
	Chloride	NA-ELEM-SO04-01	mg/kg			200000	20000	7800			
300	Fluoride	NA-ELEM-SO02-01	mg/kg			120000	12000	4700			
300	Fluoride	NA-ELEM-SO04-01	mg/kg				12000	4700			NS
353.2	Nitrate	NA-ELEM-SO02-01	mg/kg				330000				NS NS
252.2	Nitrata	NA-ELEM-SO04-01 = Not calculated because re	mg/kg	1.27	16.3	3E+06	330000	130000	13000	I	INO

Means Com

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Significant. On average, site data were significantly greater than reference data.

Method							ıstrial	Resi	dential	Reference	Means Comparison Conclusion Reference v
OLM03.2	Analyte 4,4'-DDD	Sample ID	Units		Result		RBSL	RBC		UTL	Site
OLM03.2	4,4'-DDD	NA-ELEM-SO01-02		0.18		24000			2700		NC SILE
OLM03.2	4,4'-DDD	NA-ELEM-SO03-02 NA-ELEM-SO05-02			140 J	24000					NC
OLM03.2	4,4'-DDD	NA-ELEM-SO07-02		0.18		24000					NC
OLM03.2	4,4'-DDE	NA-ELEM-SO01-02		0.34		24000				NC	NC
OLM03.2	4,4'-DDE	NA-ELEM-SO03-02		0.18		17000				5.8	NS
OLM03.2	4,4'-DDE	NA-ELEM-SO05-02	ug/kg ug/kg	0.46		17000	4			5.8	NS
OLM03.2	4,4'-DDE	NA-ELEM-SO07-02		0.18		17000				5.8	NS
OLM03.2	4,4'-DDT	NA-ELEM-SO01-02	ug/kg	0.34 0.18	14	17000				5.8	
OLM03.2	4,4'-DDT	NA-ELEM-SO03-02	ug/kg	0.18	ND 64	17000				1.7	
OLM03.2	4,4'-DDT	NA-ELEM-SO05-02	ug/kg	0.48				1900		1.7	
OLM03.2	4,4'-DDT	NA-ELEM-SO07-02	ug/kg	0.18	23	17000 17000		1900		1.7	
OLM03.2	Aldrin	NA-ELEM-SO01-02	ug/kg	0.18	NIS Z3	340	17000	1900		1.7	
OLM03.2	Aldrin	NA-ELEM-SO03-02	ug/kg	0.16			340				NC
OLM03.2	Aldrin	NA-ELEM-SO05-02	ug/kg	0.18		340 340	340 340	38			NC
OLM03.2	Aldrin	NA-ELEM-SO07-02	ug/kg	0.34		340	340	38			NC
OLM03.2	Aroclor-1016	NA-ELEM-SO01-02	ug/kg	0.18		2900	2900	38			NC
	Aroclor-1016	NA-ELEM-SO03-02	ug/kg	0.46		2900	2900	320			NC
OLM03.2	Aroclor-1016	NA-ELEM-SO05-02	ug/kg	0.18	VID I	2900	2900	320	320		NC
	Aroclor-1016	NA-ELEM-SO07-02	ug/kg	0.34 1		2900	2900	320	320		NC
	Aroclor-1221	NA-ELEM-SO01-02	ug/kg	0.18		2900	2900	320	320		NC
	Aroclor-1221	NA-ELEM-SO03-02	ug/kg	0.46		2900	2900	320 320	320		NC
	Aroclor-1221	NA-ELEM-SO05-02	ug/kg	0.18		2900	2900	320	320 1		NC
	Aroclor-1221	NA-ELEM-SO07-02	ug/kg	0.34 N		2900	2900	320	320 1		NC
	Aroclor-1232	NA-ELEM-SO01-02	ug/kg	0.18		2900	2900	320	320 l		NC
	Aroclor-1232	NA-ELEM-SO03-02	ug/kg	0.46 N		2900	2900	320	320 1		VC YC
	Aroclor-1232	NA-ELEM-SO05-02	ug/kg	0.18 N		2900	2900	320	320 1		VC
	Aroclor-1232	NA-ELEM-SO07-02	ug/kg	0.34 N	ND	2900	2900	320	320 N		VC
	Aroclor-1242	NA-ELEM-SO01-02	ug/kg	0.18 N	ID	2900	2900	320	320 N		VC
	Aroclor-1242	NA-ELEM-SO03-02	ug/kg	0.46 N		2900	2900	320	320 N		VC
	Aroclor-1242	NA-ELEM-SO05-02	ug/kg	0.18 N		2900	2900	320	320 N		VC
	Aroclor-1242	NA-ELEM-SO07-02	ug/kg	0.34 N		2900	2900	320	320 N		NC NC
	Aroclor-1248	NA-ELEM-SO01-02	ug/kg	0.18 N		2900	2900	320	320 N		
	Aroclor-1248	NA-ELEM-SO03-02	ug/kg	0.46 N		2900	2900	320	320 N		VC
	Aroclor-1248	NA-ELEM-SO05-02	ug/kg	0.18 N		2900	2900	320	320 N		VC
	Aroclor-1248	NA-ELEM-SO07-02	ug/kg	0.34 N		2900	2900	320	320 N		(C
	Aroclor-1254	NA-ELEM-SO01-02	ug/kg	0.18 N		2900	2900	320	320 N		iC IC
	Aroclor-1254	NA-ELEM-SO03-02	ug/kg	0.46 N	D	2900	2900	320	320 N		ic
	Aroclor-1254	NA-ELEM-SO05-02	ug/kg	0.18 N	D	2900	2900	320	320 N		ic
	Aroclor-1254	NA-ELEM-SO07-02	ug/kg	0.34 N	D	2900	2900	320	320 N		ic -
	Aroclor-1260	NA-ELEM-SO01-02	ug/kg	0.18 N	D	2900	2900	320	320 N		ic —
	Aroclor-1260	NA-ELEM-SO03-02	ug/kg	0.46 N	D	2900	2900	320	320 N		ic
	Aroclor-1260		ug/kg	0.18 N		2900	2900	320	320 N		$\frac{c}{c}$
	Aroclor-1260		ug/kg	0.34 N		2900	2900	320	320 N		$\frac{c}{c}$
	Dieldrin Dieldrin	INTA PROPERTY OF THE PARTY OF T	ug/kg	0.18 N		360	360	40	40 N		$\frac{c}{c}$
	Dieldrin Dieldrin		ug/kg	0.46 N		360	360	40	40 N		
	Dieldrin		ug/kg	0.18 N	D	360	360	40	40 N		
			ug/kg	0.34 N		360	360	40	40 N		
	ndosulfan I		ug/kg	0.18 NI			E+06 47		47000 N		
	ndosulfan I	NA-ELEM-SO03-02	ug/kg	0.46 NI		E+07 1	E+06 47		47000 N		
	ndosulfan I	NA-ELEM-SO05-02	ug/kg	0.18 NI	0 1		E+06 47		47000 N		
	ndosulfan I	NA-ELEM-SO07-02	ug/kg	0.34 NI			E+06 47		47000 N		
-M103.2	ndosulfan II	NA-ELEM-SO01-02	ug/kg	0.18 NI			E+06 47		47000 N		

						<u>Industrial</u>		esident		Reference	Means Comparison Conclusion Reference vs Site
	Auglieto	Sample ID	Units	MDL	Result	RBC RBS			BSL	UTL	NC Site
Method	Analyte	NA-ELEM-SO03-02	ug/kg	0.46	ND		6 4700		7000		
	Endosulfan II	NA-ELEM-SO05-02	ug/kg	0.18			06 470		7000		NC
LM03.2	Endosulfan II	NA-ELEM-SO07-02	ug/kg	0.34	ND		06 470		7000		NC
	Endosulfan II	NA-ELEM-SO01-02	ug/kg	0.18			06 470		7000		NC
LM03.2	Endosulfan sulfate	NA-ELEM-SO03-02	ug/kg	0.46		1E+07 1E+0	06 470		7000		NC
LM03.2	Endosulfan sulfate	NA-ELEM-SO05-02	ug/kg	0.18			06 470		7000	NC	NC
LM03.2	Endosulfan sulfate	NA-ELEM-SO07-02	ug/kg	0.34			06 470		7000		NC
LM03.2	Endosulfan sulfate	NA-ELEM-SO01-02	ug/kg	0.18		610000 610			2300		NC
LM03.2	Endrin	NA-ELEM-SO03-02	ug/kg	0.46		610000 610		000	2300		NC
LM03.2	Endrin	NA-ELEM-SO05-02	ug/kg	0.18		610000 610	00 23	000	2300		NC
LM03.2	Endrin		ug/kg	0.34		610000 610		000	2300		NC
LM03.2	Endrin	NA-ELEM-SO07-02		0.18	ND	610000 610		000	2300	NC	NC
LM03.2	Endrin aldehyde	NA-ELEM-SO01-02	ug/kg		ND	610000 610		000	2300	NC	NC
LM03.2	Endrin aldehyde	NA-ELEM-SO03-02	ug/kg		ND	610000 610		000	2300	NC	NC
LM03.2	Endrin aldehyde	NA-ELEM-SO05-02	ug/kg		ND	610000 610		3000	2300		NC
LM03.2	Endrin aldehyde	NA-ELEM-SO07-02	ug/kg			610000 610		3000	2300		NC
LM03.2	Endrin ketone	NA-ELEM-SO01-02	ug/kg		ND_	610000 610		3000	2300		NC
LM03.2	Endrin ketone	NA-ELEM-SO03-02	ug/kg		ND	610000 610		3000	2300	NC	NC
LM03.2	Endrin ketone	NA-ELEM-SO05-02	ug/kg		ND	610000 610		3000	2300	NC	NC
LM03.2	Endrin ketone	NA-ELEM-SO07-02	ug/kg		ND		300 2.	140		NC	NC
LM03.2	Heptachlor	NA-ELEM-SO01-02	ug/kg		ND		300	140		NC	NC
LM03.2	Heptachlor	NA-ELEM-SO03-02	ug/kg				300	140		NC	NC
LM03.2	Heptachlor	NA-ELEM-SO05-02	ug/kg		ND		300	140		NC	NC
LM03.2		NA-ELEM-SO07-02	ug/kg		4 ND			70		NC	NC
M03.2		NA-ELEM-SO01-02	ug/kg		8 ND		630	70		NC	NC
M03.2		NA-ELEM-SO03-02	ug/kg		6 ND		630			NC	NC
)LM03.2		NA-ELEM-SO05-02	ug/kg		8 ND		630	70		NC	NC NC
		NA-ELEM-SO07-02	ug/kg		4 ND		630	70			NC NC
DLM03.2		NA-ELEM-SO01-02	ug/kg		8 ND		+06 39		39000		NC NC
DLM03.2		NA-ELEM-SO03-02	ug/kg		6 ND		+06 39	0000	39000		NC NC
OLM03.2		NA-ELEM-SO05-02	ug/kg		8 ND		+06 39		39000		NC NC
OLM03.2		NA-ELEM-SO07-02	ug/k		4 ND		+06 39		3900		NC NC
OLM03.2		NA-ELEM-SO01-02			8 ND		200	580		0 NC	
OLM03.2		NA-ELEM-SO03-02	ug/k		6 ND		200	580		0 NC	NC
OLM03.2		NA-ELEM-SO05-02	ug/k		8 ND		200	580		0 NC	NC
OLM03.2		NA-ELEM-SO07-02	_ +	~ ~ ~	4 ND	5200 5	200	580	58	0 NC	NC
OLM03.2	2 Toxaphene	NA-ELEM-SO01-02			8 ND		910	100	10	0 NC	NC
OLM03.2		NA-ELEM-SO03-02			6 ND	910	910	100		0 NC	NC
OLM03.2		NA-ELEM-SO05-02	ug/k	<u></u>	8 ND		910	100		0 NC	NC
OLM03.2	alpha-BHC	NA-ELEM-SO07-02	ug/k		34 ND	910	910	100		0 NC	NC
OLM03.2		NA-ELEMI-3007-02	ug/k		18 ND		6000	1800	180	0 NC	NC
OLM03.		NA-ELEM-SO01-02					6000	1800	180	0 NC	NC
OLM03.2	2 alpha-Chlordane	NA-ELEM-SO03-02	ug/K		18 ND		6000	1800		0 NC	NC
OLM03.	2 alpha-Chlordane	NA-ELEM-SO05-02	2 ug/k	·	34 ND		6000	1800		NC NC	NC
OLM03.	2 alpha-Chlordane	NA-ELEM-SO07-0			18 ND		3200	350		0 NC	NC
OLM03.	2 beta-BHC	NA-ELEM-SO01-0			46 ND		3200	350		50 NC	NC
OLM03.		NA-ELEM-SO03-0	2 ug/l				3200	350	34	0 NC	NC
OLM03.		NA-ELEM-SO05-0	2 ug/l		18 ND		3200	350	34	0 NC	NC
OLM03.		NA-ELEM-SO07-0	2 ug/l	_~	34 ND		3200	350		50 NC	NC
OLM03		NA-ELEM-SO01-0	2 ug/l		18 ND		3200	350		50 NC	NC
OLM03		NA-ELEM-SO03-0	2 ug/l		46 ND		3200	350		50 NC	NC
OLM03		NA-ELEM-SO05-0	2 ug/		18 ND			350		50 NC	NC
OLM03		NA-ELEM-SO07-0	2 ug/		34 ND		3200			90 NC	NC NC
OLMO3		NA-ELEM-SO01-0	2 ug/		.18 ND		4400	490		90 NC	NC
M03		NA-ELEM-SO03-0	2 ug/	kg 0	.46 ND	4400	4400	490	4	20 114C	11.0

Method OLM03.2	Analyte gamma-BHC(Lindane)	Sample ID	Units	MDL	Result	Indu	strial RBSL	Resid	lential	Reference	
OLM03.2	gamma-BHC(Lindane)	NA-ELEM-SO05-0	2 ug/kg	0.18		4400				UTL	Site
OLM03.2	gamma-Chlordane)	NA-ELEM-SO07-0		0.34	ND	4400				NC	NC
OLM03.2	gamma-Chlordane	NA-ELEM-SO01-02	2 ug/kg	0.18		16000			1	NC	NC
OLM03.2		NA-ELEM-SO03-02	2 ug/kg	4.6	420				1800		NC
OLM03.2	gamma-Chlordane gamma-Chlordane	NA-ELEM-SO05-02	2 ug/kg	0.18		16000	16000		1800		NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO07-02	2 ug/kg	0.34		16000	16000		1800		NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO01-02	2 ug/kg	37		2E+07		780000	1800		NC
	1.2.4 Trichlorobenzene	NA-ELEM-SO03-02	ug/kg	46	ND	2E+07	2E+06	780000	78000		NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO05-02	ug/kg	37		2E+07	25-06	780000	78000		NC
	1,2,4-Trichlorobenzene	NA-ELEM-SO07-02	ug/kg	67		2E+07	2E+06	780000	78000		NC
NAMO2.2	1,2-Dichlorobenzene	NA-ELEM-SO01-02	110/kg	37		2E+08	2E+07		78000		NC
LMO3.2	1,2-Dichlorobenzene	NA-ELEM-SO03-02	ug/kg	46 1		2E+08		/E+06	700000		NC
LMO3.2	1,2-Dichlorobenzene	NA-ELEM-SO05-02	no/ko	37	VD	2E+08	2E+07	7E+06	700000		NC
V MO3.2	1,2-Dichlorobenzene	NA-ELEM-SO07-02	ug/kg	67 1		2E+08	2E+07		700000 1		NC
LMO3.2	1,3-Dichlorobenzene	NA-ELEM-SO01-02	ug/kg	37 1	3 5	6E+07	2E+07		700000 1		NC
LMO3.2	1,3-Dichlorobenzene	NA-ELEM-SO03-02	ug/kg	46 N			OE+06	2E+06	230000 1		NC
LMO3.2	1,3-Dichlorobenzene	NA-ELEM-SO05-02	ug/kg	37 N			6E+06	2E+06 2	230000 1		NC
LMO3.2	1,3-Dichlorobenzene	NA-ELEM-SO07-02	ug/kg	67 N	10 —	6E+07	0E+06	2E+06 2	30000 1	VC I	VC
LMO3.2	1,4-Dichlorobenzene	NA-ELEM-SO01-02	ug/kg	37 N		6E+07	6E+06	2E+06 2	30000 N	VC 1	VC
LMO3.2	1,4-Dichlorobenzene	NA-ELEM-SO03-02	ug/kg	46 N		240000 2		27000	27000 N	VC I	VC
LMO3.2	1,4-Dichlorobenzene	NA-ELEM-SO05-02	ug/kg	37 N		240000 2		27000	27000 N	VC N	√C
LMO3.2	1,4-Dichlorobenzene	NA FI EM COOT OO	ug/kg	67 N		240000 2		27000	27000 N	IC N	VC
LMO3.2	2,2'-oxybis(1-chloropropane	NA DI EN COOL CO	ug/kg			240000 2		27000	27000 N	IC N	1C
	4,4 -OXVDIS(I -Chlomonopage)	NA ELEM COOR OF	ug/kg	37 N			82000	9100	9100 N		iC
	2,2 -OXYDIS(I-Chloropropane)	NA-ELEM-COOS OO		46 N			82000	9100	9100 N		ic -
-MO3.4 4	4,4 ~OXYDIS(I -Chloropropane)	NA-ELEM-SO07-02	ug/kg	37 N			82000	9100	9100 N		iC .
IVIO3.2 2	4.4.3- Luchlorophenoi	NA-ELEM-SO01-02	ug/kg	67 N			82000	9100	9100 N		ic -
LMO3.2 2	2,4,5-Trichlorophenol	NA-ELEM-SO03-02	ug/kg	37 N			2E+07 8	E+06 7	80000 N		ic -
_MO3.2 2	2,4,5-Trichlorophenol	NA-ELEM-SO05-02	ug/kg	46 N			2E+07 8	3E+06 78	30000 N		č
_MO3.2 2	.4,5-Trichlorophenol	NA-ELEM-SO07-02	ug/kg	37 N			2E+07 8	E+06 78	30000 N	- '	č –
.MO3.2 2	,4,6-Trichlorophenol	NA-ELEM-SO01-02	ug/kg	67 N		2E+08 2	2E+07 8	E+06 78	0000 N	C N	
MO3.2 2	,4,6-Trichlorophenol	NA-ELEM-SO03-02	ug/kg	37 N		20000 52	20000	8000 5	8000 N	C N	
MO3.2 2	,4,6-Trichlorophenol	NA-ELEM-SO05-02	ug/kg	46 N		20000 52	20000 5		8000 N		
MO3.2 2	.4.6-Trichlorophenol	NA-ELEM-SO07-02	ug/kg	37 NI		20000 52	20000 5	8000 5	8000 No	C N	
MO3.2 2		NA-ELEM-SO01-02	ug/kg	67 NI		20000 52	20000 5	8000 5	8000 NO	T NI	
MO3.2 [2,	4-Dichlorophenol	NA-ELEM-SO03-02	ug/kg	37 NI	_ 9	DE+06[6]	10000123	00000 2	3000 NO	~ N7	
$MO3.\overline{2}$ $\overline{2}$	4-Dichlorophenol	ATA THE STATE OF T	ug/kg	46 NI	6 ا ر	E+06 61	10000 23	0000 2	3000 NO	NT/	
MO3.2 2,	4-Dichlorophenol	NA-ELEM-SO07-02	ug/kg	37 NI	0	19 O∪+⊐0	10000 23	00001 2	3000 NC	N/	
MO3.2 2,	4-Dimethylphenol		ug/kg	67 NI	<u> 6</u>	E+06 61	.0000 23	0000 2	3000 NO	n NI	
MO3.2 2,	4 8 1		ug/kg	37 NI	, 4	E+07 4	E+06 2]	E+06 16	0000 NO	7 77	
MO3.2 2,	4		ug/kg	46 NI	4	E+07 4	E+06 2]	E+06 16	0000 NC	NIC	
MO3.2 2,	 	Y A 10-1	ug/kg	37 NE	4	보+07 4]	E+06 2]	E+06/16	0000 NC	NIC	
MO3.2 2.4		A TOTAL TOTAL CONTRACTOR OF THE PARTY OF THE	ug/kg	67 NE	4.	Ľ+07 4]	E+06 21	3+06 160	2000 NC	NIC	
MO3.2 2.4	4 - 4 - 7		ug/kg	37 ND	1 4	E+06 41	0000 16	0000 16	5000 NC		
MO3.2 2.4			ug/kg	46 ND	' 4.	E+06 410	0000 160	0000 16	0000 NC		
4O3.2 2.4			ug/kg	37 ND	41	E+06 410	0000 160	0000 16	000 NO		
1O3.2 2 4	4		ug/kg	67 ND	41	E+06 410	0000 160	0000 14	000 NC		
103.2 2.4			ug/kg	37 ND		±+06 410	0000 180		OOO INC		
103 2 2		NA-ELEM-SO03-02	ug/kg	46 ND		E+06 410	0000 120	1000 IC	000 NC		
103 2 2 4	·	A-ELEM-SO05-02	ug/kg	37 ND		2+06 410	1000 120				
103 2 2 4		A-ELEM-SO07-02	ug/kg	67 ND		+06 410	2000 100		000 NC		
103.2 2.6		IA-ELEM-\$O01-02 Ti	ug/kg	37 ND		+06 200			000 NC		
103.2 2.0	-Dinitrotoluene N	A-ELEM-SO03-02	ıg/kg	46 ND		106 200	VOO 78		800 NC		
103.2 [2.6	-Dinitrotoluene N	A 177 178 4 17 17 17 17 17 17 17 17 17 17 17 17 17	ug/kg	37 ND		+06 200 +06 200	<u>vvvi 78</u>	000 7 000 7	800 NC	NC	

								Reside	-tiol	Reference	Means Comparison Conclusion Reference vs.
						Indu			RBSL	UTL	Site
Method	Analyte	Sample ID	Units			RBC	RBSL	78000	7800		NC
LMO3.2	2.6-Dinitrotoluene	NA-ELEM-SO07-02	ug/kg		ND		200000	6E+06			NC
DLMO3.2	2-Chloronaphthalene	NA-ELEM-SO01-02	ug/kg		ND	2E+08	2E+07	6E+06	220000	NC	NC
DI MO3.2	2-Chloronaphthalene	NA-ELEM-SO03-02	ug/kg		ND	2E+08			630000	NC NC	NC
OLMO3.2	2-Chloronaphthalene	NA-ELEM-SO05-02	ug/kg		ND	2E+08	2E+07				NC NC
OLMO3.2	2-Chloronaphthalene	NA-ELEM-SO07-02	ug/kg		ND	2E+08					NC
	2-Chlorophenol	NA-ELEM-SO01-02	ug/kg		ND	1E+07		390000			NC NC
	2-Chlorophenol	NA-ELEM-SO03-02	ug/kg		ND	1E+07		390000	39000		NC
	2-Chlorophenol	NA-ELEM-SO05-02	ug/kg		ND	1E+07		390000	39000		NC NC
OLMO3.2	2-Chlorophenol	NA-ELEM-SO07-02	ug/kg		ND	1E+07	1E+06	390000	39000		
OI MO3 2	2-Methylnaphthalene	NA-ELEM-SO01-02	ug/kg		ND	8E+07	8E+06	3E+06	310000	NC	NC NC
OLMO3.2		NA-ELEM-SO03-02	ug/kg	46			8E+06	3E+06	310000	NC	
OLMO3.2	2-Methylnaphthalene	NA-ELEM-SO05-02	ug/kg		ND	8E+07		3E+06	310000	NC .	NC
OLMO2 2		NA-ELEM-SO07-02	ug/kg		ND	8E+07		3E+06		NC	NC
OLMO3.2		NA-ELEM-SO01-02	ug/kg		ND	120000				NC	NC
OLMO3.2	2-Nitroaniline	NA-ELEM-SO03-02	ug/kg	46	ND	120000				NC	NC
OLIVIOS.2	2-Nitroaniline	NA-ELEM-SO05-02	ug/kg		ND	120000				NC	NC
OLMO3.2	2-Nitroamine	NA-ELEM-SO07-02	ug/kg		ND	120000			l	NC	NC
OLMO3.2	2-Nitroaniline	NA-ELEM-SO01-02	ug/kg	1	ND	2E+07	2E+06	630000			NC
	2-Nitrophenol	NA-ELEM-SO03-02	ug/kg		ND	2E+07		630000	63000	NC	NC
	2-Nitrophenol	NA-ELEM-SO05-02	ug/kg		ND	2E+07		630000		NC	NC
OLMO3.2	2-Nitrophenol	NA-ELEM-SO07-02	ug/kg		ND	2E+07		630000		NC	NC
OLMO3.2	2-Nitrophenol	NA-ELEM-SO01-02	ug/kg		ND	13000	1			NC	NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND	13000				NC	NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-ELEM-SO03-02			ND	13000	·		·	NC	NC
.MO3.2	3,3'-Dichlorobenzidine	NA-ELEM-SO05-02	ug/kg		7 ND	13000				NC	NC
	3,3'-Dichlorobenzidine	NA-ELEM-SO07-02	ug/kg		ND	120000				NC	NC
OLMO3.2	3-Nitroaniline	NA-ELEM-SO01-02	ug/kg		5 ND	120000			1	ONC	NC
OLMO3.2	3-Nitroaniline	NA-ELEM-SO03-02	ug/kg		7 ND	120000			1	ONC	NC
OLMO3.2		NA-ELEM-SO05-02	ug/kg	<u>, </u>		120000				0 NC	NC
OLMO3.2	3-Nitroaniline	NA-ELEM-SO07-02	ug/kg		7 ND					ONC	NC
OLMO3.2		NA-ELEM-SO01-02	ug/kg		7 ND	20000				0 NC	NC NC
OLMO3.2	4,6-Dinitro-2-methylphenol	NA-ELEM-SO03-02	ug/kg		6 ND	20000				0 NC	NC
OLMO3.2	4,6-Dinitro-2-methylphenol	NA-ELEM-SO05-02	ug/kg		7 ND	20000					NC NC
OLMO3.2	4,6-Dinitro-2-methylphenol	NA-ELEM-SO07-02	ug/kg	-	7 ND	20000		0 7800		0 NC	NC NC
OT MO3 2	4-Bromophenyl-phenylether	NA-ELEM-SO01-02	ug/kg		7 ND	1E+0	8 1E+0	7 5E+06	45000	OINC	
OLMO3.2	2 4-Bromophenyl-phenylether	NA-ELEM-SO03-02	ug/kg	4	6 ND	1E+0	8 1E+0	7 5E+0	45000	ONC	NC
OLMO3.2	4-Bromophenyl-phenylether	NA-ELEM-SO05-02	ug/kg	3 3	7 ND	1E+0	8 1E+0	7 5E+0	5 45000	ONC	NC
OLMO3.2	4-Bromophenyl-phenylether	NA-ELEM-SO07-02	ug/k	3 6	7 ND	1E+0	8 1E+0	7 5E+0	5 45000	ONC	NC
OLMO3.2	2 4-Chloro-3-methylphenol	NA-ELEM-SO01-02	ug/k	3	7 ND			6 2E+0	5 16000	ONC	NC
OLMO3.2	2 4-Chloro-3-methylphenol	NA-ELEM-SO03-02	ug/k	g 4	6 ND	4E+0		6 2E+0	6 16000	0 NC	NC
OLMO3.		NA-ELEM-SO05-02	ug/k		7 ND	4E+0	7 4E+0	6 2E+0	6 16000	0 NC	NC
OLMO3.	2 4-Chloro-3-methylphenol	NA-ELEM-SO07-02			7 ND	4E+0	7 4E+0	6 2E+0	6 16000	0 NC	NC
OLMO3.	4-Chloroaniline	NA-ELEM-SO01-02	ug/k		7 ND	8E+0	6 82000	0 31000	3100	00 NC	NC
OLMOS.	2 4 Chloroppiline	NA-ELEM-SO03-02			6 ND	8E+0	6 82000	0 31000	0 3100	00 NC	NC
OLMO3.	2 4-Chloroaniline	NA-ELEM-SO05-02			7 ND	8E+0	6 82000	0 31000	0 3100	10 NC	NC
OLMO3.	2 4-Chloroaniline	NA-ELEM-SO07-02			7 ND	8E+0	6 82000	00 31000	0 3100	NC	NC
OLMO3.	4-Chloroaniline	NA-EL EM-SO01-02	ug/k	2	7 ND	1E+0	8 1E+C	7 5E+0	6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylethe	NA DI EM COM	ug/k		6 ND	1F+0	8 1E+C	7 5E+0	6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylethe	INA-ELENI-3003-02	ug/k	_	37 ND	1F±0	8 1F+C	07 5E+0	6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylethe	NA-BLEM-3003-02	ug/K	01	57 ND	1E+0			6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylethe	NA-ELEM-SOU/-02	ug/k		37 ND	12000				70 NC	NC
OLMO3.	2 4-Nitroanaline	NA-ELEM-SO01-02		<u></u>		12000				70 NC	NC.
OLMO3.	2 4-Nitroanaline	NA-ELEM-SO03-02			16 ND	12000				70 NC	NC
OT MOS	2 4-Nitroanaline	NA-ELEM-SO05-02	ug/k	g	37 ND 67 ND	112000	00 1200			70 NC	NC

Method OLMO3.2 OLMO3.2 OLMO3.2 OLMO3.2	2 4-Nitrophenol	Sample ID			1	1		1		1	Compariso
OLMO3.2 OLMO3.2 OLMO3.2 OLMO3.2 OLMO3.2	2 4-Nitrophenol	Sample ID				7		l	_		Conclusion
OLMO3.2 OLMO3.2 OLMO3.2 OLMO3.2	2 4-Nitrophenol		Unit	MIN	Resul		RBSL		dential	Reference	
OLMO3.2 OLMO3.2 OLMO3.2		NA-ELEM-SO01-02	ug/kg	37	ND	2E+07		RBC		UTL	Site
OLMO3.2 OLMO3.2	I I Niteanha 1	NA-ELEM-SO03-02	ug/ke		ND	2E+07		630000			NC
OLMO3.2		NA-ELEM-SO05-02	ug/kg		ND	2E+07		630000			NC
		NA-ELEM-SO07-02	ug/kg	67	ND	2E+07		630000			NC NC
OT MOS A		NA-ELEM-SO01-02	บย/kg		ND	1E+08			470000	NC NC	NC NC
OLMO3.2	Acenaphthene	NA-ELEM-SO03-02	ug/kg		ND	1E+08	1E+07	5E+06	470000	NC NC	NC
OLMO3.2	Acenaphthene	NA-ELEM-SO05-02			ND	1E+08		5E+06	470000	NC	NC
OLMO3.2	 .	NA-ELEM-SO07-02			ND	1E+08	1E+07	5E+06	470000	NC	NC
OLMO3.2		NA-ELEM-SO01-02	<u> </u>		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-ELEM-SO03-02	ug/kg	46	49	1		5E+06	470000	NC	NC
OLMO3.2		NA-ELEM-SO05-02	ug/kg		ND	1E+08	1E+07	5E+06	470000		NC
OLMO3.2		NA-ELEM-SO07-02 NA-ELEM-SO01-02	ug/kg	67	ND	1E+08	1E+07	5E+06	470000		NC
	Anthracene	NA-ELEM-SO03-02	ug/kg		ND	6E+08	6E+07	2E+07			NC
	Anthracene	NA-ELEM-SO05-02	ug/kg	46	ND	6E+08		2E+07			NC
OLMO3.2	Anthracene	NA-ELEM-SO07-02	ug/kg		ND	6E+08		2E+07	2E+06		NC
OLMO3.2		NA-ELEM-SO01-02	ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
	Benzo(a)anthracene	NA-ELEM-SO03-02	ug/kg	37		7800	7800	870		NC	NC
	Benzo(a)anthracene	NA-ELEM-SO05-02	ug/kg	46	520	1	7800	870	870 1	NC	NC
DLMÖ3.2	Benzo(a)anthracene	NA-ELEM-SO07-02	ug/kg	37		7800	7800	870	870 1		NC
DLMO3.2	Benzo(a)pyrene	NA-ELEM-SO01-02	ug/kg	67		7800	7800	870	870 1		NC
DLMO3.2	Benzo(a)pyrene	NA-ELEM-SO03-02	ug/kg	37		780	780	87	87 1		NC
DLMO3.2	Benzo(a)pyrene	NA-ELEM-SO05-02	ug/kg ug/kg	46	670		780	87	87 1	VC	NC
DLMO3.2	Benzo(a)pyrene	NA-ELEM-SO07-02	ug/kg	37		780	780	87	87 N		NC
DLMO3.2	Benzo(b)fluoranthene	NA-ELEM-SO01-02	ug/kg	67 I		780	780	87	87 N		NC
DLMO3.2	Benzo(b)fluoranthene	NA-ELEM-SO03-02	ug/kg	46	680	7800 7800	7800	870	870 N		NC
DLMO3.2	Benzo(b)fluoranthene	NA-ELEM-SO05-02	ug/kg	37 1		7800	7800	870	870 N		NC
	Benzo(b)fluoranthene	NA-ELEM-SO07-02	ug/kg	67 1		7800	7800	870	870 N		NC
LMO3.2	Benzo(g,h,i)perylene	NA-ELEM-SO01-02	ug/kg	37 1		6E+07	7800 6E+06	870	870 N		NC
LMO3.2	Benzo(g,h,i)perylene	NA-ELEM-SO03-02	ug/kg	46	680			2E+06	230000 N		NC
LMO3.2	Benzo(g,h,i)perylene	NA-ELEM-SO05-02	ug/kg	37 1				2E+06	230000 N		VC
LMO3.2	Benzo(g,h,i)perylene	NA-ELEM-SO07-02	ug/kg	67 N				2E+00	230000 N		VC
LMO3.2	Benzo(k)fluoranthene	NA-ELEM-SO01-02	ug/kg	37 N		78000	78000	8700	230000 N		٧C
LMO3.2	Benzo(k)fluoranthene	NA-ELEM-SO03-02	ug/kg	46	520	78000	78000	8700	8700 N 8700 N		VC
LMO3.2	Benzo(k)fluoranthene	NA-ELEM-SO05-02	ug/kg	37 N		78000		8700			/C
LMO3.2	Benzo(k)fluoranthene	NA-ELEM-SO07-02	ug/kg	67 N			78000	8700	8700 N		VC
LMO3.2	Butylbenzylphthalate	NA-ELEM-SO01-02	ug/kg	37 N					2E+06 N		1C 1C
LMO3.2	Butylbenzylphthalate	NA-ELEM-SO03-02	ug/kg	46 N	(D		4E+07 2		2E+06 N		iC
LMO3.2	Butylbenzylphthalate	NA-ELEM-SO05-02	ug/kg	37 N	ID	4E+08	4E+07 2	E+07	2E+06 N		1C
LMO3.2	Butylbenzylphthalate Carbazole	NA-ELEM-SO07-02	ug/kg	67 N	D	4E+08	4E+07 2	E+07	2E+06 N	_,	ic —
LMO3.2 LMO3.2			ug/kg	37 N	D 2	290000 2	90000	2000	32000 N		ic —
MO3.2	Carbazole Carbazole		ug/kg	46 N	$ \mathbf{D} $	290000 2	90000 3	32000	32000 N		ic
LMO3.2	Carbazole		ug/kg	37 N	$\mathbf{D} = 2$	290000 2			32000 N		
LMO3.2	Chrysans		ug/kg	67 N	$\mathbf{D} = 2$	290000 2			32000 N		
LMO3.2 (Chrysene		ug/kg	37 N	D 7	780000 7	80000 8	7000	87000 N		ic
LMO3.2 (Chrysene		ug/kg	46	570 7	780000 7	80000 8	7000	87000 N		
LMO3.2 C			ug/kg	37 N	D 7	80000 7	80000 8		87000 No		c
MO3.2	Dibenz(a,h)anthracene		ug/kg	67 N	D 7	80000 7	80000 8		87000 NO		
MO3 2	Dibenz(a,h)anthracene Dibenz(a,h)anthracene		ug/kg	37 N	D	780	780	87	87 NO		
MO3 2	Dibenz(a,h)anthracene		ug/kg	46	290	780	780	87	87 NO		
MO3 2 1	Dibenz(a,h)anthracene		ug/kg	37 N		780	780	87	87 NO		
MO3 2 1	Dibenzofuran		ug/kg ug/kg	67 N 37 N		780	780	87	87 NO		

						Indu	strial	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
Mathad	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method OLMO3.2		NA-ELEM-SO03-02	ug/kg		ND	8E+06	820000	310000	31000		NC
-		NA-ELEM-SO05-02	ug/kg		ND ND		820000		31000		NC
OLMO3.2 OLMO3.2		NA-ELEM-SO07-02	ug/kg		ND		820000		31000		NC
		NA-ELEM-SO01-02	ug/kg		ND	2E+09		6E+07	6E+06		NC
		NA-ELEM-SO03-02	ug/kg		ND	2E+09	2E+08		6E+06		NC
	1210tit) - P	NA-ELEM-SO05-02	ug/kg		ND	2E+09		6E+07	6E+06		NC
		NA-ELEM-SO07-02	ug/kg		ND	2E+09		6E+07	6E+06	•	NC
	1 = 1 = 1 = 1	NA-ELEM-SO01-02	ug/kg		ND	2E+10		8E+08			NC
		NA-ELEM-SO03-02	ug/kg		ND	2E+10	2E+09	8E+08			NC
	—	NA-ELEM-SO05-02	ug/kg		ND	2E+10	2E+09		8E+07		NC
	J-F	NA-ELEM-SO07-02	ug/kg		ND	2E+10					NC
		NA-ELEM-SO01-02	ug/kg		ND	8E+07	8E+06		310000		NC
	12 22 2 1 1 1 1	NA-ELEM-SO03-02	ug/kg ug/kg	46	450		8E+06		310000		NC
		NA-ELEM-SO05-02			ND ND	8E+07	8E+06		310000		NC
			ug/kg		ND	8E+07	8E+06		310000		NC
	Fluoranthene	NA-ELEM-SO07-02	ug/kg		ND	8E+07	8E+06				NC NC
OLMO3.2		NA-ELEM-SO01-02	ug/kg		ND	8E+07	8E+06		310000		NC
OLMO3.2	1	NA-ELEM-SO03-02	ug/kg		ND	8E+07		3E+06			NC
OLMO3.2		NA-ELEM-SO05-02	ug/kg				8E+06		310000		NC
OLMO3.2		NA-ELEM-SO07-02	ug/kg		ND	8E+07		8200	8200		NC
		NA-ELEM-SO01-02	ug/kg		ND	73000			8200		NC
		NA-ELEM-SO03-02	ug/kg		ND	73000		8200			NC
		NA-ELEM-SO05-02	ug/kg		ND	73000		8200	8200		NC NC
	Hexachloro-1,3-butadiene	NA-ELEM-SO07-02	ug/kg		ND	73000		8200	8200		NC NC
	Hexachlorobenzene	NA-ELEM-SO01-02	ug/kg		ND	3600		400		NC	NC NC
	Hexachlorobenzene	NA-ELEM-SO03-02	ug/kg		ND	3600		400		NC	NC NC
	Hexachlorobenzene	NA-ELEM-SO05-02	ug/kg		ND	3600				NC	
		NA-ELEM-SO07-02	ug/kg		ND	3600				NC	NC
		NA-ELEM-SO01-02	ug/kg		ND	1E+07		550000			NC
		NA-ELEM-SO03-02	ug/kg		ND UJ	1E+07	4	550000			NC
OLMO3.2	Hexachlorocyclopentadiene	NA-ELEM-SO05-02	ug/kg		ND	1E+07		550000			NC
OLMO3.2		NA-ELEM-SO07-02	ug/kg		ND	1E+07		550000			NC
OLMO3.2	Hexachloroethane	NA-ELEM-SO01-02	ug/kg		ND		410000				NC
OLMO3.2	Hexachloroethane	NA-ELEM-SO03-02	ug/kg		ND		410000				NC
OLMO3.2	Hexachloroethane	NA-ELEM-SO05-02	ug/kg		ND		410000				NC
OLMO3.2	Hexachloroethane	NA-ELEM-SO07-02	ug/kg		ND		410000				NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO01-02	ug/kg		ND	7800				NC	NC
	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO03-02	ug/kg							NC	NC
	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO05-02	ug/kg		ND	7800				NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-ELEM-SO07-02	ug/kg		ND	7800				NC	NC
OLMO3.2	Isophorone	NA-ELEM-SO01-02	ug/kg		ND	6E+06		670000			NC
OLMO3.2	Isophorone	NA-ELEM-SO03-02	ug/kg		ND		6E+06				NC
	Isophorone	NA-ELEM-SO05-02	ug/kg		ND	6E+06		670000			NC
OLMO3.2	Isophorone	NA-ELEM-SO07-02	ug/kg		ND	6E+06		670000			NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-ELEM-SO01-02	ug/kg		ND	820				NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-ELEM-SO03-02	ug/kg		ND	820				NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-ELEM-SO05-02	ug/kg		ND	820				NC	NC
		NA-ELEM-SO07-02	ug/kg		ND	820				NC	NC
	N-Nitrosodiphenylamine	NA-ELEM-SO01-02	ug/kg	37	ND	1E+06		130000			NC
	N-Nitrosodiphenylamine	NA-ELEM-SO03-02	ug/kg	46	ND	1E+06		130000			NC
	N-Nitrosodiphenylamine	NA-ELEM-SO05-02	ug/kg	37	ND	1E+06	1E+06				NC
	N-Nitrosodiphenylamine	NA-ELEM-SO07-02	ug/kg		ND	1E+06	1E+06	130000	130000) NC	NC
	Naphthalene	NA-ELEM-SO01-02	ug/kg		ND	8E+07		3E+06			NC
	Naphthalene	NA-ELEM-SO03-02	ug/kg		ND	8E+07		3E+06			NC

			1		1					 	-
					İ						Means
<u>'</u>					İ			1			Comparison
						1					Conclusion
W-41-3				İ			strial		dential	Reference	
OLMO3.2	Analyte Naphthalene	Sample ID NA-ELEM-SO05-02	Units				RBSL			UTL	Site
OLMO3.2	Naphthalene	NA-ELEM-SO05-02	ug/kg		ND	8E+07			310000		NC
OLMO3.2	Nitrobenzene	NA-ELEM-SO01-02	ug/kg ug/kg		ND ND	8E+07			310000		NC
	Nitrobenzene	NA-ELEM-SO03-02	ug/kg		ND		100000				NC
	Nitrobenzene	NA-ELEM-SO05-02	ug/kg		ND		100000		,		NC
	Nitrobenzene	NA-ELEM-SO07-02	ug/kg		ND		100000				NC
	Pentachlorophenol	NA-ELEM-SO01-02	ug/kg		ND	48000					NC
	Pentachlorophenol	NA-ELEM-SO03-02	ug/kg		ND	48000					NC NC
	Pentachlorophenol	NA-ELEM-SO05-02	ug/kg	37	ND	48000					NC
	Pentachlorophenol	NA-ELEM-SO07-02	ug/kg	67	ND	48000					NC
	Phenanthrene	NA-ELEM-SO01-02	ug/kg	37	ND	6E+07			230000		NC
	Phenanthrene	NA-ELEM-SO03-02	ug/kg	46	61	<u> </u>	6E+06	2E+06	230000	NC	NC
	Phenanthrene Phenanthrene	NA-ELEM-SO05-02	ug/kg		ND	6E+07	6E+06	2E+06	230000	NC	NC
	Phenol	NA-ELEM-SO07-02	ug/kg		ND	6E+07	6E+06	2E+06	230000	NC	NC
OLMO3.2		NA-ELEM-SO01-02 NA-ELEM-SO03-02	ug/kg		ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-ELEM-SO05-02	ug/kg		ND	1E+09		5E+07			NC
		NA-ELEM-SO07-02	ug/kg ug/kg	37 67		1E+09			5E+06		NC
		NA-ELEM-SO01-02	ug/kg	37		1E+09 6E+07			5E+06		NC
		NA-ELEM-SO03-02	ug/kg	46	560		6E+06 6E+06		230000		NC
OLMO3.2		NA-ELEM-SO05-02	ug/kg	37	ND	6E+07	6E+06		230000 230000		NC
	Pyrene	NA-ELEM-SO07-02	ug/kg	67		6E+07			230000	NC NC	NC NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-ELEM-SO01-02	ug/kg	37		5200	5200	580		NC	NC .
OLMO3.2	bis(2-Chloroethoxy)methane	NA-ELEM-SO03-02	ug/kg	46		5200	5200	580	580		NC NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-ELEM-SO05-02	ug/kg	37		5200	5200	580	580		NC NC
OLMO3.2	bis(2-Chloroethoxy)methane		ug/kg	67		5200	5200	580	580		NC
		NA-ELEM-SO01-02	ug/kg	37		5200	5200	580	580		NC
		NA-ELEM-SO03-02	ug/kg	46]		5200	5200	580	580		NC
		NA-ELEM-SO05-02	ug/kg	37]		5200	5200	580	580	NC	NC
OLMO3.2		NA-ELEM-SO07-02 NA-ELEM-SO01-02	ug/kg	67 1		5200	5200	580	580		NC
OLMO3.2		NA-ELEM-SO01-02 NA-ELEM-SO03-02	ug/kg	37	65	410000	410000	46000			NC
OLMO3.2		NA-ELEM-SO05-02	ug/kg ug/kg	46 37 l		410000		46000	46000		NC
OLMO3.2		NA-ELEM-SO07-02	ug/kg	67		410000 410000	410000	46000	46000		NC
OLMO3.2	** -		ug/kg	37 1	VID 93	25,00	2E+07	46000	46000		NC
OLMO3.2		NA-ELEM-SO03-02	ug/kg	46	470	2E+08	2E+07	0E+00	780000		NS
	di-n-Butylphthalate		ug/kg	37 1		2E+08	2E+07	8E+06	780000	77	
	di-n-Butylphthalate		ug/kg	67 N		2E+08	2E+07			77 77	
		NA-ELEM-SO01-02	ug/kg	37 N		4E+07			160000		NC NC
		NA-ELEM-SO03-02	ug/kg	46 N	ND ON	4E+07	4E+06	2E+06	160000	NC	NC NC
			ug/kg	37 N		4E+07	4E+06	2E+06	160000		NC
			ug/kg	67 N		4E+07	4E+06	2E+06	160000		NC
OLMO3.2 OLMO3.2			ug/kg	37 N			1E+07	4E+06	390000	NC .	NC
OLMO3.2 OLMO3.2		NA-ELEM-SO03-02	ug/kg	46 N		1E+08	1E+07	4E+06	390000	NC I	NC
OLMO3.2		NA-ELEM-SO05-02 NA-ELEM-SO07-02	ug/kg	37 N		1E+08	1E+07	4E+06	390000 1	NC I	NC
OLMO3.2			ug/kg	67 N		1E+08	1E+07	4E+06	390000 1		NC
OLMO3.2			ug/kg	37 N					39000 1		NC
OLMO3.2		* · · · · · · · · · · · · · · · · · · ·	ug/kg	46 N			1E+063				NC
OLMO3.2			ug/kg	37 N 67 N			1E+06 3				NC
			ug/kg ng/kg	0.6 5			1E+06 3		39000 1		NC
		- : '	ng/kg	0.8 5			38000	4300	4300	39.6	
			ng/kg	0.8 3	12.1	38000	38000 38000	4300	4300	39.6	
	<u>-</u> -			5.5	14.1	20000	POUL	4300	4300	39.6	NS T

						Indu	strial	Reside		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-ELEM-SO07-02	ng/kg	0.9	337	38000	38000	4300	4300	39.6	
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO01-02	ng/kg	0.5	66.4	38000	38000	4300	4300	4.6	NS
	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO03-02	ng/kg	0.7	270	38000	38000	4300	4300	4.6	NS
	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO05-02	ng/kg		ND	38000	38000	4300	4300	4.6	NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-ELEM-SO07-02	ng/kg	0.7	28.2	38000	38000	4300	4300	4.6	NS
SW8290	1,2,3,4,6,7,8,9-OCDI 1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO01-02	ng/kg		18.8 J	3800	3800	430	430	6	NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO03-02	ng/kg	0.4		3800	3800	430	430	6	NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO05-02	ng/kg		1.3 J	3800	3800	430	430	6	NS
SW8290	1,2,3,4,6,7,8-HpCDD	NA-ELEM-SO07-02	ng/kg	0.7	45.6	3800	3800	430	430	6	NS
	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO01-02	ng/kg	0.3		3800	3800	430	430	5.1	NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO03-02	ng/kg	0.2		3800	3800	430	430		NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-ELEM-SO05-02	ng/kg		1.2 J	3800	3800	430	430		NS
SW8290		NA-ELEM-SO07-02	ng/kg	0.5		3800	3800	430	430		NS
SW8290	1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO01-02	ng/kg	0.5		3800	3800	430	430		NS
SW8290		NA-ELEM-SO03-02	ng/kg		3.5 J	3800	3800	430	430		NS
SW8290	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO05-02	ng/kg		ND	3800	3800	430	430		NS
SW8290		NA-ELEM-SO07-02	ng/kg		3.6 J	3800	3800	430	430		NS
SW8290	1,2,3,4,7,8,9-HpCDF	NA-ELEM-SO01-02	ng/kg		ND UJ	380		43		NC	NC
SW8290	1,2,3,4,7,8-HxCDD	NA-ELEM-SO03-02	ng/kg		1.7 J	380		43		NC	NC
SW8290	1,2,3,4,7,8-HxCDD	NA-ELEM-SO05-02	ng/kg		ND	380		43		NC	NC
SW8290	1,2,3,4,7,8-HxCDD	NA-ELEM-SO07-02	ng/kg		1.3 J	380		43		NC	NC
SW8290	1,2,3,4,7,8-HxCDD	NA-ELEM-SO01-02	ng/kg	0.7		380	1	43	43		NS
SW8290	1,2,3,4,7,8-HxCDF	NA-ELEM-SO03-02	ng/kg		4.9 J	380	380	43	43		NS
SW8290	1,2,3,4,7,8-HxCDF	NA-ELEM-SO05-02			ND	380			43		NS
8290	1,2,3,4,7,8-HxCDF	NA-ELEM-SO07-02	ng/kg			380			43		NS
/8290	1,2,3,4,7,8-HxCDF	The state of the s	ng/kg		2.6 J	380			43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-ELEM-SO01-02	ng/kg	0.4		380		43	43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-ELEM-SO03-02	ng/kg		ND	380			43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-ELEM-SO05-02	ng/kg		3.3 J	380					NS
SW8290	1,2,3,6,7,8-HxCDD	NA-ELEM-SO07-02	ng/kg								NS
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO01-02	ng/kg		2.2 BJ	380					NS
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO03-02	ng/kg		ND	380			43		NS
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO05-02	ng/kg		3.7 J	380			1		INS
SW8290	1,2,3,6,7,8-HxCDF	NA-ELEM-SO07-02	ng/kg		2.9 J	380					3 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO01-02	ng/kg		8.8 J	380					3 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO03-02	ng/kg		1						3 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO05-02			ND	380 380	1		4		3 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-ELEM-SO07-02	ng/kg						1	NC	NC
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO01-02	ng/kg		2.1 J	380 380				NC	NC
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO03-02	ng/kg		0.33 J					NC NC	NC
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO05-02	ng/kg		ND	380		1		NC NC	NC
SW8290	1,2,3,7,8,9-HxCDF	NA-ELEM-SO07-02	ng/kg		ND	380					5 NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO01-02	ng/kg		1.1 J	76					6 NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO03-02	ng/kg		2 2.4 J	76					6 NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO05-02	ng/kg		ND	76 76					6 NS
SW8290	1,2,3,7,8-PeCDD	NA-ELEM-SO07-02	ng/kg		5 2.2 J						8 NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO01-02	ng/kg				<u> </u>				8 NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO03-02	ng/kg		2 0.82 J	760					8 NS
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO05-02	ng/kg		ND	760		1			
SW8290	1,2,3,7,8-PeCDF	NA-ELEM-SO07-02	ng/kg		3 2.4 J	760					8 NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO01-02	ng/kg								2 NS
SW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO03-02	ng/kg		2 4.7 J	380					2 NS
GW8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO05-02	ng/kg		7 ND	380					2 NS
8290	2,3,4,6,7,8-HxCDF	NA-ELEM-SO07-02	ng/kg	0.4	1 7.2	380	380	43	43	5) 2.3	2 NS

					T	T		1			
1											Means
								ŀ		}	Comparison Conclusion
				1		Ind	ustrial	Resi	dential	Reference	Reference v
Method	Analyte	Sample ID	Units	MDL	Resul			RBC		UTL	Site
SW8290	2,3,4,7,8-PeCDF	NA-ELEM-SO01-02	ng/kg	0.4	5 J	7					NS Site
SW8290	2,3,4,7,8-PeCDF	NA-ELEM-SO03-02		0.2	1.5 J	7					NS
SW8290 SW8290	2,3,4,7,8-PeCDF	NA-ELEM-SO05-02	ng/kg		ND	7					NS
SW8290	2,3,4,7,8-PeCDF	NA-ELEM-SO07-02	ng/kg		3.8 J	7				1	NS
SW8290	2,3,7,8-TCDD	NA-ELEM-SO01-02	ng/kg		ND	3			4.3	NC	NC
SW8290	2,3,7,8-TCDD	NA-ELEM-SO03-02	ng/kg		0.51 J	3				NC	NC
SW8290	2,3,7,8-TCDD 2,3,7,8-TCDD	NA-ELEM-SO05-02	ng/kg		ND	38				NC	NC
SW8290	2,3,7,8-TCDF	NA-ELEM-SO07-02	ng/kg		ND	38				NC	NC
SW8290		NA-ELEM-SO01-02	ng/kg	0.4						0.99	NS
SW8290	2,3,7,8-TCDF	NA-ELEM-SO03-02	ng/kg		0.96 J	380				0.99	NS
SW8290	2,3,7,8-TCDF 2,3,7,8-TCDF	NA-ELEM-SO05-02	ng/kg		ND	380				0.99	NS
SW8290		NA-ELEM-SO07-02	ng/kg	0.2	3.1		380	43	43	0.99	
SW8290	Total HpCDD Total HpCDD	NA-ELEM-SO01-02	ng/kg	0.5	36.1			Ţ		13.1	NS
SW8290	Total HpCDD	NA-ELEM-SO03-02	ng/kg	0.4	536					13.1	NS
SW8290	Total HpCDD	NA-ELEM-SO05-02	ng/kg	0.9	1.5					13.1	NS
SW8290	Total HpCDF	NA-ELEM-SO07-02	ng/kg	0.7	86.6		<u> -</u>			13.1	NS
SW8290	Total HpCDF	NA-ELEM-SO01-02	ng/kg	0.4	78.5		ļ			10	
SW8290	Total HpCDF	NA-ELEM-SO03-02	ng/kg	0.3	247	ļ				10	NS
SW8290	Total HpCDF	NA-ELEM-SO05-02	ng/kg	0.8	1.2	·	ļ			10	NS
SW8290	Total HxCDD	NA-ELEM-SO07-02	ng/kg	0.5	70.5	-	<u> </u>		_	10	
SW8290	Total HxCDD	NA-ELEM-SO01-02	ng/kg	0.4	25.2			<u> -</u>		19.1	
SW8290	Total HxCDD	NA-ELEM-SO03-02	ng/kg	0.3	63.8	·	<u> </u>		J .	19.1	
SW8290	Total HxCDD	NA-ELEM-SO05-02 NA-ELEM-SO07-02	ng/kg	0.8		<u> </u>	ŀ		·	19.1	
SW8290	Total HxCDF	NA-ELEM-SO01-02	ng/kg	0.6	41.6		<u> - </u>			19.1	NS
SW8290	Total HxCDF	NA-ELEM-SO03-02	ng/kg	0.4	78.4		-			11.5	
SW8290	Total HxCDF	NA-ELEM-SO05-02	ng/kg	0.2	73					11.5	
SW8290	Total HxCDF	NA-ELEM-SO07-02	ng/kg	0.6			<u> </u>	<u> </u>		11.5	
SW8290	Total PeCDD	NA-ELEM-SO01-02	ng/kg	0.4	44.7	<u>. </u>	<u>.</u> -	ļ		11.5	
SW8290	Total PeCDD	NA-ELEM-SO03-02	ng/kg	0.5	10.7		<u> .</u>			4.9	
SW8290	Total PeCDD	NA-ELEM-SO05-02	ng/kg	0.2	9				-	4.9	
	Total PeCDD	NA-ELEM-SO07-02	ng/kg	0.6		<u>. </u>	<u> </u>	<u>. </u>	<u> </u>	4.9	
	Total PeCDF	NA-ELEM-SO01-02	ng/kg	0.5	13			<u> </u>		4.9	
	Total PeCDF	NA-ELEM-SO03-02	ng/kg	0.4	57.5	<u>. </u>	<u> -</u>	<u> -</u>		12.1	
	Total PeCDF	NA-ELEM-SO05-02	ng/kg	0.2	18.4	<u> </u>	-		<u>. </u>	12.1	NS .
	Total PeCDF	NA-ELEM-SO07-02	ng/kg	0.6						12.1	
	Total TCDD	NA-ELEM-SO01-02	ng/kg	0.3	48.2		-	·	·	12.1	
	Total TCDD	NA-ELEM-SO03-02	ng/kg	0.4	12.6	<u> </u>	<u> -</u>	<u> - </u>	· [2.3	
	Total TCDD	NA-ELEM-SO05-02	ng/kg	0.2	9.9	<u></u>	<u> </u>	<u> </u>		2.3	
	Total TCDD	NA-ELEM-SO07-02	ng/kg	0.5	-	-	ļ:	<u> </u>		2.3 [
	Total TCDF	NA-ELEM-SO01-02	ng/kg	0.2	14.7			·		2.3	
	Total TCDF	NA-ELEM-SO03-02	ng/kg	0.4	32.6		<u>-</u>	·	-	13.3	
	Total TCDF	NA-ELEM-SO05-02	ng/kg	0.1	17.1	·	•	<u>-</u>		13.3	
	Total TCDF	NA-ELEM-SO07-02	ng/kg	0.5		·				13.3 N	
	Cyanide	NA-ELEM-SO01-02	ng/kg	0.26	40.7					13.3 N	
	Cyanide	NA-ELEM-SO03-02	mg/kg mg/kg			41000	4100	1600	160	0.39	
	Cyanide	NA-ELEM-SO05-02		0.34 1		41000	4100	1600	160	0.39 1	
	Cyanide	NA-ELEM-SO07-02	mg/kg	0.27		41000	4100	1600	160	0.39 N	
	Aluminum	NA-ELEM-SO01-02	mg/kg	0.47		41000	4100	1600	160	0.39 N	
	Aluminum	NA-ELEM-SO03-02	mg/kg		15000		200000	78000	7800	57700 N	
	Aluminum	NA-ELEM-SO05-02	mg/kg		52000	2E+06	200000	78000	7800	57700 N	
	Aluminum	NA-ELEM-SO07-02	mg/kg		17000		200000	78000	7800	57700 N	
	Antimony		mg/kg		91600		200000	78000	7800	57700 N	
F.O	· ····································	MA-ELEIVI-3001-02	mg/kg	0.42 0	1.49 J	820	82	31	3.1	1.5 N	-

						Indus	strial	Reside	ntial	Reference	Means Comparison Conclusion Reference vs.
			WY74-	MDL	Dooult	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID	Units	0.53		820	82	31	3.1	1.5	
ILMO4.0	Antimony	NA-ELEM-SO03-02	mg/kg			820	82	31	3.1	1.5	
ILMO4.0	Antimony	NA-ELEM-SO05-02	mg/kg		ND UL	820	82	31	3.1		NS
ILMO4.0	Antimony	NA-ELEM-SO07-02	mg/kg	0.77	2.2 3	3.8	3.8	0.43	0.43	2.6	
ILMO4.0	Arsenic	NA-ELEM-SO01-02	mg/kg	0.57		3.8	3.8	0.43	0.43	2.6	
ILMO4.0	Arsenic	NA-ELEM-SO03-02	mg/kg	0.71	3.4	3.8	3.8	0.43	0.43		
ILMO4.0	Arsenic	NA-ELEM-SO05-02	mg/kg	0.58	2.8	3.8	3.8	0.43	0.43	2.6	
ILMO4.0	Arsenic	NA-ELEM-SO07-02	mg/kg	1	5.3		14000	5500	550		
ILMO4.0	Barium	NA-ELEM-SO01-02	mg/kg			140000	14000	5500	550		
ILMO4.0	Barium	NA-ELEM-SO03-02	mg/kg		101 K			5500	550		
ILMO4.0	Barium	NA-ELEM-SO05-02	mg/kg			140000	14000	5500	550		
ILMO4.0	Barium	NA-ELEM-SO07-02	mg/kg			140000		160		NC /2.3	NC
ILMO4.0	Beryllium	NA-ELEM-SO01-02	mg/kg	0.14		4100	410 410	160		NC NC	NC NC
ILMO4.0	Beryllium	NA-ELEM-SO03-02	mg/kg	0.18		4100		160		NC	NC
ILMO4.0	Beryllium	NA-ELEM-SO05-02	mg/kg		0.18	4100	410 410	160		NC	NC
ILMO4.0	Beryllium	NA-ELEM-SO07-02	mg/kg			4100		39	3.9		
ILMO4.0	Cadmium	NA-ELEM-SO01-02	mg/kg	 	0.22 K	1000		39	3.9		
ILMO4.0	Cadmium	NA-ELEM-SO03-02	mg/kg		0.9 K	1000					
ILMO4.0	Cadmium	NA-ELEM-SO05-02	mg/kg		0.22 K	1000		39	3.9		
ILMO4.0	Cadmium	NA-ELEM-SO07-02	mg/kg			1000	100	39	3.9		
ILMO4.0	Calcium	NA-ELEM-SO01-02	mg/kg					·	·	11600	
ILMO4.0	Calcium	NA-ELEM-SO03-02	mg/kg				ļ <u>-</u>	•	•	11600	
ILMO4.0	Calcium	NA-ELEM-SO05-02	mg/kg				·	·	<u>. </u>	11600 11600	
ILMO4.0	Calcium	NA-ELEM-SO07-02	mg/kg		5760					.l	NS NS
IO4.0	Chromium	NA-ELEM-SO01-02	mg/kg					390	39		NS NS
/IO4.0	Chromium	NA-ELEM-SO03-02	mg/kg					390	39		NS NS
ILMO4.0	Chromium	NA-ELEM-SO05-02	mg/kg					390	39		
ILMO4.0	Chromium	NA-ELEM-SO07-02	mg/kg					390	39		NS
ILMO4.0	Cobalt	NA-ELEM-SO01-02	mg/kg		1	120000		4700	470		NS
ILMO4.0	Cobalt	NA-ELEM-SO03-02	mg/kg			120000		4700	470		NS
ILMO4.0	Cobalt	NA-ELEM-SO05-02	mg/kg		.1	120000		4700	470		NS
ILMO4.0	Cobalt	NA-ELEM-SO07-02	mg/kg					4700	470		NS
ILMO4.0	Соррег	NA-ELEM-SO01-02	mg/kg					3100	310		NS
ILMO4.0	Copper	NA-ELEM-SO03-02	mg/kg					3100	310	T	5 NS
ILMO4.0	Соррег	NA-ELEM-SO05-02	mg/kg	0.15				3100	310		5 NS
ILMO4.0	Copper	NA-ELEM-SO07-02	mg/kg	0.2ϵ	183) 110	5 NS
ILMO4.0	Iron	NA-ELEM-SO01-02	mg/kg	g 2		610000					
ILMO4.0	Iron	NA-ELEM-SO03-02	mg/kg	· L.		610000					
ILMO4.0	Iron	NA-ELEM-SO05-02	mg/kg			610000					
ILMO4.0	Iron	NA-ELEM-SO07-02	mg/k			610000					
ILMO4.0	Lead	NA-ELEM-SO01-02	mg/kg								7 NS
ILMO4.0	Lead	NA-ELEM-SO03-02	mg/k				1				7 NS
ILMO4.0	Lead	NA-ELEM-SO05-02	mg/k								7 NS
ILMO4.0	Lead	NA-ELEM-SO07-02	mg/k				400	400	40		7 NS
ILMO4.0		NA-ELEM-SO01-02	mg/k				<u> -</u>	ļ	<u> -</u>		0 NS
ILMO4.0		NA-ELEM-SO03-02	mg/k				<u> -</u>	ļ:	· _		0 NS
ILMO4.0		NA-ELEM-SO05-02	mg/k				<u> -</u>	<u> </u>	ļ.		0 NS
ILMO4.0		NA-ELEM-SO07-02	mg/k				·		ļ		0 NS
ILMO4.0		NA-ELEM-SO01-02	mg/k	g 0.14							0 NS
ILMO4.0		NA-ELEM-SO03-02									0 NS
ILMO4.0		NA-ELEM-SO05-02	mg/k	g 0.1:							0 NS
ILMO4.0		NA-ELEM-SO07-02	mg/k	g 0.20							0 NS
1LNO4.0		NA-ELEM-SO01-02	mg/k		2 ND	200					4 NS
04.0		NA-ELEM-SO03-02	mg/k	<u> </u>		6 20	0 20	7.8	0.7	8 0.0	4 NS

Method	Analyte	Sample ID					ustrial		lential	Reference	Means Comparison Conclusion Reference vs
ILMO4.0	Mercury	NA-ELEM-SO05-02	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Mercury	NA-ELEM-SO07-02	mg/kg	0.02		200				0.04	
ILMO4.0	Nickel	NA-ELEM-SO01-02	mg/kg	0.03							NS
ILMO4.0	Nickel	NA-ELEM-SO03-02	mg/kg	0.28						32.9	NS
ILMO4.0	Nickel	NA-ELEM-SO05-02	mg/kg	0.35	24.5					32.9	NS
ILMO4.0	Nickel	NA-ELEM-SO07-02	mg/kg	0.29	6.7			1	160	32.9	NS
ILMO4.0	Potassium	NA-ELEM-SO01-02	mg/kg	0.51	46.9		4100	1600	160	32.9	
ILMO4.0	Potassium	NA-ELEM-SO03-02	mg/kg	0.85	767		ļ	<u> -</u>		285	
ILMO4.0	Potassium	NA-ELEM-SO05-02	mg/kg	1.1	678					285	
ILMO4.0	Potassium	NA-ELEM-S007-02	mg/kg	0.87	734			<u>. </u>		285	
ILMO4.0	Selenium	NA-ELEM-SO01-02	mg/kg	1.5	520				<u>•</u>	285	
ILMO4.0	Selenium	NA-ELEM-SO03-02	mg/kg		ND UL			390	39	0.6	
ILMO4.0	Selenium	NA-ELEM-SO05-02	mg/kg		ND UL		1000	390	39	0.6	
ILMO4.0	Selenium	NA-ELEM-SO07-02	mg/kg		ND UL			390	39	0.6	
ILMO4.0	Silver	NA-ELEM-SO01-02	mg/kg		ND UL		1000	390	39	0.6	NC
ILMO4.0	Silver	NA-ELEM-SO03-02	mg/kg	0.14		10000	1000	390	39		NC
ILMO4.0	Silver	NA-ELEM-SO05-02	mg/kg	0.18	0.27	10000	1000	390	39		NC
ILMO4.0	Silver	NA-ELEM-SO07-02	mg/kg	0.15		10000	1000	390	39		VC
ILMO4.0	Sodium	NA-ELEM-SO01-02	mg/kg	0.26	0.47	10000	1000	390	39		VC
	Sodium	NA-ELEM-SO03-02	mg/kg	14.2	895		· .	·		2030 1	VS
ILMO4.0	Sodium	NA-ELEM-SO05-02	mg/kg	17.7	816					2030 1	
ILMO4.0	Sodium	NA-ELEM-SO07-02	mg/kg	14.5 25.6	987		-			2030 1	
	Thallium	NA-ELEM-SO01-02	mg/kg		530	<u> </u>	<u> </u>	·		2030	VS
	Thallium	NA-ELEM-SO03-02	mg/kg	0.57	ND UL	140	14	5.5	0.55	1.7	
	Thallium	NA-ELEM-SO05-02	mg/kg	0.71		140	14	5.5	0.55	1.7	
	Thallium	NA-ELEM-SO07-02	mg/kg		ND UL	140	14	5.5	0.55	1.7 N	
	Vanadium	NA-ELEM-SO01-02	mg/kg	1 3		140	14	5.5	0.55	1.7 1	
LMO4.0	Vanadium	NA-ELEM-SO03-02	mg/kg mg/kg	0.14	51.7	14000	1400	550	55	219 N	
	Vanadium	NA-ELEM-SO05-02			166	14000	1400	550	55	219 1	
	Vanadium	NA-ELEM-SO07-02	mg/kg	0.15	39.9	14000	1400	550	55	. 219 N	
	Zinc	NA-ELEM-SO01-02	mg/kg	0.26	359	14000	1400	550	55	219 N	
	Zinc		mg/kg	0.14	32.2	610000		23000	2300	48.6 N	
	Zinc	NA-ELEM-SO05-02	mg/kg	0.18	90.6	610000		23000	2300	48.6 N	
LMO4.0	Zinc	NA-FI EM SO07.02	mg/kg	0.15	00.7	610000		23000	2300	48.6 N	
Reference U	TL abbreviations: NC = Not	calculated becomes ==f=	mg/kg	0.26	93.6	610000	61000	23000	2300	48.6 N	S
Aeans Com	parison Conclusion Reference	ve Site abbreviation	sence dat	a were a	ni non-c	ietected	results or	were no	t analyz	ed.	
NA = Nc	ot applicable. Data is associa	ted with reference		 -							
NC = No	ot calculated because reference	a deta and/an aire las									

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Significant. On average, site data were significantly greater than reference data.

						T-1		Resido	ential	Reference	Means Comparison Conclusion Reference vs
			t			Indus RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID	Units		Result		24000	2700	2700		NC
LM03.2	4,4'-DDD	NA-TOWR-SO01-01	ug/kg	0.28		24000		2700	2700		NC
LM03.2	4,4'-DDD	NA-TOWR-SO02-01	ug/kg	0.25		24000	24000	2700	2700		NC
LM03.2	4,4'-DDD	NA-TOWR-SO03-01	ug/kg	0.29		24000	24000	2700	2700		NC
LM03.2	4,4'-DDD	NA-TOWR-SO04-01	ug/kg	0.24		24000	24000	2700	2700		NC
	4,4'-DDD	NA-TOWR-SO05-01	ug/kg	0.18		24000	24000	2700	2700		NC
	4,4'-DDD	NA-TOWR-SO06-01	ug/kg	0.35	4.4	24000	24000		2700		NC
LM03.2	4,4'-DDD	NA-TOWR-SO07-01	ug/kg	0.18		24000	24000	2700	2700		NC
LM03.2	4,4'-DDD	NA-TOWR-SO08-01	ug/kg	0.27	15		24000	2700			NC
)LM03.2	4,4'-DDD	NA-TOWR-SO09-01	ug/kg	0.25	8.8			2700	2700		
DLM03.2	4,4'-DDD	NA-TOWR-SO10-01	ug/kg	0.27	6.5			2700	2700		NC
DLM03.2	4,4'-DDD	NA-TOWR-SO11-01	ug/kg	0.19		24000	1	2700	2700		NC
	4,4'-DDD	NA-TOWR-SO12-01	ug/kg	0.27	8.5			2700	2700		NC
	4,4'-DDE	NA-TOWR-SO01-01	ug/kg	0.28				1900	1900		NS
	4,4'-DDE	NA-TOWR-SO02-01	ug/kg	0.25				1900	1900		NS
	4,4'-DDE	NA-TOWR-SO03-01	ug/kg	0.29	12	17000	17000	1900	1900		NS
DLM03.2		NA-TOWR-SO04-01	ug/kg	0.97	140	17000	17000	1900	1900		NS
DLM03.2		NA-TOWR-SO05-01	ug/kg	0.18	1.6	17000	17000	1900			NS
DLM03.2		NA-TOWR-SO06-01	ug/kg	0.35	65	17000	17000	1900			NS
		NA-TOWR-SO07-01	ug/kg	0.18	ND	17000	17000	1900	1900		NS
DLM03.2		NA-TOWR-SO08-01	ug/kg			17000	17000	1900	1900	· 1	NS
OLM03.2		NA-TOWR-SO09-01	ug/kg				17000	1900	1900	990	NS
DLM03.2		NA-TOWR-SO10-01	ug/kg					1900	1900	990	NS
M03.2		NA-TOWR-SO11-01	ug/kg	-	ND	17000		1900	1900	990	NS
_M03.2		NA-TOWR-SO12-01	ug/kg) 99(NS
OLM03.2		NA-TOWR-SO01-01	ug/kg							200	NS
OLM03.2			ug/kg		25 J	17000				200	NS
OLM03.2		NA-TOWR-SO02-01 NA-TOWR-SO03-01	ug/kg ug/kg								NS
OLM03.2			ug/kg								NS
OLM03.2		NA-TOWR-SO04-01									ONS
OLM03.2		NA-TOWR-S005-01	ug/kg								ONS
OLM03.2		NA-TOWR-SO06-01	ug/kg		8 ND	17000					ONS
	4,4'-DDT	NA-TOWR-S007-01	ug/kg	<u> </u>			17000				ONS
	4,4'-DDT	NA-TOWR-SO08-01					17000				0 NS
	4,4'-DDT	NA-TOWR-SO09-01				8 17000					0 NS
OLM03.2	4,4'-DDT	NA-TOWR-SO10-01				17000					0 NS
OLM03.2	4,4'-DDT	NA-TOWR-SO11-01			9 ND						0 NS
OLM03.2	2 4,4'-DDT	NA-TOWR-SO12-01				3 17000				8 NC	NC
OLM03.2	2 Aldrin	NA-TOWR-SO01-01			8 ND					8 NC	NC
OLM03.2	Aldrin	NA-TOWR-SO02-01			5 ND	344				8 NC	NC
OLM03.2	Aldrin	NA-TOWR-SO03-01			9 ND	344			1	8 NC	NC
OLM03.2	Aldrin	NA-TOWR-SO04-01			4 ND	34				8 NC	NC
OLM03.2	Aldrin	NA-TOWR-SO05-01			8 ND	34				8 NC	NC
OLM03.2	2 Aldrin	NA-TOWR-SO06-01			5 ND	34				8 NC	NC NC
OLM03.2	2 Aldrin	NA-TOWR-SO07-01			8 ND	34				8 NC	NC NC
OLM03.		NA-TOWR-SO08-01			7 ND	34					
OLM03.		NA-TOWR-SO09-01		-	5 ND	34				8 NC	NC NC
OLM03.		NA-TOWR-SO10-01	ug/k		7 ND	34		_		8 NC	NC NC
OLM03		NA-TOWR-SOI1-01	ug/k		9 ND	34				8 NC	NC
M03.		NA-TOWR-SO12-0	ug/k	g 0.2	7 ND	34				8 NC	NC
M03.		NA-TOWR-SO01-0		g 0.2	28 ND	290	0 290	0 32	0 32	20 NC	NC

Method	Analyte	Sample ID	There				ıstrial		lential	Reference	Means Comparison Conclusion Reference vs
OLM03.2	Aroclor-1016	NA-TOWR-SO02-01	Units		Result		RBSL	RBC	RBSL	UTL	Site
OLM03.2	Aroclor-1016	NA-TOWR-S002-01		0.25		2900		320		NC	NC
OLM03.2		NA-TOWR-SO04-01	 ¥ 	0.29		2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TOWR-SO05-01		0.24		2900		320			NC
OLM03.2	Aroclor-1016	NA-TOWR-SO06-01	ug/kg ug/kg	0.18 0.35		2900	2900	320	320		NC
OLM03.2	Aroclor-1016	NA-TOWR-SO07-01	ug/kg	0.33		2900	2900	320			NC
OLM03.2	Aroclor-1016	NA-TOWR-SO08-01	ug/kg	0.18		2900	2900	320	320		NC
OLM03.2	Aroclor-1016	NA-TOWR-SO09-01		0.27		2900	2900	320	320		NC
OLM03.2	Aroclor-1016	NA-TOWR-SO10-01	ug/kg	0.23		2900	2900	320	320		NC
OLM03.2	Aroclor-1016	NA-TOWR-SO11-01	ug/kg	0.27		2900	2900	320	320		NC
OLM03.2	Aroclor-1016	NA-TOWR-SO12-01	ug/kg	0.19		2900	2900	320	320		NC
OLM03.2	Aroclor-1221	NA-TOWR-SO01-01	ug/kg	0.27		2900	2900	320	320		NC
DLM03.2	Aroclor-1221	NA-TOWR-SO02-01	ug/kg	0.25		2900 2900	2900	320	320		NC
DLM03.2	Aroclor-1221	NA-TOWR-SO03-01	ug/kg	0.29		2900	2900	320	320		NC
DLM03.2	Aroclor-1221	NA-TOWR-SO04-01	ug/kg	0.24		2900	2900	320	320		NC
DLM03.2	Aroclor-1221	NA-TOWR-SO05-01	ug/kg	0.18		2900	2900 2900	320	320		NC
	Aroclor-1221	NA-TOWR-SO06-01	ug/kg	0.35		2900	2900	320	320		NC
	Aroclor-1221	NA-TOWR-SO07-01	ug/kg	0.18 1		2900	2900	320	320		NC
	Aroclor-1221	NA-TOWR-SO08-01	ug/kg	0.27 N		2900	2900	320 320	320 1		NC
	Aroclor-1221	NA-TOWR-SO09-01	ug/kg	0.25 N		2900	2900	320	320 1		NC
	Aroclor-1221	NA-TOWR-SO10-01	ug/kg	0.27 N		2900	2900	320	320 1		NC
	Aroclor-1221	NA-TOWR-SO11-01	ug/kg	0.19 N		2900	2900	320	320 1		NC
LM03.2	Aroclor-1221	NA-TOWR-SO12-01	ug/kg	0.27 N		2900	2900		320 1		NC
	Aroclor-1232	NA-TOWR-SO01-01	ug/kg	0.28 N		2900	2900	320 320	320 1		NC
	Aroclor-1232	NA-TOWR-SO02-01	ug/kg	0.25 N		2900	2900	320	320 N		NC
	Aroclor-1232	NA-TOWR-SO03-01	ug/kg	0.29 N		2900	2900	320	320 N		NC
	Aroclor-1232	NA-TOWR-SO04-01	ug/kg	0.24 N		2900	2900	320	320 N		NC
	Aroclor-1232	NA-TOWR-SO05-01	ug/kg	0.18 N		2900	2900	320	320 N		VC
	Aroclor-1232	NA-TOWR-SO06-01	ug/kg	0.35 N		2900	2900	320	320 N		VC
	Aroclor-1232	NA-TOWR-SO07-01	ug/kg	0.18 N		2900	2900	320	320 N		VC
	Aroclor-1232	NA-TOWR-SO08-01	ug/kg	0.27 N	D	2900	2900	320	320 N		VC
	Aroclor-1232	NA-TOWR-SO09-01	ug/kg	0.25 N		2900	2900	320	320 N		VC
	Aroclor-1232	NA-TOWR-SO10-01	ug/kg	0.27 N		2900	2900	320	320 N		1C
	Aroclor-1232	NA-TOWR-SO11-01	ug/kg	0.19 N	D	2900	2900	320	320 N		ic
	Aroclor-1232	NA-TOWR-SO12-01	ug/kg	0.27 N	D	2900	2900	320	320 N		1C
	Aroclor-1242	NA-TOWR-SO01-01	ug/kg	0.28 N	D	2900	2900	320	320 N		ic
	Aroclor-1242		ug/kg	0.25 N	D	2900	2900	320	320 N		ic
	Aroclor-1242	NA-TOWR-SO03-01	ug/kg	0.29 N	D	2900	2900	320	320 N		ic
$\overline{}$	Aroclor-1242	NA-TOWR-SO04-01	ug/kg	0.24 N	D	2900	2900	320	320 N		ic
	Aroclor-1242 Aroclor-1242	1	ug/kg	0.18 NI		2900	2900	320	320 N		ic
	Aroclor-1242	274	ug/kg	0.35 NI	D	2900	2900	320	320 N		ic
	Aroclor-1242		ug/kg	0.18 NI		2900	2900	320	320 N		c
			ug/kg	0.27 NI	· · · · · · · · · · · · · · · · · · ·	2900	2900	320	320 N		
	Aroclor-1242	***	ug/kg	0.25 NI		2900	2900	320	320 N		
	Aroclor-1242 Aroclor-1242		ug/kg	0.27 NI		2900	2900	320	320 N		
	Aroclor-1242	371	ug/kg	0.19 NI		2900	2900	320	320 N		
	Aroclor-1242 Aroclor-1248		ıg/kg	0.27 NI)	2900	2900	320	320 NO		
	Aroclor-1248		ıg/kg	0.28 NI			2900	320	320 NO		
4103.2 A	100101-1248	NA-TOWR-SO02-01	ıg/kg	0.25 NI			2900	320	320 NO		

									, · · ·	Para and an an an an an an an an an an an an an	Means Comparison Conclusion Reference vs
						Indus		Resid	ential	Reference	Site
_	A 3-ust o	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	NC
Method	Analyte	NA-TOWR-SO03-01	ug/kg	0.29	ND	2900	2900	320		NC	
LM03.2	Aroclor-1248	NA-TOWR-SO04-01	ug/kg	0.24	ND	2900	2900	320		NC	NC
LM03.2	Aroclor-1248	NA-TOWR-SO05-01	ug/kg	0.18		2900	2900	320		NC	NC
LM03.2	Aroclor-1248	NA-TOWR-SO06-01	ug/kg	0.35		2900	2900	320		NC	NC
LM03.2	Aroclor-1248	NA-TOWR-S007-01	ug/kg	0.18		2900	2900	320		NC	NC
LM03.2	Aroclor-1248		ug/kg	0.27		2900	2900	320		NC	NC
DLM03.2	Aroclor-1248	NA-TOWR-SO08-01	ug/kg	0.25		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1248	NA-TOWR-S009-01			ND	2900	2900	320	320	NC	NC
OLM03.2		NA-TOWR-SO10-01	ug/kg		ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1248	NA-TOWR-SO11-01	ug/kg		ND	2900	2900	320	320	NC	NC
OLM03.2		NA-TOWR-SO12-01	ug/kg		ND	2900	2900		32	0 NC	NC
OLM03.2		NA-TOWR-SO01-01	ug/kg		ND	2900		ļ		0 NC	NC
OLM03.2		NA-TOWR-SO02-01	ug/kg		ND	2900				0 NC	NC
OLM03.2	Aroclor-1254	NA-TOWR-SO03-01	ug/kg			2900				0 NC	NC
OLM03.2		NA-TOWR-SO04-01	ug/kg		ND	2900				0 NC	NC
OLM03.2		NA-TOWR-SO05-01	ug/kg	+	ND	2900				0 NC	NC
OLM03.2		NA-TOWR-SO06-01	ug/kg		ND_	2900				0 NC	NC
OLM03.2		NA-TOWR-SO07-01	ug/kg		ND					0 NC	NC
OLM03.2		NA-TOWR-SO08-01	ug/kg	'	7 ND	2900		+		ONC	NC
OLM03.2		NA-TOWR-SO09-01	ug/kg	<u> </u>	5 ND	2900				0 NC	NC
OLM03.2		NA-TOWR-SO10-01	ug/kg		7 ND	2900				0 NC	NC
OLM03.2		NA-TOWR-SO11-01	ug/kg		9 ND	2900				20 NC	NC
M03.2		NA-TOWR-SO12-01	ug/kg		7 ND	2900				ONC	NC
ZM03.2		NA-TOWR-SO01-01	ug/kg	7	8 ND	290				20 NC	NC
OLM03.2		NA-TOWR-SO02-01	ug/k		5 ND	290				20 NC	NC
		NA-TOWR-SO03-01			9 ND	290					NC NC
OLM03.2		NA-TOWR-SO04-01		g 0.2	4 ND	290				20 NC	NC NC
OLM03.2		NA-TOWR-SO05-01		g 0.1	8 ND	290				20 NC	
OLM03.		NA-TOWR-SO06-01			35 ND	290				20 NC	NC
OLM03.		NA-TOWR-SO07-01			8 ND	290	0 290			20 NC	NC
OLM03.		NA-TOWR-SO08-01			27 ND	290	0 290			20 NC	NC
OLM03.		NA-TOWR-SO09-01			25 ND	290				20 NC	NC
OLM03.	2 Aroclor-1260	NA-TOWR-SO10-01	ug/k		27 ND	290	0 290	3:		20 NC	NC
OLM03.	2 Aroclor-1260	NA-TOWR-SO11-0		$\frac{\sigma}{\sigma} = \frac{1}{0}$	19 ND	290	00 290	00 3		20 NC	NC
OLM03.	2 Aroclor-1260	NA-TOWR-SO12-0		~ +	27 ND	290	00 290	00 3		20 NC	NC
	2 Aroclor-1260	NA-TOWR-SO01-0		~	28 ND	36	50 30	50	40	40 NC	NC
	.2 Dieldrin	NA-TOWR-SO02-0			25 ND	30	50 30		40	40 NC	NC
	.2 Dieldrin	NA-TOWR-SO03-0			29 ND	30	50 30	60	40	40 NC	NC
	.2 Dieldrin	NA-TOWR-SO04-0		-	24 ND	30	60 3	60	40	40 NC	NC
	.2 Dieldrin	NA-TOWR-SO05-0			18 ND	3	60 3	60	40	40 NC	NC
	.2 Dieldrin				35 ND	3	60 3	60	40	40 NC	NC
OLM03	.2 Dieldrin	NA-TOWR-SO06-0	1 ug/		18 ND			60	40	40 NC	NC
OLM03	.2 Dieldrin	NA-TOWR-SO07-0			.27 ND			60	40	40 NC	NC
OLM03		NA-TOWR-SO08-0			.27 ND			60	40	40 NC	NC
OLM03	3.2 Dieldrin	NA-TOWR-SO09-0		-	.23 ND			60	40	40 NC	NC
OLM03		NA-TOWR-SO10-0			.19 ND			60	40	40 NC	NC
OLM03		NA-TOWR-SO11-0						60	40	40 NC	NC
OLM0		NA-TOWR-SO12-0)1 ug/	-	.27 ND	1E+	-	-06 470	-	000 NC	NC
OLM0		NA-TOWR-SO01-)1 ug/		.28 ND	15	-07 1E-			000 NC	NC
MO:		NA-TOWR-SO02-0			.25 ND	112-1	-07 1E-	06 470		000 NC	NC
	3.2 Endosulfan I	NA-TOWR-SO03-)1 ug.	kg C).29 ND	I III-	O/ IE	1001-10	500] 47	- U - 1 - 1 - 1	

Method OLM03.2	Analyte Endosulfan I	Sample ID NA-TOWR-SO04-0	Units			t RBC		Resid RBC	dential RBSL	Reference UTL	Means (Comparison Conclusion Reference v. Site
OLM03.2		NA-TOWR-SO05-0				1E+07	7 1E+06	470000			NC
OLM03.2		NA-TOWR-SO06-0	100			1E+07	7 1E+06	470000	47000		NC
OLM03.2	Endosulfan I	NA-TOWR-SO07-0				1E+07	1E+06	470000	47000		NC -
OLM03.2	Endosulfan I	NA-TOWR-SO08-0	 			1E+07		470000		NC	NC
OLM03.2	Endosulfan I	NA-TOWR-SO09-01				1E+07		470000		NC	NC
OLM03.2	Endosulfan I	NA-TOWR-SO10-01	i ug/kg l ug/kg	0.25		1E+07		470000			NC
OLM03.2	Endosulfan I	NA-TOWR-SO11-01	ug/kg	0.27		1E+07		470000			NC
DLM03.2	Endosulfan I	NA-TOWR-SO12-01	ug/kg	0.19		1E+07		470000			NC
DLM03.2	Endosulfan II	NA-TOWR-SO01-01	ug/kg	0.27		1E+07		470000			NC
DLM03.2	Endosulfan II	NA-TOWR-SO02-01		0.25		1E+07	1E+06		47000		NC
DLM03.2	Endosulfan II	NA-TOWR-SO03-01		0.23 1		1E+07	1E+06				NC
	Endosulfan II	NA-TOWR-SO04-01	ug/kg	0.24 N		1E+07	1E+06				NC
	Endosulfan II	NA-TOWR-SO05-01	ug/kg	0.18 N		1E+07	1E+06	470000	47000 1		NC
	Endosulfan II	NA-TOWR-SO06-01	ug/kg	0.35 N		1E+07	1E+06		47000 1		NC
	Endosulfan II	NA-TOWR-SO07-01	ug/kg	0.33 N		1E+07	1E+06	470000	47000 N		NC
	Endosulfan II	NA-TOWR-SO08-01	ug/kg	0.27 N		1E+07	1E+06		47000 N		VC
	Endosulfan II	NA-TOWR-SO09-01	ug/kg	0.25 N		1E+07	1E+06		47000 N		NC
	Endosulfan II	NA-TOWR-SO10-01	ug/kg	0.27 N		1E+07	1E+06 4	170000	47000 N		VC
	Endosulfan II	NA-TOWR-SO11-01	ug/kg	0.19 N		1E+07	1E+06 4		47000 N		4C
	Endosulfan II	NA-TOWR-SO12-01	ug/kg	0.27 N			1E+06 4		47000 N		VC
	Endosulfan sulfate	NA-TOWR-SO01-01	ug/kg	0.28 N			1E+06 4		47000 N		∛C
	Endosulfan sulfate	NA-TOWR-SO02-01	ug/kg	0.25 N			1E+06 4		47000 N		VC
	Endosulfan sulfate	NA-TOWR-SO03-01	ug/kg	0.29 N			1E+06 4		47000 N		IC
	Endosulfan sulfate	NA-TOWR-SO04-01	ug/kg	0.24 N			1E+06 4		47000 N		IC
	Endosulfan sulfate	NA-TOWR-SO05-01	ug/kg	0.18 N			1E+06 4		47000 N 47000 N		IC
	Endosulfan sulfate	NA-TOWR-SO06-01	ug/kg	0.35 N	<u> </u>		1E+06 4		47000 N		C
	Endosulfan sulfate	NA-TOWR-SO07-01	ug/kg	0.18 N	D		1E+06 4		47000 N		C
	Endosulfan sulfate Endosulfan sulfate	NA-TOWR-SO08-01	ug/kg	0.27 NI	D		1E+06 4		47000 N		C
	Endosulfan sulfate	NA-TOWR-SO09-01	ug/kg	0.25 NI	5		1E+06 4		47000 N		C
	Endosulfan sulfate	NA-TOWR-SO10-01	ug/kg	0.27 NI	5		1E+06 4		47000 N		
M03.2 E	endosulfan sulfate	NA-TOWR-SO11-01	ug/kg	0.19 NI		1E+07	1E+06 47		47000 NO		
	Endrin	NTA CONTRACTOR OF THE CONTRACT	ug/kg	0.27 NI)		1E+06 47		47000 NO		
	Indrin	N	ug/kg	0.28 NI				23000	2300 NO		
	ndrin	ATA CONTRACTOR	ug/kg	0.25 NI		510000		23000	2300 NO		
	ndrin	1 1 1 mos	ug/kg	0.29 NE				3000	2300 NO		
	ndrin	N / A	ug/kg	0.24 NE		10000		3000	2300 NO		
M03.2 E			ug/kg	_0.18 ND		10000 6			2300 NC		
M03.2 E			ug/kg	0.35 ND		10000 6	51000 2		2300 NC		
M03.2 E	ndrin	1274	ug/kg	0.18 ND		10000 6	51000 2		2300 NC		
M03.2 E	ndrin	3.7.4	ug/kg	0.27 ND			1000 2		2300 NC	:	
M03.2 E		N.T.A. CONTRACTOR OF THE PARTY	ug/kg	0.25 ND		10000 6	1000 2		2300 NC		
M03.2 E		N. A. Charles	ug/kg	0.27 ND					2300 NC		
M03.2 Er		ATA COURTED TO	ug/kg	0.19 ND					2300 NC		
	ndrin aldehyde	NIA PROTEIN AND A	ug/kg	0.27 ND	-				2300 NC		
∕103.2 Er	drin aldehyde	ATA CONTRACTOR OF STREET	ug/kg	0.28 ND			1000 23	_—;—	2300 NC		
403.2 En	drin aldehyde			0.25 ND	_			3000	2300 NC		
	drin aldehyde	X 7 A		0.29 ND			1000 23		2300 NC		
		1-4-1-0 41-3004-01 D	ıg/kg	0.24 ND	[61	0000 6	1000 23		300 NC		

						Indus	rtrial	Resid	ential	Reference	Means Comparison Conclusion Reference vs
						RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID	Units	MDL	Result	610000	61000	23000	2300		NC
DLM03.2	Endrin aldehyde	NA-TOWR-SO05-01	ug/kg	0.18			61000	23000	2300		NC
DLM03.2	Endrin aldehyde	NA-TOWR-SO06-01	ug/kg	0.35		610000	61000	23000	2300		NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO07-01	ug/kg	0.18		610000	61000	23000	2300		NC
DLM03.2	Endrin aldehyde	NA-TOWR-SO08-01	ug/kg	0.27		610000	61000	23000	2300		NC
DLM03.2	Endrin aldehyde	NA-TOWR-SO09-01	ug/kg	0.25		610000	61000	23000	2300		NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO10-01	ug/kg	0.27		610000		23000	2300		NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO11-01	ug/kg	0.19		610000			2300	<u> </u>	NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO12-01	ug/kg		ND	610000	61000	23000	2300		NC
OLM03.2	Endrin ketone	NA-TOWR-SO01-01	ug/kg		ND	610000		23000			NC
OLM03.2	Endrin ketone	NA-TOWR-SO02-01	ug/kg		ND	610000	61000	23000			NC
OLM03.2	Endrin ketone	NA-TOWR-SO03-01	ug/kg	·	ND _	610000	61000	23000			NC NC
OLM03.2	Endrin ketone	NA-TOWR-SO04-01	ug/kg		ND	610000		23000			NC NC
OLM03.2	Endrin ketone	NA-TOWR-SO05-01	ug/kg		ND	610000		23000			NC
OLM03.2	Endrin ketone	NA-TOWR-SO06-01	ug/kg		ND	610000		23000			NC NC
OLM03.2	Endrin ketone	NA-TOWR-SO07-01	ug/kg		ND_	610000	61000	23000			NC NC
OLM03.2	Endrin ketone	NA-TOWR-SO08-01	ug/kg		ND ND	610000		23000		NC	
OLM03.2	Endrin ketone	NA-TOWR-SO09-01	ug/kg		ND	610000				NC	NC
OLM03.2	Endrin ketone	NA-TOWR-SO10-01	ug/kg		ND	610000				NC	NC
OLM03.2	Endrin ketone	NA-TOWR-SO11-01	ug/kg		ND	610000				NC	NC
OLM03.2	Endrin ketone	NA-TOWR-SO12-01	ug/kg	0.23	7 ND	610000) NC	NC
OLM03.2		NA-TOWR-SO01-01	ug/kg	0.2	8 ND	1300				NC	NC
M03.2		NA-TOWR-SO02-01	ug/kg	0.2	5 ND	1300				NC _	NC
M03.2		NA-TOWR-SO03-01	ug/kg	0.29	9 ND	1300				NC	NC
OLM03.2		NA-TOWR-SO04-01	ug/kg	0.2	4 ND	1300				NC	NC
OLM03.2		NA-TOWR-SO05-01	ug/kg	0.1	8 ND	1300) NC	NC
OLM03.2		NA-TOWR-SO06-01	ug/kg		5 ND	1300				0 NC	NC
OLM03.2		NA-TOWR-SO07-01	ug/kg		8 ND	1300				0 NC	NC
OLM03.2		NA-TOWR-SO08-01	ug/kg		7 ND	1300				0 NC	NC
OLM03.2		NA-TOWR-SO09-01			5 ND	1300				0 NC	NC
OLM03.2		NA-TOWR-SO10-01			7 0.8	8 1300				0 NC	NC
OLM03.2		NA-TOWR-SO11-01			9 ND	1300				0 NC	NC
	Heptachlor	NA-TOWR-SO12-01			7 ND	130	1300) 14		0 NC	NC
OLM03.2		NA-TOWR-SO01-01			8 ND	630	630) 7	- 1	0 NC	NC
OLM03.2		NA-TOWR-SO02-01			5 ND	63	0 630	·		0 NC	NC
OLM03.2		NA-TOWR-SO03-01			29 1.	4 63	0 630			0 NC	NC
OLM03.2		NA-TOWR-SO04-01			4 ND	63	0 63			0 NC	NC
OLM03.2		NA-TOWR-SO05-01			8 ND	63	0 63			0 NC	NC
OLM03.2		NA-TOWR-SO06-01			35 ND	63	0 63		_	0 NC	NC
OLM03.2		NA-TOWR-SO07-01			8 ND	63				0 NC	NC
OLM03.2		NA-TOWR-SO08-01			27 ND	63				0 NC	NC
OLM03.2		NA-TOWR-SO09-01			25 ND	63				70 NC	NC _
OLM03.		NA-TOWR-SO10-01			27 ND	63			1	70 NC	NC
OLM03.		NA-TOWR-SO11-01			19 ND	63	0 63			70 NC	NC
OLM03.		NA-TOWR-SO12-01			27 ND	63		-		70 NC	NC
	2 Methoxychlor	NA-TOWR-SO01-0		-	28 ND	1E+0		6 39000		00 NC	NC
		NA-TOWR-SO02-0			25 ND	1E+0	7 1E+0	6 39000	00 390	00 NC	NC
	2 Methoxychlor	NA-TOWR-SO03-0			29 ND	1E+0		6 39000	00 390	00 NC	NC
OLM03.		NA-TOWR-SO04-0			24 ND	1E+0		6 39000		00 NC	NC
M03.	2 Methoxychlor 2 Methoxychlor	NA-TOWR-SO05-0			18 ND	1E+0		6 3900		00 NC	NC

Metho	d 4==3=4.					Indi	ustrial	Resid	dential	Referen	Means Comparison Conclusion Reference vs
OLM03.		Sample ID	Unit				RBSL	RBC	RBSL	UTL	Site
OLM03.		NA-TOWR-SO06-0				1E+07	1E+06	390000			NC
OLM03.		NA-TOWR-S007-0				1E+07	1E+06	390000	39000		NC
OLM03.		NA-TOWR-SO08-0				1E+07	1E+06	390000	39000		NC
OLM03.	1	NA-TOWR-SO09-0				1E+07		390000			NC
OLM03.		NA-TOWR-SO10-0				1E+07	1E+06	390000	39000		NC
OLM03		NA-TOWR-SO11-0				1E+07		390000			NC NC
OLM03.		NA-TOWR-SO12-01		0.27		1E+07	1E+06	390000	39000	<u> </u>	NC
OLM03.	<u> </u>	NA-TOWR-SO01-01		0.28		5200	5200	580	580	L	NC NC
OLM03.		NA-TOWR-SO02-01	ug/kg	0.25	ND	5200	5200	580	580		NC
OLM03.2	 	NA-TOWR-SO03-01		0.29		5200	5200	580	580		NC
OLM03.2		NA-TOWR-SO04-01		0.24	ND	5200	5200	580	580		NC
OLM03.2		NA-TOWR-SO05-01	ug/kg	0.18	ND	5200	5200	580	580		NC
OLM03.2 OLM03.2	1	NA-TOWR-SO06-01		0.35	ND	5200	5200	580	580		NC
OLM03.2	F	NA-TOWR-S007-01		0.18	ND	5200	5200	580	580		NC
OLM03.2 OLM03.2		NA-TOWR-SO08-01		0.27	ΦD	5200	5200	580	580		NC
OLM03.2		NA-TOWR-SO09-01		0.25		5200	5200	580	580		NC
OLM03.2		NA-TOWR-SO10-01		0.27		5200	5200	580	580		NC
OLM03.2		NA-TOWR-SO11-01		0.19		5200	5200	580	580		NC NC
DLM03.2		NA-TOWR-SO12-01	ug/kg	0.27		5200	5200	580	580		NC NC
DLM03.2		NA-TOWR-SO01-01	ug/kg	0.28		910	910	100	1001		NC
DLM03.2		NA-TOWR-SO02-01	ug/kg	0.25 N		910	910	100	100 1		NC NC
DLM03.2		NA-TOWR-SO03-01	ug/kg	0.29 N	1D	910	910	100	100		NC NC
DLM03.2 DLM03.2		NA-TOWR-SO04-01	ug/kg	0.24 N	1D	910	910	100	1001		NC NC
DLM03.2		NA-TOWR-SO05-01	ug/kg	0.18 N	ID	910	910	100	1001		NC NC
DLM03.2	alpha-BHC	NA-TOWR-SO06-01	ug/kg	0.35 N	ID	910	910	100	100 N		NC
DLM03.2	alpha-BHC	NA-TOWR-SO07-01	ug/kg	0.18 N	D	910	910	100	100 N		NC NC
)LM03.2	alpha-BHC	NA-TOWR-SO08-01	ug/kg	0.27 N	D	910	910	100	100 N		NC NC
DLM03.2	alpha-BHC	NA-TOWR-SO09-01	ug/kg	0.25 N	D	910	910	100	100 N		NC
LM03.2	alpha-BHC	NA-TOWR-SO10-01	ug/kg	0.27 N	D	910	910	100	100 N		NC
LM03.2	alpha-BHC	NA-TOWR-SO11-01	ug/kg	0.19 N	D	910	910	100	100 N		VC VC
LM03.2	alpha-BHC	NA-TOWR-SO12-01	ug/kg	0.27 N		910	910	100	100 N		VC VC
	alpha-Chlordane	NA-TOWR-SO01-01	ug/kg	0.28 N	D	16000	16000	1800	1800	0.87	
LM03.2 LM03.2	alpha-Chlordane	NA-TOWR-SO02-01	ug/kg	0.25 N			16000	1800	1800	0.87	
	alpha-Chlordane	NA-TOWR-SO03-01	ug/kg	0.29 3.			16000	1800	1800	0.87	
	alpha-Chlordane	NA-TOWR-SO04-01	ug/kg	0.24 N			16000	1800	1800	0.87	
	alpha-Chlordane	NA-TOWR-SO05-01	ug/kg	0.18 N			16000	1800	1800	0.87 N	
LM03.2 LM03.2	alpha-Chlordane	NA-TOWR-SO06-01	ug/kg	0.35 N			16000	1800	1800	0.87 N	
	alpha-Chlordane	NA-TOWR-SO07-01	ug/kg	0.18 N		~	16000	1800	1800	0.87 N	
	alpha-Chlordane	NA-TOWR-SO08-01	ug/kg	0.27 N			16000	1800	1800	0.87 N	
	alpha-Chlordane	NA-TOWR-SO09-01	ug/kg	0.25			16000	1800	1800		
	alpha-Chlordane	NA-TOWR-SO10-01	ug/kg	0.27			16000	1800	1800	0.87 N	
	alpha-Chlordane	NA-TOWR-SO11-01	ug/kg	0.19 NI		_	16000	1800	1800	0.87 N 0.87 N	
	alpha-Chlordane	NA-TOWR-SO12-01	ug/kg	0.27 2.8			16000	1800	1800		
	beta-BHC	NA-TOWR-SO01-01	ug/kg	0.28 NI		3200	3200	350	350 NO	0.87 N	
	beta-BHC	NA-TOWR-SO02-01	ug/kg	0.25 NI		3200	3200	350			
	beta-BHC	NA-TOWR-SO03-01	ug/kg	0.29 NI		3200	3200	350	350 NO		c
	beta-BHC	NA-TOWR-SO04-01	ug/kg	0.24 NI		3200	3200		350 NO		
	beta-BHC	NA-TOWR-SO05-01	ug/kg	0.18 NI			3200	350 350	350 NO		
M03.2	beta-BHC		ug/kg	0.35 NI			3200	350	350 NO		

										Deference	Means Comparison Conclusion Reference v
						Indus		Resid			Site
	Analyte	Sample ID	Units	MDL_	Result	RBC	RBSL	RBC	RBSL	UTL	NC
Method	beta-BHC		ug/kg	0.18	ND	3200	3200	350	350		
	beta-BHC	NA-TOWR-SO08-01	ug/kg	0.27	ND	3200	3200	350	350		NC
	beta-BHC	NA-TOWR-SO09-01	ug/kg	0.25	ND	3200	3200	350	350		NC
		NA-TOWR-SO10-01	ug/kg	0.27	ND	3200	3200	350		NC	NC
	beta-BHC	NA-TOWR-SO11-01	ug/kg	0.19	ND	3200	3200	350		NC	NC
)LM03.2	beta-BHC	NA-TOWR-SO12-01	ug/kg	0.27	ND	3200	3200	350		NC	NC
	beta-BHC	NA-TOWR-SO01-01	ug/kg	0.28	ND	3200	3200	350		NC	NC
	delta-BHC	NA-TOWR-SO02-01	ug/kg	0.25	ND	3200	3200			NC	NC
DLM03.2	delta-BHC	NA-TOWR-SO03-01	ug/kg	0.29	ND	3200	3200			NC	NC
DLM03.2	delta-BHC	NA-TOWR-SO04-01	ug/kg	0.24	ND	3200	3200			NC	NC
DLM03.2	delta-BHC	NA-TOWR-SO05-01	ug/kg		ND	3200	3200			NC	NC
OLM03.2	delta-BHC delta-BHC	NA-TOWR-SO06-01	ug/kg	0.35	ND	3200	3200			NC	NC
OLM03.2	delta-BHC	NA-TOWR-SO07-01	ug/kg		ND	3200				NC	NC
OLM03.2		NA-TOWR-SO08-01	ug/kg		ND	3200				NC	NC
OLM03.2		NA-TOWR-SO09-01	ug/kg	+	ND	3200	3200			NC	NC
OLM03.2		NA-TOWR-SO10-01	ug/kg		7 ND	3200	3200	350		NC	NC
OLM03.2		NA-TOWR-SO11-01	ug/kg		ND	3200	3200			NC	NC
OLM03.2		NA-TOWR-SO12-01	ug/kg		7 ND	3200	3200			NC	NC
OLM03.2	delta-BHC	NA-TOWR-SO01-01	ug/kg		8 ND	4400	4400) 490		NC	NC
OLM03.2		NA-TOWR-SO02-01	ug/kg	'	5 ND	4400	4400) 490		NC	NC
OLM03.2		NA-TOWR-SO03-01	ug/kg	_	9 ND	4400	4400	490		0 NC	NC
OLM03.2		NA-TOWR-SO04-01	ug/kg		4 ND	4400) 4400	49		0 NC	NC
M03.2		NA-TOWR-SO05-01	ug/kg		8 ND	4400	4400) 49	·	0 NC	NC
∠M03.2		NA-TOWR-SO06-01	ug/kg	'— —	5 ND	4400	4400	0 49		0 NC	NC
OLM03.2		NA-TOWR-SO07-01			8 ND	4400	440	0 49		0 NC	NC
OLM03.2		NA-TOWR-SO08-01			7 ND	4400) 440	0 49		0 NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TOWR-SO09-01			5 ND	4400	0 440	0 49		0 NC	NC
OLM03.2		NA-TOWR-SO10-01			7 ND	4400	0 440	0 49		0 NC	NC
OLM03.2		NA-TOWR-SO11-01			9 ND	440		0 49	0 49	0 NC	NC
OLM03.2		NA-TOWR-SO12-01	_		7 ND	440	0 440	0 49	0 49	0 NC	NC
OLM03.2		NA-TOWR-SO01-01			8 ND	1600		0 180	0 180	NC NC	NC
OLM03.2		NA-TOWR-SO02-01		9 0.2	25 ND	1600			0 180	00 NC	NC
OLM03.2		NA-TOWR-SO03-01								00 NC	NC
OLM03.2		NA-TOWR-SO04-01			24 ND	1600			0 180	00 NC	NC
OLM03.2		NA-TOWR-SO05-0			18 ND	1600			00 180	00 NC	NC
OLM03.:		NA-TOWR-SO06-0			35 ND	1600		00 180	00 180	00 NC	NC
OLM03.		NA-TOWR-SO07-0			18 ND	1600		00 180	00 180	00 NC	NC
OLM03.		NA-TOWR-SO08-0		~ -	27 ND	1600		00 180	00 180	00 NC	NC
OLM03.		NA-TOWR-SO09-0				.3 1600				00 NC	NC
OLM03.		NA-TOWR-SO10-0			_ +	.2 1600			00 18	00 NC	NC
OLM03.		NA-TOWR-SO11-0			19 ND	1600				00 NC	NC
OLM03.	2 gamma-Chlordane				27 2.9 J	1600			00 18	00 NC	NC
OLM03.	2 gamma-Chlordane	NA-TOWR-SO12-0			56 ND	2E+0		06 7800		00 NC	NC
OLMO3	.2 1,2,4-Trichlorobenzene	NA-TOWR-SO01-0		-	51 ND	2E+0		06 7800		00 NC	NC
OLMO3	.2 1,2,4-Trichlorobenzene	NA-TOWR-SO02-0			58 ND	2E+0		06 7800		00 NC	NC
OLMO3	.2 1,2,4-Trichlorobenzene	NA-TOWR-SO03-0			48 ND	2E+0		06 7800		00 NC	NC
OLMO3	.2 1,2,4-Trichlorobenzene	NA-TOWR-SO04-0			37 ND	2E+4		06 7800		00 NC	NC
OLMO3	3.2 1,2,4-Trichlorobenzene	NA-TOWR-SO05-0			69 ND	2E+		06 7800		000 NC	NC
MO3	3.2 1,2,4-Trichlorobenzene 3.2 1,2,4-Trichlorobenzene	NA-TOWR-SO06-0			36 ND	2E+		06 7800		000 NC	NC

Method	Analyte					Ind	ustrial	Resi	dential	Reference	Means Compariso Conclusion Reference v
OLMO3.2	1,2,4-Trichlorobenzene	Sample ID	Units		Resul		RBSL	RBC		UTL	,
704	1,2,4-Trichlorobenzene	NA-TOWR-SO08-0	<u> </u>		ND U.	J 2E+0	7 2E+06	780000			Site NC
	1,2,4-Trichlorobenzene	NA-TOWR-SO09-0	<u></u>	50	ND	2E+0		780000			NC
OLMO3.2	1,2,4-Trichlorobenzene	NA-TOWR-SO10-0	1 ug/kg	54	ND U	2E+0		780000			NC NC
DI MO3 2	1,2,4-Trichlorobenzene	NA-TOWR-SOI1-0	1 ug/kg	37	ND	2E+07		780000			NC
DI MO3 2	1,2-Dichlorobenzene	NA-TOWR-SO12-0	1 ug/kg	54	ND	2E+07					NC
OLMO3.2	1,2-Dichlorobenzene	NA-TOWR-SO01-0	l ug/kg	56	ND	2E+08			700000		NC NC
		NA-TOWR-SO02-0		51	ND	2E+08			700000		NC NC
DLMO3.2	1,2-Dichlorobenzene 1,2-Dichlorobenzene	NA-TOWR-SO03-0	l ug/kg	58	ND	2E+08			700000		NC NC
		NA-TOWR-SO04-0		48	ND	2E+08			700000		
	1,2-Dichlorobenzene	NA-TOWR-SO05-01		37	ND	2E+08			700000		NC NC
I MO3 2	,2-Dichlorobenzene	NA-TOWR-SO06-01		69	ND	2E+08			700000		NC
LMO3.2	,2-Dichlorobenzene	NA-TOWR-SO07-01		36	ND	2E+08			700000		NC
	,2-Dichlorobenzene	NA-TOWR-SO08-01		54	ND UJ				700000		NC
	,2-Dichlorobenzene	NA-TOWR-SO09-01	ug/kg	50	ND	2E+08			700000 1		NC
LMO3.2	,2-Dichlorobenzene	NA-TOWR-SO10-01	ug/kg	54	ND UJ	2E+08		7E+06	700000 1		NC
LMO3.2 1	,2-Dichlorobenzene	NA-TOWR-SO11-01	ug/kg	37		2E+08		75+06	700000 1		NC
LMO3.2 1	,2-Dichlorobenzene	NA-TOWR-SO12-01	ug/kg	54		2E+08		7E+06	700000 1		NC
LMO3.2 1	,3-Dichlorobenzene	NA-TOWR-SO01-01	ug/kg	56		6E+07		7E+00	230000 1		NC
LMO3.2 1	,3-Dichlorobenzene	NA-TOWR-SO02-01	ug/kg	51		6E+07					NC
LMO3.2 1	,3-Dichlorobenzene	NA-TOWR-SO03-01	ug/kg	58		6E+07			230000 N		NC
LMO3.2 1	,3-Dichlorobenzene	NA-TOWR-SO04-01	ug/kg	48 1		6E+07		2E+06	230000 N		VC
LMO3.2 1	3-Dichlorobenzene	NA-TOWR-SO05-01	ug/kg	37 1		6E+07			230000 N		VC
LMO3.2 1	3-Dichlorobenzene	NA-TOWR-SO06-01	ug/kg	69 1		6E+07			230000 N		VC
LMO3.2 1	3-Dichlorobenzene	NA-TOWR-SO07-01	ug/kg	36 N		6E+07			230000 N		VC
_MO3.2 1,	3-Dichlorobenzene	NA-TOWR-SO08-01	ug/kg		ID UJ	6E+07			230000 N		VC
_MO3.2 1,	3-Dichlorobenzene	NA-TOWR-SO09-01	ug/kg	50 N		6E+07			230000 N		√C
.MO3.2 1,	3-Dichlorobenzene	NA-TOWR-SO10-01	ug/kg		ID UJ				230000 N		₹C
MO3.2 1,	3-Dichlorobenzene	NA-TOWR-SO11-01	ug/kg	37 N		6E+07			230000 N		IC
MO3.2 1,	3-Dichlorobenzene	NA-TOWR-SO12-01	ug/kg	54 N					230000 N		iC
MO3.2 1,	4-Dichlorobenzene	NA-TOWR-SO01-01	ug/kg	56 N					230000 N		IC
MO3.2 1,	4-Dichlorobenzene	NA-TOWR-SO02-01	ug/kg	51 N		240000 2			27000 N		IC
MO3.2 1,4	4-Dichlorobenzene	NA-TOWR-SO03-01				240000 2		27000	27000 N	C N	C
MO3.2 1,4	4-Dichlorobenzene	NA-TOWR-SO04-01	ug/kg	58 N		240000 2			27000 N	CN	
MO3.2 1,4	I-Dichlorobenzene	NA-TOWR-SO05-01	ug/kg	48 N		240000 2			27000 N		$\overline{\mathbf{c}}$
MO3.2 1,4	l-Dichlorobenzene	NA-TOWR-SO06-01	ug/kg	37 N		240000 2		27000	27000 N	CN	C
	-Dichlorobenzene	NA-TOWR-SO07-01	ug/kg	69 N	_	240000 2	240000 2	27000	27000 N		
	-Dichlorobenzene	ATA GROSSES CO.	ug/kg	36 N		240000 2		27000	27000 NO	C N	c —
MO3.2 1,4	-Dichlorobenzene	NA-TOWR-S009-01	ug/kg	54 N		240000 2	40000 2	27000	27000 NO		
MO3.2 1,4	-Dichlorobenzene	ATA CONTRACTOR	ug/kg	50 N		240000 2	40000 2	7000	27000 NO		
MO3.2 1,4	-Dichlorobenzene		ug/kg	54 N		40000 2	40000 2	7000 2	27000 NO	N	:
MO3.2 1,4	-Dichlorobenzene	* T 4	ug/kg	37 N	-	40000 2			27000 NO		
MO3.2 2,2	'-oxybis(1-	A 2 A COM	ug/kg	54 N		40000 2	40000 2		27000 NO		
MO3.2 2,2	-oxybis(1-	ATA TOTAL	ug/kg	56 N			82000	9100	9100 NC	NO	
MO3.2 2,2	-oxybis(1-	A 1 4 ()	ug/kg	51 NI				9100	9100 NO	NO	
иO3.2 2,2	-OXYDIS(1-	ATA DISCUSSION AND ADDRESS.	ug/kg ug/kg	58 NI				9100	9100 NC	NO	
MO3.2 2,2	-OXYDIS(1-	A 7 4	ug/kg ug/kg	48 NI 37 NI				9100	9100 NC	NO	
4O3.2 2,2'	-OXYDIS(1-	NA-TOWR-SO06-01	ug/kg	69 NI					9100 NC	NO	
4O3.2 2,2'	-oxybis(1-	NA-TOWR-SO07-01	ug/kg	36 NI				9100	9100 NC		
4O3.2 2,2	-OXYDIS(1-	NA-TOWR-SO08-01	ug/kg	54 NI					9100 NC 9100 NC		
		NA-TOWR-SO09-01								NC	

						Indus	strial	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
	A T4 a	Sample ID	Units	MDL.	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	NA-TOWR-SO10-01	ug/kg		ND UJ	82000	82000	9100	9100		NC
	2,2'-oxybis(1-	NA-TOWR-SO11-01	ug/kg		ND	82000	82000	9100	9100		NC
	2,2'-oxybis(1-	NA-TOWR-SO12-01	ug/kg		ND	82000	82000	9100	9100		NC
OLMO3.2	2,2'-oxybis(1- 2,4,5-Trichlorophenol	NA-TOWR-SO01-01	ug/kg		ND	2E+08	2E+07		780000		NC
OLMO3.2	2,4,5-1 Heliotophenol	NA-TOWR-SO02-01	ug/kg		ND	2E+08	2E+07	8E+06	780000	NC	NC
	2,4,5-Trichlorophenol	NA-TOWR-SO03-01	ug/kg		ND	2E+08	2E+07	8E+06	780000	NC	NC
	2,4,5-Trichlorophenol	NA-TOWR-SO04-01	ug/kg		ND	2E+08	2E+07	8E+06	780000	NC	NC
	2,4,5-Trichlorophenol	NA-TOWR-SO05-01	ug/kg		ND	2E+08	2E+07	8E+06	780000	NC	NC
	2,4,5-Trichlorophenol	NA-TOWR-SO06-01	ug/kg		ND	2E+08	2E+07		780000		NC
	2,4,5-Trichlorophenol		ug/kg	1	ND	2E+08	2E+07		780000		NC
	2,4,5-Trichlorophenol	NA-TOWR-S007-01 NA-TOWR-S008-01	ug/kg	·	ND UJ	2E+08	2E+07		780000		NC
	2,4,5-Trichlorophenol				ND	2E+08	2E+07		780000		NC
	2,4,5-Trichlorophenol	NA-TOWR-SO09-01	ug/kg		ND UJ	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TOWR-SO10-01	ug/kg		ND	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TOWR-SO11-01	ug/kg		ND _	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TOWR-SO12-01	ug/kg				520000				NC
	2,4,6-Trichlorophenol	NA-TOWR-SO01-01	ug/kg		ND						NC
	2,4,6-Trichlorophenol	NA-TOWR-SO02-01	ug/kg		ND		520000				NC
	2,4,6-Trichlorophenol	NA-TOWR-SO03-01	ug/kg		ND		520000				NC
	2,4,6-Trichlorophenol	NA-TOWR-SO04-01	ug/kg		ND		520000				NC
OLMO3.2	2,4,6-Trichlorophenol	NA-TOWR-SO05-01	ug/kg		' ND		520000		 		NC NC
OLMO3.2	2,4,6-Trichlorophenol	NA-TOWR-SO06-01	ug/kg		ND		520000				NC NC
MO3.2	2,4,6-Trichlorophenol	NA-TOWR-SO07-01	ug/kg		ND		520000				
	2,4,6-Trichlorophenol	NA-TOWR-SO08-01	ug/kg		ND UJ	1	520000				NC
	2,4,6-Trichlorophenol	NA-TOWR-SO09-01	ug/kg	1	ND		520000				NC
	2,4,6-Trichlorophenol	NA-TOWR-SO10-01	ug/kg		ND UJ		520000				NC
	2,4,6-Trichlorophenol	NA-TOWR-SO11-01	ug/kg	3	ND ND		520000	+			NC
	2,4,6-Trichlorophenol	NA-TOWR-SO12-01	ug/kg	54	1 ND		520000				NC
	2,4-Dichlorophenol	NA-TOWR-SO01-01	ug/kg	50	5 ND		610000				NC
	2,4-Dichlorophenol	NA-TOWR-SO02-01	ug/kg	5	l ND		610000				NC
	2,4-Dichlorophenol	NA-TOWR-SO03-01	ug/kg		8 ND	6E+06	610000	230000	23000		NC
	2,4-Dichlorophenol	NA-TOWR-SO04-01	ug/kg		8 ND	6E+06	610000	230000			NC
	2,4-Dichlorophenol	NA-TOWR-SO05-01	ug/kg		7 ND	6E+06	610000	230000	23000	NC	NC
	2,4-Dichlorophenol	NA-TOWR-SO06-01	ug/kg		9 ND	6E+06	610000	230000	2300	NC	NC
	2,4-Dichlorophenol	NA-TOWR-SO07-01	ug/kg		6 ND	6E+06	610000	230000	2300	NC	NC
	2,4-Dichlorophenol	NA-TOWR-SO08-01			4 ND UJ	6E+0	610000	230000	2300	NC	NC
	2,4-Dichlorophenol	NA-TOWR-SO09-01			0 ND		610000	230000	2300	0 NC	NC
	2,4-Dichlorophenol	NA-TOWR-SO10-01			4 ND UJ		610000			0 NC	NC
OLMO3.2	2,4-Dichlorophenol	NA-TOWR-SO11-01		<u> </u>	7 ND		610000			0 NC	NC
		NA-TOWR-SO12-01			4 ND		610000			0 NC	NC
	2 2,4-Dichlorophenol	NA-TOWR-SO01-01		<u> </u>	6 ND	4E+0			6 16000	0 NC	NC
	2 2,4-Dimethylphenol	NA-TOWR-SO02-01			1 ND	4E+0			6 16000		NC
	2 2,4-Dimethylphenol	NA-TOWR-SO03-01			8 ND	4E+0			6 16000		NC
	2 2,4-Dimethylphenol				8 ND	4E+0			6 16000		NC
	2 2,4-Dimethylphenol	NA-TOWR-SO04-01			7 ND	4E+0			6 16000		NC
	2,4-Dimethylphenol	NA-TOWR-S005-01			9 ND	4E+0		_	6 16000		NC
	2 2,4-Dimethylphenol	NA-TOWR-SO06-01			6 ND	4E+0			6 16000		NC
	2 2,4 Dimethylphenol	NA-TOWR-SO07-01							6 16000		NC
	2 2,4-Dimethylphenol	NA-TOWR-SO08-01			4 ND U				6 16000		NC
	2 2,4-Dimethylphenol	NA-TOWR-SO09-01			0 ND	4E+0			6 16000		NC NC
иО3.	2 2,4-Dimethylphenol	NA-TOWR-SO10-01	ug/k	g	4 ND U.	J 4E+0	7 4E+0	O ZE+U	0 10000	OINC	INC

Method						Indu	ıstrial	Resi	dential	Reference	Means Compariso Conclusion Reference v
	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC		UTL	Site
	2,4-Dimethylphenol	NA-TOWR-SOI1-01			ND	4E+07	4E+06		6 160000		NC Site
OLMO3.2	2,4-Dimethylphenol	NA-TOWR-SO12-01		54	ND	4E+07		4	6 160000		NC
OLMO3.2	2,4-Dinitrophenol 2,4-Dinitrophenol	NA-TOWR-SO01-01			ND	4E+06	410000	160000	16000		NC
OLMO3.2	2,4-Dinitrophenol	NA-TOWR-SO02-01			ND		410000				NC
OLMO3.2	2,4-Dinitrophenol	NA-TOWR-SO03-01			ND		410000			<u> </u>	NC
OLMO3.2	2,4-Dinitrophenol	NA-TOWR-SO04-01	ug/kg	48		4E+06	410000	160000	16000		NC
	2,4-Dinitrophenol	NA-TOWR-SO05-01	ug/kg	37		4E+06	410000	160000	16000		NC
		NA-TOWR-SO06-01	ug/kg	69	ND	4E+06	410000	160000	16000		NC
DLMO3.2	2,4-Dinitrophenol	NA-TOWR-SO07-01	ug/kg	36	ND		410000				NC
DIMO3.2	2,4-Dinitrophenol	NA-TOWR-SO08-01	ug/kg		ND UJ		410000				NC
DIMO3.2	2,4-Dinitrophenol	NA-TOWR-SO09-01	ug/kg	50			410000				NC
	2,4-Dinitrophenol	NA-TOWR-SO10-01	ug/kg	54	LU QN		410000				NC
	2,4-Dinitrophenol	NA-TOWR-SO11-01	ug/kg	37 1	ND		410000				NC NC
	2,4-Dinitrophenol	NA-TOWR-SO12-01	ug/kg	54	ND		410000				NC
	2,4-Dinitrotoluene	NA-TOWR-SO01-01	ug/kg	56 1	ND		410000				NC NC
	2,4-Dinitrotoluene	NA-TOWR-SO02-01	ug/kg	51 1	ND		410000				NC NC
	2,4-Dinitrotoluene	NA-TOWR-SO03-01	ug/kg	58 1	VD D		410000				NC NC
	2,4-Dinitrotoluene	NA-TOWR-SO04-01	ug/kg	48 1	ND		410000				NC
	2,4-Dinitrotoluene	NA-TOWR-SO05-01	ug/kg	37 N	ND		410000				NC
	2,4-Dinitrotoluene	NA-TOWR-SO06-01	ug/kg	69 1	ND		410000				NC
	2,4-Dinitrotoluene	NA-TOWR-SO07-01	ug/kg	36 N	ND O		410000				NC
	2,4-Dinitrotoluene	NA-TOWR-SO08-01	ug/kg	54 N	ID UJ		410000				NC
	2,4-Dinitrotoluene	NA-TOWR-SO09-01	ug/kg	50 N	ND D		410000		16000 1		NC -
	2,4-Dinitrotoluene	NA-TOWR-SO10-01	ug/kg	54 N	ID UJ	4E+06			16000 1		NC
	2,4-Dinitrotoluene	NA-TOWR-SO11-01	ug/kg	37 N			410000		16000		NC
	,4-Dinitrotoluene	NA-TOWR-SO12-01	ug/kg	54 N			410000		16000 N		NC
	,6-Dinitrotoluene	NA-TOWR-SO01-01	ug/kg	56 N	ID	2E+06		78000	7800 h		NC
	,6-Dinitrotoluene	NA-TOWR-SO02-01	ug/kg	51 N	ID	2E+06		78000	7800 N		NC
	,6-Dinitrotoluene	NA-TOWR-SO03-01	ug/kg	58 N	ID	2E+06 2		78000	7800 N		NC
	,6-Dinitrotoluene	NA-TOWR-SO04-01	ug/kg	48 N	ID T	2E+06 2		78000	7800 N		VC -
	,6-Dinitrotoluene	NA-TOWR-SO05-01	ug/kg	37 N		2E+06 2	200000	78000	7800 N		VC
	,6-Dinitrotoluene	NA-TOWR-SO06-01	ug/kg	69 N	D	2E+06 2	200000	78000	7800 N		vc
	,6-Dinitrotoluene	NA-TOWR-SO07-01	ug/kg	36 N		2E+06 2		78000	7800 N		1C
	,6-Dinitrotoluene		ug/kg	54 N		2E+06 2		78000	7800 N		VC VC
	,6-Dinitrotoluene		ug/kg	50 N		2E+06 2		78000	7800 N		1C 1C
	,6-Dinitrotoluene		ug/kg	54 N		2E+06 2		78000	7800 N		ic -
	6-Dinitrotoluene	NA-TOWR-SO11-01	ug/kg	37 N		2E+06 2		78000	7800 N		1 <u>C</u>
	6-Dinitrotoluene	NA-TOWR-SO12-01	ug/kg	54 N		2E+06 2		78000	7800 N		<u>ic</u> —
	Chloronaphthalene		ug/kg	56 N					630000 N		ic
	Chloronaphthalene	NA-TOWR-SO02-01	ug/kg	51 N					630000 N		ic —
	Chloronaphthalene		ug/kg	58 N					630000 N		ic
	Chloronaphthalene		ug/kg	48 N					530000 N		ic
	Chloronaphthalene	NA-TOWR-SO05-01	ug/kg	37 N					530000 N		ic
	Chloronaphthalene	NA-TOWR-SO06-01	ug/kg	69 N					530000 N		ic —
MO3.2 2-	Chloronaphthalene	NA-TOWR-S007-01	ug/kg	36 NI					30000 N		c
MU3.2 2-	Chloronaphthalene	NA-TOWR-SO08-01	ug/kg	54 N					30000 N		
MO3.2 2-	Chloronaphthalene	NA-TOWR-SO09-01	ug/kg	50 NI					30000 N		<u>C</u>
	Chloronaphthalene		ug/kg	54 NI					30000 N		С
MO3.2 2-	Chloronaphthalene	111 management	ug/kg	37 NI					30000 N		C

						Indus	strial RBSL	Reside	ential RBSL	Reference UTL	Means Comparison Conclusion Reference vs. Site
Method	Analyte	Sample ID	Units		Result	RBC		1	630000		NC
OLMO3.2	2-Chloronaphthalene	NA-TOWR-SO12-01	ug/kg		ND	2E+08	2E+07		39000		NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO01-01	ug/kg		ND	1E+07		390000	39000		NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO02-01	ug/kg		ND	1E+07		390000	39000		NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO03-01	ug/kg		ND	1E+07		390000	39000		NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO04-01	ug/kg		ND	1E+07		390000	39000		NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO05-01	ug/kg		ND	1E+07		390000			NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO06-01	ug/kg		ND	1E+07		390000	39000		NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO07-01	ug/kg		ND	1E+07		390000	39000		
OLMO3.2	2-Chlorophenol	NA-TOWR-SO08-01	ug/kg		ND UJ	1E+07		390000			NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO09-01	ug/kg		ND	1E+07		390000			NC _
OLMO3.2	2-Chlorophenol	NA-TOWR-SO10-01	ug/kg		ND UJ	1E+07		390000			NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO11-01	ug/kg		ND	1E+07		390000			NC
OLMO3.2	2-Chlorophenol	NA-TOWR-SO12-01	ug/kg		ND _	1E+07		390000			NC
OLMO3.2	2-Methylnaphthalene	NA-TOWR-SO01-01	ug/kg		ND	8E+07	8E+06		310000	1000	NC
OLMO3.2	2-Methylnaphthalene	NA-TOWR-SO02-01	ug/kg		ND	8E+07	8E+06	·	310000		NC
OLMO3.2	2-Methylnaphthalene	NA-TOWR-SO03-01	ug/kg	L.	ND	8E+07	8E+06		310000		NC
OLMO3.2	2-Methylnaphthalene	NA-TOWR-SO04-01	ug/kg		ND	8E+07	8E+06		310000		NC
OLMO3.2	2-Methylnaphthalene	NA-TOWR-SO05-01	ug/kg	37	ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TOWR-SO06-01	ug/kg		ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TOWR-SO07-01	ug/kg	36	ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TOWR-SO08-01	ug/kg	54	IU DN	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TOWR-SO09-01	ug/kg	50	ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TOWR-SO10-01	ug/kg	54	ND UJ	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TOWR-SO11-01	ug/kg	37	ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TOWR-SO12-01	ug/kg	54	ND	8E+07	8E+06		310000		NC
	2-Nitroaniline	NA-TOWR-SO01-01	ug/kg	56	ND	120000	12000			NC	NC
	2-Nitroaniline	NA-TOWR-SO02-01	ug/kg	51	ND	120000	12000	4700		NC	NC
	2-Nitroaniline	NA-TOWR-SO03-01	ug/kg	58	ND	120000	12000	4700		NC	NC
	2-Nitroaniline	NA-TOWR-SO04-01	ug/kg		ND	120000	12000	4700	470	NC	NC
	2-Nitroaniline	NA-TOWR-SO05-01	ug/kg		7 ND	120000	12000	4700	470	NC	NC
	2-Nitroaniline	NA-TOWR-SO06-01	ug/kg		ND	120000	12000	4700	470	NC	NC
	2-Nitroaniline	NA-TOWR-SO07-01	ug/kg		ND	120000	12000	4700	470) NC	NC
	2-Nitroaniline	NA-TOWR-SO08-01	ug/kg		ND UJ	120000	12000	4700	470) NC	NC
	2-Nitroaniline	NA-TOWR-SO09-01	ug/kg		OND	120000		4700	470) NC	NC
	2-Nitroaniline	NA-TOWR-SO10-01	ug/kg		IU DN 4				470	NC	NC
	2-Nitroaniline	NA-TOWR-SO11-01	ug/kg		7 ND	120000			470) NC	NC
	2-Nitroaniline	NA-TOWR-SO12-01	ug/kg		4 ND	120000				NC	NC
	2-Nitrophenol	NA-TOWR-SO01-01	ug/kg	-	6 ND	2E+07		630000		NC	NC
	2-Nitrophenol	NA-TOWR-SO02-01	ug/kg		1 ND	2E+07		630000		NC	NC
	2-Nitrophenol	NA-TOWR-SO03-01	ug/kg	_	8 ND	2E+07		630000	+	NC	NC
·	2-Nitrophenol	NA-TOWR-SO04-01	ug/kg		8 ND	2E+07		630000			NC
	2-Nitrophenol	NA-TOWR-SO05-01	ug/kg		7 ND	2E+07		630000	+		NC
	2-Nitrophenol	NA-TOWR-SO06-01	ug/kg		9 ND	2E+07		630000			NC
	2-Nitrophenol	NA-TOWR-S007-01	ug/kg	-	6 ND	2E+07		6 630000			NC
		NA-TOWR-S008-01	ug/kg		4 ND UJ			6 630000			NC
	2 -Nitrophenol	NA-TOWR-S009-01	ug/kg		0 ND	2E+07		6 630000			NC
	2 Nitrophenol	NA-TOWR-S010-01	ug/kg		4 ND UJ			6 630000			NC
	2 2-Nitrophenol		ug/kg		7 ND	2E+07		6 630000			NC
	2 2-Nitrophenol 2 2-Nitrophenol	NA-TOWR-SO11-01 NA-TOWR-SO12-01	ug/kg		4 ND	2E+07		6 630000			NC

			ciai i c		- Oui	lace 3					
						Indi	ıstrial	Daci	dential	Betom	Means Comparison Conclusion
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Reference vs
	3,3'-Dichlorobenzidine	NA-TOWR-SO01-01	ug/kg		ND	13000		1400			Site NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO02-01	ug/kg		ND	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO03-01	ug/kg		ND	13000	 _	4			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO04-01	ug/kg		ND	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO05-01	ug/kg		ND	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO06-01	ug/kg		ND	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO07-01	ug/kg		ND	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO08-01	ug/kg		ND UJ	13000	13000	1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO09-01	ug/kg		ND	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO10-01	ug/kg		ND UJ	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO11-01	ug/kg		ND	13000		1400			NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO12-01	ug/kg		ND	13000	13000	1400			NC
	3-Nitroaniline	NA-TOWR-SO01-01	ug/kg		ND	120000	12000	4700			NC
	3-Nitroaniline	NA-TOWR-SO02-01	ug/kg		ND	120000		4700			NC NC
	3-Nitroaniline	NA-TOWR-SO03-01	ug/kg		ND	120000		4700			NC NC
	3-Nitroaniline	NA-TOWR-SO04-01	ug/kg	48		120000	12000	4700			NC NC
OLMO3.2	3-Nitroaniline	NA-TOWR-SO05-01	ug/kg	37		120000	12000	4700	470		
OLMO3.2	3-Nitroaniline	NA-TOWR-SO06-01	ug/kg	69		120000	12000	4700	470		NC
	3-Nitroaniline	NA-TOWR-SO07-01	ug/kg	36		120000	12000	4700	470		NC NC
OLMO3.2	3-Nitroaniline	NA-TOWR-SO08-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TOWR-SO09-01	ug/kg	50		120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TOWR-SO10-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TOWR-SO11-01	ug/kg	37		120000	12000	4700	470		NC
	3-Nitroaniline	NA-TOWR-SO12-01	ug/kg	54		120000	12000	4700	470		NC
OLMO3.2 4	4,6-Dinitro-2-methylphenol	NA-TOWR-SO01-01	ug/kg	56		200000	20000	7800	780		NC NC
OLMO3.2 4	4,6-Dinitro-2-methylphenol	NA-TOWR-SO02-01	ug/kg	51		200000	20000	7800	780		NC NC
OLMO3.2 4		NA-TOWR-SO03-01	ug/kg	58		200000	20000	7800	780		NC NC
OLMO3.2 4	,6-Dinitro-2-methylphenol	NA-TOWR-SO04-01	ug/kg	48	ND	200000	20000	7800	780		NC
OLMO3.2 4	,6-Dinitro-2-methylphenol	NA-TOWR-SO05-01	ug/kg	37 1		200000	20000	7800	780		NC I
OLMO3.2 4		NA-TOWR-SO06-01	ug/kg	69]		200000	20000	7800	780		NC -
OLMO3.2 4	,6-Dinitro-2-methylphenol ,6-Dinitro-2-methylphenol	NA-TOWR-SO07-01	ug/kg	36 1		200000	20000	7800	780		NC
OLMO3.2 4	,6-Dinitro-2-methylphenol	NA-10WR-S008-01	ug/kg	== =		200000	20000	7800	780 1	NC I	NC
OLMO3.2 4	,6-Dinitro-2-methylphenol	NA TOWR-5009-01	ug/kg	50 1		200000	20000	7800	780 1		NC
OLMO3.2 4	,6-Dinitro-2-methylphenol	NA-TOWR-SOID-01	ug/kg ug/kg			200000	20000	7800	780 1		NC
OLMO3.2 4	,6-Dinitro-2-methylphenol	NA-TOWR-SO12-01	ug/kg ug/kg	37 N 54 N		200000	20000	7800	780 1		AC .
OLMO3.2 4	-Bromophenyl-phenylether	NA-TOWR-S001-01	ug/kg	56 N		200000 1E+08	20000	7800	780		VC
OLMO3.2 4	-Bromophenyl-phenylether	NA-TOWR-SO02-01	ug/kg	51 N					450000 1 450000 1		VC
OLMO3.2 4	-Bromophenyl-phenylether	NA-TOWR-SO03-01	ug/kg	58 N					450000 1 450000 1		VC
JOLMO3.2 4	-Bromophenyl-phenylether	NA-TOWR-SO04-01	ug/kg	48 N					450000 1		VC VC
OLMO3.2 4	-Bromophenyl-phenylether	NA-TOWR-SO05-01	ug/kg	37 N					450000 N		VC VC
OLMO3.2 4	-Bromophenyl-phenylether	NA-TOWR-SO06-01	ug/kg	69 N					450000 N		<u>1C</u>
OLMO3.2 4-	Bromophenyl-phenylether	NA-TOWR-SO07-01	ug/kg	36 N	ID				450000 N		10
OLMO3.2 4	-Bromophenyl-phenylether	NA-TOWR-SO08-01	ug/kg						450000 N		ic
OLMO3.2 4	-Bromophenyl-phenylether -Bromophenyl-phenylether	NA-TOWR-SO09-01	ug/kg	50 N		1E+08	1E+07	5E+06	450000 N	VC N	1C
OLMO3 2 4	-Bromophenyl-phenylether		ug/kg				1E+07	5E+06	450000 N	IC N	1C
OLMO3.2 4-	-Bromophenyl-phenylether		ug/kg	37 N					450000 N	IC N	1C
OLMO3.2 4			ug/kg	54 N					450000 N		IC
			ug/kg	56 N					160000 N		IC
			ug/kg	51 N					160000 N		IC .
	- incary phenol	10-10 MK-2003-01	ug/kg	58 N	עו	4E+07	4E+06 :	2E+06 1	160000 N	IC N	ic

					·						Means Comparison Conclusion
	1					Indus	trial	Resid	ential	Reference	
			VI-34-	MDI	Result		RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID	Units		ND	4E+07	4E+06	2E+06	160000	NC	NC
	T Chief & me	NA-TOWR-SO04-01	ug/kg		ND	4E+07	4E+06		160000		NC
	T-Cinoro o moury-part	NA-TOWR-SO05-01	ug/kg		ND	4E+07	4E+06		160000		NC
LMO3.2		NA-TOWR-SO06-01	ug/kg			4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-TOWR-SO07-01	ug/kg		ND		4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-TOWR-SO08-01	ug/kg		ND UJ	4E+07	4E+06		160000		NC
LMO3.2	4-Chloro-3-methylphenol	NA-TOWR-SO09-01	ug/kg		ND	4E+07			160000	NC	NC
I MO3.2	4-Chloro-3-methylphenol	NA-TOWR-SO10-01	ug/kg	t	ND UJ	4E+07	4E+06		160000		NC
I MO3 2	4-Chloro-3-methylphenol	NA-TOWR-SO11-01	ug/kg		ND	4E+07	4E+06		160000		NC
I MO3.2	4-Chloro-3-methylphenol	NA-TOWR-SO12-01	ug/kg		ND _	4E+07	4E+06				NC
I MO3.2	4-Chloroaniline	NA-TOWR-SO01-01	ug/kg		ND			310000			NC NC
JUMO3.2	4-Chloroaniline	NA-TOWR-SO02-01	ug/kg		ND			310000			NC NC
JLMU3.2	4-Chloroaniline	NA-TOWR-SO03-01	ug/kg	58	ND			310000			
JLMU3.2	4-Chloroaniline	NA-TOWR-SO04-01	ug/kg	48	ND			310000			NC
		NA-TOWR-SO05-01	ug/kg	37	ND			310000			NC
DLMO3.2		NA-TOWR-SO06-01	ug/kg		ND			310000			NC
DLMO3.2	4-Chloroaniline	NA-TOWR-SO07-01	ug/kg		5 ND	8E+06	820000	310000	3100		NC
	4-Chloroaniline	NA-TOWR-SO08-01	ug/kg		4 ND UJ	8E+06	820000	310000	3100	NC	NC
OLMO3.2		NA-TOWR-S009-01	ug/kg		OND	8E+06	820000	310000	3100		NC
OLMO3.2			ug/kg		4 ND UJ		820000	310000	3100	0 NC	NC
DLMO3.2	2 4-Chloroaniline	NA-TOWR-SO10-01		+	7 ND			31000		0 NC	NC
DLMO3.2	2 4-Chloroaniline	NA-TOWR-SO11-01	ug/kg	'	4 ND			31000		0 NC	NC
OLMO3.2	4-Chloroaniline	NA-TOWR-SO12-01	ug/kg		6 ND	1E+08			6 45000		NC
MO3.2	2 4-Chlorophenyl-phenylether	NA-TOWR-S001-01	ug/kg	<u>' </u>	1 ND	1E+08			6 45000	0 NC	NC
MO3.2	2 4-Chlorophenyl-phenylether	NA-TOWR-S002-01	ug/kg		8 ND	1E+08			6 45000	0 NC	NC
OLMO3.2	2 4-Chlorophenyl-phenylether	NA-TOWK-5003-01	ug/kg	,	8 ND	1E+08			6 45000	0 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylether	NA-TOWR-S004-01	ug/kg		7 ND	1E+0			6 45000	0 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylether	NA-10WK-5005-01	ug/kg		9 ND	1E+0			6 45000		NC
OLMO3.	2 4-Chlorophenyl-phenylether	NA-TOWR-5000-01	ug/kg ug/kg	- I	6ND	1E+0			6 45000		NC
OLMO3.	2 4-Chlorophenyl-phenylether	NA-10WK-5007-01			4 ND U.			7 5E+0	6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylether	NA-10WK-3000-01	ug/k		0 ND	1E+0		7 5E+0	6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylethe	NA-TOWR-SOLD-OL	ug/k		4 ND U	J 1E+0	8 1E+0		6 45000		NC
OLMO3.	2 4-Chlorophenyl-phenylethe	NA-TOWR-SOIT-01	ug/k		37 ND	1F+0	8 1E+0	7 5E+0	6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylethe 2 4-Chlorophenyl-phenylethe	NA-TOWR-SO12-01	ug/k		54 ND	1E+0	8 1E+0	7 5E+0	6 45000	00 NC	NC
OLMO3.	2 4-Chlorophenyl-phenylethe	NA-TOWR-SO01-01			56 ND	12000			0 4	70 NC	NC
OLMO3	2 4-Nitroanaline	NA-TOWR-SO02-01			51 ND	12000	0 1200	0 470		70 NC	NC
	2 4-Nitroanaline	NA-TOWR-SO03-0		~	58 ND	12000		0 470	00 4	70 NC	NC
	2 4-Nitroanaline	NA-TOWR-SO04-0			48 ND	12000		0 470	00 4	70 NC	NC
	2 4-Nitroanaline	NA-TOWR-SO05-0		 	37 ND	12000	_		00 4	70 NC	NC
OLMO3	.2 4-Nitroanaline			9	69 ND	12000			00 4	70 NC	NC
OLMO3	.2 4-Nitroanaline	NA-TOWR-SO06-0			36 ND	12000				70 NC	NC
OLMO3	.2 4-Nitroanaline	NA-TOWR-SO07-0			54 ND U					70 NC	NC
OLMO3	.2 4-Nitroanaline	NA-TOWR-SO08-0			50 ND	12000				70 NC	NC
OLMO3	.2 4-Nitroanaline	NA-TOWR-SO09-0		~ + — —						70 NC	NC
OLMO3	.2 4-Nitroanaline	NA-TOWR-SO10-0			54 ND U				-	70 NC	NC
OLMO3	.2 4-Nitroanaline	NA-TOWR-SO11-0			37 ND	12000				70 NC	NC
OLMO ³	3.2 4-Nitroanaline	NA-TOWR-SO12-0			54 ND	12000				00 NC	NC NC
OL MO	3.2 4-Nitrophenol	NA-TOWR-SO01-0)1 ug/l		56 ND	2E+4		06 6300			NC NC
	3.2 4-Nitrophenol	NA-TOWR-SO02-0		(g	51 ND	2E+		06 6300		00 NC	
	3.2 4-Nitrophenol	NA-TOWR-SO03-0			58 ND	2E+		06 6300		000 NC	NC NC
		NA-TOWR-SO04-0			48 ND	2E+		06 6300		000 NC	NC
	3.2 4-Nitrophenol 3.2 4-Nitrophenol	NA-TOWR-SO05-C			37 ND	2E+	07 2E+	06 6300	000 630	000 NC	NC

Method	l Analyte	Sample ID					ustrial		idential	Reference	Means Compariso Conclusion Reference v
OLMO3.	2 4-Nitrophenol	NA-TOWR-SO06-0	Units		Result					UTL	Site
	2 4-Nitrophenol	NA-TOWR-SO07-0	<u></u>		ND	2E+0		63000	0 63000		NC
OLMO3.	2 4-Nitrophenol	NA-TOWR-SO08-0			ND	2E+0		630000		NC	NC
OLMO3.:	2 4-Nitrophenol	NA-TOWR-SO09-0			ND UJ			630000		NC	NC
OLMO3.2	2 4-Nitrophenol	NA-TOWR-SO10-0			ND	2E+0		630000		NC	NC
OLMO3.	2 4-Nitrophenol	NA-TOWR-SOI1-0	_ <u>,</u>		LU DN	2E+0		630000		NC	NC
OLMO3.2	4-Nitrophenol	NA-TOWR-SO12-0			ND	2E+0		630000		NC	NC
DLMO3.2	Acenaphthene	NA-TOWR-SO01-0			ND	2E+07		630000			NC
	Acenaphthene	NA-TOWR-SO02-01			ND	1E+08			470000		NC
DLMO3.2	Acenaphthene	NA-TOWR-S002-01		51		1E+08			470000	NC	NC
	Acenaphthene	NA-TOWR-S004-01		58		1E+08		5E+06	470000	NC	NC
	Acenaphthene	NA-TOWR-SO05-01		48		1E+08			470000		NC
LMO3.2	Acenaphthene	NA-TOWR-SO06-01		37		1E+08			470000		NC
	Acenaphthene	NA-TOWR-S007-01		69		1E+08		5E+06	470000 1		NC
LMO3.2	Acenaphthene	NA-TOWR-S007-01		36		1E+08			470000 1		NC
LMO3.2	Acenaphthene	NA TOWR-5008-01			נט dv	1E+08	1E+07		470000 1		NC
LMO3.2	Acenaphthene	NA-TOWR-SO09-01		50 1		1E+08	1E+07		470000 i		NC
LMO3.2	Acenaphthene	NA-TOWR-SO10-01			IU DV	1E+08	1E+07		470000 N		NC
LMO3.2	Acenaphthene	NA-TOWR-SO11-01		37 N		1E+08	1E+07		470000 N		NC -
LMO3.2	Acenaphthylene	NA-TOWR-SO12-01		54 N		1E+08	1E+07		470000 N		VC
LMO3 2	Acenaphthylene	NA-TOWR-SO01-01		56 N		1E+08	1E+07		470000 N		VC
LMO3.2	Acenaphthylene	NA-TOWR-SO02-01	ug/kg	51 N		1E+08	1E+07		470000 N		VC
I MO3 2	Acenaphthylene	NA-TOWR-SO03-01	ug/kg	58 N	ID D	1E+08			470000 N		VC VC
MO3.2	Acenaphthylene	NA-TOWR-SO04-01	ug/kg	48 N	D	1E+08			470000 N		NC C
MO3.2	Acenaphtnylene	NA-TOWR-SO05-01	ug/kg	37 N	D	1E+08			470000 N		
MO3.2	Acenaphthylene	NA-TOWR-SO06-01	ug/kg	69 N	D	1E+08			470000 N		VC
MO2.2	Acenaphthylene	NA-TOWR-SO07-01	ug/kg	36 N		1E+08			470000 N		iC
MO3.2	Acenaphthylene	NA-TOWR-SO08-01	ug/kg		${-}$	1E+08			470000 N		IC .
MO3.2	Acenaphthylene	NA-TOWR-SO09-01	ug/kg	50 N		1E+08			470000 N		IC .
MO3.2	Acenaphthylene	NA-TOWR-SO10-01	ug/kg	54 N		1E+08			470000 N		C
MO3.2	Acenaphthylene	NA-TOWR-SO11-01	ug/kg	37 N					470000 N		IC
MO3.2	Acenaphthylene	NA-TOWR-SO12-01	ug/kg	54 N					170000 N		C
MO3.2	Anthracene	NA-TOWR-SO01-01	ug/kg	56 N							C
	Anthracene	NA-TOWR-SO02-01	ug/kg	51 N					2E+06 N		С
	Anthracene	NA-TOWR-SO03-01	ug/kg	58 N					2E+06 N		<u>C</u>
MO3.2	Anthracene	NA-TOWR-SO04-01	ug/kg	48 N	-				2E+06 N		
	Anthracene	374	ug/kg	37 NI					2E+06 NO		
	Anthracene	NA-TOWR-SO06-01	ug/kg	69 NI					2E+06 NO		
	Anthracene	NA-TOWR-S007-01	ug/kg	36 NI					2E+06 NO		
	Anthracene	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ug/kg	54 NI		_			2E+06 NO		
MO3.2	Anthracene		ug/kg	50 NI					2E+06 NO		
MO3.2	Anthracene	A 7 4 170 A 27 170	ug/kg	54 NI					2E+06 NO		
	Anthracene	374	ug/kg	37 NI	-				2E+06 NC		
	Anthracene	NIA PROTEIN TO	ug/kg	54 NI					2E+06 NC		
MO3.2 I	Benzo(a)anthracene	3.7.4. (DO. 23.	ug/kg	56 NE					2E+06 NC		
MO3.2 E	Benzo(a)anthracene	X	ug/kg			7800	7800	870	870 NC		
MO3.2 E	Benzo(a)anthracene	NA CONTRACTOR OF THE PARTY OF T		51 NE		7800	7800	870	870 NC	NO	·
MO3.2 E	enzo(a)anthracene	314	ug/kg	58 ND		7800	7800	870	870 NC	NO	
MO3.2 B	enzo(a)anthracene	374	ug/kg	48		7800	7800	870	870 NC		
	enzo(a)anthracene		ug/kg	37 ND) I	7800	7800	870	870 NC		

						Indus	trial	Reside	ntial	Reference	Means Comparison Conclusion Reference vs
		Compale ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID NA-TOWR-SO07-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-TOWR-S008-01	ug/kg		ND UJ	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-TOWR-S009-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene		ug/kg		ND UJ	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-TOWR-SO10-01			ND	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-TOWR-SO11-01	ug/kg		ND	7800	7800	870	870	NC	NC
LMO3.2	Benzo(a)anthracene	NA-TOWR-SO12-01	ug/kg		ND	780	780	87		NC	NC
LMO3.2	Benzo(a)pyrene	NA-TOWR-SO01-01	ug/kg	1		780	780	87		NC	NC
LMO3.2	Benzo(a)pyrene	NA-TOWR-SO02-01	ug/kg		ND	780	780	87		NC	NC
LMO3.2	Benzo(a)pyrene	NA-TOWR-SO03-01	ug/kg		ND			87		NC	NC
DLMO3.2	Benzo(a)pyrene	NA-TOWR-SO04-01	ug/kg			780	780	87		NC	NC
	Benzo(a)pyrene	NA-TOWR-SO05-01	ug/kg		ND	780	780	87		NC	NC
	Benzo(a)pyrene	NA-TOWR-SO06-01	ug/kg	+ —	ND	780	780				NC
	Benzo(a)pyrene	NA-TOWR-SO07-01	ug/kg		ND	780	780	87		NC	NC
	Benzo(a)pyrene	NA-TOWR-SO08-01	ug/kg		ND UJ	780	780	87		NC	
	Benzo(a)pyrene	NA-TOWR-SO09-01	ug/kg	50	ND	780	780	87		NC	NC
	Benzo(a)pyrene	NA-TOWR-SO10-01	ug/kg	54	ND UJ	780	780	87		NC	NC
	Benzo(a)pyrene	NA-TOWR-SO11-01	ug/kg		ND	780	780	87		NC	NC
	Benzo(a)pyrene	NA-TOWR-SO12-01	ug/kg		ND	780	780	87		NC NC	NC
		NA-TOWR-SO01-01	ug/kg		ND	7800	7800	870		NC	NC
JLMO3.2	Benzo(b)fluoranthene	NA-TOWR-SO02-01	ug/kg	<u> </u>	ND	7800	7800	870	870) NC	NC
	Benzo(b)fluoranthene	NA-TOWR-SO03-01	ug/kg		ND	7800	7800	870	870	NC	NC
	Benzo(b)fluoranthene	NA-TOWR-SO04-01	ug/kg					870	870	NC	NC
	Benzo(b)fluoranthene		ug/kg	'	ND	7800		870	870	NC	NC
	Benzo(b)fluoranthene	NA-TOWR-S005-01	ug/kg		ND	7800		870	870	NC	NC
	Benzo(b)fluoranthene	NA-TOWR-S006-01			6 ND	7800		870	870	NC	NC
	Benzo(b)fluoranthene	NA-TOWR-SO07-01	ug/kg	<u>` </u>	4 ND UJ			870		ONC	NC
	Benzo(b)fluoranthene	NA-TOWR-SO08-01	ug/kg		O ND	7800		870		0 NC	NC
	Benzo(b)fluoranthene	NA-TOWR-SO09-01	ug/kg	, , , , , ,						0 NC	NC
	Benzo(b)fluoranthene	NA-TOWR-SO10-01	ug/kg	·	4 ND UJ	7800				0 NC	NC
	Benzo(b)fluoranthene	NA-TOWR-SO11-01			7 ND					0 NC	NC
OLMO3.2	Benzo(b)fluoranthene	NA-TOWR-SO12-01			4 ND	7800			1		NC
OLMO3.	Benzo(g,h,i)perylene	NA-TOWR-SO01-01			6 ND	6E+07					NC
	Benzo(g,h,i)perylene	NA-TOWR-SO02-01	ug/kį		1 ND		6E+06	2E+06			NC
	2 Benzo(g,h,i)perylene	NA-TOWR-SO03-01	ug/kg		8 ND	6E+07		2E+06			
	2 Benzo(g,h,i)perylene	NA-TOWR-SO04-01	ug/k		8 17						NC
	2 Benzo(g,h,i)perylene	NA-TOWR-SO05-01	ug/k		7 ND	6E+0					NC
OLMO3.	2 Benzo(g,h,i)perylene	NA-TOWR-SO06-01	ug/k	<u> </u>	9 ND	6E+0			23000		NC NC
	2 Benzo(g,h,i)perylene	NA-TOWR-SO07-01	ug/k		6 ND	6E+0			23000		NC
	2 Benzo(g,h,i)perylene	NA-TOWR-SO08-01	ug/k	g 5	4 ND U	J 6E+0			23000		NC
	2 Benzo(g,h,i)perylene	NA-TOWR-SO09-01	ug/k	g 5	0 ND	6E+0		2E+06			NC
	2 Benzo(g,h,i)perylene	NA-TOWR-SO10-01	ug/k	g 5	4 ND U.	J 6E+0		2E+06			NC
	2 Benzo(g,h,i)perylene	NA-TOWR-SO11-01		g 3	7 ND	6E+0			23000		NC
	2 Benzo(g,h,i)perylene 2 Benzo(g,h,i)perylene	NA-TOWR-SO12-01			64 ND	6E+0			23000		NC
	2 Benzo(k)fluoranthene	NA-TOWR-SO01-01		-	6 ND	7800	0 78000	8700		00 NC	NC
		NA-TOWR-SO02-01		~	51 ND	7800	0 78000	8700		00 NC	NC
	2 Benzo(k)fluoranthene	NA-TOWR-SO03-0			8 ND	7800			870	00 NC	NC
	2 Benzo(k)fluoranthene	NA-TOWR-SO04-0			18 20				4	00 NC	NC
OLMO3	2 Benzo(k)fluoranthene				37 ND	7800				00 NC	NC
OLMO3	2 Benzo(k)fluoranthene	NA-TOWR-SO05-0		Y	69 ND	7800				00 NC	NC
MO3	2 Benzo(k)fluoranthene	NA-TOWR-SO06-0 NA-TOWR-SO07-0			36 ND	7800				00 NC	NC

Method	Analyte						lustrial	Resi	dential	Reference	Means Comparison Conclusion Reference vs
	Benzo(k)fluoranthene	Sample ID	Units		Resul			RBC		UTL	Site
OLMO3.2		NA-TOWR-SO08-0	<u> </u>		ND U.			8700	8700		NC
	Benzo(k)fluoranthene	NA-TOWR-SO09-01	 		ND	7800		8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TOWR-SO10-01			ND U			8700			NC
	Benzo(k)fluoranthene	NA-TOWR-SOI1-01			ND	7800		8700			NC
OLMO3.2	Butylbenzylphthalate	NA-TOWR-SO12-01			ND	7800	0 78000	8700			NC
OLMO3.2	Butylbenzylphthalate	NA-TOWR-SO01-01			ND	4E+0	8 4E+07	2E+07	2E+06		NS
OLMO3.2	Butylbenzylphthalate	NA-TOWR-SO02-01			ND	4E+0		2E+07	2E+06	83	
OLMO3.2	Butylbenzylphthalate	NA-TOWR-SO03-01		58) 4E+0	8 4E+07	2E+07	2E+06	83	
OLMO3.2	Butylbenzylphthalate	NA-TOWR-S004-01			ND	4E+0	8 4E+07	2E+07		83	
OLMO3.2	Butylbenzylphthalate	NA-TOWR-S005-01			ND	4E+0		2E+07		83	
OLMO3.2	Butylbenzylphthalate	NA-TOWR-S006-01	_+		ND	4E+0	3 4E+07	2E+07	2E+06	83	
OLMO3 2	Butylbenzylphthalate	NA-TOWR-S007-01			ND	4E+08	3 4E+07	2E+07	2E+06	83	
DI MO3 2	Butylbenzylphthalate	NA-TOWR-SO08-01			ND UJ	4E+08	3 4E+07	2E+07	2E+06	83	
DLMO3.2	Butylbenzylphthalate	NA-TOWR-SO09-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06	83	
DI MO3.2	Butylbenzylphthalate	NA-TOWR-SO10-01	ug/kg		ND UJ	4E+08	4E+07	2E+07	2E+06	83	
	Butylbenzylphthalate	NA-TOWR-SO11-01	ug/kg		ND	4E+08		2E+07	2E+06	83	
DLMO3.2	Carbazole	NA-TOWR-SO12-01	ug/kg		ND	4E+08		2E+07	2E+06	83 1	
DLMO3.2		NA-TOWR-SO01-01	ug/kg		ND		290000	32000	32000		NC
	Carbazole Carbazole	NA-TOWR-SO02-01	ug/kg		ND		290000	32000	32000 1		VC
LMO3.2		NA-TOWR-SO03-01	ug/kg	58		290000	290000	32000	32000 1		VC
LMO3.2		NA-TOWR-SO04-01	ug/kg	48		290000	290000	32000	32000 1		VC
LMO3.2		NA-TOWR-SO05-01	ug/kg	37			290000	32000	32000 N		VC
LMO3.2		NA-TOWR-SO06-01	ug/kg	69			290000	32000	32000 N		VC VC
LMO3.2		NA-TOWR-SO07-01	ug/kg	36		290000	290000	32000	32000 N		VC
LMO3.2		NA-TOWR-SO08-01	ug/kg		ND UJ	290000	290000	32000	32000 N		iC
LMO3.2		NA-TOWR-SO09-01	ug/kg	50			290000	32000	32000 N		IC .
LMO3.2 (NA-TOWR-SO10-01	ug/kg		נט סא		290000	32000	32000 N		IC .
LMO3.2		NA-TOWR-SO11-01	ug/kg	37 1			290000	32000	32000 N		iC
LMO3.2 C		NA-TOWR-SO12-01	ug/kg	54		290000	290000	32000	32000 N		iC
LMO3.2 (NA-TOWR-SO01-01	ug/kg	56 1		780000		87000	87000 N		ic
LMO3.2 (NA-TOWR-SO02-01	ug/kg	51	51	780000	780000	87000	87000 N		ic
	Chrysene	NA-TOWR-SO03-01	ug/kg	58 1	ND D	780000	780000	87000	87000 N		c
	Chrysene	NA-TOWR-SO04-01	ug/kg	48	170	780000	780000	87000	87000 N		$\frac{\tilde{c}}{c}$
	Chrysene	NA-TOWR-SO05-01	ug/kg	37 N		780000		87000	87000 N		c d
	Chrysene	NA-TOWR-SO06-01	ug/kg	69 N		780000		87000	87000 N		c
	Chrysene	NA-TOWR-SO07-01	ug/kg	36 N		780000		87000	87000 N		
	Chrysene	NA-TOWR-SO08-01	ug/kg			780000		87000	87000 N		
MO3.2	hrysene	NA-TOWR-SO09-01	ug/kg	50 N		780000		87000	87000 N		
	Chrysene	NA-TOWR-SO10-01	ug/kg			780000		87000	87000 N		
MO3.2 C		NA-TOWR-SO11-01	ug/kg	37 N		780000	780000		87000 N		
	bibenz(a,h)anthracene	NA-TOWR-SO12-01	ug/kg	54 N		780000	780000		87000 N		
MO3 2	bibenz(a,h)anthracene	274 00-00-00-00-00-00-00-00-00-00-00-00-00-	ug/kg	56 N		780	780	87	87 N		
MO3 2 D	ibenz(a,h)anthracene	3 1 4	ug/kg	51 N		780	780	87	87 N		
MO3 2 D	ibenz(a,n)aninracene		ug/kg	58 N		780	780	87	87 N		
MO3 2 D	ibenz(a,h)anthracene		ug/kg	48 N		780	780	87	87 N		
MO3 2 D	ibenz(a,h)anthracene		ug/kg	37 N		780	780	87	87 NO		
MO3.2 D	ibenz(a,h)anthracene		ug/kg	69 N	D	780	780	87	87 NO		
MO2 2 D		NA-TOWR-SO07-01	ug/kg	36 N	D	780	780	87	87 NO		
41U3.Z D	ibenz(a,h)anthracene	NA-TOWR-SO08-01	ug/kg	54 N	D UJ	780	780	87	87 NO		

		Industrial Residential					ential	Reference	Means Comparison Conclusion Reference vs		
			TT-:4-	MIN	Result	RBC	RBSL		RBSL	UTL	Site
Method	Analyte	Sample ID	Units		ND	780		87		NC	NC
LMO3.2	Dibenz(a,h)anthracene	NA-TOWR-SO09-01	ug/kg		ND UJ	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TOWR-SO10-01	ug/kg		ND 03	780	780	87		NC	NC
LMO3.2	Dibenz(a,h)anthracene	NA-TOWR-SO11-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TOWR-SO12-01	ug/kg		ND		820000		31000		NC
	Dibenzofuran	NA-TOWR-SO01-01	ug/kg	·	ND		820000		31000		NC
	Dibenzofuran	NA-TOWR-SO02-01	ug/kg		ND		820000		31000		NC
	Dibenzofuran	NA-TOWR-SO03-01	ug/kg		ND		820000		31000		NC
	Dibenzofuran	NA-TOWR-SO04-01	ug/kg		ND		820000		31000		NC
	Dibenzofuran	NA-TOWR-SO05-01	ug/kg				820000		31000		NC
	Dibenzofuran	NA-TOWR-SO06-01	ug/kg		ND		820000		31000		NC
	Dibenzofuran	NA-TOWR-SO07-01	ug/kg		NDIII			310000	31000		NC
	Dibenzofuran	NA-TOWR-SO08-01	ug/kg		ND UJ			310000			NC
	Dibenzofuran	NA-TOWR-SO09-01	ug/kg		ND			310000			NC
OLMO3.2	Dibenzofuran	NA-TOWR-SO10-01	ug/kg		ND UJ						NC
OLMO3.2	Dibenzofuran	NA-TOWR-SO11-01	ug/kg		ND			310000			NC
OLMO3.2	Dibenzofuran	NA-TOWR-SO12-01	ug/kg		ND			310000			NS NS
OLMO3.2	Diethylphthalate	NA-TOWR-SO01-01	ug/kg		ND	2E+09	-		6E+06		NS
	Diethylphthalate	NA-TOWR-SO02-01	ug/kg		ND_	2E+09			6E+06	<u> </u>	NS
	Diethylphthalate	NA-TOWR-SO03-01	ug/kg	+	ND _	2E+09			6E+06		1 NS
	Diethylphthalate	NA-TOWR-SO04-01	ug/kg		ND	2E+09					4 NS
	Diethylphthalate	NA-TOWR-SO05-01	ug/kg		7 ND	2E+09		 	6E+06		4 NS
	Diethylphthalate	NA-TOWR-SO06-01	ug/kg								
	Diethylphthalate	NA-TOWR-SO07-01	ug/kg		6 ND	2E+09					4 NS
	2 Diethylphthalate	NA-TOWR-SO08-01	ug/kg		4 ND UJ						4 NS
	Diethylphthalate	NA-TOWR-SO09-01	ug/kg	·	0 ND	2E+09					4 NS
	Diethylphthalate	NA-TOWR-SO10-01	ug/kg	5	4 ND UJ						4 NS
	2 Diethylphthalate	NA-TOWR-SO11-01	ug/kg			0 2E+0					4 NS
	2 Diethylphthalate	NA-TOWR-SO12-01	ug/kg	5 5	4 ND	2E+0					4 NS
	2 Dimethylphthalate	NA-TOWR-SO01-01	ug/kg		6 ND	2E+1	-	-			NC
	2 Dimethylphthalate	NA-TOWR-SO02-01	ug/kg		1 ND	2E+1					NC
	2 Dimethylphthalate	NA-TOWR-SO03-01	ug/kg		8 ND	2E+1					NC
	2 Dimethylphthalate	NA-TOWR-SO04-01	ug/kg	3 4	8 ND	2E+1	0 2E+0				NC
	2 Dimethylphthalate	NA-TOWR-SO05-01			7 ND			9 8E+08	8E+0	7 NC	NC
OLMO3	2 Dimethylphthalate	NA-TOWR-SO06-01	ug/kg		9 ND		0 2E+0		8E+0		NC
	2 Dimethylphthalate	NA-TOWR-SO07-01	ug/kg	g 3	6 ND	2E+1					NC
	2 Dimethylphthalate	NA-TOWR-SO08-01		3 5	4 ND U	J 2E+1	0 2E+0			7 NC	NC
	2 Dimethylphthalate	NA-TOWR-SO09-01		g <u>5</u>	0 ND	2E+1				7 NC	NC
	2 Dimethylphthalate	NA-TOWR-SO10-01		g 5	4 ND U.	J 2E+1	0 2E+0			7 NC	NC
	2 Dimethylphthalate	NA-TOWR-SO11-01		g 3	7 ND	2E+1					NC
	2 Dimethylphthalate	NA-TOWR-SO12-01		g :	4 ND		0 2E+0				NC
	2 Fluoranthene	NA-TOWR-SO01-01		_	6 ND		7 8E+0		6 31000		60 NS
	2 Fluoranthene	NA-TOWR-SO02-01			51 5		7 8E+0		6 31000		50 NS
	2 Fluoranthene	NA-TOWR-SO03-01			58 7	72 8E+0			6 31000		50 NS
	2 Fluoranthene	NA-TOWR-SO04-01			18 11	0 8E+0		6 3E+0			50 NS
	2 Fluoranthene	NA-TOWR-SO05-01			37 ND	8E+0		6 3E+0			50 NS
	2 Fluoranthene	NA-TOWR-SO06-01			69 ND	8E+0)7 8E+0	6 3E+0		_+	60 NS
	2 Fluoranthene	NA-TOWR-SO07-0			36 ND	8E+0			6 31000		60 NS
	.2 Fluoranthene	NA-TOWR-SO08-0		~	54 65 J	8E+0)7 8E+0		6 31000		60 NS
	.2 Fluoranthene	NA-TOWR-SO09-0			50 ND	8E+0		6 3E+0			60 NS

Method	Analyte	Sample ID	Units	MDL	Result	Ind RBC	ustrial RBSI	Resi	idential	Reference UTL	Means Comparison Conclusion Reference vs
OLMO3.2	Fluoranthene	NA-TOWR-SO10-0		54	ND UJ	8E+0			6 310000		Site NS
OLMO3.2	Fluoranthene	NA-TOWR-SO11-0			ND	8E+0			6 310000		NS NS
OLMO3.2	Fluoranthene	NA-TOWR-SO12-0	l ug/kg	54	55				6 310000		NS
OLMO3.2 OLMO3.2		NA-TOWR-SO01-01	ug/kg	56	ND	8E+0			6 310000		NC
OLMO3.2		NA-TOWR-SO02-01	ug/kg		ND	8E+07		3E+0	6 310000		NC
OLMO3.2 OLMO3.2		NA-TOWR-SO03-01		58	ND	8E+07		3E+0	6 310000		NC
OLMO3.2		NA-TOWR-SO04-01			ND	8E+07	8E+06	3E+00	310000		NC
OLMO3.2		NA-TOWR-SO05-01			ND	8E+07	8E+06		310000		NC
OLMO3.2		NA-TOWR-SO06-01		69	ND	8E+07			310000		NC
OLMO3.2		NA-TOWR-SO07-01		36	ND	8E+07	8E+06		310000	+	NC
OLMO3.2		NA-TOWR-SO08-01		54	ND UJ	8E+07	8E+06	3E+06	310000		NC NC
OLMO3.2 OLMO3.2		NA-TOWR-SO09-01	ug/kg	50	ND	8E+07	8E+06		310000		NC
OLMO3.2		NA-TOWR-SO10-01	ug/kg	54	ND UJ	8E+07			310000		NC
DLMO3.2 DLMO3.2		NA-TOWR-SO11-01	ug/kg	37	ND	8E+07		3E+06	310000		NC
		NA-TOWR-SO12-01	ug/kg	54	ND	8E+07	8E+06		310000		NC NC
DIMO3.2	Hexachloro-1,3-butadiene	NA-TOWR-SO01-01	ug/kg	56	ND	73000		8200			NC -
DI MOS 2	Hexachloro-1,3-butadiene	NA-TOWR-SO02-01	ug/kg	51	ND	73000	73000	8200			NC NC
I MO2 2	Hexachloro-1,3-butadiene	NA-TOWR-SO03-01	ug/kg	58		73000	73000	8200			NC NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TOWR-SO04-01	ug/kg	48		73000	73000	8200			NC NC
I MO2 2	Hexachloro-1,3-butadiene	NA-TOWR-SO05-01	ug/kg	37	ND	73000	73000	8200			NC
LMO3.2 I	Hexachloro-1,3-butadiene	NA-TOWR-SO06-01	ug/kg	69	ND	73000	73000	8200			NC
LMO3.2	Hexachloro-1,3-butadiene	NA-TOWR-SO07-01	ug/kg	36	ND	73000	73000	8200	8200		NC I
LMO3.2 I	Hexachloro-1,3-butadiene	NA-TOWR-SO08-01	ug/kg	54	ND UJ	73000	73000	8200	8200		NC NC
	Hexachloro-1,3-butadiene	NA-TOWR-SO09-01	ug/kg	50	ND	73000	73000	8200	8200		VC -
LMO3.2	Hexachloro-1,3-butadiene	NA-TOWR-SO10-01	ug/kg	54 1	UD UJ	73000	73000	8200	8200		VC
LMO3.2 I	lexachloro-1,3-butadiene	NA-TOWR-SO11-01	ug/kg	37 1	ND	73000	73000	8200	8200	·	VC -
LMO3.2 I	Hexachloro-1,3-butadiene Hexachlorobenzene	NA-TOWR-SO12-01	ug/kg	54 1	ND D	73000	73000	8200	8200		VC VC
LMO3.2 I	lexachlorobenzene	NA-TOWR-SO01-01	ug/kg	56 1		3600	3600	400	400		VC VC
	lexachlorobenzene	NA-TOWR-SO02-01	ug/kg	51 1		3600	3600	400	400		1C
	lexachlorobenzene	NA-TOWR-SO03-01	ug/kg	58 1	4D	3600	3600	400	400 1	<u></u> ,	VC VC
LMO3.2 F		NA-TOWR-SO04-01	ug/kg	48 N		3600	3600	400	400 1		1C
I MO3 2 L		NA-TOWR-SO05-01	 	37 N		3600	3600	400	400 1		ic —
LMO3.2 I	lexachlorobenzene	NA-TOWR-SO06-01	ug/kg	69 N		3600	3600	400	400 1		īC
		NA-TOWR-SO07-01	ug/kg	36 N	ĮD	3600	3600	400	400 1		ic
	lexachlorobenzene	NA-TOWR-SO08-01	ug/kg	54 N	נט סז	3600	3600	400	400 N		ic
	lexachlorobenzene	NA-TOWR-SO09-01	ug/kg	50 N		3600	3600	400	400 N		ic
MO3.2 H	exachlorobenzene		ug/kg	54 N	D UJ	3600	3600	400	400 N		ic
MO3.2 II		NA-TOWR-SO11-01	ug/kg	37 N	D	3600	3600	400	400 N		c -
MO3.2 II			ug/kg	54 N	D	3600	3600	400	400 N		
MO3.2 H			ug/kg			1E+07	1E+06 5		55000 N		
MO3.2 II			ug/kg	51 N			1E+06 5		55000 N		
MO3.2 II		NA-TOWR-SO03-01	ug/kg	58 N	נט ס		1E+06 5		55000 N		
MO3.2 II		NA-TOWR-SO04-01	ug/kg	48 N	D UJ		1E+06 5		55000 N		
MO3.2 H		NA-TOWR-SO05-01	ug/kg	37 N	D :		1E+06 5	-	55000 N		
MO3.2 H		NA-TOWR-SO06-01	ug/kg	69 N	D i		1E+06 5		55000 N		
MO3.2 H		NA-TOWR-SO07-01	ug/kg	36 N			1E+06 5		55000 N		
MO2 2	exachlorocyclopentadiene	NA-TOWR-SO08-01	ug/kg	54 N			1E+06 5		55000 N		
MO2 2 7		NA-TOWR-SO09-01	ug/kg	50 N			1E+06 5		55000 N		
41U3.2 H	exachlorocyclopentadiene	NA-TOWR-SO10-01	ug/kg	54 N		$\overline{}$	1E+06 5		55000 N		

						Indu		Reside		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units		Result	RBC	RBSL		RBSL	UTL	Site
	Hexachlorocyclopentadiene	NA-TOWR-SO11-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TOWR-SO12-01	ug/kg		ND	1E+07		550000	55000		NC
		NA-TOWR-SO01-01	ug/kg		ND	410000		46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TOWR-SO02-01	ug/kg		ND	410000		46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TOWR-SO03-01	ug/kg		ND	410000		46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TOWR-SO04-01	ug/kg		ND	410000		46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TOWR-SO05-01	ug/kg		ND	410000		46000	46000		NC
		NA-TOWR-SO06-01	ug/kg		ND		410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TOWR-SO07-01	ug/kg		ND		410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TOWR-SO08-01	ug/kg		ND UJ		410000		46000		NC
OLMO3.2	Hexachloroethane	NA-TOWR-SO09-01	ug/kg		ND	1	410000		46000		NC
		NA-TOWR-SO10-01	ug/kg		ND UJ				46000		NC
		NA-TOWR-SO11-01	ug/kg	37	ND		410000		46000		NC
		NA-TOWR-SO12-01	ug/kg		ND	410000		46000	46000		NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO01-01	ug/kg	56	ND	7800	7800	870		NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO02-01	ug/kg	51	ND	7800	7800	870		NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO03-01	ug/kg	58	ND	7800	7800	870		NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO04-01	ug/kg	48	ND	7800	7800	870		NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO05-01	ug/kg	37	ND	7800	7800	870		NC	NC
		NA-TOWR-SO06-01	ug/kg	69	ND	7800	7800	870	870	NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO07-01	ug/kg	36	ND	7800	7800	870		NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO08-01	ug/kg	54	ND UJ	7800	7800	870	870	NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO09-01	ug/kg	50	ND	7800	7800	870	870	NC	NC
		NA-TOWR-SO10-01	ug/kg	54	ND UJ	7800	7800	870	870	NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO11-01	ug/kg	37	ND	7800	7800			NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO12-01	ug/kg	54	ND	7800				NC	NC
	Isophorone	NA-TOWR-SO01-01	ug/kg	56	ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO02-01	ug/kg	51	ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO03-01	ug/kg	58	ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO04-01	ug/kg		ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO05-01	ug/kg		ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO06-01	ug/kg	69	ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO07-01	ug/kg	36	ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO08-01	ug/kg		IU QN	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO09-01	ug/kg		ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO10-01	ug/kg		ND UJ	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO11-01	ug/kg		ND	6E+06	1	670000			NC
	Isophorone	NA-TOWR-SO12-01	ug/kg		ND	6E+06		670000	670000	NC	NC
	N-Nitroso-di-n-propylamine		ug/kg		ND	820	820	91	91	NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO02-01	ug/kg	51	ND	820				NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO03-01	ug/kg	58	ND	820				NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO04-01	ug/kg		ND	820				NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO05-01	ug/kg		7 ND	820				NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO06-01	ug/kg		ND	820				NC NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO07-01	ug/kg		ND	820				NC	NC NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO08-01	ug/kg		ND UJ					NC NC	NC NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TOWR-SO09-01	ug/kg		D ND 4 ND UJ	820 820				I NC	NC
	N-Nitroso-di-n-propylamine		ug/kg		IND OJ	820				I NC	NC
	N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine		ug/kg ug/kg		4 ND	820				I NC	NC

				<u> </u>	1	1		,			***
						Indi	ustria)	Dan	:34:-1	D.C	Means Comparise Conclusio
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	idential RBSI		Reference
	N-Nitrosodiphenylamine	NA-TOWR-SO01-01	ug/kg		ND	1E+06			0 13000		Site
OLMO3.2	N-Nitrosodiphenylamine	NA-TOWR-SO02-01	ug/kg		ND	1E+06			0 13000		NC
OLMO3.2	N-Nitrosodiphenylamine	NA-TOWR-SO03-01			ND	1E+06	1E+06	13000	0 13000	ONC	NC
	N-Nitrosodiphenylamine	NA-TOWR-SO04-01			ND	1E+06			0 130000		NC
	N-Nitrosodiphenylamine	NA-TOWR-SO05-01	ug/kg		ND	1E+06			0 130000		NC
	N-Nitrosodiphenylamine	NA-TOWR-SO06-01	ug/kg		ND	1E+06			0 130000		NC
	N-Nitrosodiphenylamine	NA-TOWR-SO07-01	ug/kg		ND	1E+06			0 130000		NC NC
	N-Nitrosodiphenylamine	NA-TOWR-SO08-01	ug/kg		ND UJ	1E+06			130000		
	N-Nitrosodiphenylamine	NA-TOWR-SO09-01	ug/kg		ND	1E+06			130000		NC
	N-Nitrosodiphenylamine	NA-TOWR-SO10-01	ug/kg		ND UJ	1E+06			130000		NC NC
	N-Nitrosodiphenylamine	NA-TOWR-SO11-01	ug/kg		ND	1E+06			130000		NC
	N-Nitrosodiphenylamine	NA-TOWR-SO12-01	ug/kg		ND	1E+06			130000		NC
	Naphthalene	NA-TOWR-SO01-01	ug/kg	56		8E+07	8E+06		310000		NC
	Naphthalene	NA-TOWR-SO02-01	ug/kg	51		8E+07			310000		NC
	Naphthalene	NA-TOWR-SO03-01	ug/kg	58		8E+07	8E+06		310000		NC .
	Naphthalene	NA-TOWR-SO04-01	ug/kg	48	ND	8E+07	8E+06		310000		NC
	Naphthalene	NA-TOWR-SO05-01	ug/kg	37		8E+07	8E+06		310000		NC
	Naphthalene	NA-TOWR-SO06-01	ug/kg	69	ND	8E+07	8E+06		310000		NC
	Naphthalene	NA-TOWR-SO07-01	ug/kg	36	ND	8E+07	8E+06		310000		NC
	Naphthalene	NA-TOWR-SO08-01	ug/kg	54	ND UJ	8E+07	8E+06		310000		NC
	Naphthalene	NA-TOWR-SO09-01	ug/kg	50	ND	8E+07	8E+06		310000		NC NC
	Naphthalene	NA-TOWR-SO10-01	ug/kg	54	ND UJ	8E+07	8E+06		310000		NC /
	Naphthalene	NA-TOWR-SO11-01	ug/kg	37		8E+07	8E+06		310000		NC
	Naphthalene	NA-TOWR-SO12-01	ug/kg	54 1	ND	8E+07	8E+06		310000		NC
	Nitrobenzene	NA-TOWR-SO01-01	ug/kg	56	VD D		100000	39000			NC
	Nitrobenzene	NA-TOWR-SO02-01	ug/kg	51 1	ND		100000	39000	<u> </u>		NC
	Nitrobenzene	NA-TOWR-SO03-01	ug/kg	58 1	ND		100000	39000	3900		NC
	Nitrobenzene	NA-TOWR-SO04-01	ug/kg	48 1	ND		100000	39000	3900		NC
	Nitrobenzene	NA-TOWR-SO05-01	ug/kg	37 1	4D		100000	39000	3900		NC
	Nitrobenzene	NA-TOWR-SO06-01	ug/kg	69 1	ND OV		100000	39000	3900		NC
	Nitrobenzene	NA-TOWR-SO07-01	ug/kg	36 1	ND		100000	39000	3900		NC
	Vitrobenzene	NA-TOWR-SO08-01	ug/kg	54 N	ND UJ		100000	39000			NC
	Vitrobenzene	NA-TOWR-SO09-01	ug/kg	50 N		1E+06		39000	3900		NC
	Vitrobenzene	NA-TOWR-SO10-01	ug/kg	54 N	ID UI	1E+06		39000	3900		NC
		NA-TOWR-SO11-01	ug/kg	37 N	1D	1E+06		39000	3900		NC NC
	Vitrobenzene	NA-TOWR-SO12-01	ug/kg	54 N	1D	1E+06		39000	3900		NC
	Pentachlorophenol	NA-TOWR-SO01-01	ug/kg	56 N	1D	48000	48000	5300	5300		NC
		NA-TOWR-SO02-01	ug/kg	51 N		48000	48000	5300	5300		NC
			ug/kg	58 N	ID	48000	48000	5300	5300		NC
			ug/kg	48 N		48000	48000	5300	5300		NC
		NA-TOWR-SO05-01	ug/kg	37 N	D	48000	48000	5300	5300		NC
			ug/kg	69 N		48000	48000	5300	5300		NC
			ug/kg	36 N	ID	48000	48000	5300	5300		NC
			ug/kg	54 N	D UJ	48000	48000	5300	5300		NC NC
		NA-TOWR-SO09-01	ug/kg	50 N	D	48000	48000	5300	5300		NC
		NA-TOWR-SO10-01	ug/kg	54 N		48000	48000	5300	5300		NC
			ug/kg	37 N		48000	48000	5300	5300		NC .
			ug/kg	54 N		48000	48000	5300	5300		NC T
OLMO3.2 P	nenanthrene	NA-TOWR-SO01-01	ug/kg	56 N					230000 1		NC NC

						Indu		Reside			Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
·		NA-TOWR-SO02-01	ug/kg	51	ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO03-01	ug/kg	58	ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO04-01	ug/kg	48	ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO05-01	ug/kg	37	ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO06-01	ug/kg	69	ND	6E+ 07	6E+06		230000		NC
	Phenanthrene	NA-TOWR-SO07-01	ug/kg		ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO08-01	ug/kg	54	ND UJ	6E+07	6E+06		230000		NC
		NA-TOWR-SO09-01	ug/kg		ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO10-01	ug/kg		ND UJ	6E+07	6E+06		230000		NC
		NA-TOWR-SO11-01	ug/kg	37	ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO12-01	ug/kg	54	ND	6E+07	6E+06		230000		NC
OLMO3.2	,	NA-TOWR-SO01-01	ug/kg		ND	1E+09		5E+07	5E+06		NC
OLMO3.2	1 1101101	NA-TOWR-SO02-01	ug/kg		ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2	A MANUAL	NA-TOWR-SO03-01	ug/kg	58	ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2	2 270-102	NA-TOWR-SO04-01	ug/kg		ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-TOWR-SO05-01	ug/kg	37	ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2	A 110 11 - 1	NA-TOWR-SO06-01	ug/kg	69	ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2	1 10 T-1	NA-TOWR-SO07-01	ug/kg	36	ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-TOWR-SO08-01	ug/kg	54	ND UJ	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-TOWR-SO09-01	ug/kg	50	ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-TOWR-SO10-01	ug/kg	54	ND UJ	1E+09	1E+08	5E+07	5E+06	NC	NC
	Phenol	NA-TOWR-SO11-01	ug/kg		ND	1E+09	1E+08	5E+07	5E+06	NC	NC
	Phenol	NA-TOWR-SO12-01	ug/kg		ND	1E+09	1E+08	5E+07	5E+06		NC
OLMO3.2		NA-TOWR-SO01-01	ug/kg		ND	6E+07	6E+06	2E+06	230000		NS
OLMO3.2		NA-TOWR-SO02-01	ug/kg		. 57	6E+07	6E+06	2E+06	230000		NS
OLMO3.2		NA-TOWR-SO03-01	ug/kg		64	6E+07	6E+06	2E+06	230000		NS
OLMO3.2		NA-TOWR-SO04-01	ug/kg			6E+07	6E+06	2E+06	230000	70	NS
OLMO3.2		NA-TOWR-SO05-01	ug/kg		ND	6E+07		2E+06	230000		NS
OLMO3.2		NA-TOWR-SO06-01	ug/kg					2E+06	230000		NS
OLMO3.2		NA-TOWR-SO07-01	ug/kg		ND	6E+07		2E+06	230000	70	NS
OLMO3.2		NA-TOWR-SO08-01	ug/kg		1 64 J	6E+07	6E+06	2E+06	230000	70	NS
OLMO3.2		NA-TOWR-SO09-01	ug/kg			6E+07	6E+06	2E+06	230000	70	NS
OLMO3.2		NA-TOWR-SO10-01	ug/kg		ND UJ	6E+07	6E+06	2E+06	230000	7(NS
OLMO3.2		NA-TOWR-SO11-01	ug/kg		7 ND	6E+07			230000		NS
OLMO3.2		NA-TOWR-SO12-01	ug/kg						230000	70	NS
OLMO3.2	bis(2-Chloroethoxy)methane		ug/kg		5 ND	5200				NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO02-01	ug/kg		1 ND	5200	5200	580		NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO03-01	ug/kg	5	ND	5200				NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO04-01	ug/kg		8 ND	5200				NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO05-01	ug/kg		7 ND	5200				NC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO06-01	ug/kg		9 ND	5200) NC	NC NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO07-01	ug/kg		6 ND	5200				NC NC	NC NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO08-01	ug/kg		4 ND UJ					NC	NC NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO09-01	ug/kg		0 ND	5200 5200				DNC	NC
OLMO3.2	bis(2-Chloroethoxy)methane	NA-TOWR-SO10-01	ug/kg		4 ND UJ	5200				DNC	NC
OLMO3.2	bis(2-Chloroethoxy)methano	NA-TOWR-SOLI-01	ug/kg		7 ND 4 ND	5200				NC	NC
	bis(2-Chloroethoxy)methano				6 ND	5200				NC	NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO01-01 NA-TOWR-SO02-01	ug/kg	<u> </u>	1 ND	5200				ONC	NC
	bis(2-Chloroethyl)ether	INA-TOWK-SOU2-01	ug/kg	21 3	עאון ו	1 320	U 2200	300	יטכון	-	NC

					- Oui						
									,		Means Comparison Conclusion
Method	Analyte	G			<u></u>	-	ustrial		dential	Reference	Reference vs
	bis(2-Chloroethyl)ether	Sample ID	Units		Result		RBSL	RBC	RBSL	UTL	Site
	bis(2-Chloroethyl)ether	NA-TOWR-SO04-01	<u> </u>		ND	5200		580	580	NC	NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO05-01	<u> </u>		ND	5200		580	580	NC	NC
		NA-TOWR-SO06-01	+		ND	5200	<u> </u>	580	580	NC	NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO07-01			ND	5200	5200	580	580	NC	NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO08-01	<u> </u>		ND UJ	5200	5200	580	580	NC	NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO09-01			ND	5200	5200	580	580	NC	NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO10-01			ND UJ	5200	5200	580	•	NC	NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO11-01			ND	5200	5200	580			NC
	bis(2-Chloroethyl)ether	NA-TOWR-SO12-01	ug/kg	54	ND	5200	5200	580		NC	NC
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO01-01	ug/kg	56	130	410000	410000	46000		785	
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO02-01	ug/kg	51			410000	46000		785	
OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO03-01	ug/kg	58			410000	46000		785	
OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO04-01	ug/kg	48			410000	46000		785	
OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO05-01	ug/kg	37			410000	46000		785 785	
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO06-01	ug/kg	69			410000	46000	46000	785	
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO07-01	ug/kg	36			410000	46000	46000	785	
OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO08-01	ug/kg		300 J		410000	46000	46000		
OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO09-01	ug/kg	50			410000	46000		785	
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO10-01	ug/kg		580 J	410000			46000	785	
OLMO3.2	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO11-01	ug/kg	37		410000		46000	46000	785	
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO12-01	ug/kg	54				46000	46000	785	
	di-n-Butylphthalate	NA-TOWR-SO01-01	ug/kg	56	94 NID	410000		46000	46000	785	
	di-n-Butylphthalate	NA-TOWR-SO02-01	ug/kg	51		2E+08	2E+07	8E+06		280	
	li-n-Butylphthalate	NA-TOWR-SO03-01		58	83	2E+08	2E+07	8E+06		280	
	li-n-Butylphthalate	NA-TOWR-SO04-01	ug/kg		200	2E+08	2E+07	8E+06		280	
	li-n-Butylphthalate	NA-TOWR-SO05-01	ug/kg	48		2E+08		8E+06		280	
	li-n-Butylphthalate	NA-TOWR-SO06-01	ug/kg	37		2E+08		8E+06		280	
	li-n-Butylphthalate	NA-TOWR-S007-01	ug/kg	69	190	2E+08		8E+06		280	
	li-n-Butylphthalate	NA-TOWR-SO08-01	ug/kg	36		2E+08		8E+06		280	NS
	li-n-Butylphthalate	NA-TOWR-S009-01	ug/kg		IU QV	2E+08		8E+06		280	NS
	li-n-Butylphthalate	NA-TOWR-SO10-01	ug/kg	50	58	2E+08		8E+06		280	NS
			ug/kg	54	6 6	2E+08	2E+07	8E+06	780000	280	NS
	li-n-Butylphthalate	NA-TOWR-SO11-01	ug/kg	37 1		2E+08	2E+07	8E+06	780000	280	NS
	li-n-Octylphthalate	NA-TOWR-SO12-01	ug/kg	54	78	2E+08		8E+06	780000	280	NS
		NA-TOWR-SO01-01	ug/kg	56 1		4E+07	4E+06	2E+06	160000 1	VC I	NC
		NA-TOWR-SO02-01	ug/kg	51 N		4E+07	4E+06	2E+06	160000 1		NC
		NA-TOWR-SO03-01	ug/kg	58 1		4E+07	4E+06	2E+06	1600001		NC
		NA-TOWR-SO04-01	ug/kg	48 N		4E+07	4E+06	2E+06	160000 N		NC
		NA-TOWR-SO05-01	ug/kg	37 N		4E+07			160000 N		VC
		NA-TOWR-SO06-01	ug/kg	69 N		4E+07			160000 N		NC
		NA-TOWR-SO07-01	ug/kg	36 N					160000 N		VC -
		NA-TOWR-SO08-01	ug/kg	54 N	נט סו				160000 N		<u>1C</u>
		NA-TOWR-SO09-01	ug/kg	50 N					60000 N		1C 1C
	i-n-Octylphthalate	NA-TOWR-SO10-01	ug/kg	54 N					60000 N		1C
		NA-TOWR-SO11-01	ug/kg	37 N					60000 N		
	i-n-Octylphthalate	NA-TOWR-SO12-01	ug/kg	54 N					60000 N		IC IC
OLMO3.2 o-	-Cresol		ug/kg	56 N					90000 N		1C
OLMO3.2 o-	-Cresol		ug/kg	51 N							1C
OLMO3.2 o	-Cresol		ug/kg	58 N					90000 N		IC .
OLMO3.2 o-			ug/kg	48 N					90000 N		IC
				70 11		THYLO	ICTU/ 4	+⊏+∪0 3	90000 N	IC IN	IC

						Indus	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs
	A	Sample ID	Units	MDL	Result	RBC	RBSL	RBC		UTL	Site
Method	Analyte	NA-TOWR-SO05-01	ug/kg	37	ND	1E+08	1E+07		390000		NC
·	o-Cresol	NA-TOWR-SO06-01	ug/kg	69	ND	1E+08	1E+07		390000		NC
OLMO3.2		NA-TOWR-SO07-01	ug/kg	36	ND	1E+08	1E+07		390000		NC
OLMO3.2		NA-TOWR-SO08-01	ug/kg	54	ND UJ	1E+08	1E+07		390000		NC
OLMO3.2		NA-TOWR-SO09-01	ug/kg	50	ND	1E+08	1E+07		390000		NC
OLMO3.2		NA-TOWR-SO10-01	ug/kg	54	ND UJ	1E+08	1E+07		390000		NC
OLMO3.2 OLMO3.2		NA-TOWR-SO11-01	ug/kg	37	ND	1E+08	1E+07		390000		NC
OLMO3.2		NA-TOWR-SO12-01	ug/kg	54	ND	1E+08	1E+07		390000		NC
OLMO3.2		NA-TOWR-SO01-01	ug/kg	56	ND	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO02-01	ug/kg	51	ND	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO03-01	ug/kg	58	ND	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO04-01	ug/kg	48	ND	1E+07		390000	39000		NC
OLMO3.2		NA-TOWR-SO05-01	ug/kg	37	ND	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO06-01	ug/kg		ND	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO07-01	ug/kg		ND	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO08-01	ug/kg	54	ND UJ	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO09-01	ug/kg		ND	1E+07		390000			NC
OLMO3.2		NA-TOWR-SO10-01	ug/kg	+	ND UJ	1E+07		390000			NC
	p-Cresol	NA-TOWR-SO11-01	ug/kg		ND	1E+07		390000			NC
	p-Cresol	NA-TOWR-SO12-01	ug/kg	_	ND	1E+07	1E+06	390000			NC
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO01-01	ng/kg		99.8	38000	38000				NS
8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO02-01	ng/kg		865	38000	38000) NS
8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO03-01	ng/kg		2410	38000	38000				NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO04-01	ng/kg		264	38000	38000				NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO05-01	ng/kg		74.2	38000	38000				NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO06-01	ng/kg		3180	38000	38000				NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO07-01	ng/kg		13	38000	38000	4300			NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO08-01	ng/kg		563	38000	38000	4300) NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO09-01	ng/kg		251	38000	38000	430			0 NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO10-01	ng/kg		2 1110	38000	38000				0 NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO11-01			2 11.3	38000	38000	430			0 NS
SW8290_ SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO12-01			1050	38000	38000	430			0 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO01-01				38000	38000	430			2 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO02-01		0.0	5 119	38000	38000	430			2 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO03-01		3 3	2 55:	38000					2 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO04-01			39.	38000					2 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO05-01		g 0.	1 16.:	38000	3800				2 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO06-01			7 21:	5 3800					2 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO07-01			3 1.8 J	3800	3800	0 430			2 NS
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO08-01		g 1.	3 48.	3800	0 3800	0 430			2 NS
SW8290		NA-TOWR-SO09-01			8 31.	6 3800	0 3800	0 430			2 NS
SW8290		NA-TOWR-SO10-01		g 3.	9 11	0 3800	0 3800	0 430			2 NS
SW8290		NA-TOWR-SO11-01			2 3.6 J	3800					2 NS
SW8290		NA-TOWR-SO12-01				9 3800	0 3800				2 NS
		NA-TOWR-SO01-01				6 380	0 380	0 42	0 43		35 NS
SW8290		NA-TOWR-SO02-01					0 380	0 43	0 43		35 NS
SW8290		NA-TOWR-SO03-01		-				0 43	30 43		35 NS
SW8290		NA-TOWR-SO04-01		<u>~</u>	9 31.			0 43	30 43		35 NS
8290 8290		NA-TOWR-SO05-0		-	1 22.4 J			0 43	30 43	30 2:	35 NS

						Indu	ıstrial	Danis	lential	Dec	Means Comparison Conclusion
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	Reference	1
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO06-0		0.06				430		UTL	Site
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO07-0		0.3	2.3 J	3800		430		235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO08-0		1.3	43.7		+ 1	430	430		
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO09-03	l ng/kg	0.7	33.2		3800	430	430		
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO10-01	ng/kg	1.8	73.6	3800	3800	430	430	235 235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO11-01	ng/kg	0.2	1.8 J	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO12-01		1.1	58.3	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO01-01		0.3	21.3	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO02-01	ng/kg	0.4	134	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO03-01		0.9	330	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO04-01		0.7	21.2	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO05-01		0.09	25.6	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO06-01		0.04	85.8	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO07-01		0.2	2.6 J	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO08-01	ng/kg	0.9	28.5	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO09-01		0.5	26.2	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO10-01		1	39.3	3800	3800	430	430	258	
W8290	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO11-01	ng/kg	0.2		3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TOWR-SO12-01	ng/kg	0.6	27.1	3800	3800	430	430	258	
W8290	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO01-01	ng/kg	0.5	5.1	3800	3800	430	430	41.9 1	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO02-01	ng/kg	0.6	22.5	3800	3800	430	430	41.9 1	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO03-01	ng/kg	1.3	65.9	3800	3800	430	430	41.9	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO04-01	ng/kg	1 2	2.2 J	3800	3800	430	430	41.9 1	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO05-01	ng/kg	0.1 3	.7J	3800	3800	430	430	41.9 1	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO06-01	ng/kg	0.06	20.7	3800	3800	430	430	41.9 1	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO07-01	ng/kg	0.3	.6 J	3800	3800	430	430	41.9 N	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO08-01	ng/kg	1.1 3	.8 J	3800	3800	430	430	41.9 N	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO09-01	ng/kg	0.6 4	.8 J	3800	3800	430	430	41.9 N	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO10-01	ng/kg	1.4	5.6	3800	3800	430	430	41.9 N	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO11-01	ng/kg	0.2 0		3800	3800	430	430	41.9 N	
	1,2,3,4,7,8,9-HpCDF	NA-TOWR-SO12-01	ng/kg	0.9 3	.2 J	3800	3800	430	430	41.9 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO01-01	ng/kg	0.4 1	J	380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO02-01	ng/kg	0.5 5	.7 J	380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO03-01	ng/kg	1 1	7.6 J	380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO04-01	ng/kg	0.5 1	J	380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO05-01	ng/kg	0.2 1		380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO06-01	ng/kg	0.06 2	J	380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO07-01	ng/kg	0.3 N	DI	380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO08-01	ng/kg	1.3 N	DJ	380	380	43	43	13.7 N	
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO09-01	ng/kg	0.7 1.	3 J	380	380	43	43	13.7 N	
	,2,3,4,7,8-HxCDD	NA-TOWR-SO10-01	ng/kg	1 3.	2 J	380	380	43	43	13.7 N	
	,2,3,4,7,8-HxCDD	NA-TOWR-SO11-01	ng/kg	0.2 N	D	380	380	43	43	13.7 N	
	,2,3,4,7,8-HxCDD	NA-TOWR-SO12-01	ng/kg	0.6 1.		380	380	43	43	13.7 N	
	,2,3,4,7,8-HxCDF	NA-TOWR-SO01-01	ng/kg	0.3 9.	8 J	380	380	43	43	97.8 N	
	,2,3,4,7,8-HxCDF	NA-TOWR-SO02-01	ng/kg	0.5 63	.4 J	380	380	43	43	97.8 N	
	,2,3,4,7,8-HxCDF	NA-TOWR-SO03-01	ng/kg	0.8 14		380	380	43	43	97.8 N	
	,2,3,4,7,8-HxCDF	NA-TOWR-SO04-01	ng/kg	0.4 7.		380	380	43	43	97.8 N	
	,2,3,4,7,8-HxCDF	NA-TOWR-SO05-01	ng/kg	0.1	12	380	380	43	43		
8290 1	,2,3,4,7,8-HxCDF		ng/kg	0.03	18.4	380	380	43	43	97.8 NS	

						Indus	strial	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
	41-4-	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	NA-TOWR-SO07-01	ng/kg	0.2		380	380	43	43	97.8	NS
SW8290	1,2,3,4,7,8-HxCDF	NA-TOWR-S007-01	ng/kg	0.8	8.1	380	380	43	43	97.8	NS
SW8290	1,2,3,4,7,8-HxCDF	NA-TOWR-S009-01	ng/kg	0.5		380	380	43	43	97.8	NS
SW8290	1,2,3,4,7,8-HxCDF	NA-TOWR-SO10-01	ng/kg		8.2 J	380	380	43	43	97.8	NS
SW8290	1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF	NA-TOWR-SO11-01	ng/kg		1.4 J	380	380	43	43	97.8	NS
SW8290	1,2,3,4,7,8-HxCDF	NA-TOWR-SO12-01	ng/kg		4.2 J	380	380	43	43	97.8	NS
SW8290 SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO01-01	ng/kg		3.7 J	380	380	43	43	29.1	NS
SW8290 SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO02-01	ng/kg		14 J	380	380	43	43	29.1	NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO03-01	ng/kg		39.9 J	380	380	43	43	29.1	NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO04-01	ng/kg		2.6 J	380	380	43	43		·
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO05-01	ng/kg		3 J	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO06-01	ng/kg	0.06		380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO07-01	ng/kg	<u> </u>	0.32 J	380	380	43			NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO08-01	ng/kg		3.1 J	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO09-01	ng/kg		3.1 J	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO10-01	ng/kg	1		380	380	43	43	1	NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO11-01	ng/kg	0.2	ND	380	380	43			NS
SW8290	1,2,3,6,7,8-HxCDD	NA-TOWR-SO12-01	ng/kg		3.5 J	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO01-01	ng/kg	0.3	3.8 J	380	380	43			NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO02-01	ng/kg	0.4	26.3	380	380	43			NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO03-01	ng/kg		60.6	380	380	43			NS
(8290	1,2,3,6,7,8 HxCDF	NA-TOWR-SO04-01	ng/kg		3 J	380	380				NS
8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO05-01	ng/kg	+		380	380	43	43		2 NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO06-01	ng/kg		5.8	380	380	43	43	41.2	NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO07-01	ng/kg		0.62 J	380	380	43	43	41.2	2 NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO08-01	ng/kg		7 3.6 J	380	380	43	43		2 NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO09-01	ng/kg		5.3	380	380	43	43	41.2	2 NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO10-01	ng/kg		5 4.1 J	380	380	43	43	41.2	2 NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO11-01	ng/kg		2 0.65 J	380	380	43	43	41.3	2 NS
SW8290	1,2,3,6,7,8-HxCDF	NA-TOWR-SO12-01	ng/kg		3 1.7 J	380	380	43	43	3 41.3	2 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO01-01			3 11.1 J	380	380	43	43		9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO02-01			5 14.4 J	380	380	43	43		9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO03-01	ng/kg		9 46.2 J	380	380	43			9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO04-01	ng/kg		5 2.8 J	380	380	43	1		9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO05-01			1 4.7 J	380	380				9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO06-01			5 9.1 J	380	380				9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO07-01		-	2 0.44 J	380	380	43	3 43		9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO08-01		1.	1 4.2 J	380	380				9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO09-01			6 6.5	380	380				9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO10-01			9 9.2	380	380				9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO11-01			2 ND	380	380) 43			9 NS
SW8290	1,2,3,7,8,9-HxCDD	NA-TOWR-SO12-01			6 4.4 J	380					9 NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO01-01		g 0.	4 ND	380	380				8 NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO02-01			5 2.1 J	380	380				8 NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO03-01			9 6.4 J	380	380				8 NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO04-01	ng/kg		5 0.9 J	380					.8 NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO05-01	_		1 0.56 J	386					.8 NS
8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO06-01	ng/kg		4 0.81 J	38					.8 NS
8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO07-01	ng/kg	g 0.	2 ND	38	0 380) 43	3 4	3 3.	.8 NS

						Indu	ıstrial	Docid	lential	70.0	Means Comparison Conclusion
Method		Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	WEIEFERCE UTL	Reference vs
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO08-01	ng/kg		ND	380	+	43	43		Site NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO09-01	ng/kg	0.5	0.59 J	380		43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO10-01	ng/kg	0.7	2.1 J	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO11-01		0.2	ND	380		43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-TOWR-SO12-01		0.5	0.65 J	380		43	43		NS
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO01-01		0.4	2.8 J	76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO02-01		0.6	5.4	76	76	8.6	8.6	9.8	
SW8290 SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO03-01		1	13.6	76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO04-01	 v 		1.1 J	76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO05-01			1.2 J	76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO06-01	ng/kg	0.05		76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDD	NA-TOWR-SO07-01	ng/kg	0.2		76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO08-01	ng/kg		1.3 J	76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-S009-01	ng/kg		2.2 J	76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-SO10-01	ng/kg	0.6		76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD	NA-TOWR-S011-01	ng/kg	0.2		76	76	8.6	8.6	9.8	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S012-01	ng/kg		1.3 J	76	76	8.6	8.6	9.8	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-SO01-01 NA-TOWR-SO02-01	ng/kg	0.2		760	760	86	86	30.6	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S002-01	ng/kg	0.4	12.7	760	760	86	86	30.6	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S003-01	ng/kg	0.8	25.4	760	760	86	86	30.6	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S005-01	ng/kg		1.8 J	760	760	86	86	30.6	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S006-01	ng/kg	0.08		760	760	86	86	30.6	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S007-01	ng/kg	0.04		760	760	86	86	30.6	NS
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S008-01	ng/kg		0.31 J	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S009-01	ng/kg	0.8		760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-S010-01	ng/kg	0.4		760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-SO11-01	ng/kg	0.3		760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TOWR-SO12-01	ng/kg	0.2).66 J	760	760	86	86	30.6	
SW8290	2,3,4,6,7,8-HxCDF	NA-TOWR-SO01-01	ng/kg ng/kg	0.2		760	760	86	86	30.6	
	2,3,4,6,7,8-HxCDF	NA-TOWR-SO02-01	ng/kg	0.5	10.7	380	380	43	43	101	
	2,3,4,6,7,8-HxCDF	NA-TOWR-SO03-01	ng/kg	0.9	114	380 380	380	43	43	101	1S
SW8290	2,3,4,6,7,8-HxCDF	ATA CONTENT OF THE	ng/kg	0.5	5.7	380	380	43	43	101 1	
SW8290	2,3,4,6,7,8-HxCDF		ng/kg	0.1 6		380	380	43	43	101 1	
SW8290	2,3,4,6,7,8-HxCDF	1174	ng/kg	0.04	13.3	380	380	43	43	101 N	
	2,3,4,6,7,8-HxCDF		ng/kg	0.2 1		380	380	43	43	101 N	
SW8290	2,3,4,6,7,8-HxCDF		ng/kg	0.8 3		380	380	43	43	101 N	
	2,3,4,6,7,8-HxCDF		ng/kg	0.5	9.3	380	380	43	43	101 N	
	2,3,4,6,7,8-HxCDF	12.24 22.2	ng/kg	0.6	8.3	380	380	43	43	101 N	
	2,3,4,6,7,8-HxCDF	1	ng/kg	0.2 0		380	380	43	43	101 N	
	2,3,4,6,7,8-HxCDF		ng/kg	0.4 4		380	380		43	101 N	
	2,3,4,7,8-PeCDF	NA-TOWR-SO01-01	ng/kg	0.2 2		76	76	8.6	43	101 N	
	2,3,4,7,8-PeCDF	NA-TOWR-SO02-01	ng/kg	0.4	21.7	76	76	8.6	8.6 8.6	37.4 N	
	2,3,4,7,8-PeCDF	NA-TOWR-SO03-01	ng/kg	0.8	43.2	76	76	8.6	8.6	37.4 N	
	2,3,4,7,8-PeCDF	NA-TOWR-SO04-01	ng/kg	0.6 2		76	76	8.6	8.6	37.4 N	
	2,3,4,7,8-PeCDF	NA-TOWR-SO05-01	ng/kg	0.08 4		76	76	8.6	8.6	37.4 N	
	2,3,4,7,8-PeCDF	NA-TOWR-SO06-01	ng/kg	0.04 3.		76	76	8.6	8.6	37.4 N	
	2,3,4,7,8-PeCDF	NA-TOWR-SO07-01	ng/kg	0.2 N		76	76	8.6	8.6	37.4 N	
W8290 2	2,3,4,7,8-PeCDF		ng/kg	0.8 1		76	76	8.6	8.6	37.4 N	

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	2,3,4,7,8-PeCDF	NA-TOWR-S009-01	ng/kg		4.8 J	76	76	8.6	8.6	37.4	NS
SW8290	2,3,4,7,8-PeCDF	NA-TOWR-SO10-01	ng/kg		3.5 J	76	76	8.6	8.6	37.4	NS
SW8290	2,3,4,7,8-PeCDF	NA-TOWR-SO11-01	ng/kg		0.68 J	76	76	8.6	8.6	37.4	NS
SW8290	2,3,4,7,8-PeCDF	NA-TOWR-SO12-01	ng/kg		1.4 J	76	76	8.6	8.6	37.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO01-01	ng/kg		0.4 J	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO02-01	ng/kg	0.5		38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO03-01	ng/kg	0.8		38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO04-01	ng/kg		ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO05-01	ng/kg		0.21 J	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO06-01	ng/kg		0.35 J	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO07-01	ng/kg		ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO08-01	ng/kg		ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO09-01	ng/kg		ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO10-01	ng/kg		0.58 J	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO11-01	ng/kg	4	ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TOWR-SO12-01	ng/kg		ND	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDF	NA-TOWR-SO01-01	ng/kg	0.8	NDJ	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-TOWR-SO02-01	ng/kg	0.5	10.5	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-TOWR-SO03-01	ng/kg	0.6	15.9	380	380	43	43	32.8	NS
SW8290	2,3,7,8-TCDF	NA-TOWR-SO04-01	ng/kg	0.2	2.1	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TOWR-SO05-01	ng/kg	0.3	1.8	380	380	43	43	32.8	
8290	2,3,7,8-TCDF	NA-TOWR-SO06-01	ng/kg	0.2	1.5	380	380	43	43	32.8	NS
8290	2,3,7,8-TCDF	NA-TOWR-SO07-01	ng/kg	0.9	ND	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TOWR-SO08-01	ng/kg	1	1.4	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TOWR-SO09-01	ng/kg	0.4	1.9	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TOWR-SO10-01	ng/kg	0.5	1.6	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TOWR-SO11-01	ng/kg	0.6	ND	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TOWR-SO12-01	ng/kg	0.3	0.82 J	380	380	43	43	32.8	
SW8290	Total HpCDD	NA-TOWR-SO01-01	ng/kg	0.4	39.1					488	
SW8290	Total HpCDD	NA-TOWR-SO02-01	ng/kg	0.6	261			·		488	
SW8290	Total HpCDD	NA-TOWR-SO03-01	ng/kg	1.2	805					488	
SW8290	Total HpCDD	NA-TOWR-SO04-01	ng/kg	0.9	54.1			1.		488	
SW8290	Total HpCDD	NA-TOWR-SO05-01	ng/kg	0.1	43.1					488	
SW8290	Total HpCDD	NA-TOWR-SO06-01	ng/kg	0.06	215					488	
SW8290	Total HpCDD	NA-TOWR-SO07-01	ng/kg	0.3	2.3					488	
SW8290	Total HpCDD	NA-TOWR-SO08-01	ng/kg	1.3	83.4			<u> </u>		488	
SW8290	Total HpCDD	NA-TOWR-SO09-01	ng/kg	0.7	61.4					488	
SW8290	Total HpCDD	NA-TOWR-SO10-01	ng/kg	1.8	137		-			488	
SW8290	Total HpCDD	NA-TOWR-SO11-01	ng/kg	0.2	2.1					488	
SW8290	Total HpCDD	NA-TOWR-SO12-01	ng/kg	1.1	112					488 1	
SW8290	Total HpCDF	NA-TOWR-SO01-01	ng/kg	0.4	41.6		<u>_</u>	 		487 1	
SW8290	Total HpCDF	NA-TOWR-SO02-01	ng/kg	0.5	254 .			-+		487 1	
SW8290	Total HpCDF	NA-TOWR-SO03-01	ng/kg	1.1	659 .					487 1	
SW8290	Total HpCDF	NA-TOWR-SO04-01	ng/kg	0.8	47.7		+			487 1	
SW8290	Total HpCDF		ng/kg	0.1	43.1		- 	- 	+	487 1	
SW8290	Total HpCDF		ng/kg	0.05	268 .		+	 :		487 1	
	Total HpCDF		ng/kg	0.2	4.6	-			 +	487 1	
	Total HpCDF		ng/kg	1	65.3	- -	<u> </u>	 `			
	Total HpCDF		ng/kg	0.5	51.8		 -			487 I 487 I	

		Analysis Samula III				Indu	ıstrial	Resid	lential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	Total HpCDF	NA-TOWR-SO10-01	ng/kg	1.2	92.7		ļ		1.	487	NS
SW8290	Total HpCDF	NA-TOWR-SO11-01	ng/kg	0.2	5.2		1.	1.	1.	487	
SW8290	Total HpCDF	NA-TOWR-SO12-01	ng/kg	0.7	71.7		1.			487	
SW8290	Total HxCDD	NA-TOWR-SO01-01	ng/kg	0.3			1.			362	NS
SW8290	Total HxCDD	NA-TOWR-SO02-01	ng/kg	0.5			 	1.		362	NS
SW8290	Total HxCDD	NA-TOWR-SO03-01	ng/kg	0.9		_	İ.		1.	362	NS
SW8290	Total HxCDD	NA-TOWR-SO04-01	ng/kg	0.5	24		ļ.	1.	-	362	NS
SW8290	Total HxCDD	NA-TOWR-SO05-01	ng/kg	0.2	42.2	-	1.			362	NS
SW8290	Total HxCDD	NA-TOWR-SO06-01	ng/kg	0.06	66.4		1.			362	NS
SW8290	Total HxCDD	NA-TOWR-SO07-01	ng/kg	0.3	2.9				1.	362	NS
SW8290	Total HxCDD	NA-TOWR-SO08-01	ng/kg	1.1	36.5			1.	1.	362	NS
SW8290	Total HxCDD	NA-TOWR-SO09-01	ng/kg	0.6	44.7			-			NS
SW8290	Total HxCDD	NA-TOWR-SO10-01	ng/kg	1		-	1	ļ	<u> </u>		NS
SW8290	Total HxCDD	NA-TOWR-SO11-01	ng/kg	0.2			ļ		<u> </u>		NS
SW8290	Total HxCDD	NA-TOWR-SO12-01	ng/kg	0.6].	1.	362	NS
SW8290	Total HxCDF	NA-TOWR-SO01-01	ng/kg	0.3	45.7						NS
SW8290	Total HxCDF	NA-TOWR-SO02-01	ng/kg	0.5	317						NS
SW8290	Total HxCDF	NA-TOWR-SO03-01	ng/kg	0.8	738	-			-	535	NS
SW8290	Total HxCDF	NA-TOWR-SO04-01	ng/kg	0.4	38.9	ļ					NS
SW8290	Total HxCDF	NA-TOWR-SO05-01	ng/kg	0.1	62.4].	-	535	NS
SW8290	Total HxCDF	NA-TOWR-SO06-01	ng/kg	0.04	113					535	NS
SW8290	Total HxCDF	NA-TOWR-SO07-01	ng/kg	0.2				1.	1.	535	NS
SW8290	Total HxCDF	NA-TOWR-SO08-01	ng/kg	0.8			1.	1.	1.	535	NS
SW8290	Total HxCDF	NA-TOWR-SO09-01	ng/kg	0.4	58.6		1.	1.	1.	535	NS
SW8290	Total HxCDF	NA-TOWR-SO10-01	ng/kg	0.6	58.9			1.	1-	535	NS
SW8290	Total HxCDF	NA-TOWR-SO11-01	ng/kg	0.2						535	NS
SW8290	Total HxCDF	NA-TOWR-SO12-01	ng/kg	0.4	36.1			1.	1.	535	NS
SW8290	Total PeCDD	NA-TOWR-SO01-01	ng/kg	0.4	26.2		1.	1.	-	205	NS
SW8290	Total PeCDD	NA-TOWR-SO02-01	ng/kg	0.6	115		1.			205	NS
SW8290	Total PeCDD	NA-TOWR-SO03-01	ng/kg	ī	138		1.		1.	205	NS
SW8290	Total PeCDD	NA-TOWR-SO04-01	ng/kg	0.6	3.1		1.	1.		205	NS
SW8290	Total PeCDD	NA-TOWR-SO05-01	ng/kg	0.1	20	1.			7.	205	NS
SW8290	Total PeCDD	NA-TOWR-SO06-01	ng/kg	0.05	22.2					205	NS
SW8290	Total PeCDD	NA-TOWR-SO07-01	ng/kg	0.2	0.37					205	NS
SW8290	Total PeCDD	NA-TOWR-SO08-01	ng/kg	1	8.3		1.			205	NS
SW8290	Total PeCDD	NA-TOWR-SO09-01	ng/kg	0.5	17.7	ļ.	1,		-	205	NS
SW8290	Total PeCDD	NA-TOWR-SO10-01	ng/kg	0.6	10.2	ļ.				205	NS
SW8290	Total PeCDD	NA-TOWR-SO11-01	ng/kg	0.2	1.3		1.	1.		205	NS
SW8290	Total PeCDD	NA-TOWR-SO12-01	ng/kg	0.4	31.4		1.	1.	1.	205	NS
SW8290	Total PeCDF	NA-TOWR-SO01-01	ng/kg		+				1.	608	NS
SW8290	Total PeCDF	NA-TOWR-SO02-01	ng/kg	+				1.		608	NS
SW8290	Total PeCDF	NA-TOWR-SO03-01	ng/kg		592			1.		608	NS
SW8290	Total PeCDF	NA-TOWR-SO04-01	ng/kg		+		1:	1.		608	NS
SW8290	Total PeCDF	NA-TOWR-SO05-01	ng/kg	+				ļ			NS
SW8290	Total PeCDF	NA-TOWR-SO06-01	ng/kg	+				1.	1.		NS
SW8290	Total PeCDF	NA-TOWR-S007-01	ng/kg		_		1.	1.	1.		NS
SW8290	Total PeCDF	NA-TOWR-SO08-01	ng/kg				1.	1.			NS
SW8290	Total PeCDF	NA-TOWR-SO09-01	ng/kg				1.	1.	1.		NS
SW8290	Total PeCDF	NA-TOWR-SO10-01	ng/kg				 	 			NS

						Indus	trial	Reside	ential	Reference	Means Comparison Conclusion Reference vs
	A 34-	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
Method	Analyte	NA-TOWR-SO11-01	ng/kg	0.2	3.5					608	NS
SW8290	Total PeCDF	NA-TOWR-SO12-01	ng/kg	0.2	18.3					608	NS
SW8290	Total PeCDF	NA-TOWR-SO01-01	ng/kg	0.4	10.9	-				152	NS
SW8290	Total TCDD	NA-TOWR-SO02-01	ng/kg	0.5	80.3	<u> </u>				152	NS
SW8290	Total TCDD	NA-TOWR-S003-01	ng/kg	0.8	145					152	NS
SW8290	Total TCDD	NA-TOWR-S003-01	ng/kg	0.6	3.5	-				152	NS
SW8290	Total TCDD	NA-TOWR-SO05-01	ng/kg	0.06	11.8	-				152	
SW8290	Total TCDD	NA-TOWR-S005-01		0.03	13.7	·					NS
SW8290	Total TCDD		ng/kg	0.03		 			<u>-</u>		NS
SW8290_	Total TCDD	NA-TOWR-SO07-01	ng/kg	0.2			<u></u>		·		NS
SW8290	Total TCDD	NA-TOWR-SO08-01	ng/kg	0.8	_				•		NS
SW8290	Total TCDD	NA-TOWR-SO09-01	ng/kg	0.4			· ·	-			NS
SW8290	Total TCDD	NA-TOWR-SO10-01	ng/kg		-	:	•	<u> </u>	<u>· </u>		NS
SW8290	Total TCDD	NA-TOWR-SO11-01	ng/kg	0.2		·		<u> </u>			NS
SW8290	Total TCDD	NA-TOWR-SO12-01	ng/kg	0.2			·	<u> </u>			NS
SW8290	Total TCDF	NA-TOWR-SO01-01	ng/kg	0.3		-	-	<u>. </u>	•		NS
SW8290	Total TCDF	NA-TOWR-SQ02-01	ng/kg	0.4		:	·		<u> </u>	.1	NS
SW8290	Total TCDF	NA-TOWR-SO03-01	ng/kg	0.6		•	- 	·	•	l	NS
SW8290	Total TCDF	NA-TOWR-SO04-01	ng/kg	0.5		-	·	<u> </u>	-		NS
SW8290	Total TCDF	NA-TOWR-SO05-01	ng/kg	0.06	 -		·	•	·		NS
SW8290	Total TCDF	NA-TOWR-SO06-01	ng/kg	0.03		·	<u>- </u>	<u> </u>	· -		NS
SW8290	Total TCDF	NA-TOWR-SO07-01	ng/kg	0.1			<u></u>	•			NS NS
(8290	Total TCDF	NA-TOWR-SO08-01	ng/kg	1			·	-	-		NS
8290	Total TCDF	NA-TOWR-SO09-01	ng/kg			-			·		
SW8290	Total TCDF	NA-TOWR-SO10-01	ng/kg	_		<u> - </u>				·	NS
SW8290	Total TCDF	NA-TOWR-SO11-01	ng/kg			ļ		•			NS
SW8290	Total TCDF	NA-TOWR-SO12-01	ng/kg								NS
ILM04.0	Cyanide	NA-TOWR-SO01-01	mg/kg			41000	4100	1600			NS NS
ILM04.0	Cyanide	NA-TOWR-SO02-01	mg/kg	9 0.28		41000	4100	1600			3 NS
ILM04.0	Cyanide	NA-TOWR-SO03-01	mg/kg			41000	4100	1600			8 NS
ILM04.0	Cyanide	NA-TOWR-SO04-01	mg/kg				4100	1600			8 NS
ILM04.0	Cyanide	NA-TOWR-SO05-01	mg/kg				4100	1600			8 NS
ILM04.0	Cyanide	NA-TOWR-SO06-01	mg/kg		ND	41000					8 NS
ILM04.0	Cyanide	NA-TOWR-SO07-01	mg/kg		7 ND	41000					8 NS
ILM04.0	Cyanide	NA-TOWR-SO08-01	mg/kg		1 ND	41000					8 NS
ILM04.0	Cyanide	NA-TOWR-SO09-01	mg/k	g 0.35	5 ND	41000					8 NS
ILM04.0	Cyanide	NA-TOWR-SO10-01	mg/k		ND_	41000					8 NS
ILM04.0	Cyanide	NA-TOWR-SO11-01	mg/k		ND	41000					8 NS
ILM04.0	Cyanide	NA-TOWR-SO12-01	mg/k		8 ND	41000					8 NS
ILMO4.0		NA-TOWR-SO01-01	mg/k	g 2.	7 69000		200000				0 NS
ILMO4.0		NA-TOWR-SO02-01	mg/k	g 2.			200000				0 NS
ILMO4.0		NA-TOWR-SO03-01	mg/k				200000				0 NS
ILMO4.0		NA-TOWR-SO04-01	mg/k				200000				0 NS
ILMO4.0		NA-TOWR-SO05-01	mg/k	g 1.			200000				0 NS
ILMO4.0		NA-TOWR-SO06-01	mg/k	g 3.		+	200000				0 NS
ILMO4.0		NA-TOWR-SO07-01	mg/k	g 1.	8 14200		200000				0 NS
ILMO4.0		NA-TOWR-SO08-01			4 70700		200000				0 NS
ILMO4.0		NA-TOWR-SO09-01			2 61600		200000				0 NS
104.0		NA-TOWR-SO10-01			5 60400	2E+06	200000	78000			0 NS
iO4.0		NA-TOWR-SO11-01			9 1420	0 2E+06	200000	78000	780	0 7400	00 NS

Method	Analyte	Sounds III					ustrial		lential	Reference	Means Comparison Conclusion Reference v
ILMO4.0	Aluminum	NA-TOWR-SO12-01	Units		Resul			RBC	RBSL	UTL	Site
ILMO4.0	Antimony	NA-TOWR-SO01-01	<u></u>				5 200000			74000	
ILMO4.0	Antimony	NA-TOWR-SO02-01	<u> </u>		0.85 L				3.1		NS
ILMO4.0	Antimony	NA-TOWR-SO03-01			2.3 L	820		31	3.1		NS
ILMO4.0	Antimony	NA-TOWR-S004-01			2.7 L	820		31	3.1		NS
ILMO4.0	Antimony	NA-TOWR-SO05-01	<u> </u>		1.2 L	820		31	3.1		NS
ILMO4.0	Antimony	NA-TOWR-SO06-01			ND UL		-	31	3.1		NS
ILMO4.0	Antimony	NA-TOWR-S007-01			1.9 J	820		31	3.1		NS
ILMO4.0	Antimony	NA-TOWR-SO08-01			0.77 L	820		31	3.1	2.4	
ILMO4.0	Antimony	NA-TOWR-S009-01	-1 -2 -2 1		1.6 J	820	-	31	3.1	2.4	
ILMO4.0	Antimony	NA-TOWR-SO10-01			1.4 J	820		31	3.1	2.4	
ILMO4.0	Antimony	NA-TOWR-SO11-01	·· · · · · · · · · · · · · · · · · · · 		1.3 J	820		31	3.1	2.4	NS
ILMO4.0	Antimony	NA-TOWR-SO12-01			ND UL			31	3.1	2.4	NS
ILMO4.0	Arsenic	NA-TOWR-S012-01	mg/kg		1.9 J	820		31	3.1	2.4	NS
ILMO4.0	Arsenic	NA-TOWR-S001-01	mg/kg	0.91	2.6			0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-S002-01	mg/kg	0.8	2.7			0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-S004-01	mg/kg	0.93	3.9			0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-S005-01	mg/kg	0.76	3.4			0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-S005-01	mg/kg	0.59	8.3			0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-S007-01	mg/kg	1	5.7		3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-S007-01	mg/kg	0.58	3.5		3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic		mg/kg	0.8	4.2		3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-SO09-01 NA-TOWR-SO10-01	mg/kg	0.74	3.7		3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic		mg/kg	0.84	5.5		3.8	0.43	0.43	6.64	NS
ILMO4.0	Arsenic	NA-TOWR-SO11-01	mg/kg	0.62	3.4		3.8	0.43	0.43	6.64	NS
~-	Barium	NA-TOWR-SO12-01 NA-TOWR-SO01-01	mg/kg	0.78	4.5		3.8	0.43	0.43	6.64	NS
	Barium	NA-TOWR-S002-01	mg/kg		86.2 L	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TOWR-S002-01	mg/kg		56.6 L	140000	14000	5500	550	130 1	NS.
ILMO4.0	Barium	NA-TOWR-S004-01	mg/kg		96.2 L	140000	14000	5500	550	130 1	NS .
	Barium	NA-TOWR-SO05-01	mg/kg		57.6 L	140000		5500	550	130	NS .
	Barium	NA-TOWR-S006-01	mg/kg		15.2 L	140000	14000	5500	550	130 1	18
	Barium		mg/kg			140000	14000	5500	550	130 1	1S
	Barium	NA-TOWR-SO07-01	mg/kg	0.15	13.8 K	140000	14000	5500	550	130 N	12
	Barium	NA-TOWR-SO08-01	mg/kg			140000	14000	5500	550	130 N	
	Barium	NA-TOWR-SO09-01	mg/kg			140000	14000	5500	550	130 N	1S
	Barium	NA-TOWR-SO10-01	mg/kg			140000	14000	5500	550	130 N	18
	Barium	NA-TOWR-SO11-01 NA-TOWR-SO12-01	mg/kg			140000	14000	5500	550	130 N	1S
	Beryllium	NA-TOWR-SO01-01	mg/kg			140000	14000	5500	550	130 N	18
	Beryllium		mg/kg	0.23		4100	410	160	16	0.25 N	1S
	Beryllium	NA-TOWR-SO02-01 NA-TOWR-SO03-01	mg/kg	0.2		4100	410	160	16	0.25 N	1S
	Beryllium		mg/kg	0.23		4100	410	160	16	0.25 N	IS
	Beryllium	NA-TOWR-SO04-01	mg/kg	0.19 N		4100	410	160	16	0.25 N	is
	Beryllium	NA-TOWR-SO05-01	mg/kg	0.15 N		4100	410	160	16	0.25 N	is
	Beryllium		mg/kg	0.26	0.36	4100	410	160	16	0.25 N	
	Beryllium	NA-TOWR-S007-01	mg/kg	0.15 N		4100	410	160	16	0.25 N	
	Beryllium Beryllium		mg/kg	0.2	0.3	4100	410	160	16	0.25 N	
	Beryllium		mg/kg	0.19	0.24	4100	410	160	16	0.25 N	
	Beryllium Beryllium		mg/kg	0.21	0.29	4100	410	160	16	0.25 N	
	Beryllium Beryllium		mg/kg	0.16 N	-	4100	410	160	16	0.25 N	
_171.U-7.U	o ymuni	NA-TOWR-SO12-01	mg/kg	0.19	0.27	4100	410	160	16	0.25 N	

						Indu		Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Cadmium	NA-TOWR-SO01-01	mg/kg	0.23	1.4 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO02-01	mg/kg		1 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO03-01	mg/kg	0.23		1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO04-01	mg/kg	0.19		1000	100	39	3.9	1.26	1
ILMO4.0	Cadmium	NA-TOWR-SO05-01	mg/kg		0.33 K	1000	100	39	3.9	1.26	1
ILMO4.0	Cadmium	NA-TOWR-SO06-01	mg/kg		1.1 L	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO07-01	mg/kg	0.15		1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO08-01	mg/kg		0.96 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO09-01	mg/kg		0.92 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO10-01	mg/kg		0.76 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO11-01	mg/kg		0.18 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TOWR-SO12-01	mg/kg		0.85 K	1000	100	39	3.9	1.26	
ILMO4.0	Calcium	NA-TOWR-SO01-01	mg/kg	5.9	9890	-	•		-	15400	
ILMO4.0	Calcium	NA-TOWR-SO02-01	mg/kg	5.2	10600					15400	
ILMO4.0	Calcium	NA-TOWR-SO03-01	mg/kg		11600		-		•	15400	
ILMO4.0	Calcium	NA-TOWR-SO04-01	mg/kg		10400		•	·		15400	
ILMO4.0	Calcium	NA-TOWR-SO05-01	mg/kg	3.8	3520				·	15400	
ILMO4.0	Calcium	NA-TOWR-SO06-01	mg/kg	6.7	18300		•			15400	
ILMO4.0	Calcium	NA-TOWR-SO07-01	mg/kg		10800			·		15400	
ILMO4.0	Calcium	NA-TOWR-SO08-01	mg/kg	5.2	15500		<u> </u>			15400	
ILMO4.0	Calcium	NA-TOWR-SO09-01	mg/kg		27600				<u></u>	15400	
104.0	Calcium	NA-TOWR-SO10-01	mg/kg		27700		<u> </u>	<u>:</u>		15400	
MO4.0	Calcium	NA-TOWR-SO11-01	mg/kg		11600			•		15400	
ILMO4.0	Calcium	NA-TOWR-SO12-01	mg/kg		15500					15400	
ILMO4.0	Chromium	NA-TOWR-SO01-01	mg/kg		37.4	10000	1000	390	39	39.9	
ILMO4.0	Chromium	NA-TOWR-SO02-01	mg/kg		21.1	10000	1000	390	39	39.9	
ILMO4.0	Chromium	NA-TOWR-SO03-01	mg/kg		40.6	10000	1000	390	39	39.9	
ILMO4.0	Chromium	NA-TOWR-SO04-01	mg/kg		23.8	10000	1000	390			
ILMO4.0	Chromium	NA-TOWR-SO05-01	mg/kg	0.15	8.6	10000	1000	390	39		
ILMO4.0	Chromium	NA-TOWR-SO06-01	mg/kg	0.26	47.9	10000	1000	390			
ILMO4.0	Chromium	NA-TOWR-SO07-01	mg/kg	0.15	7.8	10000	1000	390	39		
ILMO4.0	Chromium	NA-TOWR-SO08-01	mg/kg	0.2	42	10000	1000	390			
ILMO4.0	Chromium	NA-TOWR-SO09-01	mg/kg	-	4	10000	1000	390			
ILMO4.0	Chromium	NA-TOWR-SO10-01	mg/kg		43.7		1000	390			
ILMO4.0	Chromium	NA-TOWR-SO11-01	mg/kg				1000	390			
ILMO4.0	Chromium	NA-TOWR-SO12-01	mg/kg			10000 120000	1000 12000	390 4700	39 470		
ILMO4.0	Cobalt	NA-TOWR-SO01-01 NA-TOWR-SO02-01	mg/kg			120000		4700		 	
ILMO4.0	Cobalt	NA-TOWR-S002-01	mg/kg			120000		4700			
ILMO4.0 ILMO4.0	Cobalt		mg/kg			120000		4700		+	
	Cobalt	NA-TOWR-SO04-01 NA-TOWR-SO05-01	mg/kg			120000		4700	470	 	
ILMO4.0	Cobalt	NA-TOWR-SO05-01	mg/kg mg/kg			120000		4700			
ILMO4.0	Cobalt Cobalt	NA-TOWR-S007-01	mg/kg			120000		4700	470		
ILMO4.0 ILMO4.0	Cobalt	NA-TOWR-S008-01	mg/kg			120000		4700			
ILMO4.0	Cobalt	NA-TOWR-S009-01	mg/kg			120000		4700	470		
ILMO4.0	Cobalt	NA-TOWR-SO10-01	mg/kg			120000		4700			
ILMO4.0	Cobalt	NA-TOWR-SO11-01	mg/kg			120000		4700			
1LMO4.0 1O4.0	Cobalt	NA-TOWR-S011-01	mg/kg			120000	12000	4700			
104.0	Copper	NA-TOWR-SO12-01	mg/kg	-			8200	3100			NS

						Indu	strial	Resid	lential	Reference	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Copper	NA-TOWR-SO02-01	mg/kg	0.2	82.3	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO03-01	mg/kg	0.23	107	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO04-01	mg/kg	0.19	94.8	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO05-01	mg/kg	0.15	23.3	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO06-01	mg/kg	0.26	150	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO07-01	mg/kg	0.15	7.5	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO08-01	mg/kg	0.2	139	82000	8200	3100	310	134	
ILMO4.0	Соррег	NA-TOWR-SO09-01	mg/kg	0.19	146	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO10-01	mg/kg	0.21	132	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO11-01	mg/kg	0.16	8	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TOWR-SO12-01	mg/kg	0.19	134	82000	8200	3100	310	134	
ILMO4.0	Iron	NA-TOWR-SO01-01	mg/kg	3.2	59900	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO02-01	mg/kg	2.8	33300	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO03-01	mg/kg	3.2	49800	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO04-01	mg/kg	2.7	39000	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO05-01	mg/kg	2.1	11100	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO06-01	mg/kg	3.6	64400	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO07-01	mg/kg	2		610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO08-01	mg/kg	2.8	59900	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO09-01	mg/kg	2.6		610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO10-01	mg/kg	3	53900	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO11-01	mg/kg	2.2		610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TOWR-SO12-01	mg/kg	2.7		610000	61000	23000	2300	60600	
	Lead	NA-TOWR-SO01-01	mg/kg	0.45	7.7	400	400	400	400	95.5	
	Lead	NA-TOWR-SO02-01	mg/kg	0.4	26.2	400	400	400	400	95.5	
	Lead	NA-TOWR-SO03-01	mg/kg	0.46	97.5	400	400	400	400	95.5	
· · · · · · · · · · · · · · · · · · ·	Lead	NA-TOWR-SO04-01	mg/kg	0.38	18.1	400	400	400	400	95.5	
	Lead	NA-TOWR-SO05-01	mg/kg	0.3	4.4	400	400	400	400	95.5	
-	Lead	NA-TOWR-SO06-01	mg/kg	0.52	29.3	400	400	400	400	95.5	
	Lead	NA-TOWR-SO07-01	mg/kg	0.29	3.4	400	400	400	400	95.5	
	Lead	NA-TOWR-SO08-01	mg/kg	0.4	23.4	400	400	400	400	95.5	
	Lead	NA-TOWR-SO09-01	mg/kg	0.37	27.3	400	400	400	400	95.5	
	Lead	NA-TOWR-SO10-01	mg/kg	0.42	24.1	400	400	400	400	95.5	
	Lead	NA-TOWR-SO11-01	mg/kg	0.31	3	400	400	400	400	95.5	
 	Lead	NA-TOWR-SO12-01	mg/kg	0.39	18.5	400	400	400	400	95.5	
-	Magnesium	NA-TOWR-SO01-01	mg/kg	2	11700		.			12400	
*	Magnesium	NA-TOWR-SO02-01	mg/kg	1.8	9190				. –	12400	
	Magnesium	NA-TOWR-SO03-01	mg/kg	2.1	8540			.		12400	
	Magnesium	NA-TOWR-SO04-01	mg/kg	1.7	8990			. 1		12400	
	Magnesium	NA-TOWR-SO05-01	mg/kg	1.3	2480					12400	
	Magnesium	NA-TOWR-SO06-01	mg/kg	2.3	8650					12400	
	Magnesium	NA-TOWR-SO07-01	mg/kg	1.3	2450	. 1.	. 1			12400	
	Magnesium	NA-TOWR-SO08-01	mg/kg	1.8	11500					12400	
	Magnesium	NA-TOWR-SO09-01	mg/kg	1.7	10000					12400	
	Magnesium	NA-TOWR-SO10-01	mg/kg	1.9	10100				.	12400	
	Magnesium	NA-TOWR-SO11-01	mg/kg	1.4	2650				<u> </u>	12400	
	Magnesium	NA-TOWR-SO12-01	mg/kg	1.8	11100					12400	
	Manganese	NA-TOWR-SO01-01	mg/kg	0.23	1110	41000	4100	1600	160	1050	
ILMO4.0	Manganese	NA-TOWR-SO02-01	mg/kg	0.2	613	41000	4100	1600	160	1050	

								strial		lential	Reference	Means Comparison Conclusion Reference vs.
ļ	Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
-		Manganese	NA-TOWR-SO03-01	mg/kg	0.23	884	41000	4100	1600			NS
-	LMO4.0	Manganese	NA-TOWR-SO04-01	mg/kg	0.19		41000	4100	1600			
- h-	LMO4.0	Manganese	NA-TOWR-SO05-01	mg/kg	0.15	183	41000	4100	1600			
- 1-		Manganese	NA-TOWR-SO06-01	mg/kg	0.26			4100	1600	160		
- 1		Manganese	NA-TOWR-SO07-01	mg/kg	0.15		41000	4100	1600	160		
. L	LMO4.0	Manganese	NA-TOWR-SO08-01	mg/kg	0.2	1090		4100	1600	160	1050	
_ L	LMO4.0	Manganese	NA-TOWR-S009-01	mg/kg	0.19	1 .	41000	4100	1600	160	1050	
	LMO4.0	Manganese	NA-TOWR-SO10-01	mg/kg	0.21	989	41000	4100	1600	160	1050	
-	LMO4.0	Manganese	NA-TOWR-SO11-01	mg/kg	0.16	173	41000	4100	1600	160	1050	
	LMO4.0 LMO4.0	Manganese	NA-TOWR-SO12-01	mg/kg	0.19	1060	41000	4100	1600	160	1050	
-		Mercury	NA-TOWR-SO01-01	mg/kg	0.03	0.03	200	20	7.8	0.78	0.228	
-	LMO4.0	Mercury	NA-TOWR-SO02-01	mg/kg	0.02	0.09	200	20	7.8	0.78	0.228	
-	LMO4.0	Mercury	NA-TOWR-SO03-01	mg/kg	0.03	0.14	200	20	7.8	0.78	0.228	
-	LMO4.0	Mercury	NA-TOWR-SO04-01	mg/kg	0.02	0.07	200	20	7.8	0.78	0.228	
-	LMO4.0	Mercury	NA-TOWR-SO05-01	mg/kg	0.02		200	20	7.8	0.78	0.228	
<u>, </u>		Mercury	NA-TOWR-SO06-01	mg/kg	0.03	0.08	200	20	7.8	0.78	0.228	
-		Mercury	NA-TOWR-SO07-01	mg/kg	0.02		200	20	7.8	0.78	0.228	
_		Mercury	NA-TOWR-SO08-01	mg/kg	0.03	0.08	200	20	7.8	0.78	0.228	
		Mercury	NA-TOWR-SO09-01	mg/kg	0.02	0.05	200	20	7.8	0.78	0.228	
-		Mercury	NA-TOWR-SO10-01	mg/kg	0.03	0.04	200	20	7.8	0.78	0.228	
1		Mercury	NA-TOWR-SO11-01 NA-TOWR-SO12-01	mg/kg	0.02		200	20	7.8	0.78	0.228	
		Mercury Nickel		mg/kg	0.03	0.04	200	20	7.8	0.78	0.228	
٦,		Nickel	NA-TOWR-SO01-01 NA-TOWR-SO02-01	mg/kg	0.23	37.4	41000	4100	1600	160	39.5	
-		Nickel	NA-TOWR-S002-01	mg/kg	0.2	24.1	41000	4100	1600	160	39.5	
-		Nickel	NA-TOWR-S003-01	mg/kg	0.23	31.4	41000	4100	1600	160	39.5	
		Nickel	NA-TOWR-S005-01	mg/kg		24.1	41000	4100	1600	160	39.5	
-		Nickel	NA-TOWR-SO06-01	mg/kg	0.15	7.7 38.8	41000	4100	1600	160	39.5	
_		Nickel	NA-TOWR-S005-01	mg/kg	0.32	5.7	41000 41000	4100	1600	160	39.5	
_		Nickel	NA-TOWR-S007-01	mg/kg mg/kg	0.29	34.9	41000	4100 4100	1600 1600	160 160	39.5	
_		Nickel	NA-TOWR-S009-01	mg/kg	0.37	30.9	41000	4100	1600	160	39.5	
_		Nickel	NA-TOWR-S010-01	mg/kg	0.37	33.2	41000	4100	1600	160	39.5	
-		Nickel		mg/kg	0.42		41000	4100		160	39.5 39.5	
-		Nickel	NA-TOWR-SO12-01	mg/kg	0.39	34	41000	4100	1600	160	39.5	
_		Potassium	NA-TOWR-SO01-01	mg/kg	1.4	464	41000	7100	1000	100	643	
		Potassium	NA-TOWR-SO02-01	mg/kg	1.2	451	-	•	•	•	643	
_		Potassium	NA-TOWR-SO03-01	mg/kg	1.4	989					643	
-		Potassium	NA-TOWR-SO04-01	mg/kg	1.1	312	•	•	•	·	643	
-		Potassium	NA-TOWR-SO05-01	mg/kg	0.89	198	-	·	•		643	
_		Potassium	NA-TOWR-SO06-01	mg/kg	1.6	920	_		- 	•	643	
_		Potassium		mg/kg	0.87	676					643	
-		Potassium		mg/kg	1.2	674					643	
_		Potassium	NA-TOWR-SO09-01	mg/kg	1.1	766			<u> </u>		643	
-		Potassium	NA-TOWR-SO10-01	mg/kg	1.3	938		. 1			643	
_		Potassium	NA-TOWR-SO11-01	mg/kg	0.94	641	.			.	643	
_		Potassium		mg/kg	1.2	910		. :			643	
I	LMO4.0	Selenium		mg/kg		ND UL	10000	1000	390	39	0.794	
J	MO4.0	Selenium		mg/kg		ND UL	10000	1000	390	39	0.794	
	104.0	Selenium		mg/kg		ND UL	10000	1000	390	39	0.794	

							strial		lential	Reference	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Selenium	NA-TOWR-SO04-01	mg/kg		ND UL	10000	1000	390	39	0.794	NS
ILMO4.0	Selenium	NA-TOWR-SO05-01	mg/kg	0.3	ND UL	10000	1000	390	39	0.794	NS
ILMO4.0	Selenium	NA-TOWR-SO06-01	mg/kg	0.52	0.74 L	10000	1000	390	39	0.794	NS
ILMO4.0	Selenium	NA-TOWR-SO07-01	mg/kg	0.29	ND UL	10000	1000	390	39	0.794	NS
ILMO4.0	Selenium	NA-TOWR-SO08-01	mg/kg		0.4 L	10000	1000	390	39		
ILMO4.0	Selenium	NA-TOWR-SO09-01	mg/kg		ND UL	10000	1000	390			
ILMO4.0	Selenium	NA-TOWR-SO10-01	mg/kg	0.42	ND UL	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TOWR-SO11-01	mg/kg	0.31	ND UL	10000	1000	390	39	0.794	NS
ILMO4.0	Selenium	NA-TOWR-SO12-01	mg/kg	0.39	ND UL	10000	1000	390	39	0.794	NS
ILMO4.0	Silver	NA-TOWR-SO01-01	mg/kg	0.23	0.24	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-TOWR-SO02-01	mg/kg	0.2	0.3	10000	1000	390	39	0.61	NS
ILMO4.0	Silver	NA-TOWR-SO03-01	mg/kg	0.23	0.36	10000	1000	390	39		i
ILMO4.0	Silver	NA-TOWR-SO04-01	mg/kg	0.19	0.2	10000	1000	390	39		
ILMO4.0	Silver	NA-TOWR-SO05-01	mg/kg	0.15	ND	10000	1000	390	39		
ILMO4.0	Silver	NA-TOWR-SO06-01	mg/kg	0.26	0.34	10000	1000	390	39		
ILMO4.0	Silver	NA-TOWR-SO07-01	mg/kg	0.15	ND	10000	1000	390	39	0.61	
ILMO4.0	Silver	NA-TOWR-SO08-01	mg/kg	0.2	0.43	10000	1000	390	39	0.61	
ILMO4.0	Silver	NA-TOWR-SO09-01	mg/kg	0.19	0.3	10000	1000	390	39	0.61	
ILMO4.0	Silver	NA-TOWR-SO10-01	mg/kg	0.21	0.38	10000	1000	390	39	0.61	
ILMO4.0	Silver	NA-TOWR-SO11-01	mg/kg	0.16	ND	10000	1000	390	39	0.61	
ILMO4.0	Silver	NA-TOWR-SO12-01	mg/kg	0.19		10000	1000	390			
ILMO4.0	Sodium	NA-TOWR-SO01-01	mg/kg	22.6					i.	2430	
ILMO4.0	Sodium	NA-TOWR-SO02-01	mg/kg	20.1	1740				<u> </u>	2430	
	Sodium	NA-TOWR-SO03-01	mg/kg	23.2	1350	-				2430	
	Sodium	NA-TOWR-SO04-01	mg/kg	19						2430	
	Sodium	NA-TOWR-SO05-01	mg/kg	14.8		_				2430	
	Sodium	NA-TOWR-SO06-01	mg/kg	25.9				·	, -	2430	
	Sodium	NA-TOWR-SO07-01	mg/kg	14.6				·		2430	
ILMO4.0	Sodium	NA-TOWR-SO08-01	mg/kg	19.9				<u>-</u>		2430	1
ILMO4.0	Sodium	NA-TOWR-SO09-01	mg/kg	18.5						2430	
	Sodium	NA-TOWR-SO10-01	mg/kg	21.1	533	_				2430	
	Sodium	NA-TOWR-SOI1-01	mg/kg	15.6				<u>. </u>	[.	2430	1
	Sodium	NA-TOWR-SO12-01	mg/kg	19.4			. :			2430	
	Thallium	NA-TOWR-SO01-01	mg/kg	0.91		140	14	5.5	0.55		
	Thallium	NA-TOWR-SO02-01	mg/kg		ND	140	14	5.5			
	Thallium	NA-TOWR-SO03-01	mg/kg	0.93		140		5.5			
	Thallium	NA-TOWR-SO04-01	mg/kg	0.76		140		5.5			- Wartena
	Thallium	NA-TOWR-SO05-01	mg/kg	0.59		140	14	5.5			
	Thallium	NA-TOWR-SO06-01	mg/kg		ND UL	140		5.5			
	Thallium	NA-TOWR-SO07-01	mg/kg		ND UL	140	14	5.5			
	Thallium	NA-TOWR-SO08-01	mg/kg		2 L	140		5.5	0.55		
	Thallium	NA-TOWR-S009-01	mg/kg	0.74		140	14	5.5 5.5	0.55		
	Thallium	NA-TOWR-SO10-01	mg/kg	0.74		140	14	5.5	0.55		
	Thallium	NA-TOWR-SO11-01	mg/kg		ND UL	140	14	5.5 5.5	0.55		
	Thallium	NA-TOWR-SO12-01		0.02							
	Vanadium		mg/kg			140	1400	5.5	0.55		
		NA-TOWR-SO01-01	mg/kg	0.23		14000	1400	550			
ILMO4.0	Vanadium	NA-TOWR-SO02-01	mg/kg	0.2		14000	1400	550			
ILMO4.0 ILMO4.0	Vanadium Vanadium	NA-TOWR-SO03-01 NA-TOWR-SO04-01	mg/kg mg/kg	0.23		14000 14000		550 550			

						Indu	strial	Reside	ential	Reference	Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
LMO4.0	Vanadium	NA-TOWR-SO05-01	mg/kg	0.15	40.4	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-TOWR-SO06-01	mg/kg	0.26	287	14000	1400	550	55	268	NS
LMO4.0	Vanadium	NA-TOWR-SO07-01	mg/kg	0.15	43.1	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-TOWR-SO08-01	mg/kg	0.2	254	14000	1400	550	55	268	
LMO4.0	Vanadium	NA-TOWR-SO09-01	mg/kg	0.19	223	14000	1400	550	55	268	NS
LMO4.0	Vanadium	NA-TOWR-SO10-01	mg/kg	0.21	222	14000	1400	550	55	268	NS
LMO4.0	Vanadium	NA-TOWR-SO11-01	mg/kg	0.16	34.8	14000	1400	550	55	268	NS
LMO4.0	Vanadium	NA-TOWR-SO12-01	mg/kg	0.19	252	14000	1400	550	55	268	
LMO4.0	Zinc	NA-TOWR-SO01-01	mg/kg	0.23	58.8	610000	61000	23000	2300	224	NS
LMO4.0	Zinc	NA-TOWR-SO02-01	mg/kg	0.2	94.3	610000	61000	23000	2300	224	
LMO4.0	Zinc	NA-TOWR-SO03-01	mg/kg	0.23	223	610000	61000	23000	2300	224	NS
LMO4.0	Zinc	NA-TOWR-SO04-01	mg/kg	0.19	64.4	610000	61000	23000	2300	224	
LMO4.0	Zinc	NA-TOWR-SO05-01	mg/kg	0.15	34.8	610000	61000	23000	2300	224	
LMO4.0	Zinc	NA-TOWR-SO06-01	mg/kg	0.26	162	610000	61000	23000	2300		
LMO4.0	Zinc	NA-TOWR-SO07-01	mg/kg	0.15	32.8	610000	61000	23000	2300	224	
LMO4.0	Zinc	NA-TOWR-SO08-01	mg/kg	0.2	114	610000	61000	23000	2300		
LMO4.0	Zinc	NA-TOWR-SO09-01	mg/kg	0.19	126	610000	61000	23000	2300	224	1
LMO4.0	Zinc	NA-TOWR-SO10-01	mg/kg	0.21	120	610000	61000	23000	2300	224	
LMO4.0	Zinc	NA-TOWR-SO11-01	mg/kg	0.16	25.5	610000	61000	23000	2300	224	
LMO4.0	Zinc	NA-TOWR-SO12-01	mg/kg	0.19		610000	61000	23000	2300	224	
300	Chloride	NA-TOWR-SO03-01	mg/kg	0.88	11.4	200000	20000	7800	780	5.16	<u> </u>
300	Chloride	NA-TOWR-SO05-01	mg/kg	0.55	2.29	200000	20000	7800	780	5.16	I
300	Fluoride	NA-TOWR-SO03-01	mg/kg	0.44		120000	12000	4700	470	0.763	
300	Fluoride	NA-TOWR-SO05-01	mg/kg	0.27	ND	120000	12000	4700	470	0.763	
353.2	Nitrate	NA-TOWR-SO03-01	mg/kg	1.76			330000		13000		
353.2	Nitrate	NA-TOWR-SO05-01	mg/kg	0.55	4.24	3E+06	330000	130000	13000	15.5	NS

Means Comparison Conclusion Reference vs. Site abbreviations:

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Signficant. On average, site data were signficantly greater than reference data.

Method	Analyte	Sample ID	¥1=34=	MOL			strial RBSL		dential	Reference	1
OLM03.2	4,4'-DDD	NA-TOWR-SO02-32	Units	0.24	Result			RBC	RBSL		Site
OLM03.2	4,4'-DDD	NA-TOWR-S002-32	ug/kg			24000		2700			NC
OLM03.2	4,4'-DDD	NA-TOWR-SO06-02	ug/kg	0.28		24000		2700			NC
	4,4'-DDD	NA-TOWR-SO10-02	ug/kg	0.35		24000		2700			NC
	4,4'-DDE		ug/kg	0.29	9.5	24000		2700			NC
	4.4'-DDE	NA-TOWR-SO02-32 NA-TOWR-SO04-02	ug/kg	0.24	7.9	17000		1900			NS
	4,4'-DDE	NA-TOWR-SO06-02	ug/kg	0.28	1.1	17000		1900			NS
	4,4'-DDE	NA-TOWR-SO10-02	ug/kg	0.35	23	17000	17000	1900			NS
	4,4'-DDT	NA-TOWR-SO02-32	ug/kg	0.29	55	17000	17000	1900			NS
	4,4'-DDT	NA-TOWR-S002-32	ug/kg	0.24	7.5	17000	17000	1900			NS
	4,4'-DDT	NA-TOWR-S004-02	ug/kg	0.28	0.98	17000	17000	1900			NS
	4,4'-DDT	NA-TOWR-SO10-02	ug/kg	0.35	79	17000	17000	1900			NS
	Aldrin .	NA-TOWR-S010-02	ug/kg	0.29	79	17000	17000	1900			NS
	Aldrin	NA-TOWR-S002-32	ug/kg	0.24		340	340	38		NC	NC
	Aldrin	NA-TOWR-S004-02	ug/kg	0.28		340	340	38		NC	NC
	Aldrin	NA-TOWR-SO10-02	ug/kg	0.35		340	340	38		NC	NC
	Aroclor-1016	NA-TOWR-S010-02	ug/kg	0.29		340	340	38		NC	NC
	Aroclor-1016		ug/kg	0.24		2900	2900	320	320		NC
	Aroclor-1016	NA-TOWR-SO04-02	ug/kg	0.28		2900	2900	320	320		NC
	Aroclor-1016	NA-TOWR-SO06-02	ug/kg	0.35		2900	2900	320	320		NC
	Aroclor-1010 Aroclor-1221	NA-TOWR-SO10-02	ug/kg	0.29		2900	2900	320	320		NC
	Aroclor-1221	NA-TOWR-SO02-32	ug/kg	0.24		2900	2900	320	320		NC
	Aroclor-1221	NA-TOWR-S004-02	ug/kg	0.28		2900	2900	320	320		NC
	Aroclor-1221	NA-TOWR-SO06-02	ug/kg	0.35		2900	2900	320	320		NC
	Aroclor-1232	NA-TOWR-SO10-02	ug/kg	0.29		2900	2900	320	320		NC
	Aroclor-1232		ug/kg	0.24		2900	2900	320	320		NC
	Aroclor-1232	NA-TOWR-SO04-02	ug/kg	0.28		2900	2900	320	320		NC
	Aroclor-1232		ug/kg	0.35		2900	2900	320	320		NC
 +	Aroclor-1242		ug/kg	0.29		2900	2900	320	320		NC
·	Aroclor-1242 Aroclor-1242		ug/kg	0.24		2900	2900	320	320		NC
	Aroclor-1242 Aroclor-1242		ug/kg	0.28		2900	2900	320	320		NC
	Aroclor-1242 Aroclor-1242		ug/kg	0.35		2900	2900	320	320		NC
	Aroclor-1248	NA-TOWR-SO10-02	ug/kg	0.29		2900	2900	320	320		NC
	Aroclor-1248	NA-TOWR-SO02-32		0.24		2900	2900	320	320		NC
~	Aroclor-1248		ug/kg	0.28		2900	2900	320	320		NC
	Aroclor-1248		ug/kg	0.35		2900	2900	320	320		NC
	Aroclor-1254		ug/kg	0.29		2900	2900	320	320		NC
	Aroclor-1254 Aroclor-1254		ug/kg	0.24		2900	2900	320	320		NC
	Aroclor-1254		ug/kg	0.28		2900	2900	320	320		NC
	and the second s		ug/kg	0.35		2900	2900	320	320		NC
	Aroclor-1254 Aroclor-1260		ug/kg	0.29		2900	2900	320	320		NC
			ug/kg	0.24 1		2900	2900	320	320	NC	NC
	Aroclor-1260		ug/kg	0.28		2900	2900	320	320	NC	NC
	Aroclor-1260		ug/kg	0.35		2900	2900	320	320	NC	NC
	Aroclor-1260		ug/kg	0.29		2900	2900	320	320		NC
OLM03.2			ug/kg	0.24		360	360	40	40		NC
			ug/kg	0.28	D	360	360	40	40		NC
			ug/kg	0.35	VD.	360	360	40	40		NC
			ug/kg	0.29 1		360	360	40	40		NC A
OLM03.2 I	Endosulfan I		ug/kg	0.24 1					47000	T	NC NC

					1	1					Means
				ĺ		İ					Comparison
—											Conclusion
						Indu	strial	Resid	lential	Reference	
Method	Analyte	Sample ID	Units	MDI.	Result		RBSL	RBC	RBSL	UTL	Site
OLM03.2	Endosulfan I	NA-TOWR-SO04-02	ug/kg	0.28	<u> </u>	1E+07		470000			NC
OLM03.2	Endosulfan I	NA-TOWR-SO06-02	ug/kg	0.35		1E+07		470000			NC
OLM03.2	Endosulfan I	NA-TOWR-SO10-02	ug/kg	0.29		1E+07		470000			NC
OLM03.2	Endosulfan II	NA-TOWR-SO02-32	ug/kg	0.24		1E+07		470000		1.	NC
OLM03.2	Endosulfan II	NA-TOWR-SO04-02	ug/kg	0.28		1E+07		470000			NC
OLM03.2	Endosulfan II	NA-TOWR-SO06-02	ug/kg	0.35		1E+07		470000			NC
OLM03.2	Endosulfan II	NA-TOWR-SO10-02	ug/kg	0.29		1E+07		470000			NC
OLM03.2	Endosulfan sulfate	NA-TOWR-SO02-32	ug/kg	0.24		1E+07		470000			NC
OLM03.2	Endosulfan sulfate	NA-TOWR-SO04-02	ug/kg	0.28		1E+07		470000			NC
OLM03.2	Endosulfan sulfate	NA-TOWR-SO06-02	ug/kg	0.35		1E+07		470000			NC
OLM03.2	Endosulfan sulfate	NA-TOWR-SO10-02	ug/kg	0.29		1E+07		470000	47000		NC
OLM03.2	Endrin	NA-TOWR-SO02-32	ug/kg	0.24		610000	61000		2300		NC
OLM03.2	Endrin	NA-TOWR-SO04-02	ug/kg	0.28	1	610000	61000		2300		NC
OLM03.2	Endrin	NA-TOWR-SO06-02	ug/kg	0.35		610000	61000		2300		NC
OLM03.2	Endrin	NA-TOWR-SO10-02	ug/kg	0.29		610000	61000		2300		NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO02-32	ug/kg	0.24	-	610000	61000		2300		NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO04-02	ug/kg	0.28		610000	61000	23000	2300		NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO06-02	ug/kg	0.35		610000	61000		2300		NC
OLM03.2	Endrin aldehyde	NA-TOWR-SO10-02	ug/kg	0.29		610000	61000	-	2300		NC
OLM03.2	Endrin ketone	NA-TOWR-SO02-32	ug/kg	0.24	ND	610000	61000		2300		NC
OLM03.2	Endrin ketone	NA-TOWR-SO04-02	ug/kg	0.28		610000	61000		2300		NC
OLM03.2	Endrin ketone	NA-TOWR-SO06-02	ug/kg	0.35		610000	61000	23000	2300		NC
M03.2	Endrin ketone	NA-TOWR-SO10-02	ug/kg	0.29		610000	61000	23000	2300		NC
OLM03.2	Heptachlor	NA-TOWR-SO02-32	ug/kg	0.24	ND	1300	1300	140	140		NC
OLM03.2	Heptachlor	NA-TOWR-SO04-02	ug/kg	0.28	ND	1300	1300	140	140		NC
OLM03.2	Heptachlor	NA-TOWR-SO06-02	ug/kg	0.35	ND	1300	1300	140	140		NC
OLM03.2	Heptachlor	NA-TOWR-SO10-02	ug/kg	0.29	ND	1300	1300	140	140		NC
OLM03.2	Heptachlor epoxide	NA-TOWR-SO02-32	ug/kg	0.24	ND	630	630	70			NC
OLM03.2	Heptachlor epoxide	NA-TOWR-SO04-02	ug/kg	0.28	ND	630	630	70			NC
OLM03.2	Heptachlor epoxide	NA-TOWR-SO06-02	ug/kg	0.35	ND	630	630	70	70		NC
	Heptachlor epoxide	NA-TOWR-SO10-02	ug/kg	0.29	ND	630	630	70	70	NC	NC
	Methoxychlor	NA-TOWR-SO02-32	ug/kg	0.24	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor	NA-TOWR-SO04-02	ug/kg	0.28	ND	1E+07	1E+06	390000	39000	NC	NC
	Methoxychlor		ug/kg	0.35	ND	1E+07	1E+06	390000	39000		NC
OLM03.2	Methoxychlor	NA-TOWR-SO10-02	ug/kg	0.29	ND	1E+07	1E+06	390000	39000	NC	NC
	Toxaphene	NA-TOWR-SO02-32	ug/kg	0.24	ND	5200	5200	580	580	NC	NC
	Toxaphene	NA-TOWR-SO04-02	ug/kg	0.28	ND	5200	5200	580	580	NC	NC
	Toxaphene		ug/kg	0.35	ND	5200	5200	580	580	NC	NC
	Toxaphene	NA-TOWR-SO10-02	ug/kg	0.29	ND	5200	5200	580	580	NC	NC
	alpha-BHC	NA-TOWR-SO02-32	ug/kg	0.24		910	910	100	100	NC	NC
	alpha-BHC	NA-TOWR-SO04-02	ug/kg	0.28	ND	910	910	100	100	NC	NC
	alpha-BHC		ug/kg	0.35		910	910	100	100	NC	NC
	alpha-BHC		ug/kg	0.29		910	910	100	100	NC	NC
	alpha-Chlordane	· · · · · · · · · · · · · · · · · · ·	ug/kg	0.24		16000	16000	1800	1800		NC
	alpha-Chlordane		ug/kg	0.28		16000	16000	1800	1800	NC	NC
	alpha-Chlordane		ug/kg	0.35		16000	16000	1800	1800	NC .	NC
	alpha-Chlordane		ug/kg	0.29		16000	16000	1800	1800		NC
	beta-BHC	*	ug/kg	0.24		3200	3200	350	350	NC	NC
A03.2	beta-BHC	NA-TOWR-SO04-02	ug/kg	0.28	ND	3200	3200	350	350	NC .	NC

				,							Means
											Compariso
								l			Conclusion
							strial		lential	Reference	
Method OLM03.2	Analyte beta-BHC	Sample ID NA-TOWR-SO06-02	Units	0.35		RBC	RBSL	RBC	RBSL	UTL	Site
	beta-BHC	NA-TOWR-SO10-02	ug/kg	0.33		3200	3200 3200	350		NC	NC
		NA-TOWR-SO10-02	ug/kg	0.29		3200				NC	NC
		NA-TOWR-SO02-32	ug/kg	0.24		3200 3200	3200 3200	350	 	NC	NC
	delta-BHC	NA-TOWR-SO06-02	ug/kg	0.28	+	3200	3200	350		NC	NC
		NA-TOWR-SO10-02	ug/kg	0.33	 	3200	3200	350		NC	NC NC
		NA-TOWR-SO02-32	ug/kg ug/kg	0.29		4400	4400				NC NC
		NA-TOWR-SO04-02	ug/kg	0.24		4400	4400	490			NC NC
		NA-TOWR-S004-02		0.28		4400	4400				
		NA-TOWR-SO10-02	ug/kg	0.33							NC
	=	NA-TOWR-S010-02 NA-TOWR-S002-32	ug/kg	0.29		4400	4400	490			NC
	gamma-Chlordane	NA-TOWR-S002-32	ug/kg	0.24		16000 16000	16000	1800			NC
	~	NA-TOWR-SO06-02	ug/kg	0.26			16000		1800		NC
	F	NA-TOWR-SO10-02	ug/kg ug/kg	0.33		16000 16000	16000 16000	1800 1800			NC NC
	T	NA-TOWR-S002-32	ug/kg		ND 4.0	2E+07	-	780000		 	NC
	, ,	NA-TOWR-S004-02	ug/kg		ND	2E+07		780000			NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	2E+07		780000			NC NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	2E+07		780000			NC
		NA-TOWR-SO02-32	ug/kg		ND 03	2E+08	2E+07		700000		NC
	'	NA-TOWR-S004-02	ug/kg		ND	2E+08	2E+07		700000		NC
	1,2-Dichlorobenzene	NA-TOWR-SO06-02	ug/kg		ND UJ	2E+08	2E+07		700000		NC
	· · · · · · · · · · · · · · · · · · ·	NA-TOWR-SO10-02	ug/kg		ND UJ	2E+08	2E+07		700000		NC A
		NA-TOWR-SO02-32	ug/kg		ND OJ	6E+07	6E+06		230000		NC
\vdash	,	NA-TOWR-SO04-02	ug/kg		ND	6E+07	6E+06		230000		NC
· ····		NA-TOWR-SO06-02	ug/kg		ND UJ	6E+07	6E+06		230000		NC
	<i>'</i>	NA-TOWR-SO10-02	ug/kg		ND UJ	6E+07	6E+06		230000		NC
		NA-TOWR-SO02-32	ug/kg		ND		240000				NC
	···	NA-TOWR-SO04-02	ug/kg		ND		240000				NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	240000		27000			NC
		NA-TOWR-SO10-02	ug/kg		ND UJ		240000				NC
	2,2'-oxybis(1-chloropropane)		ug/kg		ND	82000		9100			NC
	2,2'-oxybis(1-chloropropane)		ug/kg		ND	82000					NC
	2,2'-oxybis(1-chloropropane)		ug/kg		ND UJ	82000	82000				NC
	2,2'-oxybis(1-chloropropane)	NA-TOWR-SO10-02	ug/kg	58	ND UJ	82000					NC
		NA-TOWR-SO02-32	ug/kg	48	ND	2E+08	2E+07	8E+06	780000	NC	NC
		NA-TOWR-SO04-02	ug/kg	56	ND	2E+08	2E+07	8E+06	780000	NC	NC
}	***************************************	NA-TOWR-SO06-02	ug/kg		ND UJ	2E+08	2E+07	8E+06	780000	NC	NC
		NA-TOWR-SQ10-02	ug/kg		ND UJ		2E+07		780000	NC	NC
		NA-TOWR-SQ02-32	ug/kg		ND		520000		58000	NC	NC
		NA-TOWR-SO04-02	ug/kg		ND		520000			NC	NC
		NA-TOWR-SO06-02	ug/kg			520000				NC	NC
		NA-TOWR-SO10-02	ug/kg		ND UJ						NC
		NA-TOWR-SO02-32	ug/kg		ND		610000				NC
		NA-TOWR-SO04-02	ug/kg		ND		610000			NC	NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	_	610000			NC	NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	6E+06	610000	230000	23000	NC	NC
		NA-TOWR-SO02-32	ug/kg		ND	4E+07			160000		NC
		NA-TOWR-SO04-02	ug/kg		ND	4E+07	4E+06	2E+06	160000	NC	NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	4E+07		2E+06	160000	NC	NC
OLMO3.2	2,4-Dimethylphenol	NA-TOWR-SO10-02	ug/kg	58	ND UJ	4E+07	4E+06	2E+06	160000	NC	NC

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	2,4-Dinitrophenol	NA-TOWR-SO02-32	ug/kg	48	ND	4E+06	410000	160000	16000	NC	NC
	2,4-Dinitrophenol	NA-TOWR-SO04-02	ug/kg	56	ND	4E+06	410000	160000	16000	NC	NC
	2,4-Dinitrophenol	NA-TOWR-SO06-02	ug/kg	71	ND UJ	4E+06	410000	160000	16000	NC	NC
	2,4-Dinitrophenol	NA-TOWR-SO10-02	ug/kg	58	ND UJ	4E+06	410000	160000	16000	NC	NC
	2,4-Dinitrotoluene	NA-TOWR-SO02-32	ug/kg	48	ND	4E+06	410000	160000	16000	NC	NC
OLMO3.2	2,4-Dinitrotoluene	NA-TOWR-SO04-02	ug/kg	56	ND	4E+06	410000	160000	16000	NC	NC
	2,4-Dinitrotoluene	NA-TOWR-SO06-02	ug/kg	71	ND UJ	4E+06	410000	160000	16000	NC	NC
	2,4-Dinitrotoluene	NA-TOWR-SO10-02	ug/kg	58	ND UJ	4E+06	410000	160000	16000	NC	NC
	2,6-Dinitrotoluene	NA-TOWR-SO02-32	ug/kg	48	ND	2E+06	200000	78000	7800	NC	NC
	2,6-Dinitrotoluene	NA-TOWR-SO04-02	ug/kg	56	ND	2E+06	200000	78000	7800	NC	NC
		NA-TOWR-SO06-02	ug/kg	71	ND UJ	2E+06	200000	78000	7800	NC	NC
	1	NA-TOWR-SO10-02	ug/kg	58	ND UJ	2E+06	200000	78000	7800	NC	NC
		NA-TOWR-SO02-32	ug/kg	48	ND	2E+08	2E+07	6E+06	630000	NC	NC
	2-Chloronaphthalene	NA-TOWR-SO04-02	ug/kg	56	ND	2E+08	2E+07	6E+06	630000	NC	NC
	2-Chloronaphthalene	NA-TOWR-SO06-02	ug/kg	71	ND UJ	2E+08	2E+07	6E+06	630000	NC	NC
	2-Chloronaphthalene	NA-TOWR-SO10-02	ug/kg	58	ND UJ	2E+08	2E+07	6E+06	630000	NC	NC
	2-Chlorophenol	NA-TOWR-SO02-32	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TOWR-SO04-02	ug/kg		ND	1E+07	1E+06	390000			NC
	2-Chlorophenol	NA-TOWR-SO06-02	ug/kg		ND UJ	1E+07		390000			NC
	2-Chlorophenol	NA-TOWR-SO10-02	ug/kg		ND UJ	1E+07		390000	L		NC
	2-Methylnaphthalene	NA-TOWR-SO02-32	ug/kg	1	ND	8E+07			310000		NC
	2-Methylnaphthalene	NA-TOWR-SO04-02	ug/kg		ND	8E+07	8E+06		310000	<u> </u>	NC
	2-Methylnaphthalene	NA-TOWR-SO06-02	ug/kg	1	ND UJ	8E+07			310000		NC
	2-Methylnaphthalene	NA-TOWR-SO10-02	ug/kg		ND UJ	8E+07			310000	4	NC
	2-Nitroaniline	NA-TOWR-SO02-32	ug/kg		ND OJ	120000	12000	4700		NC	NC
	2-Nitroaniline	NA-TOWR-SO04-02	ug/kg		ND	120000	12000	4700		NC	NC
	2-Nitroaniline	NA-TOWR-SO06-02	ug/kg		ND UJ	120000	12000	4700		NC	NC
	2-Nitroaniline	NA-TOWR-SO10-02	ug/kg		ND UJ	120000	12000	4700		NC	NC
	2-Nitrophenol	NA-TOWR-SO02-32	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TOWR-SO02-32	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TOWR-SO06-02	ug/kg		ND UJ	2E+07		630000			NC
	2-Nitrophenol	NA-TOWR-SO10-02	ug/kg		ND UJ	2E+07		630000			NC
	<u> </u>	NA-TOWR-S010-02			ND OJ	13000					NC
	3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine	NA-TOWR-S002-92	ug/kg ug/kg		ND	13000					NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO06-02	ug/kg		ND UJ	13000	13000				NC
	3,3'-Dichlorobenzidine	NA-TOWR-SO10-02	ug/kg		ND UJ	13000	13000				NC
	3-Nitroaniline		ug/kg		ND 03	120000	12000			NC	NC
	3-Nitroaniline	NA-TOWR-SO02-32 NA-TOWR-SO04-02	ug/kg		ND	120000	12000			NC	NC
	3-Nitroaniline	NA-TOWR-SO06-02	ug/kg ug/kg		ND UJ	120000	12000			NC	NC
	3-Nitroaniline	NA-TOWR-SO10-02	ug/kg ug/kg		ND UJ	120000	12000			NC	NC
		NA-TOWR-S010-02	ug/kg		ND 03	200000	20000			NC	NC NC
	7 1	NA-TOWR-SO04-02	ug/kg	<u> </u>	ND	200000				NC	NC
L	1 ·	NA-TOWR-SO06-02	ug/kg		ND UJ	200000				NC	NC
	4,6-Dinitro-2-methylphenol	NA-TOWR-SO10-02	ug/kg		ND UJ	200000				NC	NC
	4-Bromophenyl-phenylether	NA-TOWR-SO02-32	ug/kg		ND	1E+08			450000		NC
		NA-TOWR-SO04-02	ug/kg		ND	1E+08			450000		NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	1E+08			450000		NC
OLMO3.2	4-Bromophenyl-phenylether	NA-TOWR-SO10-02	ug/kg	58	ND UJ	1E+08			450000		NC
CL MO3.2	4-Chloro-3-methylphenol	NA-TOWR-SO02-32	ug/kg	48	ND	4E+07		1	160000		NC
403.2	4-Chloro-3-methylphenol	NA-TOWR-SO04-02	ug/kg	56	ND	4E+07	4E+06	2E+06	160000	NC	NC

		T	, -		3					T	
											Means
			1			İ					Comparison
			1								Conclusion
1			l				strial		dential	Reference	Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	4-Chloro-3-methylphenol	NA-TOWR-SO06-02	ug/kg		ND UJ	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-TOWR-SO10-02	ug/kg		ND UJ	4E+07			160000		NC
L	4-Chloroaniline	NA-TOWR-SO02-32	ug/kg		ND		820000				NC
	4-Chloroaniline	NA-TOWR-SO04-02	ug/kg		ND		820000				NC
	4-Chloroaniline	NA-TOWR-SO06-02	ug/kg		ND UJ		820000				NC
	4-Chloroaniline	NA-TOWR-SO10-02	ug/kg		ND UJ		820000				NC
		NA-TOWR-SO02-32	ug/kg		ND	1E+08			450000		NC
	<u> </u>	NA-TOWR-SO04-02 NA-TOWR-SO06-02	ug/kg		ND ND UJ	1E+08	1E+07		450000		NC
		NA-TOWR-SO10-02	ug/kg ug/kg		ND UJ	1E+08	1E+07		450000		NC
****	4-Nitroanaline	NA-TOWR-SO02-32	ug/kg		ND ND	1E+08 120000	1E+07 12000		450000		NC
	4-Nitroanaline	NA-TOWR-SO02-32			ND					NC	NC
	4-Nitroanaline	NA-TOWR-SO04-02	ug/kg			120000	12000	_	1	NC	NC
	4-Nitroanaline	NA-TOWR-SO10-02	ug/kg ug/kg	~	ND UJ	120000 120000	12000 12000	4700		NC	NC
	4-Nitrophenol	NA-TOWR-SO10-02 NA-TOWR-SO02-32	+		ND ND					NC	NC
	4-Nitrophenol	NA-TOWR-SO02-32	ug/kg ug/kg		ND	2E+07 2E+07		630000			NC
	4-Nitrophenol	NA-TOWR-SO06-02	ug/kg		ND UJ	2E+07		630000 630000	1		NC
<u> </u>	4-Nitrophenol	NA-TOWR-SO10-02			ND UJ	2E+07		630000			NC
	* ***********************************	NA-TOWR-S002-32	ug/kg ug/kg		ND 03	1E+08					NC
<u> </u>		NA-TOWR-S002-32			ND	1E+08			470000		NC
		NA-TOWR-S004-02	ug/kg		ND UJ		1E+07		470000		NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	1E+08	1E+07		470000		NC
		NA-TOWR-S002-32	ug/kg		ND 03	1E+08	1E+07		470000		NC
\vdash		NA-TOWR-S002-32	ug/kg		ND ND	1E+08	1E+07		470000		NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	1E+08	1E+07	1	470000	1	NC
\vdash		NA-TOWR-S010-02	ug/kg		ND UJ	1E+08	1E+07		470000		NC
		NA-TOWR-S002-32	ug/kg		ND OJ	1E+08	1E+07		470000		NC
		NA-TOWR-S002-32	ug/kg ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
		NA-TOWR-SO06-02			ND UJ	6E+08	6E+07	2E+07	2E+06		NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	6E+08	6E+07	2E+07	2E+06		NC
		NA-TOWR-S002-32	ug/kg		ND OJ	6E+08	6E+07	2E+07	2E+06		NC
		NA-TOWR-S002-32	ug/kg		ND	7800	7800	870			NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	7800	7800	870	870		NC
		NA-TOWR-S010-02	ug/kg			7800	7800	870			NC
		NA-TOWR-S002-32	ug/kg		74 J	7800	7800	870			NC
			ug/kg		ND	780	780	87		NC	NC
		NA-TOWR-SO04-02 NA-TOWR-SO06-02	ug/kg		ND	780	780	87		NC	NC
-		NA-TOWR-S010-02	ug/kg		ND UJ	780	780	87		NC	NC
			ug/kg		88 J	780	780	87		NC	NC
		NA-TOWR-SO02-32	ug/kg		ND	7800	7800	870	870		NC
		NA-TOWR-SO04-02 NA-TOWR-SO06-02	ug/kg		ND	7800	7800	870	870		NC
			ug/kg		ND UJ	7800	7800	870	870		NC
		NA-TOWR-SO10-02	ug/kg		79 J	7800	7800	870			NC
		NA-TOWR-SO02-32	ug/kg		ND	6E+07			230000		NC
_		NA-TOWR-SO04-02	ug/kg		ND	6E+07			230000		NC
		NA-TOWR-SO16-02	ug/kg		ND UJ	6E+07			230000		NC
			ug/kg		ND UJ	6E+07			230000		NC
		·	ug/kg	48		78000	78000	8700	8700		NC
			ug/kg	56		78000	78000	8700	8700		NC
			ug/kg		ND UJ	78000	78000	8700	8700	NC	NC
OLMO3.2 I	Benzo(k)fluoranthene	NA-TOWR-SO10-02	ug/kg	58	81 J	78000	78000	8700	8700	NC	NC

										1	Means
											Comparison
T											Conclusion
-						Indu	strial		lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	Butylbenzylphthalate	NA-TOWR-SO02-32	ug/kg		ND	4E+08	·	2E+07	2E+06		NC
OLMO3.2	Butylbenzylphthalate	NA-TOWR-SO04-02	ug/kg		ND	4E+08		2E+07	2E+06		NC
	Butylbenzylphthalate	NA-TOWR-SO06-02	ug/kg		ND UJ	4E+08		2E+07	2E+06		NC
	Butylbenzylphthalate	NA-TOWR-SO10-02	ug/kg		ND UJ	4E+08	4E+07	2E+07	2E+06		NC
OLMO3.2	Carbazole	NA-TOWR-SO02-32	ug/kg		ND		290000	32000	32000		NC
OLMO3.2	Carbazole	NA-TOWR-SO04-02	ug/kg		ND	···	290000		 		NC
OLMO3.2	Carbazole	NA-TOWR-SO06-02	ug/kg		ND UJ		290000		32000		NC
OLMO3.2	Carbazole	NA-TOWR-SO10-02	ug/kg		ND UJ	1	290000				NC
OLMO3.2	Chrysene	NA-TOWR-SO02-32	ug/kg		ND		780000				NC
OLMO3.2	Chrysene	NA-TOWR-SO04-02	ug/kg		ND		780000				NC
	Chrysene	NA-TOWR-SO06-02	ug/kg		ND UJ	780000					NC
	Chrysene	NA-TOWR-SO10-02	ug/kg		79 J		780000				NC
	Dibenz(a,h)anthracene	NA-TOWR-SO02-32	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene Dibenz(a,h)anthracene	NA-TOWR-SO04-02	ug/kg		ND	780	780	87		NC	NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	780	780	87		NC	NC
	Dibenz(a,h)anthracene Dibenzofuran	NA-TOWR-SO10-02	ug/kg		ND UJ ND	780	780	87		NC	NC
		NA-TOWR-SO02-32	ug/kg				820000		31000		NC
	Dibenzofuran	NA-TOWR-SO04-02	ug/kg		ND		820000				NC
	Dibenzofuran	NA-TOWR-SO16-02	ug/kg		ND UJ		820000				NC
	Diethylphthalate	NA-TOWR-SO10-02	ug/kg		ND UJ		820000		31000		NC NC
	Diethylphthalate	NA-TOWR-SO02-32	ug/kg		ND ND	2E+09	2E+08		6E+06		NC NC
	Diethylphthalate	NA-TOWR-SO04-02	ug/kg			2E+09	2E+08	6E+07	6E+06		NC
	Diethylphthalate	NA-TOWR-SO06-02	ug/kg		ND UJ	2E+09	2E+08	6E+07	6E+06		NC NC
	Dimethylphthalate	NA-TOWR-SO10-02 NA-TOWR-SO02-32	ug/kg		ND	2E+09	2E+08	6E+07	6E+06		NC
	Dimethylphthalate	NA-TOWR-S002-32	ug/kg ug/kg		ND ND	2E+10	2E+09 2E+09	8E+08			NC
	Dimethylphthalate	NA-TOWR-S004-02			ND UJ	2E+10 2E+10		8E+08	8E+07		NC NC
	Dimethylphthalate	NA-TOWR-SO10-02	ug/kg ug/kg		ND UJ	2E+10	2E+09 2E+09	8E+08 8E+08			NC NC
	Fluoranthene	NA-TOWR-SO02-32	ug/kg		ND 03	8E+07			310000		NC NC
	Fluoranthene	NA-TOWR-S004-02	ug/kg		ND	8E+07			310000		NC NC
	Fluoranthene	NA-TOWR-SO06-02	ug/kg		ND UJ	8E+07			310000		NC NC
	Fluoranthene	NA-TOWR-SO10-02	ug/kg		ND UJ	8E+07	8E+06		310000		NC NC
OLMO3.2			ug/kg		ND 03	8E+07			310000		NC
OLMO3.2		NA-TOWR-S002-92	ug/kg		ND	8E+07			310000		NC NC
OLMO3.2		NA-TOWR-S006-02	ug/kg		ND UJ	8E+07			310000		NC
OLMO3.2		NA-TOWR-SO10-02	ug/kg		ND UJ	8E+07			310000		NC
	Hexachloro-1,3-butadiene	NA-TOWR-SO02-32	ug/kg		ND	73000	73000	8200			NC
	Hexachloro-1,3-butadiene	NA-TOWR-SO04-02	ug/kg		ND	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene	NA-TOWR-SO06-02	ug/kg		ND UJ	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene	NA-TOWR-SO10-02	ug/kg		ND UJ	73000	73000	8200	8200		NC
	Hexachlorobenzene		ug/kg		ND	3600	3600	400	400		NC NC
· · · · · · · · · · · · · · · · · · ·	Hexachlorobenzene		ug/kg		ND	3600	3600	400	400		NC NC
	Hexachlorobenzene		ug/kg		ND UJ	3600	3600	400	400		NC NC
	Hexachlorobenzene		ug/kg		ND UJ	3600	3600	400	400		NC NC
	Hexachlorocyclopentadiene		ug/kg		ND	1E+07	1E+06		55000		NC NC
	Hexachlorocyclopentadiene		ug/kg		ND	1E+07			55000		NC NC
· · ·	Hexachlorocyclopentadiene		ug/kg		ND UJ	1E+07	1E+06		55000		NC
	Hexachlorocyclopentadiene		ug/kg		ND UJ	1E+07			55000		NC
			ug/kg				410000		46000		NC

										T	Means
						}					Compariso
											Conclusion
							strial		lential	Reference	Reference vs
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
		NA-TOWR-SO04-02	ug/kg		ND		410000				NC
		NA-TOWR-SO06-02	ug/kg			410000					NC
	Hexachloroethane	NA-TOWR-SO10-02	ug/kg		ND UJ			46000	46000		NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO02-32	ug/kg		ND	7800	7800	870		NC	NC
		NA-TOWR-SO04-02	ug/kg		ND	7800	7800	870	1	NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO06-02	ug/kg		ND UJ	7800	7800	870		NC	NC
	Indeno(1,2,3-cd)pyrene	NA-TOWR-SO10-02	ug/kg	58	ND UJ	7800	7800	870		NC	NC
OLMO3.2	Isophorone	NA-TOWR-SO02-32	ug/kg		ND	6E+06	6E+06	670000	670000	NC	NC
	Isophorone	NA-TOWR-SO04-02	ug/kg		ND	6E+06			670000		NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	6E+06	6E+06	670000	670000	NC	NC
	-	NA-TOWR-SO10-02	ug/kg		ND UJ	6E+06			670000		NC
		NA-TOWR-SO02-32	ug/kg		ND	820	820	91		NC	NC
		NA-TOWR-SO04-02	ug/kg		ND	820	820	91		NC	NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	820	820	91		NC	NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	820	820	91		NC	NC
	÷ -	NA-TOWR-SO02-32	ug/kg		ND	1E+06			130000	<u> </u>	NC
		NA-TOWR-SO04-02	ug/kg		ND	1E+06			130000		NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	1E+06			130000		NC
	<u> </u>	NA-TOWR-SO10-02	ug/kg		ND UJ	1E+06			130000		NC
		NA-TOWR-SO02-32	ug/kg		ND	8E+07			310000		NC
		NA-TOWR-SO04-02	ug/kg		ND	8E+07			310000	<u> </u>	NC
-	-	NA-TOWR-SO06-02	ug/kg		ND UJ	8E+07			310000		NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	8E+07	8E+06		310000		NC
		NA-TOWR-SO02-32	ug/kg		ND		100000				NC
	~	NA-TOWR-SO04-02	ug/kg		ND		100000			<u> </u>	NC
		NA-TOWR-SO06-02	ug/kg		ND UJ		100000				NC
		NA-TOWR-SO10-02	ug/kg		ND UJ		100000				NC
		NA-TOWR-SO02-32	ug/kg		ND	48000	48000				NC
	*	NA-TOWR-SO04-02	ug/kg		ND	48000	48000	5300			NC
	·	NA-TOWR-SO06-02	ug/kg		ND UJ	-48000	48000	5300			NC
	*	NA-TOWR-SO10-02	ug/kg		ND UJ	48000	48000	5300			NC
		NA-TOWR-SO02-32	ug/kg		ND	6E+07	6E+06		230000		NC
		NA-TOWR-SO04-02	ug/kg		ND	6E+07	<u> </u>		230000		NC
			ug/kg		ND UJ	6E+07			230000		NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	6E+07			230000		NC
OLMO3.2		NA-TOWR-SO02-32	ug/kg		ND	1E+09			5E+06		NC
OLMO3.2		NA-TOWR-SO04-02	ug/kg		ND	1E+09			5E+06	1	NC
		NA-TOWR-SO06-02	ug/kg		ND UJ	1E+09			5E+06		NC
		NA-TOWR-SO10-02	ug/kg		ND UJ	1E+09			5E+06	1	NC
OLMO3.2		NA-TOWR-SO02-32	ug/kg		ND	6E+07			230000		NC
	· · · · · · · · · · · · · · · · · · ·	NA-TOWR-SO04-02	ug/kg		ND	6E+07			230000		NC
	.7	NA-TOWR-SO06-02	ug/kg		ND UJ	6E+07	6E+06		230000		NC
OLMQ3.2		NA-TOWR-SO10-02	ug/kg		73 J	6E+07	6E+06		230000		NC
	bis(2-Chloroethoxy)methane		ug/kg		ND	5200	5200	580		NC	NC
	bis(2-Chloroethoxy)methane		ug/kg		ND	5200	5200			NC	NC
	bis(2-Chloroethoxy)methane		ug/kg		ND UJ	5200	5200	580		NC	NC
	bis(2-Chloroethoxy)methane		ug/kg		ND UJ	5200	5200	580		NC	NC
		NA-TOWR-SO02-32	ug/kg		ND	5200	5200	-		NC	NC
		NA-TOWR-SO04-02	ug/kg		ND	5200	5200			NC	NC
OLMO3.2	bis(2-Chloroethyl)ether	NA-TOWR-SO06-02	ug/kg	71	ND UJ	5200	5200	580	580	NC	NC

									- "		Means
											Comparison
				•				l			Conclusion
		6 1 75	TT				strial RBSL		lential	4	Reference vs.
Method OLMO3.2	Analyte bis(2-Chloroethyl)ether	Sample ID NA-TOWR-SO10-02	Units		Result ND UJ	RBC 5200	5200	RBC 580	RBSL 580	UTL	Site NC
	bis(2-Ethylhexyl)phthalate	NA-TOWR-S010-02 NA-TOWR-S002-32	ug/kg ug/kg		ND 03		410000		46000		NC
	bis(2-Ethylhexyl)phthalate	NA-TOWR-S002-32	ug/kg		ND		410000		46000		NC
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO06-02	ug/kg			410000					NC
	bis(2-Ethylhexyl)phthalate	NA-TOWR-SO10-02	ug/kg		140 J		410000				NC
	di-n-Butylphthalate	NA-TOWR-SO02-32	ug/kg		ND	2E+08	2E+07		780000		NS
	di-n-Butylphthalate	NA-TOWR-SO04-02	ug/kg		ND	2E+08	2E+07		780000		NS
	di-n-Butylphthalate	NA-TOWR-SO06-02	ug/kg		ND UJ	2E+08	2E+07		780000		NS
	di-n-Butylphthalate	NA-TOWR-SO10-02	ug/kg		60 J	2E+08	2E+07		780000		NS
	di-n-Octylphthalate	NA-TOWR-SO02-32	ug/kg		ND	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TOWR-SO04-02	ug/kg		ND	4E+07	4E+06		160000	1	NC
	di-n-Octylphthalate	NA-TOWR-SO06-02	ug/kg		ND UJ	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TOWR-SO10-02	ug/kg		ND UJ	4E+07	4E+06		160000		NC
	o-Cresol	NA-TOWR-SO02-32	ug/kg		ND	1E+08	1E+07		390000		NC
	o-Cresol	NA-TOWR-SO04-02	ug/kg		ND	1E+08	1E+07		390000		NC
	o-Cresol	NA-TOWR-SO06-02	ug/kg		ND UJ	1E+08	1E+07		390000		NC
	o-Cresol	NA-TOWR-SO10-02	ug/kg		ND UJ	1E+08	1E+07		390000		NC
	p-Cresol	NA-TOWR-SO02-32	ug/kg		ND	1E+07		390000			NC
	p-Cresol	NA-TOWR-SO04-02	ug/kg		ND	1E+07		390000			NC
	p-Cresol	NA-TOWR-SO06-02	ug/kg		ND UJ	1E+07		390000	39000		NC
	p-Cresol	NA-TOWR-SO10-02	ug/kg		ND UJ	1E+07		390000	39000		NC
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO02-32	ng/kg	1.7	196	38000	38000	4300	4300	39.6	
8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO04-02	ng/kg	1.7	14.7	38000	38000	4300	4300	39.6	
ъ₩8290	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO06-02	ng/kg	0.2	147	38000	38000	4300	4300	39.6	
	1,2,3,4,6,7,8,9-OCDD	NA-TOWR-SO10-02	ng/kg	3.1	560	38000	38000	4300	4300	39.6	
SW8290	1,2,3,4,6,7,8,9-OCDF		ng/kg	1.2	33.6	38000	38000	4300	4300	4.6	
	1,2,3,4,6,7,8,9-OCDF		ng/kg		ND	38000	38000	4300	4300	4.6	
	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO06-02	ng/kg	0.1	48.2	38000	38000	4300	4300	4.6	
	1,2,3,4,6,7,8,9-OCDF	NA-TOWR-SO10-02	ng/kg	2.3	47.4	38000	38000	4300	4300	4.6	
	1,2,3,4,6,7,8-HpCDD	NA-TOWR-SO02-32	ng/kg	0.9	33.4	3800	3800	430	430		NS
	1,2,3,4,6,7,8-HpCDD		ng/kg	0.8		3800	3800	430	430		NS
	1,2,3,4,6,7,8-HpCDD		ng/kg	0.08	21,2	3800	3800	430	430		NS
	1,2,3,4,6,7,8-HpCDD		ng/kg	1.3	40.2		3800		430		NS
	1,2,3,4,6,7,8-HpCDF		ng/kg	0.8		3800	3800		430	5.1	
	1,2,3,4,6,7,8-HpCDF		ng/kg	0.7		3800	3800	430	430	5.1	
	1,2,3,4,6,7,8-HpCDF	····	ng/kg	0.05	29.5	3800	3800	430	430	5.1	
	1,2,3,4,6,7,8-HpCDF		ng/kg	0.7	17	3800	3800	430	430	5.1	
	1,2,3,4,7,8,9-HpCDF		ng/kg		4.1 J	3800	3800	430	430		NS
	1,2,3,4,7,8,9-HpCDF		ng/kg		ND	3800	3800	430	430		NS
	1,2,3,4,7,8,9-HpCDF	- · · · · · · · · · · · · · · · · ·	ng/kg	0.06	5.3	3800	3800	430	430		NS
	1,2,3,4,7,8,9-HpCDF		ng/kg		1.4 J	3800	3800	430	430		NS
	1,2,3,4,7,8-HxCDD	NA-TOWR-SO02-32	ng/kg		0.96 J	380	380	43			NC
	1,2,3,4,7,8-HxCDD		ng/kg		ND UJ	380	380	43			NC
	1,2,3,4,7,8-HxCDD		ng/kg		0.72 J	380	380	43			NC
	1,2,3,4,7,8-HxCDD		ng/kg		1.1 J	380	380	43			NC
			ng/kg		10.7 J	380	380	43	43	2.1	
			ng/kg	0.4		380	380	43	43	2.1	
	·		ng/kg	0.03	7	380	380	43	43	2.1	
		······································	ng/kg		2.5 J	380	380	43	43	2.1	

-						Indi	strial	Darie	dential	Reference	Means Compariso Conclusion
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL		1
	1,2,3,6,7,8-HxCDD	NA-TOWR-SO02-32	ng/kg		3.6 J	380	380	43			Site NS
	1,2,3,6,7,8-HxCDD	NA-TOWR-SO04-02	ng/kg		0.99 J	380	380	43	<u> </u>		
	1,2,3,6,7,8-HxCDD	NA-TOWR-S006-02	ng/kg		1.8 J	380	380				NS
	1,2,3,6,7,8-HxCDD	NA-TOWR-SO10-02			2.8 J	380		43			NS
	1,2,3,6,7,8-HxCDF	NA-TOWR-SO02-32	ng/kg		4.5 J		380	43			NS
	1,2,3,6,7,8-HxCDF		ng/kg		·	380	380	43			NS
	1,2,3,6,7,8-HxCDF	NA-TOWR-SO04-02	ng/kg		ND	380	380	43	1		NS
	1,2,3,6,7,8-HxCDF	NA-TOWR-SO06-02 NA-TOWR-SO10-02	ng/kg		2.8 J	380	380	43			NS
	1,2,3,7,8,9-HxCDD	}	ng/kg		1.5 J	380	380	43			NS
	1,2,3,7,8,9-HxCDD	NA-TOWR-SO02-32	ng/kg		4 J	380	380	43			NS
	1,2,3,7,8,9-HxCDD	NA-TOWR-SO04-02	ng/kg		2.9 J	380	380	43	+		NS
	1,2,3,7,8,9-HxCDD	NA-TOWR-SO06-02	ng/kg		3.4 J	380	380	43			NS
	7750	NA-TOWR-SO10-02	ng/kg		4 J	380	380	43			NS
	1,2,3,7,8,9-HxCDF	NA-TOWR-SO02-32	ng/kg		ND	380	380	43	-	NC	NC
	1,2,3,7,8,9-HxCDF	NA-TOWR-SO04-02	ng/kg		ND	380	380	43		NC	NC
	1,2,3,7,8,9-HxCDF	NA-TOWR-SO06-02	ng/kg		0.34 J	380	380	43		NC	NC
	1,2,3,7,8,9-HxCDF	NA-TOWR-SO10-02	ng/kg		0.82 J	380	380	43		NC	NC
	1,2,3,7,8-PeCDD	NA-TOWR-SO02-32	ng/kg		1.5 J	76	76	8.6			NS
	1,2,3,7,8-PeCDD		ng/kg		1.3 J	76	76	8.6			NS
	1,2,3,7,8-PeCDD	NA-TOWR-SO06-02	ng/kg		0.75 J	76	76	8.6	8.6		NS
	1,2,3,7,8-PeCDD		ng/kg		1.3 J	76	76	8.6	8.6	-1	NS
	1,2,3,7,8-PeCDF	NA-TOWR-SO02-32	ng/kg		2.7 J	760	760	86			NS
	1,2,3,7,8-PeCDF	NA-TOWR-SO04-02	ng/kg		ND	760	760	86			NS
	1,2,3,7,8-PeCDF	NA-TOWR-SO06-02	ng/kg		1.1 J	760	760	86	86	0.8	NS
	1,2,3,7,8-PeCDF	NA-TOWR-SO10-02	ng/kg	0.2	0.81 J	760	760	86	86	0.8	NS
	2,3,4,6,7,8-HxCDF	NA-TOWR-SO02-32	ng/kg	0.7		380	380	43	43	2.2	NS
	2,3,4,6,7,8-HxCDF	NA-TOWR-SO04-02	ng/kg	0.5	ND	380	380	43	43	2.2	NS
	2,3,4,6,7,8-HxCDF	NA-TOWR-SO06-02	ng/kg	0.04	7.2	380	380	43	43	2.2	NS
	2,3,4,6,7,8-HxCDF	NA-TOWR-SO10-02	ng/kg	0.5	2.3 J	380	380	43	43	2.2	NS
	2,3,4,7,8-PeCDF	NA-TOWR-SO02-32	ng/kg	0.8	3.9 J	76	76	8.6	8.6	1.2	NS
	2,3,4,7,8-PeCDF	NA-TOWR-SO04-02	ng/kg	0.5	ND	76	76	8.6	8.6	1.2	NS
	2,3,4,7,8-PeCDF	NA-TOWR-SO06-02	ng/kg		1.9 J	76	76	8.6	8.6		NS
	2,3,4,7,8-PeCDF	NA-TOWR-SO10-02	ng/kg		0.93 J	76	76	8.6	8.6		NS
	2,3,7,8-TCDD	NA-TOWR-SO02-32	ng/kg	0.8	ND	38	38	4.3	4.3		NC
	2,3,7,8-TCDD	NA-TOWR-SO04-02	ng/kg	0.6	ND	38	38	4.3		NC	NC
	2,3,7,8-TCDD	NA-TOWR-SO06-02	ng/kg	0.03	0.15 J	38	38	4.3		NC	NC
	2,3,7,8-TCDD	NA-TOWR-SO10-02	ng/kg	0.2	0.29 J	38	38	4.3		NC	NC
	2,3,7,8-TCDF		ng/kg	0.3	2.8	380	380	43	43	0.99	
	2,3,7,8-TCDF	NA-TOWR-SO04-02	ng/kg	0.4	ND	380	380	43	43		
SW8290	2,3,7,8-TCDF	NA-TOWR-SO06-02	ng/kg	0.07	0.81 J	380	380	43	43		
	2,3,7,8-TCDF		ng/kg		0.81 J	380	380	43	43		
SW8290	Total HpCDD		ng/kg	0.9						13.1	
SW8290	Total HpCDD		ng/kg		ND					13.1	
SW8290	Total HpCDD		ng/kg	0.08						13.1	
	Total HpCDD		ng/kg	1.3				-	-	13.1	
	Total HpCDF		ng/kg	1	53.5	-		•	•		NS
	Total HpCDF		ng/kg		ND ND	- +	•		•		
	Total HpCDF		ng/kg	0.06	54.7		-	·	-	• 	NS
	Total HpCDF					- 		-	•		NS
	Total HxCDD		ng/kg ng/kg	0.9	42.3 34.4		•	•	-	19.1	NS

											Means Comparison Conclusion
				į			strial		ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units			RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	Total HxCDD	NA-TOWR-SO04-02	ng/kg	0.4						19.1	
SW8290	Total HxCDD	NA-TOWR-SO06-02	ng/kg	0.06		<u> -</u>			-	19.1	
SW8290	Total HxCDD	NA-TOWR-SO10-02	ng/kg	0.7			<u> </u>		:	19.1	
SW8290	Total HxCDF	NA-TOWR-SO02-32	ng/kg	0.7			-			11.5	
SW8290	Total HxCDF	NA-TOWR-SO04-02	ng/kg	0.4	1			÷		11.5	
SW8290	Total HxCDF	NA-TOWR-SO06-02	ng/kg	0.04						11.5	
SW8290	Total HxCDF	NA-TOWR-SO10-02	ng/kg	0.4			<u> </u>			11.5	
SW8290	Total PeCDD	NA-TOWR-SO02-32	ng/kg	0.9							NS
SW8290	Total PeCDD	NA-TOWR-SO04-02	ng/kg	0.5						4.9	NS
SW8290	Total PeCDD	NA-TOWR-SO06-02	ng/kg	0.05	7.9					4.9	NS
SW8290	Total PeCDD	NA-TOWR-SO10-02	ng/kg	0.4	1.3					4.9	NS
SW8290	Total PeCDF	NA-TOWR-SO02-32	ng/kg	0.8	48.8			-		12.1	NS
SW8290	Total PeCDF	NA-TOWR-SO04-02	ng/kg	0.5	ND					12.1	NS
SW8290	Total PeCDF	NA-TOWR-SO06-02	ng/kg	0.03	21.7					12.1	NS
SW8290	Total PeCDF	NA-TOWR-SO10-02	ng/kg	0.3	12			-		12.1	NS
SW8290	Total TCDD	NA-TOWR-SO02-32	ng/kg	0.8	8.9					2.3	NS
SW8290	Total TCDD	NA-TOWR-SO04-02	ng/kg	0.6	ND					2.3	NS
SW8290	Total TCDD	NA-TOWR-SO06-02	ng/kg	0.03	6.2					2.3	
SW8290	Total TCDD	NA-TOWR-SO10-02	ng/kg	0.2	4.5					2.3	
SW8290	Total TCDF	NA-TOWR-SO02-32	ng/kg	0.7					_	13.3	
SW8290	Total TCDF	NA-TOWR-SO04-02	ng/kg	0.4				_		13.3	
SW8290	Total TCDF	NA-TOWR-SO06-02	ng/kg	0.02	13.2					13.3	
18290	Total TCDF	NA-TOWR-SO10-02	ng/kg	0.2					<u> </u>	13.3	
M04.0	Cyanide	NA-TOWR-SO02-32	mg/kg	0.27	0.83		4100	1600	160		
ILM04.0	Cyanide	NA-TOWR-SO04-02	mg/kg	0.3			4100	1600	160		
ILM04.0	Cyanide	NA-TOWR-SO06-02	mg/kg	0.48		41000	4100	1600	160		
ILM04.0	Cyanide	NA-TOWR-SO10-02	mg/kg	0.44		41000	4100	1600	160	0.39	
ILMO4.0	Aluminum	NA-TOWR-SO02-32	mg/kg	2.3			200000	78000	7800	57700	
ILMQ4.0	Aluminum	NA-TOWR-SO04-02	mg/kg	2.6			200000	78000	7800	57700	
ILMO4.0	Aluminum	NA-TOWR-SO06-02	mg/kg		104000		200000	78000	7800	57700	
ILMO4.0	Aluminum	NA-TOWR-SO10-02	mg/kg	2.9			200000	78000	7800	57700	
ILMO4.0	Antimony	NA-TOWR-SO02-32	mg/kg		0.77 L	820	82	31	3.1	1.5	
	Antimony	NA-TOWR-SO04-02			ND UL	820		31	3.1		
ILMO4.0	Antimony	NA-TOWR-SO06-02	mg/kg		1.9 L	820		31	3.1	1.5	
ILMO4.0	Antimony	NA-TOWR-SO10-02	mg/kg		1.6 J	820		31	3.1		NS
ILMO4.0	Arsenic	NA-TOWR-SO02-32	mg/kg			3.8		0.43	0.43		NS
ILMO4.0	Arsenic	NA-TOWR-SO02-92	mg/kg	0.70		3.8		0.43	0.43	2.6	
ILMO4.0	Arsenic	NA-TOWR-SO06-02	mg/kg	1.1		3.8		0.43	0.43		
ILMO4.0	Arsenic	NA-TOWR-SO10-02	mg/kg	0.95		3.8		0.43	0.43		NS
ILMO4.0	Barium	NA-TOWR-SO02-32			308 L	140000			550		
			mg/kg					5500			
ILMO4.0	Barium	NA-TOWR-SO04-02	mg/kg		105 L	140000		5500	550		
ILMO4.0	Barium	NA-TOWR-SO06-02	mg/kg		67.4 K			5500	550		
ILMO4.0	Barium	NA-TOWR-SO10-02	mg/kg		74.2 K	-	14000	5500	550		
	Beryllium	-)	mg/kg	0.19		4100	-	160			NC
	Beryllium		mg/kg	0.22		4100	410	160			NC
	Beryllium	NA-TOWR-SO06-02	mg/kg	0.27		4100	410	160			NC
	Beryllium	NA-TOWR-SO10-02	mg/kg		0.28	4100	410	160			NC
ILMO4.0	Cadmium		mg/kg		0.98 K	1000	100	39	3.9		
104.0	Cadmium	NA-TOWR-SO04-02	mg/kg	0.22	1.3 K	1000	100	39	3.9	0.53	S

							·				Means
											Comparison Conclusion
						Indu	strial	Posic	lential	Deference	Reference vs
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
ILMQ4.0	Cadmium	NA-TOWR-SO06-02	mg/kg		1.2 K	1000		39			
ILMO4.0	Cadmium	NA-TOWR-SO10-02	mg/kg		0.87 K	1000		39			
ILMO4.0	Calcium	NA-TOWR-SO02-32	mg/kg	5			100		7.7	11600	
ILMO4.0	Calcium	NA-TOWR-SO04-02	mg/kg	5.7			·	 	'	11600	
ILMO4.0	Calcium	NA-TOWR-SQ06-02	mg/kg	7	15400		<u> </u>	-	ļ	11600	
ILMO4.0	Calcium	NA-TOWR-SO10-02	mg/kg	6.2	18300		·	ļ .		11600	
ILMO4.0	Chromium	NA-TOWR-SO02-32	mg/kg	0.19	21.7		1000	390	39		
ILMO4.0	Chromium	NA-TOWR-SO04-02	mg/kg	0.22	28		1000	390	39		
ILMO4.0	Chromium	NA-TOWR-SO06-02	mg/kg	0.27	57.4		1000	390	39	30.8	
ILMO4.0	Chromium	NA-TOWR-SO10-02	mg/kg	0.24	45		1000	390	39		
ILMO4.0	Cobalt	NA-TOWR-SO02-32	mg/kg	0.19		120000	12000	4700	470		NS
ILMO4.0	Cobalt	NA-TOWR-SO02-92	mg/kg	0.13		120000	12000	4700	470		NS
ILMO4.0	Cobalt	NA-TOWR-S006-02	mg/kg	0.27	40.2		12000	4700	470		NS
ILMO4.0	Cobalt	NA-TOWR-SO10-02	mg/kg	0.24	28.7		12000	4700	470	4	
ILMO4.0	Copper	NA-TOWR-S010-02	+	0.19	98.3		8200	3100			NS
	Copper	NA-TOWR-S002-32	mg/kg	0.19	124				310		NS
		NA-TOWR-SO06-02	mg/kg	0.22			8200	3100	310		NS
	Copper		mg/kg		194		8200	3100	310		NS
	Copper	NA-TOWR-SO10-02	mg/kg	0.24	150	4	8200	3100	310		NS
	Iron	NA-TOWR-SO02-32	mg/kg	2.7		610000			2300	51800	
	Iron	NA-TOWR-SO04-02	mg/kg	3.1		610000	61000	23000	2300	51800	
	Iron	NA-TOWR-SO06-02	mg/kg	3.8		610000	61000		2300	51800	
ILMO4.0	Iron	NA-TOWR-SO10-02	mg/kg	3.3		610000	61000	23000	2300	51800	
	Lead	NA-TOWR-SO02-32	mg/kg	0.38	8.8	400	400	400	400		NS
	Lead	NA-TOWR-SO04-02	mg/kg	0.44	4		400	400	400		NS
ILMO4.0	Lead	NA-TOWR-SO06-02	mg/kg	0.54	14.9	400	400	400	400		NS
ILMO4.0	Lead	NA-TOWR-SO10-02	mg/kg	0.48	21.8	400	400	400	400		NS
	Magnesium	NA-TOWR-SO02-32	mg/kg	1.7	9240	·				12200	
	Magnesium	NA-TOWR-SO04-02	mg/kg	2	10700					12200	
	Magnesium	NA-TOWR-SO06-02	mg/kg	2.4	18500					12200	
	Magnesium	NA-TOWR-SO10-02	mg/kg	2.1	11700					12200	NS
	Manganese	NA-TOWR-SO02-32	mg/kg	0.19	705	41000	4100	1600	160	890	NS
ILMO4.0	Manganese	NA-TOWR-SO04-02	mg/kg	0.22	949	41000	4100	1600	160	890	NS
	Manganese		mg/kg	0.27	1500	41000	4100	1600	160	890	NS
	Manganese	NA-TOWR-SO10-02	mg/kg	0.24	1110	41000	4100	1600	160	890	NS
	Mercury		mg/kg	0.02	0.04	200	20	7.8	0.78	0.04	NS
	Mercury	NA-TOWR-SO04-02	mg/kg	0.03	Ŋ	200	20	7.8	0.78	0.04	NS
	Mercury	NA-TOWR-SO06-02	mg/kg	0.03	0.03	200	20	7.8	0.78	0.04	NS
	Mercury	NA-TOWR-SO10-02	mg/kg	0.03	0.05	200	20	7.8	0.78		
	Nickel	NA-TOWR-SO02-32	mg/kg	0.19	23.5	41000	4100	1600	160	32.9	
ILMO4.0	Nickel	NA-TOWR-SO04-02	mg/kg	0.22	30.1	41000	4100	1600	160	32.9	
ILMO4.0	Nickel	1	mg/kg	0.54	44.3	41000				32.9	
ILMO4.0	Nickel		mg/kg	0.48	37.2					32.9	
ILMO4.0	Potassium		mg/kg	1.1	2130					285	
	Potassium		mg/kg	1.3	277					285	
	Potassium	NA-TOWR-SO06-02	mg/kg	1.6	642		_		-	285	
-	Potassium	NA-TOWR-SO10-02	mg/kg	1.4			_	-	-	285	
	Selenium	NA-TOWR-SO02-32	mg/kg		ND UL	10000	1000	390	39		NC
	Selenium	NA-TOWR-SO04-02	mg/kg		ND UL	10000	1000	390			
	Selenium	NA-TOWR-SO06-02	mg/kg		ND UL	10000	1000	390	39 39		NC NC

											Means Comparison Conclusion
						Indus RBC	trial RBSL	Resid RBC	RBSL	Reference UTL	Reference vs. Site
Method	Analyte	Sample ID	-	MDL					39	0.6	
LMO4.0	Selenium	NA-TOWR-SO10-02	mg/kg		ND UL	10000	1000	390			
LMO4.0	Silver	NA-TOWR-SO02-32	mg/kg	0.19	0.2	10000	1000	390			NC
LMO4.0	Silver	NA-TOWR-SO04-02	mg/kg	0.22		10000	1000	390			NC
LMO4.0	Silver	NA-TOWR-SO06-02	mg/kg	0.27	0.42	10000	1000	390			NC
LMO4.0	Silver	NA-TOWR-SO10-02	mg/kg	0.24	0.29	10000	1000	390	39		NC
LMO4.0	Sodium	NA-TOWR-SO02-32	mg/kg		2300			•	<u> </u>	2030	
LMO4.0	Sodium	NA-TOWR-SO04-02	mg/kg	22	1830				•	2030	
LMO4.0	Sodium	NA-TOWR-SO06-02	mg/kg	27	650		<u>. </u>		•	2030	
ILMO4.0	Sodium	NA-TOWR-SO10-02	mg/kg	23.8	778			,	<u> </u>	2030	
LMO4.0	Thallium	NA-TOWR-SO02-32	mg/kg	0.76	1.4	140	14	5.5	0.55		NS
ILMO4.0	Thallium	NA-TOWR-SO04-02	mg/kg	0.88	2.2	140	14	5.5	0.55		NS
LMO4.0	Thallium	NA-TOWR-SO06-02	mg/kg	1.1	2.5 L	140	· 14	5.5	0.55		NS
LMO4.0	Thallium	NA-TOWR-SO10-02	mg/kg	0.95	2.8 L	140	14	5.5	0.55		NS
ILMO4.0	Vanadium	NA-TOWR-SO02-32	mg/kg	0.19	147	14000	1400	550	55	219	
ILMO4.0	Vanadium	NA-TOWR-SO04-02	mg/kg	0.22	194	14000	1400	550	55	219	
ILMO4.0	Vanadium	NA-TOWR-SO06-02	mg/kg	0.27	362	14000	1400	550	55		
ILMO4.0	Vanadium	NA-TOWR-SO10-02	mg/kg	0.24	269	14000	1400	550	55		
ILMO4.0	Zinc	NA-TOWR-SO02-32	mg/kg		51.7	610000	61000	23000	2300		
ILMO4.0	Zinc	NA-TOWR-SO04-02	mg/kg		46.7	610000	61000	23000	2300		
ILMO4.0	Zinc	NA-TOWR-SO06-02	mg/kg		125	610000	61000	23000	2300		
ILMO4.0	Zinc	NA-TOWR-SO10-02	mg/kg		109	610000	61000	23000	2300	48.6	NS
Peference l	UTL abbreviations: NC = No		erence o	iata wer	e all non-	detected	results o	or were i	ot analy	zed.	

ns Comparison Conclusion Reference vs. Site abbreviations:

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Signficant. On average, site data were signficantly greater than reference data.

		1		,	1						
No.							ıstiral	Resid	dential	Reference	Means Compariso Conclusion Reference v
Method OLMO3-2	Analyte	Sample ID	Units		Result		RBSL	RBC	RBSL		Site
OLM03.2	4,4'-DDD	NA-REF1-SO01-31	ug/kg	0.26		24000			2700	NC	NA
OLM03.2	4,4'-DDD	NA-REF1-SO02-01	ug/kg	0.24		24000	24000	2700	2700	NC	NA
OLM03.2 OLM03.2	4,4'-DDD	NA-REF1-SO03-01	ug/kg	0.56		24000		2700	2700	NC	NA
	4,4'-DDD	NA-REF1-SO04-01	ug/kg	0.27		24000	24000	2700	2700	NC	NA
OLM03.2	4,4'-DDD	NA-REF1-SO05-01	ug/kg	0.27		24000	24000	2700	2700	NC	NA
OLM03.2	4,4'-DDD	NA-REF1-SO06-01	ug/kg	0.26	ND	24000	24000	2700	2700	NC	NA
OLM03.2	4,4'-DDE	NA-REF1-SO01-31	ug/kg	0.26	5.3	17000	17000	1900	1900	990	NA
	4,4'-DDE	NA-REF1-SO02-01	ug/kg	0.24	17	17000	17000	1900	1900		NA
	4,4'-DDE	NA-REF1-SO03-01	ug/kg	5.6	990	17000	17000	1900	1900		NA
	4,4'-DDE	NA-REF1-SO04-01	ug/kg	0.54	150	17000	17000	1900	1900		NA
	4,4'-DDE	NA-REF1-SO05-01	ug/kg	0.27	0.86	17000	17000	1900	1900		NA
	4,4'-DDE	NA-REF1-SO06-01	ug/kg	0.26	10	17000	17000	1900	1900		NA
	4,4'-DDT	NA-REF1-SO01-31	ug/kg	0.26	7.5 J	17000	17000	1900	1900	<u> </u>	
	4,4'-DDT	NA-REF1-SO02-01	ug/kg	0.24	11 J	17000	17000	1900	1900	200	
	4,4'-DDT	NA-REF1-SO03-01	ug/kg	5.6	200 J	17000	17000	1900	1900	200	
	4,4'-DDT	NA-REF1-SO04-01	ug/kg	0.27	43	17000	17000	1900	1900		
_	4,4'-DDT	NA-REF1-SO05-01	ug/kg	0.27	ND	17000	17000	1900	1900	200	
	4,4'-DDT	NA-REF1-SO06-01	ug/kg	0.26	6.9 J	17000	17000	1900	1900		
	Aldrin	NA-REF1-SO01-31	ug/kg	0.26	ND	340	340	38		NC	NA
OLM03.2	Aldrin	NA-REF1-SO02-01	ug/kg	0.24	ND	340	340	38			NA NA
OLM03.2	Aldrin	NA-REF1-SO03-01	ug/kg	0.56		340	340	38			NA NA
	Aldrin	NA-REF1-SO04-01	ug/kg	0.27		340	340	38			NA NA
	Aldrin	NA-REF1-SO05-01	ug/kg	0.27		340	340	38			
OLM03.2	Aldrin	NA-REF1-SO06-01	ug/kg	0.26		340	340	38			NA NA
	Aroclor-1016	NA-REF1-SO01-31	ug/kg	0.26		2900	2900	320	320		NA NA
	Aroclor-1016	NA-REF1-SO02-01	ug/kg	0.24		2900	2900	320	320		NA NA
	Aroclor-1016	NA-REF1-SO03-01	ug/kg	0.56		2900	2900	320	320		NA NA
OLM03.2	Aroclor-1016	NA-REF1-SO04-01	ug/kg	0.27		2900	2900	320	320		NA NA
	Aroclor-1016	NA-REF1-SO05-01	ug/kg	0.27		2900	2900	320	320		
OLM03.2	Aroclor-1016	NA-REF1-SO06-01	ug/kg	0.26		2900	2900	320	320		NA
	Aroclor-1221	NA-REF1-SO01-31	ug/kg	0.26		2900	2900	320	320		NA
OLM03.2	Aroclor-1221	NA-REF1-SO02-01	ug/kg	0.24		2900	2900	320			NA
OLM03.2	Aroclor-1221	NA-REF1-SO03-01	ug/kg	0.56		2900	2900	320	320		NA
OLM03.2	Aroclor-1221	NA-REF1-SO04-01	ug/kg	0.27		2900	2900	320	320		NA
OLM03.2	Aroclor-1221	NA-REF1-SO05-01	ug/kg	0.27		2900	2900	320	320		NA
OLM03.2	Aroclor-1221	NA-REF1-SO06-01	ug/kg	0.26 1		2900	2900	320	320		NA
OLM03.2		NA-REF1-SO01-31	ug/kg	0.26 1		2900	2900	320	320		NA
OLM03.2		NA-REF1-SO02-01	ug/kg	0.24 N		2900	2900		320		NA
OLM03.2		NA-REF1-SO03-01	ug/kg	0.56 N		2900	2900	320	320		NA .
OLM03.2		NA-REF1-SO04-01	ug/kg	0.27 N		2900		320	320		VA.
OLM03.2		NA-REF1-SO05-01	ug/kg	0.27 N	~~	2900	2900	320	320		VA
OLM03.2		NA-REF1-SO06-01	ug/kg	0.26 N			2900	320	320 1		VA
		NA-REF1-SO01-31	ug/kg	0.26 N		2900	2900	320	320 1		VA
			ug/kg			2900	2900	320	320 1		VA.
				0.24 N		2900	2900	320	320 1		VA
			ug/kg	0.56 N		2900	2900	320	320 1		NA
			ug/kg	0.27 N		2900	2900	320	320 1		ŇA
		NA-REF1-SO05-01	ug/kg	0.27 N		2900	2900	320	320 1	VC I	NA.
			ug/kg	0.26 N		2900	2900	320	320 1	VC I	VA.
J-14103.2 /	1100101-1240	NA-REF1-SO01-31	ug/kg	0.26 N	ID	2900	2900	320	320 N		VA.

						Indu	stiral	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	Aroclor-1248	NA-REF1-SO02-01	ug/kg	0.24	ND	2900	2900	320	320		NA
OLM03.2	Aroclor-1248	NA-REF1-SO03-01	ug/kg	0.56	ND	2900	2900	320	320		NA
OLM03.2	Aroclor-1248	NA-REF1-SO04-01	ug/kg	0.27	ND	2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1248	NA-REF1-SO05-01	ug/kg	0.27	ND	2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1248	NA-REF1-SO06-01	ug/kg	0.26	ND	2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1254	NA-REF1-SO01-31	ug/kg	0.26	ND	2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1254	NA-REF1-SO02-01	ug/kg	0.24		2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1254	NA-REF1-SO03-01	ug/kg	0.56		2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1254	NA-REF1-SO04-01	ug/kg	0.27		2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1254	NA-REF1-SO05-01	ug/kg	0.27		2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1254	NA-REF1-SO06-01	ug/kg	0.26		2900	2900	320	320	NC	NA
	Aroclor-1260	NA-REF1-SO01-31	ug/kg	0.26		2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1260	NA-REF1-SO02-01	ug/kg	0.24	+	2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1260	NA-REF1-SO03-01	ug/kg		ND	2900	2900	320	320	NC	NA
OLM03.2	Aroclor-1260	NA-REF1-SO04-01	ug/kg		ND	2900	2900	320		NC	NA
OLM03.2		NA-REF1-SO05-01	ug/kg		ND	2900	2900	320		NC	NA
OLM03.2	Aroclor-1260	NA-REF1-SO06-01	ug/kg		ND	2900	2900	320		NC	NA
OLM03.2	Aroclor-1260	NA-REF1-SO01-31	ug/kg		ND	360	360	40		NC	NA
OLM03.2	Dieldrin	NA-REF1-SO02-01			ND	360	360			NC	NA
OLM03.2	Dieldrin	NA-REF1-SO02-01	ug/kg ug/kg		ND	360	360			NC	NA
OLM03.2	Dieldrin				ND	360				NC	NA
OLM03.2	Dieldrin	NA-REF1-SO04-01	ug/kg		ND	360				NC	NA
OLM03.2	Dieldrin	NA-REF1-SO05-01	ug/kg	t	ND	360		<u> </u>		NC	NA
103.2	Dieldrin	NA-REF1-SO06-01	ug/kg		ND	1E+07		470000			NA
OLM03.2	Endosulfan I	NA-REF1-SO01-31	ug/kg		ND	1E+07		470000	47000		NA NA
OLM03.2	Endosulfan I	NA-REF1-SO02-01	ug/kg		ND	1E+07		470000			NA
OLM03.2	Endosulfan I	NA-REF1-SO03-01	ug/kg		ND	1E+07		470000			NA
OLM03.2	Endosulfan I	NA-REF1-SO04-01	ug/kg		ND ND	1E+07		470000			NA
OLM03.2	Endosulfan I	NA-REF1-SO05-01	ug/kg		ND ND	1E+07		470000			NA
OLM03.2	Endosulfan I	NA-REF1-SO06-01	ug/kg					470000			NA
OLM03.2	Endosulfan II	NA-REF1-SO01-31	ug/kg		ND _	1E+07		470000			NA NA
OLM03.2	Endosulfan II	NA-REF1-SO02-01	ug/kg		4 ND	1E+07	_				NA
OLM03.2	Endosulfan II	NA-REF1-SO03-01	ug/kg		5 ND	1E+07		470000			NA NA
OLM03.2	Endosulfan II	NA-REF1-SO04-01	ug/kg		7 ND			470000			NA NA
OLM03.2	Endosulfan II	NA-REF1-SO05-01	ug/kg	· · · · · · · · · · · · · · · · · · ·	7 ND			470000			NA NA
OLM03.2	Endosulfan II	NA-REF1-SO06-01	ug/kg		6 ND	1E+07	+	470000			NA NA
OLM03.2		NA-REF1-SO01-31	ug/kg		6 ND	1E+07		470000			NA NA
OLM03.2		NA-REF1-SO02-01	ug/kg		4 ND	1E+07		470000			NA NA
OLM03.2		NA-REF1-SO03-01	ug/kg		6 ND	1E+07		470000			
OLM03.2		NA-REF1-SO04-01	ug/kg		7 ND	1E+07		470000			NA
OLM03.2		NA-REF1-SO05-01	ug/kg		7 ND	1E+07		470000			NA NA
OLM03.2	Endosulfan sulfate	NA-REF1-SO06-01	ug/kg	_	6 ND	1E+07		470000			NA
OLM03.2	Endrin	NA-REF1-SO01-31	ug/kg		6 ND	610000				0 NC	NA
OLM03.2	Endrin	NA-REF1-SO02-01	ug/kg	_	4 ND	610000				0 NC	NA
OLM03.2	Endrin	NA-REF1-SO03-01	ug/kg		6 ND	610000				0 NC	NA
OLM03.2	Endrin	NA-REF1-SO04-01	ug/kg		7 ND	610000				0 NC	NA
OLM03.2		NA-REF1-SO05-01	ug/kg		7 ND	610000				0 NC	NA
OLM03.2		NA-REF1-SO06-01	ug/kg		6 ND	610000				0 NC	NA
OLM03.2		NA-REF1-SO01-31	ug/kg		6 ND	610000				0 NC	NA
103.2		NA-REF1-SO02-01	ug/kg	0.2	4 ND	610000	61000	23000	230	0 NC	NA

j											Means
											Comparise Conclusion
Method	l Analyte	Sample ID	Units	MDI	Result		ustiral		dential	Reference	
OLM03.2		NA-REF1-SO03-01	ug/kg	0.56		610000			RBSL		Site
OLM03.2	Endrin aldehyde	NA-REF1-SO04-01	ug/kg	0.27		610000				NC	NA
OLM03.2		NA-REF1-SO05-01	ug/kg	0.27		610000				NC	NA
OLM03.2	Endrin aldehyde	NA-REF1-SO06-01	ug/kg	0.26		610000				NC	NA
OLM03.2	Endrin ketone	NA-REF1-SO01-31	ug/kg	0.26		610000				NC	NA
OLM03.2	Endrin ketone	NA-REF1-SO02-01	ug/kg	0.24		610000					NA
OLM03.2		NA-REF1-SO03-01	ug/kg	0.56		610000					NA
OLM03.2		NA-REF1-SO04-01	ug/kg	0.27		610000					NA
OLM03.2		NA-REF1-SO05-01	ug/kg	0.27		610000			2300 2300		NA
OLM03.2		NA-REF1-SO06-01	ug/kg	0.26		610000			2300		NA
OLM03.2		NA-REF1-SO01-31	ug/kg	0.26		1300	1300			NC	NA NA
OLM03.2		NA-REF1-SO02-01	ug/kg	0.24		1300	1300			NC	NA NA
OLM03.2		NA-REF1-SO03-01	ug/kg	0.56	ND	1300	1300			NC	NA NA
OLM03.2		NA-REF1-SO04-01	ug/kg	0.27	ND	1300	1300			NC	NA NA
OLM03.2		NA-REF1-SO05-01	ug/kg	0.27	ND	1300	1300		140		NA
OLM03.2		NA-REF1-SO06-01	ug/kg	0.26	VD T	1300	1300	140	140		NA
OLM03.2		NA-REF1-SO01-31	ug/kg	0.26	ND	630	630	70		NC	NA
OLM03.2	<u> </u>	NA-REF1-SO02-01	ug/kg	0.24	ND D	630	630	70		NC	NA
OLM03.2	Heptachlor epoxide	NA-REF1-SO03-01	ug/kg	0.56	ND	630	630	70		NC	NA
OLM03.2	Heptachlor epoxide	NA-REF1-SO04-01	ug/kg	0.27	ND OI	630	630	70		NC	NA
OLM03.2	Heptachlor epoxide	NA-REF1-SO05-01	ug/kg	0.27	VD	630	630	70		NC	NA
OLM03.2	Heptachlor epoxide	NA-REF1-SO06-01	ug/kg	0.26 N		630	630	70		NC	NA A
OLM03.2 OLM03.2	Methoxychlor	NA-REF1-S001-31	ug/kg	0.26 N	1	1E+07	1E+06	390000	39000		NA -
OLM03.2	Methoxychlor	NA-REF1-SO02-01	ug/kg	0.24 N		1E+07		390000	39000		NA
OLM03.2	Methoxychlor Methoxychlor	NA-REF1-SO03-01	ug/kg	0.56 N		1E+07	1E+06	390000	39000		NA
OLM03.2	Methoxychlor	NA-REF1-SO04-01	ug/kg	0.27 N		1E+07	1E+06	390000	39000		NA
OLM03.2	Methoxychlor	NA-REF1-S005-01	ug/kg	0.27 N		1E+07	1E+06		39000	NC	NA
OLM03.2	Toxaphene	NA-REF1-SO06-01	ug/kg	0.26 N		1E+07	1E+06	390000	39000	NC	NA
OLM03.2	Toxaphene	NA-REF1-S001-31	ug/kg	0.26 N		5200	5200	580	580		NA
OLM03.2	Toxaphene	NA-REF1-SO02-01	ug/kg	0.24 N		5200	5200	580	580	NC	NA
OLM03.2	Toxaphene	NA-REF1-SO03-01 NA-REF1-SO04-01	ug/kg	0.56 N		5200	5200	580	580	NC	NA
OLM03.2	Toxaphene	NA-REF1-SO05-01	ug/kg	0.27 N		5200	5200	580	580	NC	NA
	Toxaphene	NA-REF1-SO05-01	ug/kg	0.27 N		5200	5200	580	580		NA
OLM03.2	alpha-BHC	NA-REF1-SO01-31	ug/kg	0.26 N		5200	5200	580	580 1		NA
OLM03.2	alpha-BHC	NA-REF1-SO02-01	ug/kg	0.26 N		910	910	100	100 1		NA
OLM03.2	alpha-BHC	NA-REF1-SO03-01	ug/kg ug/kg	0.24 N 0.56 N		910	910	100	100 1		NA
OLM03.2	alpha-BHC	NA-REF1-SO04-01	ug/kg	0.36 N		910	910	100	100 1	***	NA
OLM03.2	alpha-BHC	NA-REF1-SO05-01	ug/kg	0.27 N		910	910	100	100 1		NA
OLM03.2	alpha-BHC	NA-REF1-SO06-01	ug/kg	0.26 N		910 910	910	100	100 1		NA
OLM03.2	alpha-Chlordane	NA-REF1-SO01-31	ug/kg	0.26			910	100	100 1		NA
	alpha-Chlordane	NA-REF1-SO02-01	ug/kg	0.24 N			16000	1800	1800	0.87	
OLM03.2	alpha-Chlordane	NA-REF1-SO03-01	ug/kg	0.56 N			16000	1800	1800	0.87	
OLM03.2	alpha-Chlordane	NA-REF1-SO04-01	ug/kg	0.27 N			16000	1800	1800	0.87	
OLM03.2	alpha-Chlordane	NA-REF1-SO05-01	ug/kg	0.27 N			16000	1800	1800	0.87	
	alpha-Chlordane	NA-REF1-SO06-01	ug/kg	0.26 N			16000	1800	1800	0.87	
	beta-BHC		ug/kg	0.26 NI		3200	16000	1800	1800	0.87	
	beta-BHC		ug/kg	0.24 NI			3200	350	350 N		NA .
OLM03.2	beta-BHC		ug/kg	0.56 NI		3200 3200	3200 3200	350 350	350 N		NA a

						Indu	stiral	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2		NA-REF1-SO04-01	ug/kg	0.27	ND	3200	3200	350		NC	NA
	3333 333	NA-REF1-SO05-01	ug/kg	0.27	ND	3200	3200	350	350	NC	NA
OLM03.2		NA-REF1-SO06-01	ug/kg	0.26	ND	3200	3200	350		NC	NA
OLM03.2		NA-REF1-SO01-31	ug/kg	0.26	ND	3200	3200	350	350		NA
OLM03.2	******	NA-REF1-SO02-01	ug/kg	0.24	ND	3200	3200	350	350		NA
OLM03.2		NA-REF1-SO03-01	ug/kg	0.56	ND	3200	3200	350		NC	NA
OLM03.2		NA-REF1-SO04-01	ug/kg	0.27	ND	3200	3200	350		NC	NA
OLM03.2		NA-REF1-SO05-01	ug/kg	0.27	ND	3200	3200	350		NC	NA
OLM03.2		NA-REF1-SO06-01	ug/kg	0.26	ND	3200	3200	350		NC	NA
OLM03.2		NA-REF1-SO01-31	ug/kg	0.26	ND	4400	4400	490		NC	NA
OLM03.2		NA-REF1-SO02-01	ug/kg	0.24	ND	4400	4400	490		NC	NA
OLM03.2		NA-REF1-SO03-01	ug/kg	0.56	ND	4400	4400	490		NC	NA
OLM03.2		NA-REF1-SO04-01	ug/kg	0.27	ND	4400	4400	490		NC	NA
OLM03.2	18:	NA-REF1-SO05-01	ug/kg	0.27	ND	4400	4400	490		NC	NA
OLM03.2	8	NA-REF1-SO06-01	ug/kg	0.26	ND	4400	4400	490		NC	NA
OLM03.2	10	NA-REF1-SO01-31	ug/kg	0.26	ND	16000	16000	1800	1800	NC	NA
OLM03.2		NA-REF1-SO02-01	ug/kg	0.24	ND	16000	16000	1800	1800	NC	NA
OLM03.2	8	NA-REF1-SO03-01	ug/kg	0.56	ND	16000	16000	1800	1800	NC	NA
OLM03.2	18	NA-REF1-SO04-01	ug/kg	0.27	ND	16000	16000	1800	1800	NC	NA
OLM03.2		NA-REF1-SO05-01	ug/kg	0.27	ND	16000	16000	1800	1800		NA
OLM03.2	10	NA-REF1-SO06-01	ug/kg	0.26	ND	16000	16000	1800			NA
		NA-REF1-SO01-31	ug/kg	53	ND	2E+07	2E+06	780000			NA
		NA-REF1-SO02-01	ug/kg		ND	2E+07	2E+06	780000			NA
		NA-REF1-SO03-01	ug/kg		ND	2E+07	2E+06	780000			NA
		NA-REF1-SO04-01	ug/kg	54	ND	2E+07	2E+06	780000			NA
OLMO3.2		NA-REF1-SO05-01	ug/kg	54	ND	2E+07		780000			NA
OLMO3.2		NA-REF1-SO06-01	ug/kg		ND	2E+07	2E+06	780000			NA
OLMO3.2		NA-REF1-SO01-31	ug/kg	53	ND	2E+08	2E+07		700000		NA
OLMO3.2		NA-REF1-SO02-01	ug/kg	48	ND	2E+08	2E+07	1 .	700000		NA
OLMO3.2		NA-REF1-SO03-01	ug/kg		ND	2E+08	2E+07		700000		NA
	1,2-Dichlorobenzene	NA-REF1-SO04-01	ug/kg	54	ND	2E+08	2E+07		700000		NA
	1,2-Dichlorobenzene	NA-REF1-SO05-01	ug/kg		ND	2E+08			700000		NA
	1,2-Dichlorobenzene	NA-REF1-SO06-01	ug/kg		ND	2E+08		7E+06			NA
	1,3-Dichlorobenzene	NA-REF1-SO01-31	ug/kg		ND	6E+07		2E+06			NA
	1,3-Dichlorobenzene	NA-REF1-SO02-01	ug/kg	48	ND	6E+07		2E+06			NA
	1,3-Dichlorobenzene	NA-REF1-SO03-01	ug/kg	56	ND _	6E+07		2E+06			NA
	1,3-Dichlorobenzene	NA-REF1-SO04-01	ug/kg	54	I ND	6E+07		2E+06			NA
	1,3-Dichlorobenzene	NA-REF1-SO05-01	ug/kg	54	I ND	6E+07			230000		NA
	1,3-Dichlorobenzene	NA-REF1-SO06-01	ug/kg	52	ND	6E+07		2E+06	 -		NA
	1,4-Dichlorobenzene	NA-REF1-SO01-31	ug/kg	53	ND		240000				NA
	1,4-Dichlorobenzene	NA-REF1-SO02-01	ug/kg		8 ND		240000				NA
	1,4-Dichlorobenzene	NA-REF1-SO03-01	ug/kg	50	6 ND		240000				NA
	1,4-Dichlorobenzene	NA-REF1-SO04-01	ug/kg		4 ND		240000				NA
	1,4-Dichlorobenzene	NA-REF1-SO05-01	ug/kg		4 ND		240000				NA
OLMO3.2	1,4-Dichlorobenzene	NA-REF1-SO06-01	ug/kg		2 ND		240000				NA
OLMO3.2	2,2'-oxybis(1-chloropropane)	NA-REF1-SO01-31	ug/kg		3 ND	82000				0 NC	NA
OLMO3.2	2,2'-oxybis(1-chloropropane)	NA-REF1-SO02-01	ug/kg		8 ND	82000				0 NC	NA NA
OLMO3.2	2,2'-oxybis(1-chloropropane)	NA-REF1-SO03-01	ug/kg		6 ND	82000				0 NC 0 NC	NA NA
102.0	2,2'-oxybis(1-chloropropane)	INA-REF1-SO04-01	ug/kg	:I 5∙	4 ND	82000	82000	71 YIUU	אונע וי	UINC	TACZ

		1				106 201	•				
			,								Means
				1						1	Comparis
}	1.				1						Conclusion
Method	Amoltota					Industi			<u>lential</u>	Reference	Reference vs.
	Analyte 2,2'-oxybis(1-chloropropane)	Sample ID	Units				RBSL	RBC	RBSL	UTL	Site
	2,4,5-Trichlorophenol	NA-REF1-S000-01	ug/kg		ND		82000	9100			NA
	2,4,5-Trichlorophenol	NA-REF1-S002-01	ug/kg		ND		2E+07		780000		NA
	2,4,5-Trichlorophenol	NA-REF1-SO02-01	ug/kg		ND		2E+07		780000		NA
	2,4,5-Trichlorophenol	NA-REF1-S004-01	ug/kg		ND		2E+07		780000		NA
7.00	2,4,5-Trichlorophenol	NA-REF1-SO05-01	ug/kg		ND		2E+07		780000		NA
	2,4,5-Trichlorophenol	NA-REF1-SO06-01	ug/kg ug/kg		ND ND		2E+07		780000		NA
	2,4,6-Trichlorophenol	NA-REF1-SO01-31	ug/kg		ND		2E+07		780000		NA
	2,4,6-Trichlorophenol	NA-REF1-SO02-01	ug/kg			520000 52		58000			NA
OLMO3.2	2,4,6-Trichlorophenol	NA-REF1-SO03-01	ug/kg			520000 52			58000		NA
OLMO3.2	2,4,6-Trichlorophenol	NA-REF1-SO04-01	ug/kg			520000 52		58000	58000		NA
OLMO3.2	2,4,6-Trichlorophenol	NA-REF1-SO05-01	ug/kg			520000 52 520000 52		58000	58000		NA
	2,4,6-Trichlorophenol	NA-REF1-SO06-01	ug/kg		-	520000 52		58000	58000		NA
	2,4-Dichlorophenol	NA-REF1-SO01-31	ug/kg	53		6E+06 61		58000	58000		NA
		NA-REF1-SO02-01	ug/kg	48		6E+06 61			23000		NA
OLMO3.2		NA-REF1-SO03-01	ug/kg	56		6E+06 61			23000		NA
OLMO3.2		NA-REF1-SO04-01	ug/kg	54		6E+06 61			23000		NA
OLMO3.2		NA-REF1-SO05-01	ug/kg	54		6E+06 61			23000 23000		NA
	2,4-Dichlorophenol	NA-REF1-SO06-01	ug/kg	52		6E+06 61			23000		NA
	2,4-Dimethylphenol	NA-REF1-SO01-31	ug/kg	53					160000		NA NA
	2,4-Dimethylphenol	NA-REF1-SO02-01	ug/kg	48					160000		NA NA
		NA-REF1-SO03-01	ug/kg	56]					160000		NA NA
		NA-REF1-SO04-01	ug/kg	54]					160000		NA NA
		NA-REF1-SO05-01	ug/kg	54 1	ND				160000		NA NA
		NA-REF1-SO06-01	ug/kg	52 1	ND				160000		NA NA
		NA-REF1-SO01-31	ug/kg	53 i		4E+06 410			16000		NA NA
		NA-REF1-SO02-01	ug/kg	48 1		4E+06 410			16000		NA NA
	2,4-Dinitrophenol	NA-REF1-SO03-01	ug/kg	56 1		4E+06 410			16000 1		NA .
		NA-REF1-SO04-01	ug/kg	54 1	ND D	4E+06 410			16000 1		NA NA
OLMO3.2 2		NA-REF1-SO05-01	ug/kg	54 1	4D	4E+06 410			16000 1		NA
		NA-REF1-SO06-01	ug/kg	52 N		4E+06 410	0000 1	60000	16000 1		NA
		NA-REF1-SO01-31	ug/kg	53 N		4E+06 410			16000 1		NA
		NA-REF1-SO02-01	ug/kg	48 1	ND	4E+06 410	0000 1	60000	16000 1	VC N	NA .
		NA-REF1-SO03-01	ug/kg	56 N		4E+06 410			16000 N		NA
			ug/kg	54 N		4E+06 410			16000 1		NA .
		NA-REF1-SO05-01	ug/kg	54 N		4E+06 410			16000 N	VC N	NA
		NA-REF1-SO06-01	ug/kg	52 N		4E+06 410			16000 N		IA
			ug/kg	53 N		2E+06 200		78000	7800 N		IA.
			ug/kg	48 N		2E+06 200		78000	7800 N		IA
		- · · · · · · · · · · · · · · · · · · ·	ug/kg	56 N		2E+06 200		78000	7800 N		IA
			ug/kg	54 N		2E+06 200		78000	7800 N	IC N	A
		TA TOTAL	ug/kg	54 N		2E+06 200		78000	7800 N		Α
		- · · · · · · · · · · · · · · · · · · ·	ug/kg	52 N		2E+06 200		78000	7800 N		Α
			ug/kg ug/kg	53 N 48 N		2E+08 2E-			30000 N		Α
			ug/kg	56 N		2E+08 2E			30000 N		Α
			ug/kg	54 N		2E+08 2E-			30000 N		Α
	<u></u>	- · · · · · · · · · · · · · · · · · · ·	ug/kg	54 N					30000 N		Α
			ug/kg	52 N		E+08 2E- E+08 2E-			30000 N		A
	<u></u>		-8/*·5	JZIN	<u>, , , , , , , , , , , , , , , , , , , </u>	LTUO ZE-	/+ U/ 6	E+06 6	30000 N	C N	A

						Indu	stiral	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	2-Chlorophenol	NA-REF1-SO01-31	ug/kg	53	ND	1E+07	1E+06	390000	39000	NC	NA
		NA-REF1-SO02-01	ug/kg	48	ND	1E+07	1E+06	390000	39000	NC	NA
		NA-REF1-SO03-01	ug/kg	56	ND	1E+07	1E+06	390000	39000	NC	NA
		NA-REF1-SO04-01	ug/kg	54	ND	1E+07	1E+06	390000	39000	NC	NA
		NA-REF1-SO05-01	ug/kg	54	ND	1E+07	1E+06	390000	39000	NC	NA
		NA-REF1-SO06-01	ug/kg	52	ND	1E+07	1E+06	390000	39000	NC	NA
		NA-REF1-SO01-31	ug/kg	53	ND	8E+07	8E+06	3E+06	310000	NC	NA
		NA-REF1-SO02-01	ug/kg	48	ND	8E+07	8E+06	3E+06	310000	NC	NA
	2-Methylnaphthalene	NA-REF1-SO03-01	ug/kg	56	ND	8E+07	8E+06	3E+06	310000	NC	NA
	2-Methylnaphthalene	NA-REF1-SO04-01	ug/kg	54	ND	8E+07	8E+06	3E+06	310000	NC	NA
	2-Methylnaphthalene	NA-REF1-SO05-01	ug/kg	54	ND	8E+07	8E+06	3E+06	310000	NC	NA
	2-Methylnaphthalene	NA-REF1-SO06-01	ug/kg	52	ND	8E+07	8E+06	3E+06	310000	NC	NA
	2-Nitroaniline	NA-REF1-SO01-31	ug/kg	53	ND	120000	12000	4700	470	NC	NA
		NA-REF1-SO02-01	ug/kg	48	ND	120000	12000	4700	470	NC	NA
	2-Nitroaniline	NA-REF1-SO03-01	ug/kg		ND	120000	12000	4700	470	NC	NA
	2-Nitroaniline	NA-REFI-SO04-01	ug/kg		ND	120000	12000	4700	470	NC	NA
	2-Nitroaniline	NA-REF1-SO05-01	ug/kg		ND	120000	12000	4700	470	NC	NA
	2-Nitroaniline	NA-REF1-SO06-01	ug/kg		ND	120000	12000	4700	470	NC	NA
	2-Nitrophenol	NA-REF1-SO01-31	ug/kg		ND	2E+07	2E+06	630000	63000	NC	NA
	2-Nitrophenol	NA-REF1-SO02-01	ug/kg		ND	2E+07	2E+06	630000	63000	NC	NA
	2-Nitrophenol	NA-REF1-SO03-01	ug/kg		ND	2E+07		630000	63000		NA
	2-Nitrophenol	NA-REF1-SO04-01	ug/kg		ND	2E+07		630000			NA
	2-Nitrophenol	NA-REF1-SO05-01	ug/kg		ND	2E+07		630000			NA
	2-Nitrophenol	NA-REF1-SO06-01	ug/kg		ND	2E+07	1	630000		NC	NA
	3,3'-Dichlorobenzidine	NA-REF1-SO01-31	ug/kg		ND	13000	13000		1400		NA
	3,3'-Dichlorobenzidine	NA-REF1-SO02-01	ug/kg	1	ND	13000	13000		1400		NA
	3,3'-Dichlorobenzidine	NA-REF1-SO03-01	ug/kg	1	ND	13000			1400		NA
	3,3'-Dichlorobenzidine	NA-REF1-SO04-01	ug/kg		ND	13000		1400	1400		NA
	3,3'-Dichlorobenzidine	NA-REF1-SO05-01	ug/kg		ND	13000			1400		NA
	3,3'-Dichlorobenzidine	NA-REF1-SO06-01	ug/kg		ND	13000	13000		1400		NA
	3-Nitroaniline	NA-REF1-SO01-31	ug/kg		ND	120000				NC	NA
	3-Nitroaniline	NA-REF1-SO02-01	ug/kg		ND	120000				NC	NA
	3-Nitroaniline	NA-REF1-SO03-01	ug/kg		ND	120000				NC	NA
	3-Nitroaniline	NA-REF1-SO04-01	ug/kg		ND	120000				NC	NA
	3-Nitroaniline	NA-REF1-SO05-01	ug/kg		ND	120000				NC	NA
	3-Nitroaniline	NA-REF1-SO06-01	ug/kg		ND	120000	· · · · · · · · · · · · · · · · · · ·			NC	NA
	4,6-Dinitro-2-methylphenol	NA-REF1-SO01-31	ug/kg		ND	200000				NC	NA
		NA-REF1-SO02-01	ug/kg	48	ND	200000			780	NC	NA
	4,6-Dinitro-2-methylphenol	NA-REF1-SO03-01	ug/kg	56	ND	200000	20000	7800		NC	NA
	4,6-Dinitro-2-methylphenol	NA-REF1-SO04-01	ug/kg		ND	200000				NC	NA
		NA-REF1-SO05-01	ug/kg		ND	200000				NC	NA
		NA-REF1-SO06-01	ug/kg		ND	200000				NC	NA
	4-Bromophenyl-phenylether		ug/kg	1	ND	1E+08			450000		NA
	4-Bromophenyl-phenylether		ug/kg		ND	1E+08		5E+06	450000		NA NA
	4-Bromophenyl-phenylether 4-Bromophenyl-phenylether		ug/kg ug/kg		ND ND	1E+08 1E+08			450000		NA NA
	4-Bromophenyl-phenylether	NA-REF1-SO05-01	ug/kg ug/kg		ND	1E+08		5E+06			NA
			ug/kg		ND	1E+08		5E+06			NA
	4-Chloro-3-methylphenol	NA-REF1-SO01-31	ug/kg	+	ND	4E+07		2E+06			NA
	4-Chloro-3-methylphenol	NA-REF1-SO02-01	ug/kg		ND	4E+07		2E+06			NA

			1	T	1	1					T
								ļ			Means
					ł						Comparisc
											Conclusion
Method	Anabata	G. 1 770					stiral		dential	Reference	Reference vs.
OLMO3.2	Analyte 4-Chloro-3-methylphenol	Sample ID	Units		Result		RBSL	-1.	RBSL	UTL	Site
		NA-REF1-S003-01	ug/kg		ND	4E+07	4E+06		160000		NA
OLMO3.2	4-Chloro-3-methylphenol	NA-REF1-SO04-01	ug/kg		ND	4E+07			160000		NA
OLMO3.2	4-Chloro-3-methylphenol	NA-REF1-SO05-01 NA-REF1-SO06-01	ug/kg		ND	4E+07	4E+06		160000		NA
OLMO3.2	4-Chloroaniline	NA-REF1-SO01-31	ug/kg		ND	4E+07	4E+06		160000	<u> </u>	NA
OLMO3.2	4-Chloroaniline	NA-REF1-SO02-01	ug/kg		ND			310000			NA
OLMO3.2	4-Chloroaniline	NA-REF1-S002-01	ug/kg		ND			310000			NA
OLMO3.2	4-Chloroaniline	NA-REF1-SO04-01	ug/kg		ND			310000			NA
OLMO3.2	4-Chloroaniline	NA-REF1-SO05-01	ug/kg		ND ND			310000			NA
OLMO3.2	4-Chloroaniline	NA-REF1-SO05-01	ug/kg		ND			310000			NA
OLMO3.2	4-Chlorophenyl-phenylether		ug/kg ug/kg		ND ND	8E+06		310000			NA
	4-Chlorophenyl-phenylether	NA-REE1-SO02-01	ug/kg		ND	1E+08	1E+07 1E+07		450000 450000		NA
OLMO3.2	4-Chlorophenyl-phenylether	NA-REF1-SO03-01	ug/kg		ND	1E+08			450000		NA NA
OLMO3.2	4-Chlorophenyl-phenylether	NA-REF1-SO04-01	ug/kg		ND	1E+08	1E+07		450000		NA NA
OLMO3.2	4-Chlorophenyl-phenylether	NA-REF1-SO05-01	ug/kg		ND	1E+08	1E+07		450000		NA NA
OLMO3.2	4-Chlorophenyl-phenylether	NA-REF1-SO06-01	ug/kg		ND	1E+08	1E+07		450000		NA
OLMO3.2	4-Nitroanaline	NA-REF1-SO01-31	ug/kg	53	ND	120000	12000		470		NA
OLMO3.2	4-Nitroanaline	NA-REF1-SO02-01	ug/kg	48	ND	120000	12000		470		NA
	4-Nitroanaline	NA-REF1-SO03-01	ug/kg	56	ND	120000	12000		470		NA
	4-Nitroanaline	NA-REF1-SO04-01	ug/kg	54	ND	120000	12000	4700	470		NA
	4-Nitroanaline	NA-REF1-SO05-01	ug/kg	54	ND	120000	12000	4700	470		NA
·	4-Nitroanaline	NA-REF1-SO06-01	ug/kg	52	ND	120000	12000	4700	470		NA
OLMO3.2	4-Nitrophenol	NA-REF1-SO01-31	ug/kg	53	ND	2E+07		630000	63000		NA
	4-Nitrophenol	NA-REF1-SO02-01	ug/kg	48	ND	2E+07		630000	63000		NA
OLMO3.2	4-Nitrophenol	NA-REF1-SO03-01	ug/kg	56	ND	2E+07		630000	63000		NA
·	4-Nitrophenol	NA-REF1-SO04-01	ug/kg	54	ND	2E+07		630000	63000		NA
	4-Nitrophenol	NA-REF1-SO05-01	ug/kg	54	ND	2E+07		630000	63000		NA
	4-Nitrophenol	NA-REF1-SO06-01	ug/kg	52	ND	2E+07		630000	63000		NA
	Acenaphthene	NA-REF1-SO01-31	ug/kg	53	ND	1E+08	1E+07		470000		NA
	Acenaphthene	NA-REF1-SO02-01	ug/kg	48	ND	1E+08	1E+07		470000		NA
		NA-REF1-SO03-01	ug/kg	56	ND	1E+08	1E+07		470000		NA
		NA-REF1-SO04-01	ug/kg	54	ND	1E+08	1E+07		470000		NA
		NA-REF1-SO05-01	ug/kg	54	ND	1E+08		5E+06			NA
		NA-REF1-SO06-01	ug/kg	52	ND	1E+08		5E+06			NA
		NA-REF1-SO01-31	ug/kg	53	ND	1E+08	1E+07		470000		NA
		NA-REF1-SO02-01	ug/kg	48	ND	1E+08	1E+07		470000		NA
		NA-REF1-SO03-01	ug/kg	56		1E+08	1E+07		470000		NA
		NA-REF1-SO04-01	ug/kg	54		1E+08	1E+07		470000		NA NA
		NA-REF1-SO05-01	ug/kg	54		1E+08	1E+07		470000		NA NA
		NA-REF1-SO06-01	ug/kg	52		1E+08	1E+07		470000		NA NA
		NA-REF1-SO01-31	ug/kg	53		6E+08	6E+07	2E+07	2E+06		NA NA
			ug/kg	48		6E+08	6E+07	2E+07	2E+06		NA NA
		NA-REF1-SO03-01	ug/kg	56		6E+08	6E+07	2E+07	2E+06		NA NA
			ug/kg	54			6E+07	2E+07	2E+06		NA NA
OLMO3.2			ug/kg	54]			6E+07	2E+07	2E+06		NA NA
OLMO3.2			ug/kg	52]			6E+07	2E+07	2E+06		NA I
			ug/kg	53 1		7800	7800	870	870		NA -
			ug/kg	48 1		7800	7800	870	870		NA NA
			ug/kg	56 1		7800	7800	870	870		NA NA
OLMO3.2	Benzo(a)anthracene		ug/kg	54 1		7800	7800	870	870		VA.

						Indu	etiral	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDI.	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Benzo(a)anthracene	NA-REF1-SO05-01	ug/kg		ND	7800	7800	870	870		NA
OLMO3.2	Benzo(a)anthracene	NA-REF1-SO06-01	ug/kg		ND	7800	7800	870	870		NA
	Benzo(a)pyrene	NA-REF1-SO01-31	ug/kg		ND	780	780	87		NC	NA
	Benzo(a)pyrene	NA-REF1-SO02-01	ug/kg		ND	780	780	87		NC	NA
	Benzo(a)pyrene	NA-REF1-SO03-01	ug/kg		ND	780	780	87		NC	NA
	Benzo(a)pyrene	NA-REF1-SO04-01	ug/kg		ND	780	780	87		NC	NA
	Benzo(a)pyrene	NA-REF1-SO05-01	ug/kg	54	ND	780	780	87	87	NC	NA
	Benzo(a)pyrene	NA-REF1-SO06-01	ug/kg		ND	780	780	87	87	NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO01-31	ug/kg		ND	7800	7800	870	870	NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO02-01	ug/kg		ND	7800	7800	870	870	NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO03-01	ug/kg		ND	7800	7800	870	870	NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO04-01	ug/kg		ND	7800	7800	870	870	NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO05-01	ug/kg		ND	7800	7800	870	870	NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO06-01	ug/kg		ND	7800	7800	870	870	NC	NA
	Benzo(g,h,i)perylene	NA-REF1-SO01-31	ug/kg	53	ND	6E+07	6E+06	2E+06	230000	NC	NA
	Benzo(g,h,i)perylene	NA-REF1-SO02-01	ug/kg	48	ND	6E+07	6E+06	2E+06	230000	NC	NA
	Benzo(g,h,i)perylene	NA-REF1-SO03-01	ug/kg	56	ND	6E+07	6E+06	2E+06	230000	NC	NA
	Benzo(g,h,i)perylene	NA-REF1-SO04-01	ug/kg	54	ND	6E+07	6E+06	2E+06	230000	NC	NA
	Benzo(g,h,i)perylene	NA-REF1-SO05-01	ug/kg	54	ND	6E+07	6E+06	2E+06	230000	NC	NA
	Benzo(g,h,i)perylene	NA-REF1-SO06-01	ug/kg		ND	6E+07	6E+06	2E+06	230000	NC	NA
	Benzo(k)fluoranthene	NA-REF1-SO01-31	ug/kg	53	ND	78000	78000	8700	8700	NC	NA
	Benzo(k)fluoranthene	NA-REF1-SO02-01	ug/kg		ND	78000	78000	8700	8700	NC	NA
	Benzo(k)fluoranthene	NA-REF1-SO03-01	ug/kg	56	ND	78000	78000	8700	8700	NC	NA
	Benzo(k)fluoranthene	NA-REF1-SO04-01	ug/kg	54	ND	78000	78000	8700	8700	NC	NA
	Benzo(k)fluoranthene	NA-REF1-SO05-01	ug/kg	54	ND	78000	78000	8700	8700	NC	NA
	Benzo(k)fluoranthene	NA-REF1-SO06-01	ug/kg	52	ND	78000	78000	8700	8700	NC	NA
	Butylbenzylphthalate	NA-REF1-SO01-31	ug/kg	53	76	4E+08	4E+07	2E+07	2E+06	83	NA
	Butylbenzylphthalate	NA-REF1-SO02-01	ug/kg	48	ND	4E+08	4E+07	2E+07	2E+06	83	NA
OLMO3.2	Butylbenzylphthalate	NA-REF1-SO03-01	ug/kg	56	ND	4E+08	4E+07	2E+07	2E+06	83	NA
	Butylbenzylphthalate	NA-REF1-SO04-01	ug/kg	54	ND	4E+08	4E+07	2E+07	2E+06	83	NA
OLMO3.2	Butylbenzylphthalate	NA-REF1-SO05-01	ug/kg	54	ND	4E+08	4E+07	2E+07	2E+06		NA
OLMO3.2	Butylbenzylphthalate	NA-REF1-SO06-01	ug/kg	52	83	4E+08	4E+07	2E+07	2E+06	83	NA
OLMO3.2	Carbazole	NA-REF1-SO01-31	ug/kg	53	ND	290000	290000	32000	32000	NC	NA
OLMO3.2	Carbazole	NA-REF1-SO02-01	ug/kg	48	ND	290000	290000	32000			NA
OLMO3.2	Carbazole	NA-REF1-SO03-01	ug/kg	56	ND	290000	290000	32000			NA
OLMO3.2	Carbazole	NA-REF1-SO04-01	ug/kg	54	ND		290000				NA
OLMO3.2	Carbazole	NA-REF1-SO05-01	ug/kg	54	ND	 	290000				NA
OLMO3.2	Carbazole	NA-REF1-SO06-01	ug/kg		ND		290000	32000	32000		NA
OLMO3.2	Chrysene	NA-REF1-SO01-31	ug/kg		ND		780000				NA
OLMO3.2	Chrysene	NA-REF1-SO02-01	ug/kg		ND		780000				NA
OLMO3.2		NA-REF1-SO03-01	ug/kg		ND		780000				NA
OLMO3.2		NA-REF1-SO04-01	ug/kg		ND		780000	87000			NA
OLMO3.2	Chrysene	NA-REF1-SO05-01	ug/kg		ND		780000	87000	87000		NA
OLMO3.2		NA-REF1-SO06-01	ug/kg		ND		780000	87000	87000	1	NA
	Dibenz(a,h)anthracene	NA-REF1-SO01-31	ug/kg		ND	780		87		NC	NA
	Dibenz(a,h)anthracene	NA-REF1-SO02-01	ug/kg		ND	780		87		NC	NA
	Dibenz(a,h)anthracene	NA-REF1-SO03-01	ug/kg		ND	780		87		NC	NA
	Dibenz(a,h)anthracene	NA-REF1-SO04-01	ug/kg		ND	780	· · · · · · · · · · · · · · · · · · ·	87		NC	NA
103.2	Dibenz(a,h)anthracene	NA-REF1-SO05-01	ug/kg	54	ND	780	780	87	87	NC	NA

				· ·		1					1/4
l .											Means Compari:
				1							Conclusion
			İ			Indu	stiral	Resi	dential	Reference	1
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL		RBSL		Site
	Dibenz(a,h)anthracene	NA-REF1-SO06-01	ug/kg		ND	780	780	87	7 87	NC	NA
	Dibenzofuran	NA-REF1-SO01-31	ug/kg	53	ND	8E+06	820000	310000			NA
	Dibenzofuran	NA-REF1-SO02-01	ug/kg	48	ND	8E+06	820000	310000		 	NA
	Dibenzofuran	NA-REF1-SO03-01	ug/kg	56	ND	8E+06	820000	310000			NA
	Dibenzofuran	NA-REF1-SO04-01	ug/kg	54	ND		820000				NA
	Dibenzofuran	NA-REF1-SO05-01	ug/kg	54	ND		820000				NA
	Dibenzofuran	NA-REF1-SO06-01	ug/kg	52	ND		820000				NA
	Diethylphthalate	NA-REF1-SO01-31	ug/kg	53	73	2E+09					NA
	Diethylphthalate	NA-REF1-SO02-01	ug/kg	48	130	2E+09	2E+08			+	NA
	Diethylphthalate	NA-REF1-SO03-01	ug/kg	56	58	2E+09	2E+08				NA
OLMO3.2	Diethylphthalate	NA-REF1-SO04-01	ug/kg	54	ND	2E+09	2E+08				NA
	Diethylphthalate	NA-REF1-SO05-01	ug/kg	54	61	2E+09	2E+08				NA
OLMO3.2	Diethylphthalate	NA-REF1-SO06-01	ug/kg	52	66	2E+09	2E+08				NA
OLMO3.2	Dimethylphthalate	NA-REF1-SO01-31	ug/kg	53	ND	2E+10	2E+09				NA
OLMO3.2	Dimethylphthalate	NA-REF1-SO02-01	ug/kg	48	ND	2E+10			-		NA
	Dimethylphthalate	NA-REF1-SO03-01	ug/kg		ND	2E+10					NA
OLMO3.2	Dimethylphthalate	NA-REF1-SO04-01	ug/kg		ND	2E+10	2E+09				NA
OLMO3.2	Dimethylphthalate	NA-REF1-SO05-01	ug/kg		ND	2E+10					NA
OLMO3.2	Dimethylphthalate	NA-REF1-SO06-01	ug/kg		ND	2E+10					NA
OLMO3.2	Fluoranthene	NA-REF1-SO01-31	ug/kg		ND	8E+07	8E+06		310000		NA NA
OLMO3.2	Fluoranthene	NA-REF1-SO02-01	ug/kg		ND	8E+07	8E+06		310000		NA NA
OLMO3.2	Fluoranthene	NA-REF1-SO03-01	ug/kg	56	60	8E+07	8E+06		310000	<u> </u>	NA _
OLMO3.2	Fluoranthene	NA-REF1-SO04-01	ug/kg	54		8E+07	8E+06		310000		NA NA
OLMO3.2	Fluoranthene	NA-REF1-SO05-01	ug/kg	54		8E+07	8E+06		310000		
OLMO3.2	Fluoranthene	NA-REF1-SO06-01	ug/kg	52	55	8E+07	8E+06		310000		NA NA
OLMO3.2	Fluorene	NA-REF1-SO01-31	ug/kg		ND JJ	8E+07	8E+06		310000		
OLMO3.2	Fluorene	NA-REF1-SO02-01	ug/kg	48		8E+07	8E+06		310000		NA
OLMO3.2	Fluorene	NA-REF1-SO03-01	ug/kg	56		8E+07	8E+06		310000		NA
OLMO3.2	Fluorene	NA-REF1-SO04-01	ug/kg	54		8E+07	8E+06		310000		NA
·	Fluorene	NA-REF1-SO05-01	ug/kg	54		8E+07	8E+06				NA
 	Fluorene	NA-REF1-SO06-01	ug/kg	52		8E+07	8E+06		310000 310000		NA
	Hexachloro-1,3-butadiene	NA-REF1-SO01-31	ug/kg	53		73000					NA
	Hexachloro-1,3-butadiene	NA-REF1-SO02-01					73000	8200	8200		NA
	Hexachloro-1,3-butadiene	NA-REF1-SO03-01	ug/kg ug/kg	56		73000	73000				NA
	Hexachloro-1,3-butadiene	NA-REF1-SO04-01	ug/kg	54		73000	73000				NA
	Hexachloro-1,3-butadiene	NA-REF1-SO05-01	ug/kg	54		73000	73000	8200			NA
		NA-REF1-SO06-01	ug/kg	52		73000	73000	8200	8200		NA
	Hexachlorobenzene	NA-REF1-SO01-31		53		73000	73000	8200	8200		NA
	Hexachlorobenzene	NA-REF1-SO02-01	ug/kg			3600	3600	400	400		NA
		NA-REF1-SO03-01	ug/kg	48		3600	3600	400	400		NA
		····	ug/kg	56	_	3600	3600	400	400		NA
		NA-REF1-SO04-01	ug/kg	54		3600	3600	400	400		NA
		NA-REF1-SO05-01	ug/kg	54]		3600	3600	400	400		NA
		NA-REF1-SO06-01	ug/kg	52 1		3600	3600	400	400	***	NA
	_	NA-REF1-SO01-31	ug/kg	53 1	_	1E+07	1E+06		55000		NA
		NA-REF1-SO02-01	ug/kg	48 1			1E+06		55000	NC	NA
		NA-REF1-SO03-01	ug/kg	56 1			1E+06	550000	55000	NC	NA
		NA-REF1-SO04-01	ug/kg	54]			1E+06		55000		NA
		NA-REF1-SO05-01	ug/kg	54 1	ND D		1E+06		55000		NA
ULMO3.2 I	lexachlorocyclopentadiene	NA-REF1-SO06-01	ug/kg	52 1		1E+07	1E+06		55000		NA

						:			,		Means
						!					Comparison
											Conclusion
[Indu	stiral	Resid	ential	Reference	Reference vs.
36.45.4	Amaluta	Sample ID	Units	MDI	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method OLMO3.2	Analyte Hexachloroethane	NA-REF1-SO01-31	ug/kg		ND	410000		46000	46000		NA
		NA-REF1-SO02-01	ug/kg		ND	410000		46000	46000		NA
		NA-REF1-SO03-01	ug/kg		ND		410000	46000	46000		NA
		NA-REF1-SO04-01	ug/kg		ND		410000	46000	46000		NA
	2201101700-7-1	NA-REF1-SO05-01	ug/kg		ND		410000	46000	46000		NA
		NA-REF1-SO06-01	ug/kg		ND		410000	46000	46000		NA
	W-4	NA-REF1-SO01-31	ug/kg		ND	7800	7800	870		NC	NA
	(-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-	NA-REF1-SO02-01	ug/kg		ND	7800	7800	870		NC	NA
		NA-REF1-SO03-01	ug/kg		ND	7800	7800	870		NC	NA
		NA-REF1-SO04-01	ug/kg	L	ND	7800	7800	870		NC	NA
	Indeno(1,2,3-cd)pyrene	NA-REF1-SO05-01	ug/kg		ND	7800	7800	870		NC	NA
	Indeno(1,2,3-cd)pyrene	NA-REF1-SO06-01	ug/kg		ND	7800	7800	870		NC	NA
	Isophorone	NA-REF1-SO01-31	ug/kg	1	ND	6E+06		670000		1	NA
	Isophorone	NA-REF1-SO02-01	ug/kg		ND	6E+06		670000			NA
OLMO3.2		NA-REF1-SO03-01	ug/kg		ND	6E+06		670000		1	NA
		NA-REF1-\$004-01	ug/kg		ND	6E+06		670000			NA
		NA-REF1-SO05-01	ug/kg		ND	6E+06		670000			NA
	F	NA-REF1-SO06-01	ug/kg		ND	6E+06		670000			NA
OLMO3.2	N-Nitroso-di-n-propylamine		ug/kg		ND	820	820	91		NC	NA
	N-Nitroso-di-n-propylamine		ug/kg		ND	820	820	91		NC	NA
		NA-REF1-SO03-01	ug/kg		ND	820		91		NC	NA
OLMO3.2	N-Nitroso-di-n-propylamine	NA-REF1-SO04-01	ug/kg	54	ND	820		91		NC	NA
	N-Nitroso-di-n-propylamine		ug/kg		ND	820		91		NC	NA
MO3.2	N-Nitroso-di-n-propylamine	NA-REF1-SO06-01	ug/kg		ND	820		91		NC	NA
OLMO3.2	N-Nitrosodiphenylamine	NA-REF1-SO01-31	ug/kg		ND	1E+06		130000			NA
OLMO3.2	N-Nitrosodiphenylamine	NA-REF1-SO02-01	ug/kg		ND	1E+06		130000			NA
OLMO3.2	N-Nitrosodiphenylamine	NA-REF1-SO03-01	ug/kg	56	ND	1E+06		130000			NA
OLMO3.2	N-Nitrosodiphenylamine	NA-REF1-SO04-01	ug/kg		ND	1E+06		130000			NA
OLMO3.2	N-Nitrosodiphenylamine	NA-REF1-SO05-01	ug/kg		ND	1E+06		130000			NA
OLMO3.2	N-Nitrosodiphenylamine	NA-REF1-SO06-01	ug/kg	52	ND	1E+06	1E+06	130000			NA
OLMO3.2	Naphthalene	NA-REF1-SO01-31	ug/kg		ND	8E+07	8E+06		310000		NA
OLMO3.2	Naphthalene	NA-REF1-SO02-01	ug/kg		ND	8E+07	8E+06		310000		NA
OLMO3.2	Naphthalene	NA-REF1-SO03-01	ug/kg		ND	8E+07		3E+06			NA
OLMO3.2	Naphthalene	NA-REF1-SO04-01	ug/kg	54	ND	8E+07		3E+06			NA
OLMO3.2	Naphthalene	NA-REF1-SO05-01	ug/kg		ND	8E+07			310000		NA
OLMO3.2	Naphthalene	NA-REF1-SO06-01	ug/kg		ND	8E+07			310000		NA
OLMO3.2	Nitrobenzene	NA-REF1-SO01-31	ug/kg		ND		100000			NC	NA
	Nitrobenzene	NA-REF1-SO02-01	ug/kg		ND		100000	+		NC	NA
	Nitrobenzene	NA-REF1-SO03-01	ug/kg		ND		100000			NC	NA
	Nitrobenzene	NA-REF1-SO04-01	ug/kg		ND		100000			NC	NA
	Nitrobenzene	NA-REF1-SO05-01	ug/kg		ND		100000	-		NC	NA
	Nitrobenzene	NA-REF1-SO06-01	ug/kg		ND		100000	+		NC	NA
	Pentachlorophenol	NA-REF1-SO01-31	ug/kg		ND	48000		<u> </u>		NC	NA
		NA-REF1-SO02-01	ug/kg		ND	48000				NC	NA
		NA-REF1-SO03-01	ug/kg		ND	48000	48000	5300		NC	NA
	Pentachlorophenol	NA-REF1-SO04-01	ug/kg		ND	48000	48000		+	NC	NA
	Pentachlorophenol	NA-REF1-SO05-01	ug/kg	54	ND	48000	48000	5300	5300	NC	NA
	Pentachlorophenol	NA-REF1-SO06-01	ug/kg		ND	48000	48000	5300	5300	NC	NA
	Phenanthrene	NA-REF1-SO01-31	ug/kg		ND	6E+07	6E+06		230000		NA
	Phenanthrene	NA-REF1-SO02-01	ug/kg		ND	6E+07	6E+06	2E+06	230000	NC	NA

				, .	T			,			
İ				ļ				İ			Means
						ł					Comparis
				}	1						Conclusion
Method	Analyte	Committee TD			L .		ustiral		dential	Reference	Reference vs
OLMO3.2		NA-REF1-SO03-01	Units		Resul					UTL	Site
OLMO3.2	The state of the s		ug/kg	+	ND	6E+0			230000		NA
OLMO3.2		NA-REF1-SO04-01	ug/kg		ND	6E+0			230000		NA
	Phenanthrene	NA-REF1-SO05-01	ug/kg		ND	6E+0			230000		NA
OLMO3.2		NA-REF1-SO06-01	ug/kg		ND	6E+0			230000		NA
OLMO3.2		NA-REF1-SO01-31	ug/kg		ND	1E+09					NA
OLMO3.2		NA-REF1-SO02-01	ug/kg		ND	1E+09					NA
OLMO3.2		NA-REF1-SO03-01	ug/kg		ND	1E+09					NA
OLMO3.2		NA-REF1-SO04-01	ug/kg		ND	1E+09			. 1		NA
OLMO3.2		NA-REF1-SO05-01	ug/kg		ND	1E+09				NC	NA
OLMO3.2		NA-REF1-SO06-01	ug/kg		ND	1E+09					NA
OLMO3.2		NA-REF1-SO01-31	ug/kg		ND	6E+07			230000		NA
OLMO3.2		NA-REF1-SO02-01	ug/kg		ND	6E+07			230000		NA
OLMO3.2		NA-REF1-SO03-01	ug/kg	56		6E+07			230000		NA
OLMO3.2	 3, 	NA-REF1-SO04-01	ug/kg		ND	6E+07	6E+06	2E+06	230000	70	NA
	Pyrene	NA-REF1-SO05-01	ug/kg		ND	6E+07			230000		NA
OLMO3.2 OLMO3.2		NA-REF1-SO06-01	ug/kg	52		<u> </u>			230000	70	NA
	bis(2-Chloroethoxy)methane bis(2-Chloroethoxy)methane	NA-REF1-SO01-31	ug/kg		ND	5200		580		NC	NA
OLMO3.2	bis(2-Chloroethoxy)methane	NA PEEL SO02 01	ug/kg		ND	5200		580			NA
	bis(2-Chloroethoxy)methane	NA-REF1-SO03-01	ug/kg ug/kg		ND ND	5200	1	580			NA
OLMO3.2	bis(2-Chloroethoxy)methane	NA-REF1-S005-01	ug/kg		ND	5200 5200		580			NA
OLMO3.2	bis(2-Chloroethoxy)methane	NA-REF1-SO06-01	ug/kg		ND	5200		580 580			NA
OLMO3.2	bis(2-Chloroethyl)ether	NA-REF1-SO01-31	ug/kg		ND	5200					NA
OLMO3.2	bis(2-Chloroethyl)ether	NA-REF1-SO02-01	ug/kg		ND	5200		580 580	580		NA
OLMO3.2	bis(2-Chloroethyl)ether	NA-REF1-SO03-01	ug/kg		ND	5200	5200	580	580		NA
OLMO3.2	bis(2-Chloroethyl)ether	NA-REF1-SO04-01	ug/kg		ND	5200			580	70	NA
OLMO3.2		NA-REF1-SO05-01	ug/kg		ND	5200	5200	580	580		NA
OLMO3.2		NA-REF1-SO06-01	ug/kg		ND	5200	5200	580	580		NA
		NA-REF1-SO01-31	ug/kg	53			410000	580	580		NA
		NA-REF1-SO02-01	ug/kg	48			410000	46000	46000	785	
OLMO3.2		NA-REF1-SO03-01	ug/kg	56		410000		46000	46000	785	
OLMO3.2		NA-REF1-SO04-01	ug/kg	54		410000		46000	46000	785	
		NA-REF1-SO05-01	ug/kg	54		410000		46000	46000	785	
		NA-REF1-SO06-01	ug/kg	52				46000	46000	785	
		NA-REF1-SO01-31	ug/kg	53	280		410000			785	
		NA-REF1-SO02-01	ug/kg	48	99				780000	280	
		NA-REF1-SO03-01	ug/kg	56					780000	280	
		NA-REF1-SO04-01	ug/kg	54	150	2E+08			780000	280	
		NA-REF1-SO05-01	ug/kg	54	100	2E+08			780000	280	
		NA-REF1-SO06-01	-		110	2E+08			780000	280	
	***	NA-REF1-S001-31	ug/kg	52	140	2E+08			780000	280	
		NA-REF1-S002-01	ug/kg	53		4E+07			160000		VA
	**	NA-REF1-SO03-01	ug/kg	48		4E+07	4E+06	2E+06	160000		NA.
			ug/kg	56		4E+07	4E+06				NΑ
		NA-REF1-SO05-01	ug/kg	54		4E+07	4E+06				VA
	1: 0 1111		ug/kg	54		4E+07	4E+06				٧A
OLMO3.2		NA-REF1-SO06-01	ug/kg	52		4E+07	4E+06				NA.
OLMO3.2		NA-REF1-SO01-31	ug/kg	53 1		1E+08			390000 1		NA.
OLMO3.2			ug/kg	48 1		1E+08					NA
OLMO3.2 OLMO3.2		NA-REF1-SO03-01	ug/kg	56 1		1E+08					NA .
VLIVIU3.2	U-CIGSUI	NA-REF1-SO04-01	ug/kg	54 1	ND	1E+08	1E+07	4E+06	1 00000		NA.

						Indu	stiral	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	o-Cresol	NA-REF1-SO05-01	ug/kg		ND	1E+08	1E+07	4E+06	390000	NC	NA
	o-Cresol	NA-REF1-SO06-01	ug/kg	52	ND	1E+08	1E+07	4E+06	390000	NC	NA
	p-Cresol	NA-REF1-SO01-31	ug/kg	53	ND	1E+07	1E+06	390000	39000	NC	NA
OLMO3.2		NA-REF1-SO02-01	ug/kg		ND	1E+07	1E+06	390000	39000	NC	NA
	p-Cresol	NA-REF1-SO03-01	ug/kg	56	ND	1E+07	1E+06	390000	39000	NC	NA
	p-Cresol	NA-REF1-SO04-01	ug/kg	54	ND	1E+07	1E+06	390000	39000	NC	NA
	p-Cresol	NA-REF1-SO05-01	ug/kg	54	ND	1E+07	1E+06	390000	39000		NA
	p-Cresol	NA-REF1-SO06-01	ug/kg	52	ND	1E+07	1E+06	390000	39000	1	NA
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO01-31	ng/kg	0.4	659 J	38000	38000	4300	4300		
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO02-01	ng/kg	1	399	38000	38000	4300	4300		
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO03-01	ng/kg	0.9	757	38000	38000	4300	4300		
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO04-01	ng/kg	0.8	504	38000	38000	4300	4300	1180	NA
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO05-01	ng/kg	0.4	257 J	38000	38000	4300	4300	1180	NA
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO06-01	ng/kg	0.4	385 J	38000	38000	4300	4300	1180	NA
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-REF1-SO01-31	ng/kg	0.3		38000	38000	4300	4300	212	NA
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-REF1-SO02-01	ng/kg	0.9		38000	38000	4300	4300	212	NA
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-REF1-SO03-01	ng/kg	0.7	82	38000	38000	4300	4300	212	NA
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-REF1-SO04-01	ng/kg	0.7	91.5 J	38000	38000	4300	4300	212	NA
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-REF1-SO05-01	ng/kg		38.2 J	38000	38000	4300	4300	212	NA
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-REF1-SO06-01	ng/kg		61.6 J	38000	38000	4300	4300	212	NA
SW8290	1,2,3,4,6,7,8-HpCDD	NA-REF1-SO01-31	ng/kg		156 J	3800	3800	430	430	235	NA
SW8290	1,2,3,4,6,7,8-HpCDD	NA-REF1-SO02-01	ng/kg	0.7	+	3800	3800		430	235	NA
8290	1,2,3,4,6,7,8-HpCDD	NA-REF1-SO03-01	ng/kg	0.6		3800	3800	430	430	235	NA
5W8290	1,2,3,4,6,7,8-HpCDD	NA-REF1-SO04-01	ng/kg	1	91.8 J	3800	3800		430	235	NA
SW8290	1,2,3,4,6,7,8-HpCDD	NA-REF1-SO05-01	ng/kg		53.9 J	3800	3800	430	430	235	NA
SW8290	1,2,3,4,6,7,8-HpCDD	NA-REF1-SO06-01	ng/kg		71.3 J	3800	3800	430	430	235	NA
SW8290	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO01-31	ng/kg	0.2		3800	3800	430	430	258	NA
SW8290	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO02-01	ng/kg			3800	3800	430	430	258	NA
SW8290	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO03-01	ng/kg		+	3800	3800	430	430	258	NA
SW8290	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO04-01	ng/kg	0.4	+	3800	3800	430	430	258	NA
SW8290	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO05-01	ng/kg	0.3	46.4	3800	3800	430	430	258	NA
SW8290	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO06-01	ng/kg	0.3	61.3	3800	3800	430	430	258	NA
SW8290	1,2,3,4,7,8,9-H _P CDF	NA-REF1-SO01-31	ng/kg		27.5 J	3800	3800	430	430	41.9	NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO02-01	ng/kg		5 J	3800			+		NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO03-01	ng/kg	-		3800	3800	430	430	41.9	NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO04-01	ng/kg			3800		+	430	41.9	NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO05-01	ng/kg		8.4 J	3800	3800	430	430	41.9	NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO06-01	ng/kg			3800					NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO01-31	ng/kg							13.7	/ NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO02-01	ng/kg	-	2.5 J	380		+			NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO03-01	ng/kg		4.8 J	380					NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO04-01	ng/kg	+	3.6 J	380					NA NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO05-01	ng/kg		2.5 J	380					NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO06-01	ng/kg	_	5.4 J	380		-4	-		NA
SW8290	1,2,3,4,7,8-HxCDF	NA-REF1-SO01-31	ng/kg				+				3 NA
SW8290	1,2,3,4,7,8-HxCDF	NA-REF1-SO02-01	ng/kg								NA
SW8290	1,2,3,4,7,8-HxCDF	NA-REF1-SO03-01	ng/kg				+				3 NA
SW8290	1,2,3,4,7,8-HxCDF	NA-REF1-SO04-01	ng/kg		+						3 NA
3290 3290	1,2,3,4,7,8-HxCDF	NA-REF1-SO05-01	ng/kg								3 NA

Γ-			CC AI	,							
Ì					ŀ						Means
			i								Compariso
					İ						Conclusion
1					1		ıstiral	Resid	lential	Reference	Reference vs
Method SW8290	Analyte	Sample ID	Units		Result		RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,4,7,8-HxCDF	NA-REF1-SO06-01	ng/kg	0.2		380		43	43	97.8	NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO01-31	ng/kg	0.2				43	<u> </u>	29.1	NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO02-01	ng/kg	0.5				43	i	29.1	NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO03-01	ng/kg		11.3 J	380	380	43		29.1	NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO04-01	ng/kg	*****	9.8 J	380	380	43	_	29.1	NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO05-01	ng/kg	0.3		380	380	43	43	29 .1	NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO06-01	ng/kg	~	9.3 J	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO01-31	ng/kg	0.1		380	380	43	43	41.2	NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO02-01	ng/kg	0.4		380	380	43	43	41.2	NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO03-01	ng/kg	0.3	17.9	380	380	43	43	41.2	NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO04-01	ng/kg	0.3	15.2	380	380	43	43	41.2	NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO05-01	ng/kg	0.3	8.7	380	380	43	43	41.2	NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO06-01	ng/kg	0.2	12.6	380	380	43	43	41.2	NA
SW8290	1,2,3,7,8,9-HxCDD	NA-REF1-SO01-31	ng/kg		23.3 J	380	380	43	43	35.9	NA
SW8290	1,2,3,7,8,9-HxCDD	NA-REF1-SO02-01	ng/kg		8.2 J	380	380	43	43	35.9	NA
SW8290	1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD	NA-REF1-SO03-01	ng/kg		14.2 J	380	380	43	43	35.9	
SW8290	77.00	NA-REF1-SO04-01	ng/kg		10.7 J	380	380	43	43	35.9	NA
SW8290	1,2,3,7,8,9-HxCDD	NA-REF1-SO05-01	ng/kg		11.7 J	380	380	43	43	35.9	NA
SW8290	1,2,3,7,8,9-HxCDD	NA-REF1-SO06-01	ng/kg		19.5 J	380	380	43	43	35.9	NA
SW8290	1,2,3,7,8,9-HxCDF	NA-REF1-SO01-31	ng/kg		3.8 J	380	380	43	43	3.8	NA
SW8290	1,2,3,7,8,9-HxCDF	NA-REF1-SO02-01	ng/kg		0.97 J	380	380	43	43	3.8	NA
SW8290	1,2,3,7,8,9-HxCDF	NA-REF1-SO03-01	ng/kg		1.1 J	380	380	43	43	3.8	NA
SW8290	1,2,3,7,8,9-HxCDF	NA-REF1-SO04-01	ng/kg		0.99 J	380	380	43	43	3.8	NA
	1,2,3,7,8,9-HxCDF	NA-REF1-SO05-01	ng/kg	0.4		380	380	43	43	3.8	NA
SW8290 SW8290	1,2,3,7,8,9-HxCDF	NA-REF1-SO06-01	ng/kg		0.88 J	380	380	43	43	3.8	NA
SW8290	1,2,3,7,8-PeCDD	NA-REF1-SO01-31	ng/kg	0.2	9.8	76	76	8.6	8.6	9.8	NA
SW8290	1,2,3,7,8-PeCDD	NA-REF1-SO02-01	ng/kg		3.2 J	76	76	8.6	8.6	9.8	NA
SW8290	1,2,3,7,8-PeCDD	NA-REF1-SO03-01	ng/kg	0.5	5.1	76	76	8.6	8.6	9.8	NA
SW8290	1,2,3,7,8-PeCDD	NA-REF1-S004-01	ng/kg		4.6 J	76	76	8.6	8.6	9.8	NA
SW8290	1,2,3,7,8-PeCDD	NA-REF1-SO05-01	ng/kg	***	3.3 J	76	76	8.6	8.6	9.8	NA
SW8290	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	NA-REF1-SO06-01	ng/kg		4.1 J	76	76	8.6	8.6	9.8	NA
		NA-REF1-SO01-31	ng/kg	0.1	20	760	760	86	86	30.6	NA
	1,2,3,7,8-PeCDF	NA-REF1-SO02-01	ng/kg	0.4	5.7	760	760	86	86	30.6	NA
	1,2,3,7,8-PeCDF	NA-REF1-SO03-01	ng/kg	0.4	10.8	760	760	86	86	30.6	NA
	1,2,3,7,8-PeCDF	NA-REF1-SO04-01	ng/kg	0.4	7.7	760	760	86	86	30.6	NA
	1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF	NA-REF1-SO05-01	ng/kg	0.3		760	760	86	86	30.6	NA
		NA-REF1-SO06-01	ng/kg	0.3	7.2	760	760	86	86	30.6	NA
	2,3,4,6,7,8-HxCDF	NA-REF1-SO01-31	ng/kg	0.2	101	380	380	43	43	101	
	2,3,4,6,7,8-HxCDF	NA-REF1-SO02-01	ng/kg	0.5	14.8	380	380	43	43	101	VΑ
	2,3,4,6,7,8-HxCDF	NA-REF1-SO03-01	ng/kg	0.4	39.7	380	380	43	43	101	NA
	2,3,4,6,7,8-HxCDF	NA-REF1-SO04-01	ng/kg	0.4	33.6	380	380	43	43	101	NΑ
	2,3,4,6,7,8-HxCDF	NA-REF1-SO05-01	ng/kg	0.3	19.8	380	380	43	43	101 1	NA
	2,3,4,6,7,8-HxCDF 2,3,4,7,8-PeCDF	NA-REF1-SO06-01	ng/kg	0.3	26	380	380	43	43	101 1	ŇA
		NA-REF1-SO01-31	ng/kg	0.1	37.4	76	76	8.6	8.6	37.4	NA
-	2,3,4,7,8-PeCDF	NA-REF1-SO02-01	ng/kg	0.4	7.9	76	76	8.6	8.6	37.4 N	NA AV
	2,3,4,7,8-PeCDF	NA-REF1-SO03-01	ng/kg	0.4	16.6	76	76	8.6	8.6	37.4 N	
	2,3,4,7,8-PeCDF	NA-REF1-SO04-01	ng/kg	0.4	13.2	76	76	8.6	8.6	37.4 N	
7.1.	2,3,4,7,8-PeCDF	NA-REF1-SO05-01	ng/kg	0.3	6.3	76	76	8.6	8.6	37.4 N	
SW8290 :	2,3,4,7,8-PeCDF	NA-REF1-SO06-01	ng/kg	0.3	12.7	76	76	8.6	8.6	37.4 N	

						Indu	ctival	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
36.45.43	Amaluta	Sample ID	Units	MDT.	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method SW8290	Analyte 2,3,7,8-TCDD	NA-REF1-SO01-31	ng/kg	0.1	1.5	38	38	4.3	4.3		NA
	2,3,7,8-TCDD	NA-REF1-SO02-01	ng/kg		0.47 J	38	38	4.3	4.3	2.4	NA
SW8290	2,3,7,8-TCDD	NA-REF1-SO03-01	ng/kg		0.86 J	38	38	4.3	4.3	2.4	NA
SW8290	2,3,7,8-TCDD	NA-REF1-SO04-01	ng/kg		0.73 J	38	38	4.3	4.3	2.4	NA
SW8290	2,3,7,8-TCDD	NA-REF1-SO05-01	ng/kg		ND	38	38	4.3	4.3	2.4	NA
SW8290	2,3,7,8-TCDD	NA-REF1-SO06-01	ng/kg		0.68 J	38	38	4.3	4.3	2.4	NA
SW8290	2,3,7,8-TCDF	NA-REF1-SO01-31	ng/kg	0.7	20.5	380	380	43	43	32.8	NA.
SW8290	2,3,7,8-TCDF	NA-REF1-SO02-01	ng/kg	0.3		380	380	43	43	32.8	NA
SW8290	2,3,7,8-TCDF	NA-REF1-SO03-01	ng/kg	0.3		380	380	43	43	32.8	NA
SW8290	2,3,7,8-TCDF	NA-REF1-SO04-01	ng/kg	0.3		380	380	43	43	32.8	NA
SW8290	2,3,7,8-TCDF	NA-REF1-SO05-01	ng/kg	0.2			380	43	43	32.8	NA
SW8290	2,3,7,8-TCDF	NA-REF1-SO06-01	ng/kg	0.3		380		43	43	32.8	NA
SW8290	Total HpCDD	NA-REF1-SO01-31	ng/kg	0.2						488	NA
SW8290	Total HpCDD	NA-REF1-SO02-01	ng/kg	0.7				l		488	NA
SW8290	Total HpCDD	NA-REF1-SO03-01	ng/kg	0.6		·			,	488	NA
SW8290	Total HpCDD	NA-REF1-SO04-01	ng/kg	0.5						488	NA
	Total HpCDD	NA-REF1-SO05-01	ng/kg	0.4						1	NA
SW8290	Total HpCDD	NA-REF1-SO06-01	ng/kg	0.3		-	<u> </u>				NA
SW8290	Total HpCDF	NA-REF1-SO01-31	ng/kg	0.2		·	<u> </u>	<u> </u>			NA
SW8290	Total HpCDF	NA-REF1-SO02-01	ng/kg	0.6			ľ —			487	NA
SW8290 SW8290	Total HpCDF	NA-REF1-SO03-01	ng/kg	0.5			<u>l</u>	1.		.1	NA
		NA-REF1-SO04-01	ng/kg	0.5							'NA
CW8290	Total HpCDF Total HpCDF	NA-REF1-SO05-01	ng/kg	0.3	+		<u> </u>	i.		1	NA
8290		NA-REF1-SO06-01	ng/kg	0.4			1	 			'NA
SW8290 SW8290	Total HpCDF Total HxCDD	NA-REF1-SO01-31	ng/kg	0.2				<u> </u>	<u>.</u>	1	NA
	Total HxCDD	NA-REF1-SO02-01	ng/kg	0.5	-						NA
SW8290		NA-REF1-SO02-01	ng/kg	0.4			<u> </u>	1	<u> </u>		NA
SW8290	Total HxCDD	NA-REF1-SO03-01	ng/kg	0.3			 	-	· · · · · · · · · · · · · · · · · · ·		NA
SW8290	Total HxCDD	NA-REF1-SO05-01	ng/kg			1	 	<u> </u>			2 NA
SW8290	Total HxCDD	NA-REF1-SO05-01	ng/kg				 	-	<u> </u>		2 NA
SW8290	Total HxCDD	NA-REF1-SO01-31	ng/kg				ļ.——	-	1.		NA NA
SW8290	Total HxCDF	NA-REF1-SO02-01	ng/kg	_			 	-			NA
SW8290	Total HxCDF Total HxCDF	NA-REF1-SO02-01			1		 	i	 		NA NA
SW8290		NA-REF1-SO04-01	ng/kg				 				NA
SW8290	Total HxCDF Total HxCDF	NA-REF1-SO05-01	ng/kg	 	+		 	-	1		NA
SW8290		NA-REF1-SO06-01	ng/kg	+		-	 	 			NA
SW8290	Total HxCDF Total PeCDD	NA-REF1-SO00-01	ng/kg	+		+	t.	1.	Ī.		5 NA
SW8290		NA-REF1-SO02-01	ng/kg				 	1.	1.		5 NA
SW8290	Total PeCDD Total PeCDD	NA-REF1-SO03-01	ng/kg	· · · · · · · · · · · · · · · · · · ·			1 -	 	1		5 NA
SW8290		NA-REF1-SO04-01	ng/kg				1.	1. —	1.		NA
SW8290	Total PeCDD	NA-REF1-SO05-01	ng/kg				+	1.	1.		5 NA
SW8290	Total PeCDD	NA-REF1-SO06-01	ng/kg				<u> </u>	 	1.		5 NA
SW8290	Total PeCDE	NA-REF1-SO01-31	ng/kg				1.	1.	t .		8 NA
SW8290	Total PeCDF	NA-REF1-SO02-01	ng/kg				 	1.	1		8 NA
SW8290	Total PeCDF	NA-REF1-SO03-01	ng/kg				'	 	1.		8 NA
SW8290	Total PeCDF	NA-REF1-SO04-01	ng/kg		+		1	1	+		8 NA
SW8290	Total PeCDF		ng/kg					1	 		8 NA
SW8290	Total PeCDF	NA-REF1-SO05-01					+	 	+		8 NA
SW8290 8290	Total PeCDF Total TCDD	NA-REF1-SO06-01 NA-REF1-SO01-31	ng/kg ng/kg				+	1	 		2 NA

Method	Analysis						ustiral		lential	Reference	Means Comparise Conclusion Reference vs
SW8290	Analyte Total TCDD	Sample ID	Units		Result		RBSL	RBC	RBSL	UTL	Site
SW8290	Total TCDD	NA-REF1-SO02-01	ng/kg	0.4	<u> </u>		ļ	-	· .		NA
SW8290	Total TCDD	NA-REF1-SO03-01	ng/kg	0.3			<u> - </u>	ļ			NA
SW8290	Total TCDD	NA-REF1-SO04-01	ng/kg	0.3		4.	<u> </u>	·	-		NA
SW8290	Total TCDD	NA-REF1-SO05-01	ng/kg	0.3			<u> </u>	ļ	-	152	
SW8290	Total TCDF	NA-REF1-SO06-01 NA-REF1-SO01-31	ng/kg	0.4			<u> </u>			152	
SW8290	Total TCDF	NA-REF1-SO02-01	ng/kg	0.1			<u> -</u>		<u>. </u>	522	<u> </u>
SW8290	Total TCDF	NA-REF1-SO03-01	ng/kg	0.3	108		<u> -</u>	ļ	-	522	
SW8290	Total TCDF	NA-REF1-S003-01	ng/kg	0.3	206	.1	<u> </u>	-		522	
SW8290	Total TCDF	NA-REF1-SO05-01	ng/kg	0.3	148		ļ	<u> </u>	-	522	
SW8290	Total TCDF	NA-REF1-SO06-01	ng/kg	0.3	60.4					522	
ILM04.0	Cyanide	NA-REF1-S000-01	ng/kg	0.3	138			-		522	
ILM04.0	Cyanide	NA-REF1-SO02-01	mg/kg	0.38	0.6		L		160	1.08	
ILM04.0	Cyanide	NA-REF1-SO03-01	mg/kg	0.35		41000	4.	1600	160	1.08	
ILM04.0	Cyanide	NA-REF1-S003-01	mg/kg	0.35		41000		1600	160	1.08	
ILM04.0	Cyanide	NA-REF1-S005-01	mg/kg	0.38	0.44			1600	160	1.08	
ILM04.0	Cyanide	NA-REF1-SO06-01	mg/kg	0.38	0.43	41000		1600	160	1.08	
ILMO4.0	Aluminum	NA-REF1-S001-31	mg/kg	0.35	0.56	41000		1600	160	1.08	
ILMO4.0	Aluminum	NA-REF1-S002-01	mg/kg	2.5	39900		200000	78000	7800	74000	
ILMO4.0	Aluminum	NA-REF1-S003-01	mg/kg	2.1	49100		200000	78000	7800	74000	
ILMO4.0	Aluminum	NA-REF1-S004-01	mg/kg		46400		200000	78000	7800	74000	
ILMO4.0	Aluminum	NA-REF1-SO05-01	mg/kg mg/kg	2.4 2.5	48400 57200		200000	78000	7800	74000	
ILMO4.0	Aluminum	NA-REF1-SO06-01		2.4			200000	78000	7800	74000	
ILMO4.0	Antimony	NA-REF1-SO01-31	mg/kg mg/kg	0.62	56800		200000	78000	7800	74000	
	Antimony	NA-REF1-SQ02-01		0.62		820	82	31	3.1	2.4	
ILMO4.0	Antimony	NA-REF1-SO03-01	mg/kg			820	82	31	3.1	2.4	
	Antimony	NA-REF1-SO04-01	mg/kg	0.62		820	82	31	3.1	2.4	
	Antimony	NA-REF1-SO05-01	mg/kg mg/kg	0.61		820	82	31	3.1	2.4	
	Antimony	NA-REF1-SO06-01	mg/kg	0.62		820	82	31	3.1	2.4	
	Arsenic	NA-REF1-SO01-31	mg/kg	0.83		820	82	31	3.1	2.4	
	Arsenic	NA-REF1-SO02-01	mg/kg	0.83	3.7	3.8	3.8	0.43	0.43	6.64	
	Arsenic	NA-REF1-SO03-01	mg/kg	0.82	3.9	3.8	3.8	0.43	0.43	6.64	
	Arsenic	NA-REF1-SO04-01	mg/kg	0.82	3.5	3.8	3.8	0.43	0.43	6.64	
ILMO4.0	Arsenic	NA-REF1-SO05-01	mg/kg	0.82	2.9		3.8	0.43	0.43	6.64	
	Arsenic	NA-REF1-SO06-01	mg/kg	0.79	5.2	3.8	3.8	0.43	0.43	6.64	
	Barium	NA-REF1-SO01-31	mg/kg		96.9 K	3.8	3.8	0.43	0.43	6.64	
	Barium	NA-REF1-SO02-01	mg/kg		55.9 K		14000	5500	550	130 1	
	Barium	NA-REF1-SO03-01	mg/kg	0.17			14000	5500	550	130 1	
	Barium	NA-REF1-SO04-01	mg/kg			140000	14000	5500	550	130 1	
	Barium	NA-REF1-SO05-01	mg/kg		38.3 K 54.8 K		14000	5500	550	130 1	
	Barium	NA-REF1-SO06-01	mg/kg		50.2 K		14000	5500	550	130 1	
	Beryllium	NA-REF1-SO01-31	mg/kg	0.21	0.25		14000	5500	550	130 1	
	Beryllium	NA-REF1-SO02-01	mg/kg	0.21		4100 4100	410	160	16	0.25	
	Beryllium	NA-REF1-SO03-01	mg/kg	0.21			410	160	16	0.25 N	
	Beryllium	NA-REF1-SO04-01	mg/kg	0.21		4100	410	160	16	0.25	
	Beryllium	NA-REF1-SO05-01	mg/kg	0.21 N		4100	410	160	16	0.25 N	
	Beryllium	NA-REF1-SO06-01	mg/kg	0.21		4100	410	160	16	0.25 N	
	Cadmium	NA-REF1-SO01-31				4100	410	160	16	0.25 N	
	Cadmium	NA-REF1-SO02-01	mg/kg mg/kg	0.21 0		1000	100	39	3.9	1.26 N	

Method Analyte Sample ID Units MILL Result KS LoS Units National ILIMO40 Cadmium NA-REFI-SOO3-01 mg/kg 0.21 I.K 1000 100 39 3.9 1.26 NA ILIMO40 Cadmium NA-REFI-SOO4-01 mg/kg 0.21 0.75 K 1000 100 39 3.9 1.26 NA ILIMO40 Cadmium NA-REFI-SOO5-01 mg/kg 0.21 0.56 K 1000 100 39 3.9 1.26 NA ILIMO40 Cadmium NA-REFI-SOO5-01 mg/kg 0.21 0.56 K 1000 100 39 3.9 1.26 NA ILIMO40 Cadmium NA-REFI-SOO1-31 mg/kg 5.4 11300		and the second s				-	Indu:	stiral RBSL	Resid	ential RBSL	Reference	Means Comparison Conclusion Reference vs. Site
ILIMO4.0 Cadmium	Method	Analyte	Sample ID	Units		Result					UTL	
ILMO-4.0 Cadmium												
ILMO4.0 Cadmium												
ILMO4.0 Calcium NA-REFI-SO01-31 mg/kg 5.4 12800												
ILMO-4.0 Calcium NA-REFI-SO02-01 mg/kg 4.5 11500							1000	100	39	3.9		
ILMO4.0 Calcium NA-REFI-SO04-01 mg/kg 5.4 11300							•	·	·			
ILMO4.0 Calcium NA-REFI-SO05-01 mg/kg 5.3 9420							·		·	·		
ILMO4.0 Calcium NA-REFI-SO05-01 mg/kg 5.4 9980								•		•		
ILMO4.0 Calcium NA-REFI-SO06-01 mg/kg 5.2 11100							-			<u> </u>		
ILMO40								-	•	•		
ILMO40 Chromium		Calcium										
ILMO4.0 Chromium NA-REFI-SO03-01 mg/kg 0.21 30.5 10000 1000 390 39 39.9 NA ILMO4.0 Chromium NA-REFI-SO04-01 mg/kg 0.21 24.5 10000 1000 390 39 39.9 NA ILMO4.0 Chromium NA-REFI-SO05-01 mg/kg 0.21 34.5 10000 1000 390 39 39.9 NA ILMO4.0 Chromium NA-REFI-SO05-01 mg/kg 0.21 34.5 10000 1000 390 39 39.9 NA ILMO4.0 Choalt NA-REFI-SO06-01 mg/kg 0.21 19.6 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO02-01 mg/kg 0.17 21.7 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.17 21.7 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 22.1 1200000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.21 22.4 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.21 23.4 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 23.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 29.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 29.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 19.8 2000 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 19.8 2000 3200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Inon NA-REFI-SO05-01 mg/kg 0.2 105 82000 8200 3100 310 134 NA ILMO4.0 Inon NA-REFI-SO03-01 mg/kg 0.2 105 82000 3200 3200 60600 NA ILMO4.0 Inon NA-REFI-SO03-01	ILMO4.0	Chromium										
ILMO4.0 Chromium NA-REFI-SO04-01 mg/kg 0.2 29.1 10000 1000 390 39 39.9 NA ILMO4.0 Chromium NA-REFI-SO05-01 mg/kg 0.21 34.5 10000 1000 390 39 39.9 NA ILMO4.0 Chromium NA-REFI-SO06-01 mg/kg 0.21 30.1 10000 1000 390 39 39.9 NA ILMO4.0 Cobalt NA-REFI-SO06-01 mg/kg 0.21 30.1 10000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO01-31 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO01-31 mg/kg 0.21 32.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 10.0 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO06-01 mg/kg 0.21 10.0 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO06-01 mg/kg 0.21 10.5 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO06-01 mg/kg 0.21 10.5 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO06-01 mg/kg 0.21 10.5 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO06-01 mg/kg 0.41 5.0 400 400 400 400 400 95.5 NA ILMO4.0 Iron NA-REFI-SO06-01 mg/kg 0.41 5.0	ILMO4.0	Chromium										
ILMO4.0 Chromium N.AREFI-SO05-01 mg/kg 0.21 34.5 10000 1000 390 39 39.9 N.A.	ILMO4.0	Chromium		mg/kg								
ILMO4.0 Chromium NA-REFI-SO06-01 mg/kg 0.2 30.1 10000 1000 390 39 39.9 NA ILMO4.0 Cobalt NA-REFI-SO01-31 mg/kg 0.21 19.6 120000 12000 4700 470 22.9 NA ILMO4.0 Cobalt NA-REFI-SO02-01 mg/kg 0.17 21.7 120000 12000 4700 470 22.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.17 21.7 120000 12000 4700 470 22.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 22.9 NA ILMO4.0 Cobalt NA-REFI-SO04-01 mg/kg 0.21 22.9 120000 12000 4700 470 22.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.21 24.9 120000 12000 4700 470 22.9 NA ILMO4.0 Cobalt NA-REFI-SO06-01 mg/kg 0.21 24.9 120000 12000 4700 470 22.9 NA ILMO4.0 Copper NA-REFI-SO06-01 mg/kg 0.21 24.9 120000 12000 4700 470 22.9 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 99 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 92.4 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 700 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 108 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.2 102 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 0.2 115 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 0.2 115 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 0.2 108 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 0.2 108 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 0.2 108 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 0.2 108 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 0.2 108 82000 8200 3100 310 310 3	ILMO4.0	Chromium	NA-REF1-SO04-01	mg/kg								
ILMO4.0 Cobalt NA-REFI-SO01-31 mg/kg 0.21 19.6 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO02-01 mg/kg 0.17 21.7 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO04-01 mg/kg 0.2 22.1 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO04-01 mg/kg 0.2 22.1 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.2 23.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.2 23.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.2 29.8 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 99 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 99 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 0.2 105 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.4 43600	ILMO4.0	Chromium	NA-REF1-SO05-01	mg/kg	0.21							
ILMO4.0 Cobalt NA-REF1-SO02-01 mg/kg 0.17 21.7 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REF1-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REF1-SO03-01 mg/kg 0.2 22.1 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REF1-SO05-01 mg/kg 0.2 22.1 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REF1-SO05-01 mg/kg 0.2 22.4 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REF1-SO06-01 mg/kg 0.2 23.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REF1-SO01-31 mg/kg 0.21 90 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REF1-SO03-01 mg/kg 0.21 92.4 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REF1-SO03-01 mg/kg 0.21 92.4 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REF1-SO05-01 mg/kg 0.2 102 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REF1-SO05-01 mg/kg 0.2 102 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REF1-SO06-01 mg/kg 0.2 105 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REF1-SO01-31 mg/kg 2.9 38000 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO03-01 mg/kg 2.9 48500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO03-01 mg/kg 2.9 43600 610000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO05-01 mg/kg 2.9 43600 610000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO05-01 mg/kg 2.9 43600 610000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO06-01 mg/kg 2.9 43600 610000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO05-01 mg/kg 2.9 43600 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO03-01 mg/kg 0.41 3.97 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO03-01 mg/kg 0.41 5.73 400 400 400 400 95.5 N	ILMO4.0	Chromium	NA-REF1-SO06-01	mg/kg	0.2	30.1						
ILMO4.0 Cobalt NA-REFI-SO03-01 mg/kg 0.21 21.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO04-01 mg/kg 0.2 22.1 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.2 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.2 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO06-01 mg/kg 0.2 23.4 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO01-31 mg/kg 0.21 90 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO02-01 mg/kg 0.17 100 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO04-01 mg/kg 0.2 1924 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO06-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 38000 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 0.41 39.7 400 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REFI-SO05-01 mg/kg 0.41 39.7 400 400 400 400 400 95.5 NA ILMO4.0	ILMO4.0	Cobalt	NA-REF1-SO01-31	mg/kg	0.21						1	
ILMO4.0 Cobalt	ILMO4.0	Cobalt	NA-REF1-SO02-01	mg/kg	0.17	21.7	120000	12000				
ILMO4.0 Cobalt NA-REFI-SO04-01 mg/kg 0.2 22.1 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Cobalt NA-REFI-SO05-01 mg/kg 0.21 24.9 120000 12000 4700 470 28.9 NA ILMO4.0 Copper NA-REFI-SO01-31 mg/kg 0.21 90 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.17 100 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 92.4 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 38000 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO03-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Lead NA-REFI-SO05-01 mg/kg 0.41 39.7 400 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REFI-SO05-01 mg/kg 0.41 39.7 400 400 400 400 400 95.5 NA ILMO4.0		Cobalt	NA-REF1-SO03-01	mg/kg	0.21	21.9	120000	12000	4700			
MO4.0 Cobalt NA-REFI-SO06-01 mg/kg 0.2 23.4 120000 12000 4700 470 28.9 NA MO4.0 Copper NA-REFI-SO01-31 mg/kg 0.21 90 82000 8200 3100 310 134 NA NA MO4.0 Copper NA-REFI-SO02-01 mg/kg 0.17 100 82000 8200 3100 310 134 NA NA MO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 92.4 82000 8200 3100 310 134 NA MO4.0 Copper NA-REFI-SO03-01 mg/kg 0.21 92.4 82000 8200 3100 310 134 NA MO4.0 Copper NA-REFI-SO04-01 mg/kg 0.2 102 82000 8200 3100 310 134 NA MO4.0 Copper NA-REFI-SO05-01 mg/kg 0.21 115 82000 8200 3100 310 134 NA MO4.0 Copper NA-REFI-SO05-01 mg/kg 0.2 105 82000 8200 3100 310 134 NA MA MO4.0 Iron NA-REFI-SO01-31 mg/kg 2.9 38000 610000 62000 23000 23000 66600 NA MO4.0 Iron NA-REFI-SO02-01 mg/kg 2.4 43400 610000 61000 23000 23000 66600 NA MO4.0 Iron NA-REFI-SO03-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA MO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA MO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 43600 610000 61000 23000 2300 60600 NA MO4.0 Iron NA-REFI-SO05-01 mg/kg 2.9 43600 610000 61000 23000 2300 60600 NA MO4.0 Iron NA-REFI-SO05-01 mg/kg 2.8 47800 610000 61000 23000 2300 60600 NA MO4.0 Iron NA-REFI-SO05-01 mg/kg 2.8 47800 610000 61000 23000 2300 60600 NA MO4.0 M		Cobalt	NA-REF1-SO04-01	mg/kg	0.2	22.1	120000	12000				
MO4.0 Cobalt NA-REFI-SO06-01 mg/kg 0.2 23.4 120000 12000 4700 470 28.9 NA 104.0 Copper NA-REFI-SO01-31 mg/kg 0.21 90 82000 8200 3100 310 134 NA 120004 NA-REFI-SO02-01 mg/kg 0.21 90 82000 8200 3100 310 134 NA 120004 12	ILMO4.0	Cobalt	NA-REF1-SO05-01	mg/kg	0.21	24.9	120000	12000	4700	470		
ICA-0 Copper			NA-REF1-SO06-01	mg/kg	0.2	23.4	120000	12000	4700	470		
LLMO4.0 Copper			NA-REF1-SO01-31			90	82000	8200	3100	310	134	NA
ILMO4.0 Copper			NA-REF1-SO02-01			100	82000	8200	3100	310	134	NA
ILMO4.0 Copper		 				92.4	82000	8200	3100	310	134	NA
ILMO4.0 Copper		······				102	82000	8200	3100	310	134	NA
ILMO4.0 Copper		· · · · · · · · · · · · · · · · · · ·				115	82000	8200	3100	310	134	NA
ILMO4.0 Iron NA-REF1-SO02-01 mg/kg 2.9 38000 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO03-01 mg/kg 2.4 43400 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO03-01 mg/kg 2.9 42500 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO04-01 mg/kg 2.9 43600 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO05-01 mg/kg 2.9 43600 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO05-01 mg/kg 2.9 50600 610000 61000 23000 2300 60600 NA ILMO4.0 Iron NA-REF1-SO05-01 mg/kg 2.8 50600 610000 61000 23000 2300 60600 NA ILMO4.0 Lead NA-REF1-SO01-31 mg/kg 0.41 39.7 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO03-01 mg/kg 0.41 57.3 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO03-01 mg/kg 0.41 57.3 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 0.21 682					·	105	82000	8200	3100	310	134	NA
ILMO4.0 Iron NA-REF1-SO02-01 mg/kg 2.4 43400 610000 61000 23000 2300 60600 NA		*****		 			610000	61000	23000	2300	60600	NA
ILMO4.0 Iron					_				23000			
ILMO4.0 Iron												NA
ILMO4.0 Iron		 										
ILMO4.0 Iron						1						
ILMO4.0 Lead NA-REF1-SO01-31 mg/kg 0.41 39.7 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO02-01 mg/kg 0.35 27.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO03-01 mg/kg 0.41 57.3 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO04-01 mg/kg 0.41 50 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO06-01 mg/kg 0.4 38.2 400 400 400 400 95.5 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO02-01 mg/kg 1.6 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 ILMO4.0 Magnesium NA-REF1-SO01-31 m												
ILMO4.0 Lead NA-REF1-SO02-01 mg/kg 0.35 27.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO03-01 mg/kg 0.41 57.3 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO04-01 mg/kg 0.41 50 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO06-01 mg/kg 0.4 38.2 400 400 400 400 95.5 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300				_						, 		
ILMO4.0 Lead NA-REF1-SO03-01 mg/kg 0.41 57.3 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO04-01 mg/kg 0.41 50 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO06-01 mg/kg 0.4 38.2 400 400 400 400 95.5 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO02-01 mg/kg 1.6 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.8 11000 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnanese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnanese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnanese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnanese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnanese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnanese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA		·			`							4
ILMO4.0 Lead NA-REF1-SO04-01 mg/kg 0.41 50 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO06-01 mg/kg 0.4 38.2 400 400 400 400 95.5 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO02-01 mg/kg 1.6 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO04-01 mg/kg 1.8 11000 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700												
ILMO4.0 Lead NA-REF1-SO05-01 mg/kg 0.42 13.8 400 400 400 400 95.5 NA ILMO4.0 Lead NA-REF1-SO06-01 mg/kg 0.4 38.2 400 400 400 400 95.5 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO02-01 mg/kg 1.6 11300 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO04-01 mg/kg 1.8 11000 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 1600 1050 NA ILMO4.0 ILMO4						+						
ILMO4.0 Lead NA-REF1-SO06-01 mg/kg 0.4 38.2 400 400 400 95.5 NA ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300 . 12400 NA ILMO4.0 Magnesium NA-REF1-SO02-01 mg/kg 1.6 11300 . 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 . 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 . 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . 12400 NA ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA												
ILMO4.0 Magnesium NA-REF1-SO01-31 mg/kg 1.9 11300 . 12400 NA ILMO4.0 Magnesium NA-REF1-SO02-01 mg/kg 1.6 11300 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO04-01 mg/kg 1.8 11000 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . . 12400 NA ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA										 		
ILMO4.0 Magnesium NA-REF1-SO02-01 mg/kg 1.6 11300 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO04-01 mg/kg 1.8 11000 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . . 12400 NA ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA										100		
ILMO4.0 Magnesium NA-REF1-SO03-01 mg/kg 1.8 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO04-01 mg/kg 1.8 11000 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . . . 12400 NA ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA								-	·	 		
ILMO4.0 Magnesium NA-REF1-SO04-01 mg/kg 1.8 11000 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . . . 12400 NA ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA						1		i –	-	 		
ILMO4.0 Magnesium NA-REF1-SO05-01 mg/kg 1.9 11700 . . 12400 NA ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . . 12400 NA ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA								 	,	 		
ILMO4.0 Magnesium NA-REF1-SO06-01 mg/kg 1.8 11400 . . 12400 NA ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA		<u> </u>					,	 	-	•		
ILMO4.0 Manganese NA-REF1-SO01-31 mg/kg 0.21 682 41000 4100 1600 160 1050 NA					-			-	•	 		
MANAGE TO THE PROPERTY OF THE								4100	1600	160		
					·							
O4.0 Manganese NA-REF1-SO03-01 mg/kg 0.21 787 41000 4100 1600 160 1050 NA												

							ıstiral	Resid	dential	Reference	Means Comparise Conclusio Reference
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Manganese	NA-REF1-SO04-01	mg/kg	0.2	837	41000	4100	1600	160		NA
ILMO4.0	Manganese	NA-REF1-SO05-01	mg/kg	0.21	875	41000	4100	1600			NA
ILMO4.0	Manganese	NA-REF1-SO06-01	mg/kg	0.2	832	41000	4100	1600			NA
ILMO4.0	Mercury	NA-REF1-SO01-31	mg/kg	0.03	0.12	200	20	7.8	0.78		
ILMO4.0	Mercury	NA-REF1-SO02-01	mg/kg	0.02	0.09	200	20	7.8			
ILMO4.0	Mercury	NA-REF1-SO03-01	mg/kg	0.03	0.14	200	20	7.8			
	Mercury	NA-REF1-SO04-01	mg/kg	0.03	0.12	200	20	7.8			
ILMO4.0	Mercury	NA-REF1-SO05-01	mg/kg	0.03	0.06	200	20	7.8			
	Mercury	NA-REF1-SO06-01	mg/kg	0.02	0.14	200	20	7.8			<u> </u>
	Nickel	NA-REF1-SO01-31	mg/kg	0.41	33.9	41000	4100	1600			NA
	Nickel	NA-REF1-SO02-01	mg/kg	0.35	30.5	41000	4100	1600			<u>. </u>
	Nickel	NA-REF1-SO03-01	mg/kg	0.41	35.4	41000		1600		<u> </u>	NA
ILMO4.0	Nickel	NA-REF1-SO04-01	mg/kg	0.41	33.2	41000	4100	1600			
	Nickel	NA-REF1-SO05-01	mg/kg	0.42	33.5	41000	4100	1600			<u> </u>
ILMO4.0	Nickel	NA-REF1-SO06-01	mg/kg	0.4	34.1	41000	4100	1600			
ILMO4.0	Potassium	NA-REF1-SO01-31	mg/kg	1.2	525			1000	100		NA
ILMO4.0	Potassium	NA-REF1-SO02-01	mg/kg	1	372		<u> </u>	-	 		NA NA
ILMO4.0	Potassium	NA-REF1-SO03-01	mg/kg	1.2	400	.		.	-		NA
ILMO4.0	Potassium	NA-REF1-SO04-01	mg/kg	1.2	435		•	•	-		NA NA
ILMO4.0	Potassium	NA-REF1-SO05-01	mg/kg	1.2	363	·	-	•	-		NA NA
ILMO4.0	Potassium	NA-REF1-SO06-01	mg/kg	1.2	362	-	•	•	·		NA NA
ILMO4.0	Selenium	NA-REF1-SO01-31	mg/kg		0.61 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-REF1-SO02-01	mg/kg		0.61 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-REF1-SO03-01	mg/kg		0.56 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-REF1-SO04-01	mg/kg		0.52 L	10000	1000	390	39		
ILMO4.0	Selenium	NA-REF1-SO05-01	mg/kg		0.52 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-REF1-SO06-01	mg/kg		0.43 L	10000	1000	390	39	0.794	
	Silver	NA-REF1-SO01-31	mg/kg	0.21	0.43 L	10000	1000	390	39	0.794	
	Silver	NA-REF1-SO02-01	mg/kg	0.17	0.27	10000	1000	390		0.61	
	Silver	NA-REF1-SO03-01	mg/kg	0.21	0.27	10000	1000	390	39 39	0.61	
ILMO4.0	Silver	NA-REF1-SO04-01	mg/kg	0.21	0.61	10000	1000	390		0.61	
	Silver	NA-REF1-SO05-01	mg/kg	0.21	0.01	10000	1000	390	39	0.61	
		NA-REF1-SO06-01	mg/kg	0.21		10000			39	0.61	
		NA-REF1-SO01-31	mg/kg	20.7	1670		1000	390	39	0.61	
ILMO4.0		NA-REF1-SO02-01	mg/kg	17.5	1990	-	·		· 	2430	
	Sodium	NA-REF1-SO03-01	mg/kg	20.6	1790		 		•	2430	
	Sodium	NA-REF1-SO04-01	mg/kg	20.4	1470	•	 		<u>- </u>	2430	
		NA-REF1-SO05-01	mg/kg	20.8	1730		+		·	2430	
		NA-REF1-SO06-01	mg/kg	19.9		:	:		•	2430	
		NA-REF1-SO01-31	mg/kg	0.83	1900	140	·		0.55	2430	
		NA-REF1-SO02-01				140	14	5.5	0.55	1.82	
		NA-REF1-SO03-01	mg/kg	0.7	0.93	140	14	5.5	0.55	1.82	
		NA-REF1-SO04-01	mg/kg	0.82		140	14	5.5	0.55	1.82	
			mg/kg	0.82		140	14	5.5	0.55	1.82	
		NA-REF1-SO05-01	mg/kg	0.83		140	14	5.5	0.55	1.82	
		NA-REF1-SO06-01	mg/kg	0.79		140	14	5.5	0.55	1.82	NA
	· · · · · · · · · · · · · · · · · · ·	NA-REF1-SO01-31	mg/kg	0.21		14000	1400	550	55	268	
			mg/kg	0.17		14000	1400	550	55	268	NA
			mg/kg	0.21		14000	1400	550	55	268	
LMO4.0	Vanadium	NA-REF1-SO04-01	mg/kg	0.2	180	14000	1400	550	55	268	

•						Indu	-4i-n]	Resid	ontiol	Reference	Means Comparison Conclusion Reference vs.
	A 104	Commis ID	Units	MIN	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	NA-REF1-SO05-01	mg/kg	0.21	215	14000	1400	550	55	268	
_MO4.0	Vanadium	NA-REF1-SO06-01	mg/kg	0.21	200	14000	1400	550	55	268	
_MO4.0	Vanadium	NA-REF1-SO01-31	mg/kg	0.21		610000	61000	23000	2300	224	
_MO4.0	Zinc	NA-REF1-SO02-01	mg/kg	0.21		610000	61000	23000	2300	224	
_MO4.0	Zinc	NA-REF1-SO03-01	mg/kg	0.17		610000	61000	23000	2300	224	
	Zinc	NA-REF1-SO04-01	mg/kg	0.21		610000	61000	23000	2300	224	
	Zinc	NA-REF1-SO05-01	mg/kg			610000	61000	23000	2300	224	
_MO4.0	Zinc Zinc	NA-REF1-SO06-01	mg/kg			610000	61000	23000	2300	224	
	Chloride	NA-REF1-SO01-31	mg/kg	0.79		200000	20000	7800	780	5.16	
	Chloride	NA-REF1-SO02-01	mg/kg			200000	20000	7800	780	5.16	
	Chloride	NA-REF1-SO02-01	mg/kg	0.83		200000	20000	7800	780	5.16	
	Chloride	NA-REF1-SO04-01	mg/kg	0.81		200000	20000	7800	780	5.16	
	Chloride	NA-REF1-SO05-01	mg/kg	0.81		200000	20000	7800	780	5.16	
	Chloride	NA-REF1-SO06-01	mg/kg	0.78		200000	20000	7800	780	5.16	
	Fluoride	NA-REF1-SO01-31	mg/kg			120000	12000	4700	470	0.763	
	Fluoride	NA-REF1-SO02-01	mg/kg	0.36		120000	12000	4700	470		
	Fluoride	NA-REF1-SO03-01	mg/kg	0.41		120000	12000	4700	470	0.763	
	Fluoride	NA-REF1-SO04-01	mg/kg		ND	120000	12000	4700	470	0.763	
	Fluoride	NA-REF1-SO05-01	mg/kg		ND	120000	12000	4700	470	0.763	
	Fluoride	NA-REF1-SO06-01	mg/kg	0.39		120000	12000	4700	470	0.763	L
	Nitrate	NA-REF1-SO01-31	mg/kg			_	330000			15.5	
	Nitrate	NA-REF1-SO02-01	mg/kg	0.72			330000			15.5	
	Nitrate	NA-REF1-SO03-01	mg/kg				330000				1
E	Nitrate	NA-REF1-SO04-01	mg/kg		5.39		330000			15.5	NA
	Nitrate	NA-REF1-SO05-01	mg/kg	·	6.51		330000			15.5	NA
	Nitrate	NA-REF1-SQ06-01	mg/kg		1		330000				
	UTL abbreviations: NC = 1			<u> </u>							

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Signficant. On average, site data were signficantly greater than reference data.

OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT Aldrin Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	MDL 0.26 0.25 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25	ND 1.1 5.8 0.99 0.8 1.7 ND ND ND	24000 24000 17000 17000 17000 17000 17000 17000 340 340 340		2700 2700 1900 1900 1900 1900 1900 38 38	2700 2700 1900 1900 1900 1900 1900 1900 38	NC 5.8 5.8 5.8 1.7 1.7 1.7 NC	NA NA NA NA NA NA NA NA NA NA NA NA NA N
OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDD 4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.25 0.25 0.26 0.25 0.25 0.26 0.25 0.26 0.25 0.26	ND 1.1 5.8 0.99 0.8 1.7 ND ND ND	24000 24000 17000 17000 17000 17000 17000 340 340	24000 24000 17000 17000 17000 17000 17000 340 340	2700 2700 1900 1900 1900 1900 1900 38 38	2700 2700 1900 1900 1900 1900 1900 1900 38	NC 5.8 5.8 5.8 1.7 1.7 1.7 NC	NA NA NA NA NA NA NA
OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDD 4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.25 0.26 0.25 0.25 0.26 0.25 0.26 0.25 0.26 0.25	ND 1.1 5.8 0.99 0.8 1.7 ND ND ND ND	24000 17000 17000 17000 17000 17000 17000 340 340	24000 17000 17000 17000 17000 17000 17000 340 340	2700 1900 1900 1900 1900 1900 1900 38	2700 1900 1900 1900 1900 1900 1900 38	5.8 5.8 5.8 1.7 1.7 1.7 NC	NA NA NA NA NA NA
OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDE 4,4'-DDE 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REFI-SO02-02 NA-REFI-SO04-02 NA-REFI-SO06-02 NA-REFI-SO02-02 NA-REFI-SO06-02 NA-REFI-SO02-02 NA-REFI-SO06-02 NA-REFI-SO02-02 NA-REFI-SO04-02 NA-REFI-SO04-02 NA-REFI-SO04-02 NA-REFI-SO06-02 NA-REFI-SO06-02 NA-REFI-SO06-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.26 0.25 0.25	1.1 5.8 0.99 0.8 1.7 ND ND ND	17000 17000 17000 17000 17000 17000 340 340	17000 17000 17000 17000 17000 17000 340 340	1900 1900 1900 1900 1900 1900 38	1900 1900 1900 1900 1900 1900 38	5.8 5.8 5.8 1.7 1.7 1.7 NC	NA NA NA NA NA
OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDE 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT Aldrin Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.25 0.25 0.26 0.25 0.25 0.26 0.25 0.25 0.25	5.8 0.99 0.8 1.7 ND ND ND	17000 17000 17000 17000 17000 340 340	17000 17000 17000 17000 17000 340 340	1900 1900 1900 1900 1900 38 38	1900 1900 1900 1900 1900 38	5.8 5.8 1.7 1.7 1.7 NC	NA NA NA NA
OLM03.2 4 OLM03.2 4 OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT Aldrin Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO06-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.25 0.26 0.25 0.25 0.26 0.25 0.25 0.25	0.99 0.8 1.7 ND ND ND	17000 17000 17000 17000 340 340	17000 17000 17000 17000 340 340	1900 1900 1900 1900 38	1900 1900 1900 1900 38	5.8 1.7 1.7 1.7 NC	NA NA NA NA
OLM03.2 4 OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDT 4,4'-DDT 4,4'-DDT Aldrin Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO02-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.26 0.25 0.25 0.26 0.25 0.25 0.25	0.8 1.7 ND ND ND ND	17000 17000 17000 340 340	17000 17000 17000 340 340	1900 1900 1900 38	1900 1900 1900 38	1.7 1.7 1.7 NC	NA NA NA
OLM03.2 4 OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDT 4,4'-DDT Aldrin Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.25 0.25 0.26 0.25 0.25 0.26	ND ND ND ND ND	17000 17000 340 340	17000 17000 340 340	1900 1900 38 38	1900 1900 38	1.7 1.7 NC	NA NA
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	4,4'-DDT Aldrin Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	0.25 0.26 0.25 0.25 0.26	ND ND ND ND ND	17000 340 340	17000 340 340	1900 38 38	1900 38	1.7 NC	NA
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	Aldrin Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO02-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg ug/kg ug/kg ug/kg ug/kg	0.26 0.25 0.25 0.26	ND ND ND	340 340	340 340	38 38	38	NC	
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	Aldrin Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg ug/kg ug/kg ug/kg	0.25 0.25 0.26	ND ND	340	340	38			INIA
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	Aldrin Aroclor-1016 Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO06-02 NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg ug/kg ug/kg	0.25 0.26	ND			· ·	1 4x		
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	Aroclor-1016 Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO02-02 NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg ug/kg	0.26		340	*AII 1				NA
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	Aroclor-1016 Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO04-02 NA-REF1-SO06-02 NA-REF1-SO02-02	ug/kg			2000		38			NA
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	Aroclor-1016 Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO06-02 NA-REF1-SO02-02		V.4.31		2900	2900	320			NA
OLM03.2 A OLM03.2 A OLM03.2 A OLM03.2 A	Aroclor-1221 Aroclor-1221 Aroclor-1221	NA-REF1-SO02-02	INK/KK I	0.25		2900	2900	320	<u> </u>		NA
OLM03.2 A OLM03.2 A OLM03.2 A	Aroclor-1221 Aroclor-1221					2900	2900	320			NA
OLM03.2 A OLM03.2 A	Aroclor-1221	11/1-KCL1-9004-02	ug/kg	0.26		2900	2900	320			NA
OLM03.2 A		NA-REF1-SO06-02	ug/kg	0.25		2900	2900	320			NA
	Aroclor-1232	NA-REF1-SO02-02	ug/kg	0.25		2900	2900	320			NA
		NA-REF1-SO02-02	ug/kg	0.25		2900	2900	320	320		NA
OLM03.2 A		NA-REF1-SO06-02	ug/kg	0.25		2900	2900	320	320		NA
		NA-REF1-SO02-02	ug/kg	0.25		2900	2900	320	320		NA
		NA-REF1-SO04-02	ug/kg ug/kg	0.25		2900	2900	320	320		NA
		NA-REF1-SO06-02		0.25		2900	2900	320	320		NA
		NA-REF1-SO02-02	ug/kg	0.25		2900	2900	320	320		NA
		NA-REF1-SO04-02	ug/kg ug/kg	0.25		2900	2900	320	320		NA
		NA-REF1-SO06-02		0.25		2900	2900	320	320		NA
		NA-REF1-SO02-02	ug/kg ug/kg	0.23		2900	2900	320	320		NA
			ug/kg	0.25		2900	2900	320	320		NA
			ug/kg	0.25	1	2900	2900	320	320		NA
			ug/kg	0.26		2900	2900	320	320		NA
			ug/kg	0.25		2900	2900	320	320		NA
		NA-REF1-SO06-02	ug/kg	0.25		2900	2900	320	320		NA
			ug/kg	0.26		2900	2900	320	320		NA
			ug/kg	0.25		360 360	360 360	40			NA
			ug/kg	0.25			360	40			NA
			ug/kg	0.26		360 1E+07		470000	47000		NA
			ug/kg	0.25			1E+06	470000	47000		NA
			ug/kg	0.25	~		1E+06	470000	47000		NA
							1E+06	470000	47000		NA
			ug/kg	0.26 1			1E+06	470000	47000		NA
		_ ****	ug/kg	0.25 1			1E+06	470000	47000		NA
			ug/kg ug/kg	0.25 1			1E+06	470000	47000		NA
			ug/kg			1E+07		470000	47000	<u></u>	NA
				0.25		1E+07		470000	47000		NA.
			ug/kg	0.25			1E+06	470000	47000		NA
			ug/kg	0.26 1			61000	23000	2300		ŇΑ
			ug/kg	0.25			61000	23000	2300		NA .
			ug/kg ug/kg	0.25 N		510000 510000	61000	23000	2300 I		NA NA

				<u> </u>							Means
										<u> </u>	Comparison
						Total	strial	n	4!1	D.6	Conclusion
Method	Analyte	Sample ID	Linite	MDL	Result		RBSL	Reside RBC	RBSL	Reference UTL	Reference vs. Site
OLM03.2	Endrin aldehyde	NA-REF1-SO04-02	ug/kg	0.25		610000					NA Site
OLM03.2	Endrin aldehyde	NA-REF1-SO06-02	ug/kg	0.25		610000	L				NA :
OLM03.2	Endrin ketone	NA-REF1-SO02-02	ug/kg	0.26		610000					NA
OLM03.2	Endrin ketone	NA-REF1-SO04-02	ug/kg	0.25		610000	1	T.			NA
	Endrin ketone	NA-REF1-SO06-02	ug/kg	0.25		610000					NA
	Heptachlor	NA-REF1-SO02-02	ug/kg	0.26		1300				NC	NA
	Heptachlor	NA-REF1-SO04-02	ug/kg	0.25		1300				NC	NA NA
	Heptachlor	NA-REF1-SO06-02	ug/kg	0.25	<u> </u>	1300	·			NC	NA
	Heptachlor epoxide	NA-REF1-SO02-02	ug/kg	0.26	1	630				NC	NA
	Heptachlor epoxide	NA-REF1-SO04-02	ug/kg	0.25		630				NC	NA
	Heptachlor epoxide	NA-REF1-SO06-02	ug/kg	0.25		630	4-			NC	NA
	Methoxychlor	NA-REF1-SO02-02	ug/kg	0.26		1E+07		1			NA
	Methoxychlor	NA-REF1-SO04-02	ug/kg	0.25		1E+07	1E+06				NA
	Methoxychlor	NA-REF1-SO06-02	ug/kg	0.25		1E+07	1E+06				NA
OLM03.2	Toxaphene	NA-REF1-SO02-02	ug/kg	0.26		5200	5200	580	L	NC	NA
ļ	Toxaphene	NA-REF1-SO04-02	ug/kg	0.25		5200	5200		1		NA
	Toxaphene	NA-REF1-SO06-02	ug/kg	0.25		5200		580			NA
	alpha-BHC	NA-REF1-SO02-02	ug/kg	0.26		910					NA
	alpha-BHC	NA-REF1-SO04-02	ug/kg	0.25		910					NA
	alpha-BHC	NA-REF1-SO06-02	ug/kg	0.25		910					NA
	alpha-Chlordane	NA-REF1-SO02-02	ug/kg	0.26		16000			<u> </u>		NA
	alpha-Chlordane	NA-REF1-SO04-02	ug/kg	0.25		16000					NA
	alpha-Chlordane	NA-REF1-SO06-02	ug/kg	0.25		16000	1	1800			NA
	beta-BHC	NA-REF1-SO02-02	ug/kg	0.26		3200	3200	350			NA
	beta-BHC	NA-REF1-SO04-02	ug/kg	0.25		3200		350	<u> </u>		NA
	beta-BHC	NA-REF1-SO06-02	ug/kg	0.25		3200	3200	350	1		NA
	delta-BHC	NA-REF1-SO02-02	ug/kg	0.26		3200	3200	350			NA
	delta-BHC	NA-REF1-SO04-02	ug/kg	0.25		3200	3200	350			NA
	delta-BHC	NA-REF1-SO06-02	ug/kg	0.25		3200		350			NA
	gamma-BHC(Lindane)	NA-REF1-SO02-02	ug/kg	0.26		4400		490			NA
	gamma-BHC(Lindane)	NA-REF1-SO04-02	ug/kg	0.25		4400		490			NA
	gamma-BHC(Lindane)	NA-REF1-SO06-02	ug/kg	0.25		4400		490	l		NA
	gamma-Chlordane		ug/kg	0.26		16000					NA
	gamma-Chlordane		ug/kg	0.25		16000					NA
	gamma-Chlordane	NA-REF1-SO06-02	ug/kg	0.25		16000					NA
	1,2,4-Trichlorobenzene	NA-REF1-SO02-02	ug/kg		ND	2E+07	·				NA
	1,2,4-Trichlorobenzene	NA-REF1-SO04-02	ug/kg		ND	2E+07	2E+06				NA
OLMO3.2	1,2,4-Trichlorobenzene	NA-REF1-SO06-02	ug/kg	51	ND	2E+07					NA
OLMO3.2	1,2-Dichlorobenzene	NA-REF1-SO02-02	ug/kg	51	ND	2E+08					NA
OLMO3.2	1,2-Dichlorobenzene	NA-REF1-SO04-02	ug/kg		ND	2E+08	-				NA
	1,2-Dichlorobenzene	NA-REF1-SO06-02	ug/kg		ND	2E+08		7000000			NA
	1,3-Dichlorobenzene	NA-REF1-SO02-02	ug/kg		ND	6E+07	<u> </u>	2300000			NA
	1,3-Dichlorobenzene	NA-REF1-SO04-02	ug/kg		ND	6E+07		2300000			NA
	1,3-Dichlorobenzene	NA-REF1-SO06-02	ug/kg		ND	6E+07		2300000			NA
OLMO3.2	1,4-Dichlorobenzene	NA-REF1-SO02-02	ug/kg		ND		240000				NA
OLMO3.2	1,4-Dichlorobenzene	NA-REF1-SO04-02	ug/kg		ND		240000				NA
	1,4-Dichlorobenzene	NA-REF1-SO06-02	ug/kg		ND		240000				NA
OLMO3.2	2,2'-oxybis(1-chloropropane)	NA-REF1-SO02-02	ug/kg	51	ND	82000		9100	9100	NC	NA
	2,2'-oxybis(1-chloropropane)	NA-REF1-SO04-02	ug/kg		ND	82000					NA
103.2	2,2'-oxybis(1-chloropropane)	NA-REF1-SO06-02	ug/kg	51	ND	82000	82000	9100	9100	NC	NA

											Means
											Comparis
İ											Conclusion
							strial	Resid	<u>en</u> tial	Reference	Reference vs.
Method	Analyte	Sample ID		MDL	Result		RBSL	RBC	RBSL	UTL	Site
	2,4,5-Trichlorophenol	NA-REF1-SO02-02	ug/kg	51		2E+08	1				NA
	2,4,5-Trichlorophenol	NA-REF1-SO04-02	ug/kg		ND	2E+08					NA
	2,4,5-Trichlorophenol	NA-REF1-SO06-02	ug/kg		ND	2E+08					NA
	2,4,6-Trichlorophenol	NA-REF1-SO02-02	ug/kg		ND	-	520000				NA
	2,4,6-Trichlorophenol	NA-REF1-SO04-02	ug/kg		ND		520000				NA
	2,4,6-Trichlorophenol	NA-REF1-SO06-02	ug/kg		ND		520000		1		NA
	2,4-Dichlorophenol	NA-REF1-SO02-02	ug/kg		ND		610000		23000		NA
	2,4-Dichlorophenol	NA-REF1-SO04-02	ug/kg		ND		610000				NA
	2,4-Dichlorophenol	NA-REF1-SO06-02	ug/kg		ND		610000				NA
	2,4-Dimethylphenol	NA-REF1-SO02-02	ug/kg		ND	4E+07	4E+06		<u> </u>		NA
	2,4-Dimethylphenol	NA-REF1-SO04-02	ug/kg		ND	4E+07	4E+06			L	NA
	2,4-Dimethylphenol	NA-REF1-SO06-02	ug/kg		ND	4E+07		1600000			NA
	2,4-Dinitrophenol	NA-REF1-SO02-02	ug/kg		ND		410000	+		NC	NA
	2,4-Dinitrophenol	NA-REF1-SO04-02	ug/kg		ND		410000			NC	NA
	2,4-Dinitrophenol	NA-REF1-SO06-02	ug/kg		ND		410000	160000	16000	NC	NA
	2,4-Dinitrotoluene	NA-REF1-SO02-02	ug/kg		ND		410000	160000	16000	NC	NA
	2,4-Dinitrotoluene	NA-REF1-SO04-02	ug/kg		ND		410000	160000	16000	NC	NA
	2,4-Dinitrotoluene		ug/kg		ND		410000	160000	16000		NA
	2,6-Dinitrotoluene	NA-REF1-SO02-02	ug/kg		ND		200000	78000	7800	NC	NA
	2,6-Dinitrotoluene	NA-REF1-SO04-02	ug/kg		ND		200000	78000	7800	NC	NA
	2,6-Dinitrotoluene	NA-REF1-SO06-02	ug/kg		ND		200000	78000	7800		NA
	2-Chloronaphthalene	NA-REF1-SO02-02	ug/kg	**	ND	2E+08	2E+07	6300000	630000	NC	NA 👚
	2-Chloronaphthalene	NA-REF1-SO04-02	ug/kg		ND	2E+08	2E+07	6300000	630000	NC	NA
	2-Chloronaphthalene	NA-REF1-SO06-02	ug/kg		ND	2E+08	2E+07	6300000			NA
	2-Chlorophenol	NA-REF1-SO02-02	ug/kg		ND.	1E+07	1E+06	390000	39000	NC	NA
·	2-Chlorophenol	NA-REF1-SO04-02	ug/kg		ND	1E+07	1E+06		39000	NC	NA
	2-Chlorophenol	NA-REF1-SO06-02	ug/kg	The first	ND	1E+07	1E+06		39000		NA
	2-Methylnaphthalene	NA-REF1-SO02-02	ug/kg		ND	8E+07	8E+06	3100000	310000	NC	NA
	2-Methylnaphthalene	NA-REF1-SO04-02	ug/kg		ND	8E+07	8E+06	3100000	310000	NC	NA
	2-Methylnaphthalene	NA-REF1-SO06-02	ug/kg		ND	8E+07	8E+06	3100000	310000	NC	NA
	2-Nitroaniline	NA-REF1-SO02-02	ug/kg		ND	120000	12000	4700	470	NC	NA
	2-Nitroaniline		ug/kg		ND	120000	12000	4700	470	NC	NA
	2-Nitroaniline		ug/kg		ND	120000	12000	4700	470	NC	NA
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06	630000	63000	NC	NA
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06	630000	63000	NC	NA
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06	630000	63000	NC	NA
	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000	1400	1400	NC	NA
	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000	1400	1400	NC	NA
	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000	1400	1400		NA
	3-Nitroaniline		ug/kg		ND	120000	12000	4700	470		NA.
	3-Nitroaniline		ug/kg		ND	120000	12000	4700	470		NA
	3-Nitroaniline		ug/kg		ND	120000	12000	4700	470		NA
	4,6-Dinitro-2-methylphenol		ug/kg			200000	20000	7800	780		NA
	4,6-Dinitro-2-methylphenol		ug/kg			200000	20000	7800	780		NA
	4,6-Dinitro-2-methylphenol		ug/kg			200000	20000	7800	780	NC	NA
	4-Bromophenyl-phenylether		ug/kg		ND	1E+08	1E+07	4500000			NA
	4-Bromophenyl-phenylether		ug/kg		ND	1E+08		4500000		NC	NA
	4-Bromophenyl-phenylether		ug/kg		ND	1E+08		4500000			NA
	4-Chloro-3-methylphenol		ug/kg		ND	4E+07		1600000			NA
OLMO3.2	4-Chloro-3-methylphenol	NA-REF1-SO04-02	ug/kg	51	ND	4E+07	4E+06	1600000	160000	NC	NA

									· · · · ·		Means Comparison Conclusion
							strial	Resid		Reference	1
Method	Analyte	Sample ID		MDL	Result		RBSL	RBC	RBSL	UTL	Site
	4-Chloro-3-methylphenol	NA-REF1-SO06-02	ug/kg		ND	4E+07	1,00	1			NA
OLMO3.2	4-Chloroaniline	NA-REF1-SO02-02	ug/kg		ND		820000				NA
	4-Chloroaniline	NA-REF1-SO04-02	ug/kg		ND		820000				NA
OLMO3.2	4-Chloroaniline	NA-REF1-SO06-02	ug/kg		ND	+	820000				NA
	4-Chlorophenyl-phenylether	NA-REF1-SO02-02	ug/kg		ND	1E+08					NA
	4-Chlorophenyl-phenylether	NA-REF1-SO04-02	ug/kg		ND	1E+08		ļ			NA
·	4-Chlorophenyl-phenylether	NA-REF1-SO06-02	ug/kg		ND	1E+08		4500000	· · · · · · · · · · · · · · · · · · ·		NA
	4-Nitroanaline	NA-REF1-SO02-02	ug/kg		ND	120000		4700			NA
OLMO3.2	4-Nitroanaline	NA-REF1-SO04-02	ug/kg		ND	120000		4700			NA
	4-Nitroanaline	NA-REF1-SO06-02	ug/kg		ND	120000		4700			NA
	4-Nitrophenol	NA-REF1-SO02-02	ug/kg		ND	2E+07	,		f		NA
	4-Nitrophenol	NA-REF1-SO04-02	ug/kg		ND	2E+07	2E+06				NA
	4-Nitrophenol	NA-REF1-SO06-02	ug/kg		ND	2E+07	2E+06				NA
	Acenaphthene	NA-REF1-SO02-02	ug/kg		ND	1E+08	<u> </u>	4700000			NA
OLMO3.2	Acenaphthene	NA-REF1-SO04-02	ug/kg		ND	1E+08		4700000			NA
	Acenaphthene	NA-REF1-SO06-02	ug/kg		ND	1E+08	 	4700000			NA ·
	Acenaphthylene	NA-REF1-SO02-02	ug/kg		ND	1E+08		4700000			NA
OLMO3.2	Acenaphthylene	NA-REF1-SO04-02	ug/kg		ND	1E+08		4700000			NA
	Acenaphthylene	NA-REF1-SO06-02	ug/kg		ND	1E+08		4700000			NA
OLMO3.2	Anthracene	NA-REF1-SO02-02	ug/kg		ND	6E+08	6E+07				NA
	Anthracene	NA-REF1-SO04-02	ug/kg		ND	6E+08	6E+07	2.3E+07	2E+06		NA
	Anthracene	NA-REF1-SO06-02	ug/kg		ND	6E+08	6E+07	2.3E+07	2E+06		NA
	Benzo(a)anthracene	NA-REF1-SO02-02	ug/kg		ND	7800	7800	870	870		NA
	Benzo(a)anthracene	NA-REF1-SO04-02	ug/kg		ND	7800	7800	870	870		NA
	Benzo(a)anthracene	NA-REF1-SO06-02	ug/kg		ND	7800	7800	870	870		NA
	Benzo(a)pyrene	NA-REF1-SO02-02	ug/kg		ND	780	780	87		NC	NA
	Benzo(a)pyrene	NA-REF1-SO04-02	ug/kg		ND	780	780	87		NC	NA
	Benzo(a)pyrene	NA-REF1-SO06-02	ug/kg		ND	780	780	87		NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO02-02	ug/kg		ND	7800	7800	870	870	NC	NA
	Benzo(b)fluoranthene	NA-REF1-SO04-02	ug/kg		ND	7800	7800	870			NA
	Benzo(b)fluoranthene	NA-REF1-SO06-02	ug/kg		ND	7800	7800	870	870		NA
	Benzo(g,h,i)perylene	NA-REF1-SO02-02	ug/kg		ND	6E+07		2300000			NA
	Benzo(g,h,i)perylene	NA-REF1-SO04-02	ug/kg		ND	6E+07	6E+06	2300000	230000	NC	NA
	Benzo(g,h,i)perylene		ug/kg		ND	6E+07		2300000			NA
	Benzo(k)fluoranthene	NA-REF1-SO02-02	ug/kg		ND	78000		8700	8700		NA
	Benzo(k)fluoranthene	NA-REF1-SO04-02	ug/kg		ND	78000		8700			NA
	Benzo(k)fluoranthene	NA-REF1-SO06-02	ug/kg		ND	78000		8700			NA
	Butylbenzylphthalate	NA-REF1-SO02-02	ug/kg		ND	4E+08		1.6E+07			NA
	Butylbenzylphthalate		ug/kg		ND			1.6E+07	2E+06		NA
	Butylbenzylphthalate	NA-REF1-SO06-02	ug/kg		ND		4E+07	1.6E+07	2E+06	NC	NA
OLMO3.2			ug/kg		ND	290000		32000	32000	NC	NA
OLMO3.2			ug/kg		ND	290000	290000	32000	32000	NC	NA
OLMO3.2		NA-REF1-SO06-02	ug/kg	51	ND	290000	290000	32000	32000	NC	NA
OLMO3.2	Chrysene	NA-REF1-SO02-02	ug/kg	51	ND	780000	780000	87000	87000	NC	NA
	Chrysene	NA-REF1-SO04-02	ug/kg	51	ND	780000	780000	87000			NA
	Chrysene	NA-REF1-SO06-02	ug/kg	51	ND	780000	780000	87000	87000		NA
	Dibenz(a,h)anthracene	NA-REF1-SO02-02	ug/kg	51	ND	780	780	87	87		NA
OLMO3.2	Dibenz(a,h)anthracene	NA-REF1-SO04-02	ug/kg	51	ND	780	780	87	87	NC	NA
O3.2	Dibenz(a,h)anthracene	NA-REF1-SO06-02	ug/kg	51	ND	780	780	87	87		NA

			1		<u> </u>	T				 	
											Means
, ;											Comparis
						T	strial	n	4!_1		Conclusion
Method	Analyte	Samula ID	TT-84-	MON	Th		RBSL	Reside RBC	RBSL	Reference	Reference vs.
	Dibenzofuran	Sample ID NA-REF1-SO02-02	Units ug/kg	MDL	Result ND		820000	310000		UTL	Site NA
	Dibenzofuran	NA-REF1-SO04-02	ug/kg		ND		820000		1		NA NA
	Dibenzofuran	NA-REF1-SO06-02	ug/kg		ND		820000	310000		4	NA NA
	Diethylphthalate	NA-REF1-SO02-02	ug/kg		ND	2E+09	1	6.3E+07	6E+06		<u> </u>
	Diethylphthalate	NA-REF1-S004-02	ug/kg		ND	2E+09		6.3E+07	6E+06		NA NA
	Diethylphthalate	NA-REF1-SO06-02	ug/kg	51				6.3E+07	6E+06		NA NA
	Dimethylphthalate	NA-REF1-SO02-02	ug/kg		ND	2E+09		7.8E+08			
	Dimethylphthalate	NA-REF1-SO02-02			ND		•				NA
	Dimethylphthalate	NA-REF1-SO06-02	ug/kg		ND	2E+10		7.8E+08			NA
	Fluoranthene	NA-REF1-S000-02	ug/kg		ND	2E+10		7.8E+08	8E+07		NA
	Fluoranthene		ug/kg		ND	8E+07		3100000			NA
	Fluoranthene	NA-REF1-SO04-02	ug/kg			8E+07		3100000			NA
	Fluorene	NA-REF1-SO06-02	ug/kg		ND	8E+07		3100000			NA
	Fluorene	NA-REF1-SO02-02	ug/kg		ND DX	8E+07		3100000			NA
	Fluorene	NA-REF1-SO04-02	ug/kg			8E+07	+	3100000			NA
	Hexachloro-1,3-butadiene	NA-REF1-SO06-02	ug/kg		ND	8E+07		3100000			NA
		NA-REF1-SO02-02	ug/kg		ND	73000	73000	8200	8200		NA
	Hexachloro-1,3-butadiene	NA-REF1-SO04-02	ug/kg		ND	73000	73000	8200	8200	.	NA
	Hexachloro-1,3-butadiene	NA-REF1-SO06-02	ug/kg		ND	73000	73000	8200	8200		NA
	Hexachlorobenzene	NA-REF1-SO02-02	ug/kg		ND	3600	3600	400	400		NA
	Hexachlorobenzene	NA-REF1-SO04-02	ug/kg		ND	3600	3600	400	400		NA
	Hexachlorobenzene	NA-REF1-SO06-02	ug/kg	-	ND	3600	3600	400	400		NA
	Hexachlorocyclopentadiene	NA-REF1-SO02-02	ug/kg		ND	1E+07	1E+06	550000	55000		NA
	Hexachlorocyclopentadiene	NA-REF1-SO04-02	ug/kg		ND	1 E+0 7	1E+06	550000	55000		NA
	Hexachlorocyclopentadiene	NA-REF1-SO06-02	ug/kg		ND	1E+07	1E+06	550000	55000		NA
	Hexachloroethane	NA-REF1-SO02-02	ug/kg		ND		410000	46000	46000		NA
	Hexachloroethane	NA-REF1-SO04-02	ug/kg		ND		410000	46000	46000		NA
	Hexachloroethane	NA-REF1-SO06-02	ug/kg		ND		410000	46000	46000		NA
	Indeno(1,2,3-cd)pyrene	NA-REF1-SO02-02	ug/kg		ND	7800	7800	870	870	NC	NA
	Indeno(1,2,3-cd)pyrene	NA-REF1-SO04-02	ug/kg		ND	7800	7800	870	870		NA
	Indeno(1,2,3-cd)pyrene	NA-REF1-SO06-02	ug/kg		ND	7800	7800	870	870	NC	NA
	Isophorone	NA-REF1-SO02-02	ug/kg		ND	6E+06	6E+06	670000	670000	NC	NA
OLMO3.2	Isophorone	NA-REF1-SO04-02	ug/kg	51	ND	6E+06	6E+06	670000	670000	NC	NA
OLMO3.2		NA-REF1-SO06-02	ug/kg	51	ND	6E+06	6E+06	670000	670000	NC	NA
	N-Nitroso-di-n-propylamine	NA-REF1-SO02-02	ug/kg	51	ND	820	820	91	91	NC	NA
	N-Nitroso-di-n-propylamine	NA-REF1-SO04-02	ug/kg	51	ND.	820	820	91	91	NC	NA
	N-Nitroso-di-n-propylamine	NA-REF1-SO06-02	ug/kg	51	ND	820	820	91	91	NC	NA
	N-Nitrosodiphenylamine	NA-REF1-SO02-02	ug/kg	51	ND	1E+06	1E+06	130000	130000	NC	NA
	N-Nitrosodiphenylamine	NA-REF1-SO04-02	ug/kg	51	ND	1E+06	1E+06	130000	130000	NC	NA
	N-Nitrosodiphenylamine	NA-REF1-SO06-02	ug/kg	51	ND	1E+06	1E+06	130000			NA
	Naphthalene	NA-REF1-SO02-02	ug/kg	51	ND	8E+07		3100000			NA
OLMO3.2	Naphthalene	NA-REF1-SO04-02	ug/kg	51	ND	8E+07		3100000			NA
OLMO3.2	Naphthalene		ug/kg		ND	8E+07		3100000			NA
OLMO3.2	Nitrobenzene		ug/kg		ND	-	100000	39000	3900		NA NA
OLMO3.2	Nitrobenzene		ug/kg		ND		100000	39000	3900		NA
OLMO3.2	Nitrobenzene		ug/kg		ND		100000	39000	3900		NA NA
	Pentachlorophenol	NA-REF1-SO02-02	ug/kg		ND	48000	48000	5300	5300		NA.
	Pentachlorophenol		ug/kg		ND	48000		5300	5300		NA
	Pentachlorophenol		ug/kg		ND	48000		5300	***		NA 🗖
	Phenanthrene		ug/kg		ND	6E+07		2300000			NA NA

			T								Means
											Comparison
											Conclusion
İ						Indu	strial	Reside	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
	Phenanthrene	NA-REF1-SO04-02	ug/kg		ND	6E+07	6E+06				NA
	Phenanthrene	NA-REF1-SO06-02	ug/kg		ND	6E+07	6E+06				NA
	Phenol	NA-REF1-SO02-02	ug/kg		ND	1E+09					NA
	Phenol	NA-REF1-SO04-02	ug/kg		ND	1E+09					NA
	Phenol	NA-REF1-SO06-02	ug/kg		ND	1E+09	1E+08				NA
	Pyrene	NA-REF1-SO02-02	ug/kg		ND	6E+07	6E+06				NA
	Pyrene	NA-REF1-SO04-02	ug/kg		ND	6E+07		2300000			NA
	Pyrene	NA-REF1-SO06-02	ug/kg		ND	6E+07		2300000			NA
	bis(2-Chloroethoxy)methane	NA-REF1-SO02-02	ug/kg		ND	5200	5200	580			NA
	bis(2-Chloroethoxy)methane	NA-REF1-SO04-02	ug/kg		ND	5200	5200	580			NA
	bis(2-Chloroethoxy)methane	NA-REF1-SO06-02	ug/kg		ND	5200	5200	580			NA
	bis(2-Chloroethyl)ether	NA-REF1-SO02-02	ug/kg		ND	5200	5200	580	1	1	NA
	bis(2-Chloroethyl)ether	NA-REF1-SO04-02	ug/kg		ND	5200	5200	580		L	NA
	bis(2-Chloroethyl)ether	NA-REF1-SO06-02	ug/kg		ND	5200	5200	580			NA
	bis(2-Ethylhexyl)phthalate	NA-REF1-SO02-02	ug/kg		ND	410000		46000			NA
	bis(2-Ethylhexyl)phthalate	NA-REF1-S004-02	ug/kg		ND	410000		46000		1	NA.
	bis(2-Ethylhexyl)phthalate	NA-REF1-SO06-02	ug/kg		ND		410000	46000			NA
	di-n-Butylphthalate	NA-REF1-SO02-02	ug/kg		ND	2E+08		7800000	<u> </u>		NA NA
	di-n-Butylphthalate	NA-REF1-S002-02	ug/kg	51	I .			7800000	 		NA
	di-n-Butylphthalate	NA-REF1-SO06-02	ug/kg		ND //	2E+08		7800000			NA NA
	di-n-Octylphthalate	NA-REF1-SO02-02	ug/kg		ND	4E+07	4E+06				NA NA
	di-n-Octylphthalate	NA-REF1-SO04-02	ug/kg		ND	4E+07	4E+06				NA NA
	di-n-Octylphthalate	NA-REF1-SO06-02	ug/kg		ND	4E+07	4E+06				NA NA
	o-Cresol	NA-REF1-SO02-02	ug/kg		ND	1E+08		3900000			NA
	o-Cresol	NA-REF1-SO04-02	ug/kg		ND	1E+08		3900000			NA
	o-Cresol	NA-REF1-SO06-02	ug/kg		ND	1E+08					NA
	p-Cresol	NA-REF1-SO02-02	ug/kg		ND	1E+07	1E+06	390000			NA
	p-Cresol	NA-REF1-SO02-02	ug/kg		ND	1E+07	1E+06	390000			NA NA
OLMO3.2	*	NA-REF1-SO06-02	ug/kg		ND	1E+07	1E+06	390000			NA NA
SW8290	p-Cresol 1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO02-02	ng/kg	0.8				4300			
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO02-02	ng/kg		35.3 J	38000		4300		39.6	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-REF1-SO04-02			39.6 J	38000		4300			
	1,2,3,4,6,7,8,9-OCDF	NA-REF1-S000-02 NA-REF1-S002-02	ng/kg		3.9 J	38000	L				NA NA
		NA-REF1-SO02-02			4.6 J	38000		4300			NA NA
SW8290	1,2,3,4,6,7,8,9-OCDF 1,2,3,4,6,7,8,9-OCDF	NA-REF1-SO04-02	ng/kg		4.5 J	38000		4300			NA NA
SW8290		NA-REF1-SO02-02	ng/kg		5.9 J	3800		4300			NA
SW8290 SW8290	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	NA-REF1-SO02-02	ng/kg		5.7 J	3800		430			NA NA
SW8290		NA-REF1-SO04-02	ng/kg ng/kg		6 J	3800		430			NA NA
	1,2,3,4,6,7,8-HpCDD	NA-REF1-S002-02			4.7 J	3800		430		 	NA NA
SW8290	1,2,3,4,6,7,8-HpCDF	 	ng/kg	0.3	 		3800	430			NA NA
	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO04-02	ng/kg		4.8 J	3800	3800	430			
	1,2,3,4,6,7,8-HpCDF	NA-REF1-SO06-02	ng/kg		ND	·					NA NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO02-02	ng/kg			3800	3800	430			NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO04-02	ng/kg	·	1 J	3800	3800	430			NA NA
SW8290	1,2,3,4,7,8,9-HpCDF	NA-REF1-SO06-02	ng/kg		ND	3800		430			NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO02-02	ng/kg		ND	380		43		NC NC	NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO04-02	ng/kg		ND	380		43		NC NC	NA NA
SW8290	1,2,3,4,7,8-HxCDD	NA-REF1-SO06-02	ng/kg		ND	380		43		NC 2.1	NA
SW8290	1,2,3,4,7,8-HxCDF	NA-REF1-SO02-02	ng/kg		2.1 J	380		43			NA NA
290	1,2,3,4,7,8-HxCDF	NA-REF1-SO04-02	ng/kg	0.3	1.9 J	380	380	43	43	2.1	NA

											Means Comparis Conclusion
36.0							strial	Resid			Reference v
Method SW8290	Analyte	Sample ID		MDL	Result	RBC	RBSL	RBC	RBSL		Site
	1,2,3,4,7,8-HxCDF	NA-REF1-SO06-02	ng/kg		2.1 J	380			+		NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO02-02	ng/kg		1.4 J	380					NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO04-02	ng/kg	-	1.2 J	380		43	1		NA
SW8290	1,2,3,6,7,8-HxCDD	NA-REF1-SO06-02	ng/kg		1.5 J	380				-	NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO02-02	ng/kg		0.96 BJ	380		43	<u> </u>		NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO04-02	ng/kg		0.85 J	380	380	43			NA
SW8290	1,2,3,6,7,8-HxCDF	NA-REF1-SO06-02	ng/kg		1.1 BJ	380	380	43			NA
SW8290 SW8290	1,2,3,7,8,9-HxCDD	NA-REF1-SO02-02	ng/kg		5.3 J	380	380	43	4		NA
	1,2,3,7,8,9-HxCDD	NA-REF1-SO04-02	ng/kg	0.3		380	380	43			NA
	1,2,3,7,8,9-HxCDD	NA-REF1-SO06-02	ng/kg		5.3 J	380	380	43			NA
	1,2,3,7,8,9-HxCDF	NA-REF1-SO02-02	ng/kg		ND	380	380	43		NC	NA
	1,2,3,7,8,9-HxCDF	NA-REF1-SO04-02	ng/kg		ND	380	380	43		NC	NA
	1,2,3,7,8,9-HxCDF	NA-REF1-SO06-02	ng/kg		ND	380		43		NC	NA
	1,2,3,7,8-PeCDD	NA-REF1-SO02-02	ng/kg		1.5 J	76	76	8.6			NA
	1,2,3,7,8-PeCDD	NA-REF1-SO04-02	ng/kg		1.3 J	76	76	8.6			NA
	1,2,3,7,8-PeCDD	NA-REF1-SO06-02	ng/kg		1.6 J	76	76	8.6			NA
	1,2,3,7,8-PeCDF	NA-REF1-SO02-02	ng/kg		0.8 J	760	760	86	86		NA
	1,2,3,7,8-PeCDF	NA-REF1-SO04-02	ng/kg		0.54 J	760	760	86	86		NA
	1,2,3,7,8-PeCDF	NA-REF1-SO06-02	ng/kg		0.66 J	760	760	86	86	1	NA
: 	2,3,4,6,7,8-HxCDF	NA-REF1-SO02-02	ng/kg		1.8 BJ	380	380	43	43		NA
	2,3,4,6,7,8-HxCDF	NA-REF1-SO04-02	ng/kg		2 BJ	380	380	43	43	2.2	NA
	2,3,4,6,7,8-HxCDF	NA-REF1-SO06-02	ng/kg		2.2 BJ	380	380	43	43		NA
	2,3,4,7,8-PeCDF	NA-REF1-SO02-02	ng/kg		1.1 J	76	76	8.6	8.6		NA
	2,3,4,7,8-PeCDF	NA-REF1-SO04-02	ng/kg		0.88 J	76	76	8.6	8.6		NA
	2,3,4,7,8-PeCDF	NA-REF1-SO06-02	ng/kg		1.2 J	76	76	8.6	8.6	1.2	NA
	2,3,7,8-TCDD	NA-REF1-SO02-02	ng/kg	0.3		38	38	4.3	4.3	NC	NA
	2,3,7,8-TCDD		ng/kg	0.3		38	38	4.3		NC	NA
	2,3,7,8-TCDD		ng/kg	0.3		38	38	4.3	4.3	NC	NA
	2,3,7,8-TCDF		ng/kg		0.99 J	380	380	43	43	0.99	NA
	2,3,7,8-TCDF		ng/kg		0.79 J	380	380	43	43	0.99	NA
	2,3,7,8-TCDF		ng/kg		0.94 J	380	380	43	43	0.99	NA
	Total HpCDD	NA-REF1-SO02-02	ng/kg	0.5	13.1	.	-			13.1	NA
		NA-REF1-SO04-02		0.4	11					13.1	NA
		NA-REF1-SO06-02		0.2	10.4				•	13.1	NA
		NA-REF1-SO02-02		0.4	5.6				<u> </u>		NA
		NA-REF1-SO04-02		0.4	10 .				<u> </u>		NA
		NA-REF1-SO06-02		0.3	8.2				<u> </u>	10	NA
			ng/kg	0.3	19.1		<u> </u>		-	19.1	NA
		NA-REF1-SO04-02		0.3	13.8		·			19.1	NA
		NA-REF1-SO06-02		0.2	17.4				•	19.1	NA
		NA-REF1-SO02-02		0.3	11 .			·		11.5	NA
		NA-REF1-SO04-02		0.3	8.7					11.5	NA
		NA-REF1-SO06-02		0.2	11.5		.]			11.5	
		NA-REF1-SO02-02		0.4	4.9		<u>. </u>			4.9	NA
		NA-REF1-SO04-02		0.4	3.4					4.9	
		NA-REF1-SO06-02		0.2	1.6					4.9	
		NA-REF1-SO02-02		0.3	12.1 .					12.1	
		NA-REF1-SO04-02		0.4	7.4 .		. 1.			12.1	
SW8290		NA-REF1-SO06-02		0.3	9.7 .	1				12.1	

						Indus	strial	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	Total TCDD	NA-REF1-SO02-02	ng/kg	0.3	2.3					2.3	NA
SW8290	Total TCDD	NA-REF1-SO04-02	ng/kg	0.3	1.7					2.3	NA
SW8290	Total TCDD	NA-REF1-SO06-02	ng/kg	0.3	1.7				-	2.3	NA
SW8290	Total TCDF	NA-REF1-SO02-02	ng/kg	0.2	13.3					13.3	
SW8290	Total TCDF	NA-REF1-SO04-02	ng/kg	0.3	8.7			•		13.3	NA
SW8290	Total TCDF	NA-REF1-SO06-02	ng/kg	0.3	4.9					13.3	NA
ILM04.0	Cyanide	NA-REF1-SO02-02	mg/kg	0.35	ND	41000	4100	1600	160	0.39	NA
ILM04.0	Cyanide	NA-REF1-SO04-02	mg/kg	0.36		41000	4100	1600	160	0.39	NA
ILM04.0	Cyanide	NA-REF1-SO06-02	mg/kg	0.28	0.39	41000	4100	1600	160	0.39	NA
ILMO4.0	Aluminum	NA-REF1-SO02-02	mg/kg		52300	2E+06	200000	78000	7800	57700	NA.
ILMO4.0	Aluminum	NA-REF1-SO04-02	mg/kg	-	52300		200000	78000	7800	57700	NA
ILMO4.0	Aluminum	NA-REF1-SO06-02	mg/kg		57700		200000	78000	7800	57700	NA
ILMO4.0	Antimony	NA-REF1-SO02-02	mg/kg			820	82	31	3.1		NA
ILMO4.0	Antimony	NA-REF1-SO04-02	mg/kg		ND UL	820	82	31	3.1		NA
ILMO4.0	Antimony	NA-REF1-SO06-02	mg/kg		1.5 J	820	82	31	3.1		NA
ILMO4.0	Arsenic	NA-REF1-SO02-02	mg/kg		2.2	3.8	3.8	0.43	0.43		NA
ILMO4.0	Arsenic	NA-REF1-SO04-02	mg/kg		1.3	3.8	3.8	0.43	0.43		NA
ILMO4.0	Arsenic	NA-REF1-SO06-02	mg/kg		2.6	3.8	3.8	0.43			NA
ILMO4.0	Barium	NA-REF1-SO02-02	mg/kg		72.3 K		14000	5500			NA
ILMO4.0	Barium	NA-REF1-SO04-02	mg/kg		67.9 K	140000	14000	5500			NA
ILMO4.0	Barium	NA-REF1-SO06-02	mg/kg		69.4 K		14000	5500			NA
ILMO4.0 ILMO4.0	Beryllium	NA-REF1-SO02-02	mg/kg	·		4100	410	160		NC	NA ·
O4.0	Beryllium	NA-REF1-SO04-02	mg/kg		ND	4100	410	160		NC	NA
		NA-REF1-SO06-02	mg/kg		ND	4100	410	160		NC	NA
1EMO4.0	Beryllium	NA-REF1-SO02-02	mg/kg		0.47 K	1000	100	39			NA
ILMO4.0	Cadmium	NA-REF1-SO04-02	mg/kg		0.47 K	1000	100	39			NA
ILMO4.0	Cadmium	NA-REF1-SO06-02	mg/kg		0.53 K	1000		39		1	NA
ILMO4.0	Cadmium	NA-REF1-SO02-02					100	39	3.7	11600	
ILMO4.0	Calcium		mg/kg	1				<u> </u>	·	11600	
ILMO4.0	Calcium	NA-REF1-SO04-02	mg/kg		9380			·	-	11600	
ILMO4.0	Calcium	NA-REF1-SO06-02 NA-REF1-SO02-02	mg/kg	~~~~			1000	390	39		NA NA
ILMO4.0	Chromium		mg/kg			10000	1000	390			NA NA
ILMO4.0	Chromium	NA-REF1-SO04-02	mg/kg								NA NA
	Chromium	NA-REF1-SO06-02	mg/kg	+				4700			NA NA
ILMO4.0	Cobalt	NA-REF1-SO02-02	mg/kg	+		120000		4700			NA NA
ILMO4.0	Cobalt	NA-REF1-SO04-02	mg/kg			120000		4700			NA NA
ILMO4.0	Cobalt	NA-REF1-SO06-02	mg/kg	4——				3100			NA NA
ILMO4.0	Copper	NA-REF1-SO02-02	mg/kg					3100			NA
ILMO4.0	Copper	NA-REF1-SO04-02	mg/kg								NA
ILMO4.0	Copper	NA-REF1-SO06-02	mg/kg					3100			
ILMO4.0	Iron	NA-REF1-SO02-02	mg/kg			610000		23000			
ILMO4.0	Iron	NA-REF1-SO04-02	mg/kg			610000					
ILMO4.0	Iron	NA-REF1-SO06-02	mg/kg			610000		23000			
ILMO4.0	Lead	NA-REF1-SO02-02	mg/kg				<u>. </u>		+		NA NA
ILMO4.0	Lead	NA-REF1-SO04-02	mg/kg					400			NA
ILMO4.0	Lead	NA-REF1-SO06-02	mg/kg	`			400	400	400		NA
ILMO4.0	Magnesium	NA-REF1-SO02-02					<u> </u>	<u>- </u>	<u> -</u>	12200	
ILMO4.0	Magnesium	NA-REF1-SO04-02	mg/kg	+			·	-	1-	12200	
ILMO4.0	Magnesium	NA-REF1-SO06-02					·			12200	
04.0	Manganese	NA-REF1-SO02-02	mg/kg	0.19	800	41000	4100	1600	160	890	NA

											Means Comparis Conclusion
			1			Indu	strial	Reside	ential	Reference	l
Method	Analyte	Sample ID	Units	MDL	Result	· · · · · · · · · · · · · · · · · · ·	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Manganese	NA-REF1-SO04-02	mg/kg	0.2				1600			NA SILE
ILMO4.0	Manganese	NA-REF1-SO06-02	mg/kg	0.2					160		NA
ILMO4.0	Mercury	NA-REF1-SO02-02	mg/kg	0.02	0.03			7.8	0.78		
ILMO4.0	Mercury	NA-REF1-SO04-02	mg/kg	0.02	0.02			7.8	0.78		
ILMO4.0	Mercury	NA-REF1-SO06-02	mg/kg	0.02				7.8	0.78		
ILMO4.0	Nickel	NA-REF1-SO02-02	mg/kg	0.39			1	1600	160		
ILMO4.0	Nickel	NA-REF1-SO04-02	mg/kg	0.4				1600	160	32.9	
ILMO4.0	Nickel	NA-REF1-SO06-02	mg/kg	0.39	32.9			1600	160	32.9	
ILMO4.0	Potassium	NA-REF1-SO02-02	mg/kg	1.2					100	285	
ILMO4.0	Potassium	NA-REF1-SO04-02	mg/kg	1.2			<u> </u>	•	•	285	
ILMO4.0	Potassium	NA-REF1-SO06-02	mg/kg	1.2					•	285	
ILMO4.0	Selenium	NA-REF1-SO02-02	mg/kg		0.6 L	10000	1000	390	39		NA NA
ILMO4.0	Selenium	NA-REF1-SO04-02	mg/kg		0.58 L	10000	1000	390	39		NA NA
ILMO4.0	Selenium	NA-REF1-SO06-02	mg/kg		ND UL	10000	1000	390	39	0.6	
ILMO4.0	Silver	NA-REF1-SO02-02	mg/kg	0.19		10000	1000	390			NA NA
ILMO4.0	Silver	NA-REF1-SO04-02	mg/kg	1000	ND	10000	1000	390			NA NA
ILMO4.0	Silver	NA-REF1-SO06-02	mg/kg		ND	10000	1000	390			NA
ILMO4.0	Sodium	NA-REF1-SO02-02	mg/kg	19.4			. 1000			2030	
ILMO4.0	Sodium	NA-REF1-SO04-02	mg/kg	19.9	1890			<u>-</u>	<u> </u>	2030	
ILMO4.0	Sodium	NA-REF1-SO06-02	mg/kg	19.7	1750			•••	·	2030	
ILMO4.0	Thallium	NA-REF1-SO02-02	mg/kg		1.7 L	140	14	5.5	0.55	1.7	
ILMQ4.0	Thallium	NA-REF1-SO04-02	mg/kg		ND UL	140		5.5	0.55	1.7	
ILMO4.0	Thallium	NA-REF1-SO06-02	mg/kg		1.4 L	140	14	5.5	0.55	1.7	
ILMO4.0	Vanadium	NA-REF1-SO02-02	mg/kg	0.19	185	14000	1400	550	55	219	
ILMO4.0	Vanadium	NA-REF1-SO04-02	mg/kg	0.2	189	14000	1400	550	55	219	
ILMO4.0	Vanadium	NA-REF1-SO06-02	mg/kg	0.2	219	14000	1400	550	55	219	
ILMO4.0	Zinc	NA-REF1-SO02-02	mg/kg	0.19		610000	61000	23000	2300		
ILMO4.0	Zinc	NA-REF1-SO04-02	mg/kg	0.2		610000	61000	23000	2300	48.6 48.6	
ILMO4.0	Zinc	NA-REF1-SO06-02	mg/kg	0.2		610000	61000	23000	2300	48.6	
300	Chloride	NA-REF1-SO02-02	mg/kg	0.76	7,177,14	200000	20000	7800	780	9.64	
300	Chloride	NA-REF1-SO04-02	mg/kg	0.76		200000	20000	7800	780	9.64	
300	Chloride	NA-REF1-SO06-02	mg/kg	0.76		200000	20000	7800	780		
	Fluoride	NA-REF1-SO02-02	mg/kg	0.38		120000	12000	4700	470	9.64	
	Fluoride	NA-REF1-SO04-02		0.38		120000		4700			NA
	Fluoride		mg/kg	0.38		120000		4700	470		NA NA
	Nitrate	NA-REF1-SO02-02		0.76		3E+06		130000	470		NA
	Nitrate	NA-REF1-SO04-02		0.76		3E+06			13000	6.74	
7	Nitrate	NA-REF1-SO06-02		0.76			330000	130000	13000	6.74	
		Not calculated because refe		0.70	0.74	JUTUO	230000	130000	13000	6.74	NA

Means Comparison Conclusion Reference vs. Site abbreviations:

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Signficant. On average, site data were signficantly greater than reference data.

						Indust	rial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	4,4'-DDD	NA-REF2-SO01-01	ug/kg	0.37		24000	24000	2700	2700		NC
	4,4'-DDD	NA-REF2-SO02-01	ug/kg	0.34		24000	24000	2700	2700	NC .	NC
OLM03.2	4,4'-DDD	NA-REF2-SO03-01	ug/kg	0.37	ND	24000	24000	2700	2700		NC
	4,4'-DDD	NA-REF2-SO04-01	ug/kg	0.29	ND	24000	24000	2700	2700		NC
	4,4'-DDD	NA-REF2-SO05-01	ug/kg	0.33	ND	24000	24000	2700	2700		NC
OLM03.2	4,4'-DDD	NA-REF2-SO06-01	ug/kg	0.38	ND	24000	24000	2700	2700		NC
OLM03.2	4,4'-DDE	NA-REF2-SO01-01	ug/kg	0.37	28	17000	17000	1900	1900		
OLM03.2	4,4'-DDE	NA-REF2-SO02-01	ug/kg	0.34	71	17000	17000	1900	1900	990	<u> </u>
OLM03.2	4,4'-DDE	NA-REF2-SO03-01	ug/kg	0.37	3.3	17000	17000	1900	1900		
OLM03.2	4,4'-DDE	NA-REF2-SO04-01	ug/kg	0.29	4.2	17000	17000	1900	1900	990	
OLM03.2	4,4'-DDE	NA-REF2-SO05-01	ug/kg	0.33	14	17000	17000	1900	1900	990	<u> </u>
OLM03.2	4,4'-DDE	NA-REF2-SO06-01	ug/kg	0.38	12	17000	17000	1900	1900		
OLM03.2	4,4'-DDT	NA-REF2-SO01-01	ug/kg		14 Ј	17000	17000	1900	1900	200	NS
OLM03.2	4,4'-DDT	NA-REF2-SO02-01	ug/kg		24 J	17000	17000	1900	1900		NS
OLM03.2 OLM03.2	4,4'-DDT	NA-REF2-SO03-01	ug/kg			17000	17000	1900	1900	200	NS
OLM03.2	4,4'-DDT	NA-REF2-SO04-01	ug/kg	0.29		17000	17000	1900	1900	200	NS
OLM03.2	4,4'-DDT	NA-REF2-SO05-01	ug/kg		8.3 J	17000		1900	1900	200	NS .
OLM03.2	4,4'-DDT	NA-REF2-SO06-01	ug/kg		7.6 J	17000		1900	1900	200	NS
OLM03.2	Aldrin	NA-REF2-SO01-01	ug/kg		ND	340		38	38	NC	NC
OLM03.2	Aldrin	NA-REF2-SO02-01	ug/kg		ND	340	340	38	38	NC	NC
OLM03.2	Aldrin	NA-REF2-SO03-01	ug/kg		ND	340	340	38	38	NC	NC
OLM03.2 OLM03.2	Aldrin	NA-REF2-SO04-01	ug/kg	+	ND	340	340	38	38	NC	NC
03.2	Aldrin	NA-REF2-SO05-01	ug/kg		ND	340	340	38	38	NC	NC
03.2 03.2	Aldrin	NA-REF2-SO06-01	ug/kg		ND	340		38	38	NC	NC
OLM03.2	Aroclor-1016	NA-REF2-SO01-01	ug/kg	+	ND	2900		320	320	NC	NC
OLM03.2	Aroclor-1016	NA-REF2-SO02-01	ug/kg		ND	2900		320	320	NC	NC
OLM03.2	Aroclor-1016	NA-REF2-SO03-01	ug/kg		ND	2900				NC	NC
	Aroclor-1016	NA-REF2-SO04-01	ug/kg		ND	2900				NC	NC
OLM03.2 OLM03.2	Aroclor-1016	NA-REF2-SO05-01	ug/kg		ND	2900			320	NC	NC
OLM03.2	Aroclor-1016	NA-REF2-SO06-01	ug/kg		ND	2900			320	NC	NC
OLM03.2	Aroclor-1221	NA-REF2-SO01-01	ug/kg		ND	2900			320	NC	NC
OLM03.2		NA-REF2-SO02-01	ug/kg		ND	2900		320	320	NC	NC
	Aroclor-1221		ug/kg		ND	2900		320	320	NC	NC
OLM03.2		NA-REF2-SO04-01	ug/kg		ND	2900		320	320	NC	NC
OLM03.2		NA-REF2-SO05-01	ug/kg		ND	2900	2900	320	320	NC	NC
OLM03.2		NA-REF2-SO06-01	ug/kg		ND	2900	2900	320	320	NC	NC
OLM03.2		NA-REF2-SO01-01	ug/kg	<u> </u>	ND	2900			320	NC	NC
OLM03.2		NA-REF2-SO02-01	ug/kg		ND	2900				NC	NC
OLM03.2		NA-REF2-SO03-01	ug/kg	·	7 ND	2900			320	NC	NC
OLM03.2		NA-REF2-SO04-01	ug/kg	<u> </u>	ND	2900		_	320	NC	NC
OLM03.2		NA-REF2-SO05-01	ug/kg		ND	2900				NC	NC
OLM03.2		NA-REF2-SO06-01	ug/kg	_	ND	2900	+		+	NC	NC
OLM03.2 OLM03.2		NA-REF2-SO01-01	ug/kg		7 ND	2900		+		NC	NC
		NA-REF2-SO02-01	ug/kg		1 ND	2900				NC	NC
OLM03.2		NA-REF2-SO03-01	ug/kg		7 ND	2900				NC	NC
OLM03.2		NA-REF2-SO04-01	ug/kg		ND	2900				NC	NC
OLM03.2		NA-REF2-SO05-01	ug/kg		3 ND	2900		+		NC	NC
OLM03.2		NA-REF2-SO05-01	ug/kg		8 ND	2900		-		ONC	NC
OLM03.2		NA-REF2-SO01-01		_	7 ND	2900			+	NC	NC .
03.2	Aroclor-1248	NA-KEF2-3001-01	ug/k	5 0.3	1110	2700	21 2200		-1 320	11.10	1

		_]				T		T	Means
				İ							Compari
1			-								Conclusion
Method	Analyte	Camula ID		2477		Indus			lential		Reference v
OLM03.2	Aroclor-1248	Sample ID NA-REF2-SO02-01		MDL			RBSL		RBSL	UTL	Site
OLM03.2	Aroclor-1248	NA-REF2-SO03-01	ug/kg ug/kg	0.34		2900				NC	NC
OLM03.2	Aroclor-1248	NA-REF2-SO04-01	ug/kg	0.37		2900				NC	NC
OLM03.2	Aroclor-1248	NA-REF2-SO05-01	ug/kg	0.29		2900 2900				NC	NC
OLM03.2	Aroclor-1248	NA-REF2-SO06-01	ug/kg	0.38		2900			4	NC	NC
OLM03.2	Aroclor-1254	NA-REF2-SO01-01	ug/kg	0.37		2900				NC	NC
OLM03.2	Aroclor-1254	NA-REF2-SO02-01	ug/kg	0.34		2900		· -		NC	NC
OLM03.2	Aroclor-1254	NA-REF2-SO03-01	ug/kg	0.37		2900	2900			NC	NC
OLM03.2	Aroclor-1254	NA-REF2-SO04-01	ug/kg	0.29		2900				NC	NC
OLM03.2	Aroclor-1254	NA-REF2-SO05-01	ug/kg	0.33		2900	2900 2900			NC	NC
OLM03.2	Aroclor-1254	NA-REF2-SO06-01	ug/kg	0.38		2900	2900			NC	NC
OLM03.2	Aroclor-1260	NA-REF2-SO01-01	ug/kg	0.37		2900	2900			NC	NC
OLM03.2	Aroclor-1260	NA-REF2-SO02-01	ug/kg	0.34		2900	2900			NC	NC
OLM03.2	Aroclor-1260	NA-REF2-SO03-01	ug/kg	0.37		2900	2900		320		NC
OLM03.2	Aroclor-1260	NA-REF2-SO04-01	ug/kg	0.29		2900	2900	+		NC	NC
OLM03.2	Aroclor-1260	NA-REF2-SO05-01	ug/kg	0.33		2900	2900			NC	NC
OLM03.2	Aroclor-1260	NA-REF2-SO06-01	ug/kg	0.38		2900	2900	320	320 320		NC
OLM03.2	Dieldrin	NA-REF2-SO01-01	ug/kg	0.37		360	360	40			NC
OLM03.2	Dieldrin	NA-REF2-SO02-01	ug/kg	0.34		360	360	40	***	NC NC	NC
OLM03.2	Dieldrin	NA-REF2-SO03-01	ug/kg	0.37		360	360	40			NC
OLM03.2	Dieldrin	NA-REF2-SO04-01	ug/kg	0.29		360	360	40		NC	NC
OLM03.2	Dieldrin	NA-REF2-SO05-01	ug/kg	0.33		360	360	40		NC NC	NC
OLM03.2	Dieldrin	NA-REF2-SO06-01	ug/kg	0.38		360	360	40		NC NC	NC NC
OLM03.2	Endosulfan I	NA-REF2-SO01-01	ug/kg	0.37		12000000		470000	47000		NC
OLM03.2	Endosulfan I	NA-REF2-SO02-01	ug/kg	0.34		12000000		470000	47000		NC NC
OLM03.2	Endosulfan I	NA-REF2-SO03-01	ug/kg	0.37				470000	47000		NC NC
	Endosulfan I	NA-REF2-SO04-01	ug/kg	0.29		12000000		470000	47000		NC .
	Endosulfan I	NA-REF2-SO05-01	ug/kg	0.33				470000	47000		NC .
	Endosulfan I	NA-REF2-SO06-01	ug/kg	0.38		12000000		470000	47000		NC
	Endosulfan II	NA-REF2-SQ01-01	ug/kg	0.37		12000000		470000	47000		NC NC
	Endosulfan II	NA-REF2-SO02-01	ug/kg	0.34		12000000		470000	47000		NC NC
	Endosulfan II	NA-REF2-SO03-01	ug/kg	0.37		12000000		470000	47000		NC NC
	Endosulfan II	NA-REF2-SO04-01	ug/kg	0.29		12000000					NC NC
	Endosulfan II	NA-REF2-SO05-01	ug/kg	0.33	ND	12000000			47000		NC
	Endosulfan II		ug/kg	0.38		12000000			47000		NC NC
	Endosulfan sulfate	I	ug/kg	0.37		12000000			47000		NC .
	Endosulfan sulfate	NA-REF2-SO02-01	ug/kg	0.34		12000000			47000		NC NC
	Endosulfan sulfate	NA-REF2-SO03-01	ug/kg	0.37				470000	47000 1		NC NC
	Endosulfan sulfate	NA-REF2-SO04-01	ug/kg	0.29				470000	47000		NC NC
	Endosulfan sulfate	NA-REF2-SO05-01	ug/kg	0.33 1			1E+06		47000 1		NC
	Endosulfan sulfate		ug/kg	0.38 1			1E+06		47000 1	<u>.</u>	NC I
	Endrin		ug/kg	0.37 N			61000	23000	2300 1		NC
	Endrin		ug/kg	0.34 N			61000	23000	2300 1		NC
	Endrin		ug/kg	0.37 N			61000	23000	2300 1		NC NC
	Endrin	NA-REF2-SO04-01	ug/kg	0.29 N			61000	23000	2300 1		NC NC
	Endrin	NA-REF2-SO05-01	ug/kg	0.33 N			61000	23000	2300 I		VC VC
	Endrin		ug/kg	0.38 N			61000	23000	2300 N		NC NC
	Endrin aldehyde		ug/kg	0.37 N			61000	23000	2300 N		NC NC
OLM03.2	Endrin aldehyde	NA-REF2-SO02-01	ug/kg	0.34 N				23000	2300 N		VC VC

											Means
								:		İ	Comparison
											Conclusion
						Indust		Resid		4	Reference vs.
Method	Analyte	Sample ID	Units	MDL 0.37	Result	RBC	61000	23000	2300	UTL	Site NC
OLM03.2 OLM03.2	Endrin aldehyde Endrin aldehyde	NA-REF2-SO03-01 NA-REF2-SO04-01	ug/kg	0.37		610000 610000			2300		NC
OLM03.2	Endrin aldehyde	NA-REF2-SO05-01	ug/kg ug/kg	0.29		610000			2300		NC
	Endrin aldehyde	NA-REF2-SO05-01	ug/kg	0.38		610000			2300		NC
OLM03.2	Endrin ketone	NA-REF2-SO01-01	ug/kg	0.37		610000			2300		NC
OLM03.2	Endrin ketone	NA-REF2-SO02-01	ug/kg	0.34		610000			2300		NC
OLM03.2	Endrin ketone	NA-REF2-SO03-01	ug/kg	0.37		610000	· · · · · · · · · · · · · · · · · · ·	23000	2300		NC
OLM03.2	Endrin ketone	NA-REF2-SO04-01	ug/kg	0.29		610000		23000	2300		NC
OLM03.2	Endrin ketone	NA-REF2-SO05-01	ug/kg	0.33		610000		23000	2300		NC
OLM03.2	Endrin ketone	NA-REF2-SO06-01	ug/kg	0.38		610000		23000	2300		NC
ļ	Heptachlor	NA-REF2-SO01-01	ug/kg	0.37		1300	1300	140	140		NC
	Heptachlor	NA-REF2-SO02-01	ug/kg	0.34		1300	1300	140	140		NC
	Heptachlor	NA-REF2-SO03-01	ug/kg	0.37		1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-REF2-SO04-01	ug/kg	0.29	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-REF2-SO05-01	ug/kg	0.33	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-REF2-SO06-01	ug/kg	0.38	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor epoxide	NA-REF2-SO01-01	ug/kg	0.37	ND	630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-REF2-SO02-01	ug/kg	0.34		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-REF2-SO03-01	ug/kg	0.37		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-REF2-SO04-01	ug/kg	0.29		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-REF2-SO05-01	ug/kg	0.33		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-REF2-SO06-01	ug/kg	0.38		630	630	70		NC	NC
03.2	Methoxychlor	NA-REF2-SO01-01	ug/kg	0.37		10000000		390000	39000		NC
103.2س	Methoxychlor	NA-REF2-SO02-01	ug/kg	0.34		10000000		390000	39000		NC
OLM03.2	Methoxychlor	NA-REF2-SO03-01	ug/kg	0.37		10000000		390000	39000		NC
OLM03.2	Methoxychlor	NA-REF2-SO04-01	ug/kg	0.29		10000000		390000	39000		NC
OLM03.2	Methoxychlor	NA-REF2-SO05-01	ug/kg	0.33		10000000		390000	39000		NC
OLM03.2	Methoxychlor	NA-REF2-SO06-01	ug/kg	0.38		10000000		390000	39000		NC
OLM03.2	Toxaphene	NA-REF2-SO01-01	ug/kg	0.37		5200	5200 5200	580	580		NC
OLM03.2	Toxaphene	NA-REF2-SO02-01 NA-REF2-SO03-01	ug/kg	0.34		5200 5200	5200	580 580	580 580		NC NC
OLM03.2 OLM03.2	Toxaphene Toxaphene		ug/kg ug/kg	0.37		5200	5200	580	580		NC NC
OLM03.2			ug/kg	0.23		5200	5200				NC
	Toxaphene		ug/kg	0.38		5200	5200				NC
	alpha-BHC		ug/kg	0.37		910	910				NC
	alpha-BHC		ug/kg	0.34		910	910		100		NC
	alpha-BHC		ug/kg	0.37		910			100		NC
	alpha-BHC		ug/kg	0.29		910			100		NC
	alpha-BHC		ug/kg	0.33		910			100		NC
	alpha-BHC	NA-REF2-SO06-01	ug/kg	0.38		910			100		NC
	alpha-Chlordane	NA-REF2-SO01-01	ug/kg	0.37		16000			1800		
	alpha-Chlordane	NA-REF2-SO02-01	ug/kg	0.34		16000			1800		
	alpha-Chlordane	·	ug/kg	0.37		16000			1800		
	alpha-Chlordane	NA-REF2-SO04-01	ug/kg	0.29		16000	16000		1800		
OLM03.2	alpha-Chlordane	NA-REF2-SO05-01	ug/kg	0.33		16000			1800		
OLM03.2	alpha-Chlordane	NA-REF2-SO06-01	ug/kg	0.38	ND	16000	16000	1800	1800		
OLM03.2	beta-BHC	NA-REF2-SO01-01	ug/kg	0.37	ND	3200	3200	350	350	NC	NC
	beta-BHC	NA-REF2-SO02-01	ug/kg	0.34	ND	3200	3200	350	350	NC	NC
93.2	beta-BHC	NA-REF2-SO03-01	ug/kg	0.37	ND	3200	3200	350	350	NC	NC

											Means
	}										Compari
								ļ			Conclusion
ĺ.			İ	<u> </u>		Indus			lential	Reference	Reference vs.
Method	Analyte	Sample ID	+	MDL		RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	beta-BHC	NA-REF2-SO04-01	ug/kg	0.29		3200				NC	NC
OLM03.2	beta-BHC	NA-REF2-SO05-01	ug/kg	0.33		3200				NC	NC
OLM03.2	beta-BHC	NA-REF2-SO06-01	ug/kg	0.38		3200				NC	NC
OLM03.2	delta-BHC	NA-REF2-SO01-01	ug/kg	0.37		3200				NC	NC
OLM03.2	delta-BHC	NA-REF2-SO02-01	ug/kg	0.34		3200		350	.	NC	NC
OLM03.2	delta-BHC	NA-REF2-SO03-01	ug/kg	0.37		3200		350		NC	NC
OLM03.2	delta-BHC	NA-REF2-SO04-01	ug/kg	0.29		3200		350		NC	NC
OLM03.2 OLM03.2	delta-BHC delta-BHC	NA-REF2-SO05-01	ug/kg	0.33		3200		350			NC
OLM03.2 OLM03.2		NA-REF2-SO06-01	ug/kg	0.38		3200		350			NC
OLM03.2 OLM03.2	gamma-BHC(Lindane)	NA-REF2-SO01-01	ug/kg	0.37		4400		490			NC
OLM03.2 OLM03.2	gamma-BHC(Lindane)	NA-REF2-SO02-01	ug/kg	0.34		4400	1.	490			NC
OLM03.2	gamma-BHC(Lindane) gamma-BHC(Lindane)	NA-REF2-SO03-01	ug/kg	0.37		4400		490			NC
OLM03.2 OLM03.2	gamma-BHC(Lindane)	NA-REF2-SO04-01	ug/kg	0.29		4400		490			NC
OLM03.2	gamma-BHC(Lindane)	NA-REF2-SO05-01	ug/kg	0.33		4400	+	490			NC
OLM03.2 OLM03.2	gamma-Chlordane	NA-REF2-SO06-01 NA-REF2-SO01-01	ug/kg	0.38		4400		490	490		NC
OLM03.2 OLM03.2	gamma-Chlordane	NA-REF2-SO02-01	ug/kg	0.37		16000	<u> </u>	1800	1800		NC
OLM03.2 OLM03.2	gamma-Chlordane	NA-REF2-SO03-01	ug/kg	0.34		16000		1800	1800		NC
OLM03.2	gamma-Chlordane	NA-REF2-SO04-01	ug/kg	0.37		16000		1800	1800		NC
OLM03.2	gamma-Chlordane	NA-REF2-SO05-01	ug/kg ug/kg	0.29		16000		1800	1800		NC
OLM03.2	gamma-Chlordane	NA-REF2-SO06-01	ug/kg ug/kg	0.33		16000 16000	·	1800	1800		NC
OLMO3.2	1,2,4-Trichlorobenzene	NA-REF2-SO01-01	ug/kg ug/kg		ND ND	20000000		1800 780000	1800		NC
	1,2,4-Trichlorobenzene	NA-REF2-SO02-01	ug/kg		ND	20000000		780000	78000 78000		NC NC
***************************************	1,2,4-Trichlorobenzene	NA-REF2-SO03-01	ug/kg		ND	20000000		780000	78000		NC NC
	1,2,4-Trichlorobenzene	NA-REF2-SO04-01	ug/kg		ND	20000000		780000			NC NC
	1.2.4 Trichlorobenzene	NA-REF2-SO05-01	ug/kg		ND	20000000		780000			NC NC
	1,2,4-Trichlorobenzene	NA-REF2-SO06-01	ug/kg		ND	20000000		780000			NC NC
	1,2-Dichlorobenzene	NA-REF2-SO01-01	ug/kg		ND	1.8E+08			78000 700000		NC NC
	1,2-Dichlorobenzene	NA-REF2-SO02-01	ug/kg		ND	1.8E+08	2E+07		700000		NC NC
OLMO3.2	1,2-Dichlorobenzene	NA-REF2-SO03-01	ug/kg	1	ND	1.8E+08	2E+07		700000		NC NC
OLMO3.2	1,2-Dichlorobenzene	NA-REF2-SO04-01	ug/kg	1	ND	1.8E+08	2E+07		700000		NC NC
	1,2-Dichlorobenzene	NA-REF2-SO05-01	ug/kg	67		1.8E+08	2E+07		700000		NC NC
	1,2-Dichlorobenzene		ug/kg		ND	1.8E+08					NC NC
	1,3-Dichlorobenzene		ug/kg		ND	61000000			230000		NC NC
	1,3-Dichlorobenzene	·	ug/kg		ND	61000000			230000		NC NC
	1,3-Dichlorobenzene		ug/kg		ND	61000000			230000		NC
$\overline{}$	1,3-Dichlorobenzene		ug/kg		ND	61000000			230000		NC
	1,3-Dichlorobenzene	*···	ug/kg		ND	61000000			230000		NC NC
	1,3-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	ug/kg		ND	61000000			230000		NC NC
OLMO3.2	1,4-Dichlorobenzene	——————————————————————————————————————	ug/kg		ND		240000				NC NC
OLMO3.2	1,4-Dichlorobenzene		ug/kg		ND		240000	27000			NC
	1,4-Dichlorobenzene		ug/kg	72			240000	27000	27000		NC .
	1,4-Dichlorobenzene		ug/kg		ND		240000	27000	27000		NC
OLMO3.2	1,4-Dichlorobenzene		ug/kg	67			240000	27000	27000		NC
OLMO3.2	1,4-Dichlorobenzene		ug/kg	76			240000	27000	27000		NC
OLMO3.2	2,2'-oxybis(1-chloropropane)		ug/kg	76		82000		9100	9100		NC
OLMO3.2			ug/kg	68		82000		9100	9100		NC NC
			ug/kg	72		82000	$\overline{}$	9100	9100		NC
073400			ug/kg	58		82000		9100			NC NC

											Means
											Comparison
						Indus	⊫4a1	Dogid	lential	Defenses	Conclusion
Method	Analyte	Sample ID	Timite	MDL	Result	Indust RBC	RBSL	RBC	RBSL	Reference UTL	Reference vs. Site
	2,2'-oxybis(1-chloropropane)	NA-REF2-SO05-01	ug/kg		ND	82000					NC
	2,2'-oxybis(1-chloropropane)	NA-REF2-SO06-01	ug/kg		ND	82000					NC
	2,4,5-Trichlorophenol	NA-REF2-SO01-01	ug/kg		ND	2E+08	2E+07		780000		NC
	2,4,5-Trichlorophenol	NA-REF2-SO02-01	ug/kg		ND	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-REF2-SQ03-01	ug/kg		ND	2E+08	2E+07		780000		NC
	2,4,5-Trichlorophenol	NA-REF2-SO04-01	ug/kg		ND	2E+08	2E+07		780000		NC
OLMO3.2	2,4,5-Trichlorophenol	NA-REF2-SO05-01	ug/kg	67	ND	2E+08	2E+07		780000		NC
OLMO3.2	2,4,5-Trichlorophenol	NA-REF2-SO06-01	ug/kg		ND	2E+08	2E+07	8E+06	 		NC
OLMO3.2	2,4,6-Trichlorophenol	NA-REF2-SO01-01	ug/kg	76	ND	520000	520000	58000	58000	NC	NC
	2,4,6-Trichlorophenol	NA-REF2-SO02-01	ug/kg	68	ND		520000				NC
OLMO3.2	2,4,6-Trichlorophenol	NA-REF2-SO03-01	ug/kg	72	ND	520000	520000	58000	58000	NC	NC
OLMO3.2	2,4,6-Trichlorophenol	NA-REF2-SO04-01	ug/kg	58	ND	520000	520000	58000	58000		NC
OLMO3.2	2,4,6-Trichlorophenol	NA-REF2-SO05-01	ug/kg	67	ND	520000	520000		58000	NC	NC
OLMO3.2	2,4,6-Trichlorophenol	NA-REF2-SO06-01	ug/kg	76	ND	520000			58000		NC
OLMO3.2	2,4-Dichlorophenol	NA-REF2-SO01-01	ug/kg	76	ND	6100000					NC
	·····	NA-REF2-SO02-01	ug/kg	68	ND	6100000			23000		NC
OLMO3.2	2,4-Dichlorophenol		ug/kg		ND	6100000			23000		NC
	2,4-Dichlorophenol		ug/kg		ND	6100000			23000		NC
	2,4-Dichlorophenol		ug/kg		ND	6100000			23000		NC
	2,4-Dichlorophenol		ug/kg		ND	6100000					NC
	2,4-Dimethylphenol		ug/kg		ND	41000000			160000		NC
			ug/kg		ND	41000000			160000		NC
	7 7		ug/kg		ND	41000000			160000		NC
			ug/kg		ND	41000000			160000		NC
	<u>` </u>		ug/kg		ND	41000000	4E+06		160000		NC
			ug/kg		ND	41000000	4E+06		160000		NC
			ug/kg		ND	4100000			16000		NC
	•		ug/kg		ND	4100000					NC
	······································		ug/kg		ND	4100000					NC
			ug/kg		ND	4100000					NC
			ug/kg		ND	4100000			16000		NC
			ug/kg		ND	4100000			16000		NC
			ug/kg		ND	4100000					NC
			ug/kg		ND	4100000					NC NC
OLMO3.2			ug/kg		ND	4100000					NC
			ug/kg		ND	4100000			16000		NC
			ug/kg		ND	4100000			16000		NC
			ug/kg		ND	4100000			16000		NC
			ug/kg	76		2000000			7800		NC
OLMO3.2			ug/kg	68		2000000			7800		NC
			ug/kg	72		2000000			7800		NC
			ug/kg	58		2000000			7800		NC
+			ug/kg	67		2000000		78000	7800		NC
			ug/kg	76		2000000	$\overline{}$	78000	7800		NC NC
			ug/kg	76		1.6E+08			630000		NC
			ug/kg	68		1.6E+08			630000		NC
			ug/kg	72		1.6E+08			630000		NC
			ug/kg	58		1.6E+08			630000		NC -
			ug/kg	67			2E+07		630000		NC

										_	Means
											Compari
											Conclusion
					_	Indust			lential	1	Reference vs.
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
	2-Chloronaphthalene	NA-REF2-SO06-01	ug/kg		ND	1.6E+08	2E+07		630000		NC
	2-Chlorophenol	NA-REF2-SO01-01	ug/kg		ND	10000000		390000		A	NC
	2-Chlorophenol	NA-REF2-SO02-01	ug/kg		ND	10000000		390000			NC
	2-Chlorophenol	NA-REF2-SO03-01	ug/kg		ND	10000000		390000			NC
	2-Chlorophenol	NA-REF2-SO04-01	ug/kg		ND	10000000		390000			NC
	2-Chlorophenol	NA-REF2-SO05-01	ug/kg		ND	10000000		390000			NC
	2-Chlorophenol	NA-REF2-SO06-01	ug/kg		ND	10000000		390000			NC
	2-Methylnaphthalene	NA-REF2-SO01-01	ug/kg		ND	82000000			310000		NC
	2-Methylnaphthalene	NA-REF2-SO02-01	ug/kg	68		82000000	8E+06		310000		NC
	2-Methylnaphthalene	NA-REF2-SO03-01	ug/kg	72	ND	82000000	8E+06		310000		NC
	2-Methylnaphthalene	NA-REF2-SO04-01	ug/kg		ND	82000000	8E+06		310000		NC
	2-Methylnaphthalene	NA-REF2-SO05-01	ug/kg		ND	82000000	8E+06		310000		NC
	2-Methylnaphthalene	NA-REF2-SO06-01	ug/kg		ND	82000000	8E+06		310000	1	NC
	2-Nitroaniline	NA-REF2-SO01-01	ug/kg		ND	120000	12000	4700	<u> </u>		NC
	2-Nitroaniline	NA-REF2-SO02-01	ug/kg		ND	120000	12000	4700	470		NC
	2-Nitroaniline	NA-REF2-SO03-01	ug/kg		ND	120000	12000	4700	470	1	NC
	2-Nitroaniline	NA-REF2-SO04-01	ug/kg		ND	120000	12000	4700	470		NC
	2-Nitroaniline	NA-REF2-SO05-01	ug/kg		ND	120000	12000	4700	470		NC
	2-Nitroaniline	NA-REF2-SO06-01	ug/kg		ND	120000	12000	4700	470		NC
	2-Nitrophenol	NA-REF2-SO01-01	ug/kg		ND	16000000		630000			NC
	2-Nitrophenol	NA-REF2-SO02-01	ug/kg		ND	16000000		630000			NC
	2-Nitrophenol	NA-REF2-SO03-01	ug/kg		ND	16000000		630000			NC
	2-Nitrophenol		ug/kg		ND	16000000		630000			NC
	2-Nitrophenol	****	ug/kg		ND	16000000		630000			NC
	2-Nitrophenol	NA-REF2-SO06-01	ug/kg		ND	16000000		630000	63000	i .	NC
	3,3'-Dichlorobenzidine	NA-REF2-SO01-01	ug/kg		ND	13000	13000	1400	1400		NC
	3,3'-Dichlorobenzidine	NA-REF2-SO02-01	ug/kg		ND	13000	13000	1400	1400		NC
	3,3'-Dichlorobenzidine	NA-REF2-SO03-01	ug/kg		ND	13000	13000	1400	1400	NC	NC
	3,3'-Dichlorobenzidine	NA-REF2-SO04-01	ug/kg		ND	13000	13000	1400	1400	NC	NC
	3,3'-Dichlorobenzidine	NA-REF2-SO05-01	ug/kg		ND	13000	13000	1400	1400		NC
	3,3'-Dichlorobenzidine	NA-REF2-SO06-01	ug/kg		ND	13000	13000	1400	1400		NC
	3-Nitroaniline	NA-REF2-SO01-01	ug/kg	76	ND	120000	12000	4700	470	NC	NC
	3-Nitroaniline	NA-REF2-SO02-01	ug/kg		ND	120000	12000	4700	470	NC	NC
	3-Nitroaniline	NA-REF2-SO03-01	ug/kg		ND	120000	12000	4700			NC
	3-Nitroaniline	NA-REF2-SO04-01	ug/kg		ND	120000	12000	4700	470	NC	NC
	3-Nitroaniline		ug/kg		ND	120000	12000	4700	470	NC	NC
OLMQ3.2	3-Nitroaniline	NA-REF2-SO06-01	ug/kg	76	ND	120000	12000	4700	470	NC	NC
	4,6-Dinitro-2-methylphenol	NA-REF2-SO01-01	ug/kg	76	ND	200000	20000	7800	780	NC	NC
	4,6-Dinitro-2-methylphenol	NA-REF2-SO02-01	ug/kg	68	ND	200000	20000	7800	780	NC	NC
		NA-REF2-SO03-01	ug/kg		ND	200000	20000	7800	780		NC
OLMO3.2	4,6-Dinitro-2-methylphenol	NA-REF2-SO04-01	ug/kg	58	ND	200000	20000	7800	780	NC	NC
	4,6-Dinitro-2-methylphenol	NA-REF2-SO05-01	ug/kg	67	ND	200000	20000	7800	780		NC
OLMO3.2	4,6-Dinitro-2-methylphenol	NA-REF2-SO06-01	ug/kg	76	ND	200000		7800	780		NC
OLMO3.2	4-Bromophenyl-phenylether	NA-REF2-SO01-01	ug/kg	76	ND	1.2E+08			450000		NC
OLMO3.2	4-Bromophenyl-phenylether	NA-REF2-SO02-01	ug/kg		ND	1.2E+08			450000		NC
OLMO3.2	4-Bromophenyl-phenylether	NA-REF2-SO03-01	ug/kg		ND	1.2E+08			450000		NC
OLMO3.2	4-Bromophenyl-phenylether	NA-REF2-SO04-01	ug/kg		ND	1.2E+08			450000		NC
OLMO3.2	4-Bromophenyl-phenylether	NA-REF2-SO05-01	ug/kg		ND	1.2E+08			450000		NC _
	4-Bromophenyl-phenylether	NA-REF2-SO06-01	ug/kg		ND	1.2E+08			450000	100000000000000000000000000000000000000	NC

						Indust	rial	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
			WT24	MDI	Dogult	RBC	RBSL		RBSL	UTL	Site
Method	Analyte	Sample ID			Result ND	41000000	4E+06	2E+06			NC
	4-Chloro-3-methylphenol	NA-REF2-SO01-01	ug/kg		ND	41000000	4E+06	2E+06			NC
OLMO3.2	4-Chloro-3-methylphenol	NA-REF2-SO02-01	ug/kg		ND	41000000	4E+06	2E+06			NC
OLMO3.2	4-Chloro-3-methylphenol	NA-REF2-SO03-01	ug/kg		ND ND	41000000	4E+06	2E+06			NC
OLMO3.2	4-Chloro-3-methylphenol	NA-REF2-SO04-01	ug/kg			41000000	4E+06	2E+06			NC
OLMO3.2	4-Chloro-3-methylphenol	NA-REF2-SO05-01	ug/kg		ND	41000000	4E+06	2E+06			NC
OLMO3.2	4-Chloro-3-methylphenol	NA-REF2-SO06-01	ug/kg		ND				31000		NC
OLMO3.2	4-Chloroaniline	NA-REF2-SO01-01	ug/kg		ND	8200000			31000		NC
OLMO3.2	4-Chloroaniline	NA-REF2-SO02-01	ug/kg		ND				31000		NC
OLMO3.2	4-Chloroaniline	NA-REF2-SO03-01	ug/kg		ND	8200000			31000		NC
OLMO3.2	4-Chloroaniline	NA-REF2-SO04-01	ug/kg		ND	8200000			31000		NC
OLMO3.2		NA-REF2-SO05-01	ug/kg	1	ND	8200000					NC
OLMO3.2		NA-REF2-SO06-01	ug/kg		ND	8200000			31000		NC
OLMO3.2		NA-REF2-SO01-01	ug/kg		ND	1.2E+08	1E+07		450000		NC NC
OLMO3.2		NA-REF2-SO02-01	ug/kg		ND	1.2E+08	1E+07		450000		
OLMO3.2		NA-REF2-SO03-01	ug/kg	72	ND	1.2E+08	1E+07		450000		NC
OLMO3.2		NA-REF2-SO04-01	ug/kg	58	ND	1.2E+08			450000		NC
OLMO3.2		NA-REF2-SO05-01	ug/kg	67	ND	1.2E+08			450000		NC
OLMO3.2		NA-REF2-SO06-01	ug/kg		ND	1.2E+08	1E+07		450000		NC
OLMO3.2		NA-REF2-SO01-01	ug/kg		ND	120000	12000			NC	NC
		NA-REF2-SO02-01	ug/kg		ND	120000	12000	4700) NC	NC
OLMO3.2		NA-REF2-SO03-01	ug/kg		ND	120000	12000	4700	_	NC	NC
OLMO3.2		NA-REF2-SO04-01	ug/kg	'	ND	120000	12000	4700		NC	NC
OF MO3.2		NA-REF2-SO05-01	ug/kg		7 ND	120000	12000	4700	470	NC	NC
03.2		NA-REF2-SO06-01	ug/kg	<u>' </u>	5 ND	120000	12000	4700	470	NC	NC
OLMO3.2		NA-REF2-SO01-01	ug/kg	<u></u>	6 ND	16000000		630000	6300	NC	NC
OLMO3.2		NA-REF2-SO02-01	ug/kg	'	8 ND	16000000		630000	6300	0 NC	NC
OLMO3.2		NA-REF2-SO03-01	ug/kg	 _	2 ND	16000000		630000		0 NC	NC
OLMO3.2		NA-REF2-SO04-01	ug/kg		8 ND	16000000		630000		0 NC	NC
OLMO3.2		NA-REF2-SO05-01	ug/kg		7 ND	16000000		630000		0 NC	NC
OLMO3.2		NA-REF2-SO05-01	ug/kg		6 ND	16000000		630000		0 NC	NC
OLMO3.2				4	6 ND	1.2E+08			47000		NC
OLMO3.2		NA-REF2-SO01-01	ug/kg		8 ND	1.2E+08		_	47000		NC
	2 Acenaphthene	NA-REF2-SO02-01	ug/kg		2 ND	1.2E+0		7 5E+06			NC
	2 Acenaphthene	NA-REF2-SO03-01		-	8 ND	1.2E+0			47000	0 NC	NC
	2 Acenaphthene	NA-REF2-SO04-01			7 ND	1.2E+0			47000		NC
OLMO3.		NA-REF2-SO05-01			6 ND	1.2E+0	-		47000		NC
	2 Acenaphthene	NA-REF2-SO06-01			6 ND	1.2E+0			47000		NC
	2 Acenaphthylene	NA-REF2-SO01-01			8 ND	1.2E+0			5 47000		NC
	2 Acenaphthylene	NA-REF2-SO02-01			2 ND	1.2E+0			5 47000		NC
	2 Acenaphthylene	NA-REF2-SO03-01		~ 1					5 47000		NC
OLMO3.	2 Acenaphthylene	NA-REF2-SO04-01		~	8 ND	1.2E+0			6 47000		NC
OLMO3.	2 Acenaphthylene	NA-REF2-SO05-01			7 ND	1.2E+0		_	6 47000		NC
	2 Acenaphthylene	NA-REF2-SO06-01		-	6 ND	1.2E+0				06 NC	NC NC
	2 Anthracene	NA-REF2-SO01-01			6 ND	6.1E+0					NC
	2 Anthracene	NA-REF2-SO02-01		<u>ب</u>	68 ND	6.1E+0				06 NC	NC NC
	2 Anthracene	NA-REF2-SO03-01			72 ND	6.1E+0				06 NC	
	2 Anthracene	NA-REF2-SO04-01			58 ND	6.1E+0	_			06 NC	NC NC
	2 Anthracene	NA-REF2-SO05-01			57 ND	6.1E+0				06 NC	NC
	2 Anthracene	NA-REF2-SO06-01	ug/k	<u> </u>	76 ND	6.1E+0				06 NC	NC NC
	2 Benzo(a)anthracene	NA-REF2-SO01-01	ug/k	g	76 ND	780	0 780	0 87	<u>u 8</u>	70 NC	NC

Method	i Analyte					Indus	strial	Resid	dential	Reference	Means Compari Conclusion Reference vs.
OLMO3.		Sample ID NA-REF2-SO02-01		MDL			RBSL	RBC	RBSL	UTL	Site
OLMO3.	(1.7	NA-REF2-SO03-01			ND	7800			870	NC	NC
OLMO3.	1(-)				ND	7800		870	870	NC	NC
OLMO3.		NA-REF2-SO04-01 NA-REF2-SO05-01			ND	7800		870	870	NC	NC
OLMO3.		NA-REF2-SO06-01			ND	7800		870	870	NC	NC
OLMO3.		NA-REF2-SO01-01			ND	7800	7800	870	870	NC	NC
OLMO3.2		NA-REF2-SO02-01			ND	780		87	87	NC	NC
OLMO3.2	\ /F/	NA-REF2-SO02-01			ND	780		87	87	NC	NC
OLMO3.2	Benzo(a)pyrene	NA-REF2-SO04-01	+		ND	780		87	87	NC	NC
OLMO3.2		NA-REF2-SO05-01	 2 0 		ND	. 780	780	87	87	NC	NC
	Benzo(a)pyrene	NA-REF2-SO05-01	ug/kg		ND	780	780	87	87		NC
	Benzo(b)fluoranthene	NA-REF2-SO01-01	ug/kg		ND	780	780	87	87		NC
OLMO3.2	Benzo(b)fluoranthene	NA-REF2-SO01-01	ug/kg		ND	7800	7800	870	870		NC
	Benzo(b)fluoranthene		ug/kg	68		7800	7800	870	870		NC
OLMO3.2	Benzo(b)fluoranthene	NA-REF2-SO03-01	ug/kg	72		7800	7800	870	870		NC
DLMO3.2	Benzo(b)fluoranthene	NA-REF2-S004-01	ug/kg	58		7800	7800	870	870		NC
	Benzo(b)fluoranthene	NA-REF2-SO05-01	ug/kg	67		7800	7800	870	870		NC
DLMO3.2	Benzo(g,h,i)perylene	NA-REF2-SO06-01	ug/kg	76		7800	7800	870	870		NC
DLMO3.2	Benzo(g,h,i)perylene	NA-REF2-SO01-01	ug/kg	76		61000000	6E+06	2E+06	230000 1		NC
DLMO3.2	Benzo(g,h,i)perylene	NA-REF2-SO02-01	ug/kg	68		61000000	6E+06	2E+06	230000 1		NC
LMO3.2	Benzo(g,h,i)perylene	NA-REF2-SO03-01	ug/kg	72			6E+06	2E+06	230000 1	NC I	NC
DLMO3.2	Benzo(g,h,i)perylene	NA-REF2-SO04-01	ug/kg	58 1		61000000	6E+06	2E+06	230000 1		NC
DLMO3.2	Benzo(g,h,i)perylene	NA-REF2-SO05-01	ug/kg	67 1			6E+06		230000 1		NC
LMO3.2	Benzo(k)fluoranthene	NA-REF2-SO06-01	ug/kg	76			6E+06	2E+06	230000 1		NC
LMO3.2		NA-REF2-SO01-01	ug/kg	76 N		78000	78000	8700	8700 N		NC
LMO3.2	Benzo(k)fluoranthene	NA-REF2-SO02-01	ug/kg	68 1		78000	78000	8700	8700 N		NC
	Benzo(k)fluoranthene	NA-REF2-SO03-01	ug/kg	72 N		78000	78000	8700	8700 N		NC
	Benzo(k)fluoranthene		ug/kg	58 N		78000	78000	8700	8700 N		NC
	Benzo(k)fluoranthene		ug/kg	67 N		78000	78000	8700	8700 N		1C
	Butylbenzylphthalate		ug/kg	76 N		78000	78000	8700	8700 N		iC -
	Butylbenzylphthalate		ug/kg	76 N		4.1E+08	4E+07	2E+07	2E+06	83 N	
	Butylbenzylphthalate	1	ug/kg	68 N		4.1E+08	4E+07		2E+06	83 N	
LMO3.2	Butylbenzylphthalate		ug/kg	72 N		4.1E+08			2E+06	83 N	
LMO3.2	Butylbenzylphthalate		ug/kg	58 N		4.1E+08			2E+06	83 N	
	Butylbenzylphthalate	1	ug/kg	67 N		4.1E+08	4E+07		2E+06	83 N	
	Carbazole		ug/kg	76 N		4.1E+08			2E+06	83 N	
	Carbazole		ug/kg	76 N		290000 2			32000 N		č
	Carbazole	1574	ug/kg	68 N		290000 2			32000 N		c
	Carbazole		ug/kg	72 N		290000 2			32000 N		c
	Carbazole		ug/kg	58 N		290000 2	90000		32000 N		
	Carbazole	371	ug/kg	67 N		290000 2			32000 N		
	Chrysene		ug/kg	76 N		290000 2	90000 :		32000 N		
MO3.2	Chrysene		ug/kg	76 N		780000 78			87000 N		
MO3.2	Chrysene	AT 1 TO STATE OF THE STATE OF T	ig/kg	68 N		780000 78			37000 N		
	Chrysene		ıg/kg	72 N		780000 78			37000 N		
	Chrysene	374	ıg/kg	58 NI	D	780000 78			37000 NO		
	Chrysene	***	ıg/kg	67 NI		780000 78		_~	37000 NO		
	Dibenz(a,h)anthracene	1	ıg/kg	76 NI		780000 78			37000 NO		
MO3.2	Dibenz(a,h)anthracene Dibenz(a,h)anthracene	374	ıg/kg	76 NI		780	780	87	87 NO		
AVIO3.2	Divenz(a,n)anthracene	NA-REF2-SO02-01 U	g/kg	68 NI		780	780	87	87 NO		

								Reside	ntial		Means Comparison Conclusion Reference vs
		Sample ID	Units	MDL	Result	RBC		RBC	RBSL	UTL_	Site
Method	Analyte	NA-REF2-SO03-01	ug/kg		ND	780	780	87			NC
	10100112(4,11)4114141-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	NA-REF2-SO04-01	ug/kg		ND	780	780	87			NC
	Diociid(u,xx)	NA-REF2-SO05-01	ug/kg		ND	780	780	87	87	NC	NC
LMO3.2	Dibenz(a,h)anthracene	NA-REF2-SO06-01	ug/kg		ND	780	780	87			NC
LMO3.2	Dibenz(a,h)anthracene	NA-REF2-SO01-01	ug/kg		ND	8200000	820000	310000	31000	NC	NC
LMO3.2	Dibenzofuran	NA-REF2-SO02-01	ug/kg		ND	8200000			31000	NC	NC
DLMO3.2	Dibenzofuran	NA-REF2-SO03-01	ug/kg		ND	8200000			31000	NC	NC
DLMO3.2	Dibenzofuran		ug/kg	1	ND	8200000			31000		NC
DLMO3.2	Dibenzofuran	NA-REF2-SO04-01			ND	8200000			31000		NC
DLMO3.2	Dibenzofuran	NA-REF2-SO05-01	ug/kg		ND	8200000			31000		NC
DLMO3.2	Dibenzofuran	NA-REF2-SO06-01	ug/kg		ND	1.6E+09	2E+08	6E+07	6E+06		NC
DLMO3.2	Diethylphthalate	NA-REF2-SO01-01	ug/kg		ND	1.6E+09		6E+07	6E+06		NC
DLMO3,2	Diethylphthalate	NA-REF2-SO02-01	ug/kg		ND	1.6E+09	2E+08	6E+07	6E+06		NC
DLMO3.2	Diethylphthalate	NA-REF2-SO03-01	ug/kg		ND	1.6E+09	2E+08	6E+07	6E+06		NC
OLMO3.2	Diethylphthalate	NA-REF2-SO04-01	ug/kg		ND	1.6E+09		6E+07	6E+06	J	NC
OLMO3.2		NA-REF2-SO05-01	ug/kg			1.6E+09		6E+07	6E+06		NC
OLMO3.2		NA-REF2-SO06-01	ug/kg		ND			8E+08	8E+07		NC
OLMO3.2		NA-REF2-SO01-01	ug/kg		ND	2E+10			8E+07		NC
OLMO3.2		NA-REF2-SO02-01	ug/kg		ND	2E+10			8E+07		NC
OLMO3.2	Dimethylphthalate	NA-REF2-SO03-01	ug/kg		ND	2E+10			8E+07		NC
OLMO3.2	Dimethylphthalate	NA-REF2-SO04-01	ug/kg		ND	2E+10			8E+07		NC
OLMO3.2	Dimethylphthalate	NA-REF2-SO05-01	ug/kg		ND_	2E+10					NC
OLMO3.2	Dimethylphthalate	NA-REF2-SO06-01	ug/kg		ND	2E+10			8E+07		NC NC
03.2	Fluoranthene	NA-REF2-SO01-01	ug/kg		ND	82000000			310000) NC
DEMO3.2		NA-REF2-SO02-01	ug/kg		ND	82000000			310000) NC
OLMO3.2		NA-REF2-SO03-01	ug/kg		ND	82000000			310000) NC
OLMO3.2		NA-REF2-SO04-01	ug/kg		ND	82000000			310000		NC NC
OLMO3.2		NA-REF2-SO05-01	ug/kg		7 ND	82000000			31000		
OLMO3.2		NA-REF2-SO06-01	ug/kg		ND _	82000000			31000		NC
OLMO3.2		NA-REF2-SO01-01	ug/kg		6 ND	82000000			31000		NC
OLMO3.2		NA-REF2-SO02-01	ug/kg	, ı.——	8 ND	82000000			31000		NC
OLMO3.2		NA-REF2-SO03-01	ug/kg	, i	2 ND	82000000			31000		NC
	Fluorene	NA-REF2-SO04-01	ug/kg	5 5	8 ND	82000000			31000	ONC	NC
	Fluorene	NA-REF2-SO05-01	ug/kg	g 6	7 ND	8200000			31000		NC
	Fluorene	NA-REF2-SO06-01	ug/kg	3 7	6 ND	8200000			31000		NC
	Hexachloro-1,3-butadiene	NA-REF2-SO01-01		z 7	6 ND	7300				0 NC	NC
	Hexachloro-1,3-butadiene	NA-REF2-SO02-01		g 6	8 ND	7300		8200		0 NC	NC
	Hexachloro-1,3-butadiene	NA-REF2-SO03-01		g 7	2 ND	7300	0 7300	8200		0 NC	NC
	2 Hexachloro-1,3-butadiene	NA-REF2-SO04-01			8 ND	7300	0 7300	8200		0 NC	NC
	2 Hexachloro-1,3-butadiene	NA-REF2-SO05-01	ug/k	g 6	7 ND	7300				0 NC	NC
	Hexachloro-1,3-butadiene	NA-REF2-SO06-01	ug/k	g 7	6 ND	7300			-	0 NC	NC
	2 Hexachlorobenzene	NA-REF2-SO01-01			6 ND	360				0 NC	NC
	2 Hexachlorobenzene	NA-REF2-SO02-01			8 ND	360	0 360			0 NC	NC
	2 Hexachlorobenzene	NA-REF2-SO03-01			2 ND	360	0 360	0 400		0 NC	NC
	2 Hexachlorobenzene	NA-REF2-SO04-01		<u> </u>	8 ND	360	0 360	0 40	1	0 NC	NC
	2 Hexachlorobenzene	NA-REF2-SO05-01			7 ND	360	0 360	0 40) 40	0 NC	NC
	2 Hexachlorobenzene	NA-REF2-SO06-01			6 ND	360		0 40	0 40	00 NC	NC
		NA-REF2-SO01-01			6 ND	1400000		6 55000	5500	0 NC	NC
	2 Hexachlorocyclopentadiene	NA-REF2-SO02-01			8 ND U			6 55000		00 NC	NC
OLMO3.	Hexachlorocyclopentadiene Hexachlorocyclopentadiene	NA-REF2-SO03-01			72 ND U					00 NC	NC

Method	l Analyte					Indu	strial	Resi	dential	Reference	Means Compari Conclusion Reference vs.
	2 Hexachlorocyclopentadiene	Sample ID NA-REF2-SO04-01		MDL			RBSL	RBC	RBSL	UTL	Site
OLMO3.	2 Hexachlorocyclopentadiene	NA-REF2-SO05-01	_		ND UJ			550000			NC
OLMO3.	2 Hexachlorocyclopentadiene				ND UJ			550000	55000		NC
OLMO3.					ND UJ			550000	55000	NC	NC
OLMO3.		NA-REF2-SO01-01 NA-REF2-SO02-01	<u></u>		ND		410000		46000	NC	NC
OLMO3.					ND		410000		46000	NC	NC
OLMO3.	2 Hexachloroethane	NA-REF2-SO03-01 NA-REF2-SO04-01			ND		410000		46000	NC	NC
	2 Hexachloroethane				ND		410000		46000	NC	NC
	Hexachloroethane	NA-REF2-SO05-01			ND		410000		46000	NC	NC
	2 Indeno(1,2,3-cd)pyrene	NA-REF2-SO06-01			ND		410000	46000	46000	NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-REF2-SO01-01			ND	7800		870	870		NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-REF2-SO02-01			ND	7800	7800	870	870		NC
	Indeno(1,2,3-cd)pyrene	NA-REF2-SO03-01	ug/kg		ND	7800		870	870		NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-REF2-SO04-01	+		ND	7800	7800	870	870		NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-REF2-SO05-01	ug/kg		ND	7800	7800	870	870		NC
OLMO3.2	Isophorone	NA-REF2-SO06-01	ug/kg		ND	7800	7800	870	870		NC
OLMO3.2		NA-REF2-SO01-01	ug/kg		ND	6000000	6E+06	670000	670000		NC
OLMO3.2		NA-REF2-SO02-01	ug/kg	68		6000000			670000		NC
OLMO3.2	1 2	NA-REF2-SO03-01	ug/kg	72		6000000	6E+06	670000	670000		NC
OLMO3.2		NA-REF2-SO04-01	ug/kg	58		6000000	6E+06	670000	670000		NC
OLMO3.2		NA-REF2-SO05-01	ug/kg	67		6000000	6E+06	670000	670000		NC
OLMO3.2		NA-REF2-SO06-01	ug/kg	76		6000000	6E+06	670000	670000		NC
DLMO3.2		NA-REF2-SO01-01	ug/kg	76		820	820	91	91		NC
DLMO3.2	N-Nitroso-di-n-propylamine	NA-REF2-SO02-01	ug/kg	68		820	820	91	91		NC
DLMO3.2	N-Nitroso-di-n-propylamine	NA-REF2-SO03-01	ug/kg	72		820	820	91	91 1		NC
DLMO3.2	N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine	NA-REF2-SO04-01	ug/kg	58 1		820	820	91	91 1		NC
DLMO3.2	N-Nitroso-di-n-propylamine	NA-REF2-SO05-01	ug/kg	67 1		820	820	91	91 1		NC
	N-Nitrosodiphenylamine	NA-REF2-SO06-01	ug/kg	76 1		820	820	91	91 1		vC
DLMO3.2		NA-REF2-SO01-01	ug/kg	76 1		1200000	1E+06	130000	130000 1		VC
DLMO3.2	N-Nitrosodiphenylamine N-Nitrosodiphenylamine	NA-REF2-SO02-01	ug/kg	68 1		1200000	1E+06	130000	130000 1		NC
	N-Nitrosodiphenylamine	NA-REF2-SO03-01	ug/kg	72 N		1200000	1E+06	130000	130000 N		VC
MO3.2	N-Nitrosodiphenylamine	NA-REF2-SO04-01	ug/kg	58 N					130000 N		VC
I MO3 2	N-Nitrosodiphenylamine	NA-REF2-SO05-01	ug/kg	67 N		1200000	1E+06 1	30000	130000 N		1C
LMO3.2	N-Nitrosodiphenylamine	NA-REF2-SO06-01	ug/kg	76 N	₫D		1E+06 1				1C
	Naphthalene Naphthalene	NA-REF2-SO01-01	ug/kg	76 N	1D				310000 N		ic -
	Naphthalene		ug/kg	68 N					310000 N		ic
	Naphthalene		ug/kg	72 N	ID T				310000 N		ic -
LMO3.2	Naphthalene	la a	ug/kg	58 N					310000 N		ic
	Naphthalene	NA-REF2-SO05-01	ug/kg	67 N					10000 N		ic
	Nitrobenzene	NA-REF2-SO06-01	ug/kg	76 N	D				10000 N		ic
	Nitrobenzene	NA-REF2-SO01-01	ug/kg	76 N	D	1000000 1		39000	3900 N		c
		NA-REF2-SO02-01	ug/kg	68 N	D	1000000 1	00000	39000	3900 N		c
		NA-REF2-SO03-01	ug/kg	72 N	D	1000000 1		39000	3900 N		
		NA-REF2-SO04-01	ug/kg	58 N	D	1000000 1		39000	3900 N		
		NA-REF2-SO05-01	ug/kg	67 N	D	1000000 1		39000	3900 N		
		NA-REF2-SO06-01	ug/kg	76 N	D	1000000 1		39000	3900 N		
			ug/kg	76 N	D	-	48000	5300	5300 N		
		NA-REF2-SO02-01	ug/kg	68 N			48000	5300	5300 N		
		NA-REF2-SO03-01	ug/kg	72 N			48000	5300	5300 N		
_IVIU3.2	Pentachlorophenol		ug/kg	58 N			48000	5300	5300 N		

		Industrial ppc pps				ial	Resid		Reference	Means Comparison Conclusion Reference vs		
	_	CIn ID	Units	MDI.	Result			RBSL	RBC	RBSL	UTL	Site
Method	Analyte	Sample ID NA-REF2-SO05-01	ug/kg		ND	48	3000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-REF2-SO05-01	ug/kg		ND	1	3000	48000	5300	5300		NC
	Pentachlorophenol	NA-REF2-SO00-01 NA-REF2-SO01-01	ug/kg		ND	61000	-	6E+06	2E+06	230000	NC	NC
	Phenanthrene		ug/kg		ND	61000		6E+06	2E+06	230000	NC	NC
LMO3.2	Phenanthrene	NA-REF2-SO02-01	ug/kg		ND	6100		6E+06	2E+06	230000	NC	NC
LMO3.2	Phenanthrene	NA-REF2-SO03-01	ug/kg		ND	6100	_	6E+06	2E+06	230000	NC	NC
LMO3.2	Phenanthrene	NA-REF2-SO04-01	ug/kg		ND	6100		6E+06	2E+06	230000	NC	NC
LMO3.2	Phenanthrene	NA-REF2-SO05-01			ND -	6100		6E+06		230000		NC
LMO3.2	Phenanthrene	NA-REF2-SO06-01	ug/kg	L	ND		E+09	1E+08	5E+07			NC
LMO3.2	Phenol	NA-REF2-SO01-01	ug/kg		ND		3+09	1E+08	5E+07	5E+06		NC
LMO3.2	Phenol	NA-REF2-SO02-01	ug/kg		ND		E+09	1E+08	5E+07	5E+06		NC
LMO3.2		NA-REF2-SO03-01	ug/kg	 	ND		E+09	1E+08	5E+07			NC
LMO3.2		NA-REF2-SO04-01	ug/kg		ND		E+09	1E+08	5E+07			NC
LMO3.2		NA-REF2-SO05-01	ug/kg		ND		E+09	1E+08	5E+07			NC
LMO3.2	Phenol	NA-REF2-SO06-01.	ug/kg		5 ND	6100		6E+06		230000		NC
LMO3.2	Pyrene	NA-REF2-SO01-01	ug/kg		ND ND		0000	6E+06		230000		NC
LMO3.2	Pyrene	NA-REF2-SO02-01	ug/kg				0000	6E+06		230000		0 NC
LMO3.2	Pyrene	NA-REF2-SO03-01	ug/kg		ND		00000	6E+06		230000		0 NC
LMO3.2	Pyrene	NA-REF2-SO04-01	ug/kg		ND_		00000	6E+06		230000		0 NC
LMO3.2	Pyrene	NA-REF2-SO05-01	ug/kg		7 ND					23000		0 NC
LMO3.2		NA-REF2-SO06-01	ug/kg	-	6 ND	6100	5200) NC	NC
LMO3.2	bis(2-Chloroethoxy)methane	NA-REF2-SO01-01	ug/kg		6 ND		5200	 			0 NC	NC
MO3.2		NA-REF2-SO02-01	ug/kg		8 ND		5200				0 NC	NC
O3.2	bis(2-Chloroethoxy)methane	NA-REF2-SO03-01	ug/kg	<u>' </u>	2 ND		5200				0 NC	NC
JEMO3.2		NA-REF2-SO04-01	ug/kg		8 ND		5200	-			0 NC	NC
OLMO3.2		NA-REF2-SO05-01	ug/kg	4	7 ND		5200				0 NC	NC
OLMO3.2		NA-REF2-SO06-01	ug/kg		6 ND		5200				0 NC	NC
OLMO3.2		NA-REF2-SO01-01			6 ND		5200				0 NC	NC
OLMO3.2		NA-REF2-SO02-01			8 ND		5200				0 NC	NC
OLMO3.2		NA-REF2-SO03-01			2 ND		5200				0 NC	NC
OLMO3	bis(2-Chloroethyl)ether	NA-REF2-SO04-01	ug/k		8 ND		5200					NC NC
OLMO3	2 bis(2-Chloroethyl)ether	NA-REF2-SO05-01	ug/k		7 ND		5200				0 NC	NC
OL MO3	2 bis(2-Chloroethyl)ether	NA-REF2-SO06-01	ug/k	- I.	6 ND		5200					
OLMO3	2 bis(2-Ethylhexyl)phthalate	NA-REF2-SO01-01			76 230 J			410000				SS NS
OLMO3	2 bis(2-Ethylhexyl)phthalate	NA-REF2-SO02-01	ug/k	-	58 200 J			410000				S NS
OLMO3	2 bis(2-Ethylhexyl)phthalate	NA-REF2-SO03-01	ug/k		72 260 J			410000				85 NS
OLMO3.	2 bis(2-Ethylhexyl)phthalate	NA-REF2-SO04-01	ug/k					41000		_		85 NS 85 NS
OLMO3.	2 bis(2-Ethylhexyl)phthalate	NA-REF2-SO05-01	l ug/k					0 41000				85 NS
OLMO3	2 bis(2-Ethylhexyl)phthalate	NA-REF2-SO06-0						0 41000				
OLMO3	2 di-n-Butylphthalate	NA-REF2-SO01-0					2E+0			6 7800		80 NS 80 NS
OLMO3	2 di-n-Butylphthalate	NA-REF2-SO02-0		g		_	2E+0			7800		
OLMO3.		NA-REF2-SO03-0		g	72 1	110	2E+0			7800		80 NS
	2 di-n-Butylphthalate	NA-REF2-SO04-0			58	75	2E+0			06 7800		80 NS
OLMO3		NA-REF2-SO05-0	1 ug/k		67 5	510	2E+0			06 7800		80 NS
		NA-REF2-SO06-0			76	380	2E+0			06 7800		80 NS
OLMO3		NA-REF2-SO01-0			76 ND	410	00000	0 4E+0		06 1600		NC
OLMO3		NA-REF2-SO02-0			68 ND	41	00000	0 4E+0		06 1600		NC
OLMO3		NA-REF2-SO03-0		<u></u>	72 ND	41	00000	0 4E+0		06 1600		NC
OLMO3		NA-REF2-SO04-0		-	58 ND		00000	0 4E+0		06 1600		NC
OLMO3	.2 di-n-Octylphthalate .2 di-n-Octylphthalate	NA-REF2-SO05-0			67 ND		00000			06 1600	00 NC	NC

3.6.						Indus	atrio l		9		Mean Compari Conclusion
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL		dential RBSL	Reference	1
OLMO3.2	di-n-Octylphthalate	NA-REF2-SO06-0	l ug/kg		ND	41000000			160000	UTL	Site
OLMO3.2		NA-REF2-SO01-0	l ug/kg		ND	1E+08			390000	NC NC	NC
OLMO3.2		NA-REF2-SO02-0			ND	1E+08			390000		NC
OLMO3.2	o-Cresol	NA-REF2-SO03-0	l ug/kg		ND	1E+08			390000		NC
OLMO3.2		NA-REF2-SO04-0	l ug/kg		ND	1E+08			390000		NC
OLMO3.2		NA-REF2-SO05-0	l ug/kg		ND	1E+08			390000		NC
OLMO3.2	o-Cresol	NA-REF2-SO06-0	ug/kg		ND	1E+08			390000		NC
DLMO3.2	p-Cresol	NA-REF2-SO01-01	ug/kg		ND	10000000		390000			NC
DLMO3.2	p-Cresol	NA-REF2-SO02-01	ug/kg		ND	10000000	<u>. </u>	390000			NC
DLMO3.2		NA-REF2-SO03-01	ug/kg	72	ND	10000000		390000	39000 39000		NC
DLMO3.2		NA-REF2-SO04-01	ug/kg		ND	10000000		390000			NC
DLMO3.2		NA-REF2-SO05-01	ug/kg		ND	10000000		390000	39000		NC
	p-Cresol	NA-REF2-SO06-01	ug/kg		ND	10000000		390000	39000 39000		NC
	1,2,3,4,6,7,8,9-OCDD	NA-REF2-SO01-01	ng/kg		1230 J	38000	38000	4300			NC
	1,2,3,4,6,7,8,9-OCDD	NA-REF2-SO02-01	ng/kg	1	987	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD	NA-REF2-SO03-01	ng/kg	2	779	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD	NA-REF2-SO04-01	ng/kg	0.6	307	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD	NA-REF2-SO05-01	ng/kg	0.9	801	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD	NA-REF2-SO06-01	ng/kg	0.7	1610	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9 -OCDF	NA-REF2-SO01-01	ng/kg		130 J	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDF	NA-REF2-SO02-01	ng/kg	0.8	110	38000	38000	4300	4300	212 1	
	1,2,3,4,6,7,8,9-OCDF	NA-REF2-SO03-01	ng/kg	1.7	100	38000	38000		4300	212	
	1,2,3,4,6,7,8,9-OCDF	NA-REF2-SO04-01	ng/kg	0.5	36.3	38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF	NA-REF2-SO05-01	ng/kg	0.8	116	38000	38000	4300	4300	212 N	
	1,2,3,4,6,7,8,9-OCDF	NA-REF2-SO06-01	ng/kg	0.6	181	38000	38000	4300 4300	4300	212 N	
	1,2,3,4,6,7,8-HpCDD	NA-REF2-SO01-01	ng/kg	0.3		3800	3800		4300	212 N	
	1,2,3,4,6,7,8-HpCDD	NA-REF2-SO02-01	ng/kg	0.8		3800	3800	430	430	235 S	
	,2,3,4,6,7,8-HpCDD	NA-REF2-SO03-01	ng/kg	1.3		3800	3800	430	430	235 S	
	,2,3,4,6,7,8-HpCDD	NA-REF2-SO04-01	ng/kg		0.4 J	3800	3800	430	430	235 S	
	,2,3,4,6,7,8-HpCDD	NA-REF2-SO05-01	ng/kg	0.5	136	3800	3800	430	430	235 S	
	,2,3,4,6,7,8-HpCDD	NA-REF2-SO06-01	ng/kg	0.4	211	3800	3800	430	430	235 S	
	,2,3,4,6,7,8-HpCDF	NA-REF2-SO01-01	ng/kg	0.3	96.4	3800	3800	430	430	235 S	
	,2,3,4,6,7,8-HpCDF	NA-REF2-SO02-01	ng/kg	0.4	86.7	3800	3800	430	430	258 N	
	,2,3,4,6,7,8-HpCDF		ng/kg	0.8	89.1	3800	3800	430	430	258 N	
	,2,3,4,6,7,8-HpCDF	NA-REF2-SO04-01	ng/kg	0.4	34.5	3800	3800	430	430	258 N	·
	,2,3,4,6,7,8-HpCDF		ng/kg	0.4	98.1	3800	3800	430	430	258 N	
	.2,3,4,6,7,8-HpCDF	NA-REF2-SO06-01	ng/kg	0.3	133	3800	3800	430	430	258 N	
	2,3,4,7,8,9-HpCDF	NA-REF2-SO01-01	ng/kg	0.4 1		3800	3800	430	430	258 N	<u> </u>
	2,3,4,7,8,9-HpCDF		ng/kg	0.6	18.2	3800	3800	430	430	41.9 S	
	2,3,4,7,8,9-HpCDF	NA-REF2-SO03-01	ng/kg	1.2	20.3	3800	3800	430	430	41.9 S	
	2,3,4,7,8,9-HpCDF	374	ng/kg	0.5	8.4	3800	3800	430	430	41.9 S	
	2,3,4,7,8,9-HpCDF	137.	ng/kg	0.6 24		3800	3800	430	430	41.9 S	
	2,3,4,7,8,9-HpCDF	3 7 4	ng/kg	0.5	32.3	3800		430	430	41.9 S	
	2,3,4,7,8-HxCDD	N 7 A	ng/kg	0.3 8		380	3800	430	430	41.9 S	
	2,3,4,7,8-HxCDD		ng/kg	0.6 9			380	43	43	13.7 NS	
	2,3,4,7,8-HxCDD		ng/kg	1 6.		380	380	43	43	13.7 NS	
	2,3,4,7,8-HxCDD	1 X Y A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ng/kg	0.5 3.		380	380	43	43	13.7 NS	
	2,3,4,7,8-HxCDD	374	ng/kg	0.3 3.	5.7	380	380	43	43	13.7 NS	
8290 1,2	2,3,4,7,8-HxCDD	774	ng/kg	0.4	7.2	380	380	43	43	13.7 NS	

						Industrial Residentia		ential	Reference	Means Comparison Conclusion Reference vs.	
		Comple ID	Timita	MDI	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	NA-REF2-SO01-01	ng/kg		42.5 J	380	380	43	43	97.8	
SW8290	1,2,3,4,7,8-HxCDF	NA-REF2-SO02-01	ng/kg		38.3 J	380	380	43	43	97.8	
SW8290	1,2,3,4,7,8-HxCDF	NA-REF2-SO02-01	ng/kg		39.8 J	380	380	43	43	97.8	
SW8290	1,2,3,4,7,8-HxCDF	NA-REF2-SO04-01			15.1 J	380	380	43	43	97.8	
SW8290	1,2,3,4,7,8-HxCDF		ng/kg		39.8 J	380	380	43	43		
SW8290	1,2,3,4,7,8-HxCDF	NA-REF2-SO05-01	ng/kg		58.2 J	380		43	43		
SW8290_	1,2,3,4,7,8-HxCDF	NA-REF2-SO06-01	ng/kg		15 J	380		43	43		
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO01-01	ng/kg		13.4 J	380		43	43		
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO02-01	ng/kg		12.5 J	380		43	43		
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO03-01	ng/kg		6.6 J	380		43	43		
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO04-01	ng/kg			380		43	43		
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO05-01	ng/kg	0.4				43	43		<u> </u>
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO06-01	ng/kg	0.3		380		43	43		
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO01-01	ng/kg	0.3		380			43		
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO02-01	ng/kg	0.3		380		43			
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO03-01	ng/kg	0.6		380		43	43		
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO04-01	ng/kg	0.2		380		43	43		NS NS
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO05-01	ng/kg	0.3		380		43	43		NS
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO06-01	ng/kg	0.2		380		43	43		
SW8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO01-01	ng/kg		24 J	380		43	43	-l	
SW8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO02-01	ng/kg		29.5 J	380		43			
SW8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO03-01	ng/kg		22.9 J	380		43			
SW8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO04-01	ng/kg		20.2 J	380					
290	1,2,3,7,8,9-HxCDD	NA-REF2-SO05-01	ng/kg		21.4 J	380		1			
5 w 8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO06-01	ng/kg		25.5 J	380					
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO01-01	ng/kg		1.5 J	380					NS
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO02-01	ng/kg		1.4 J	380					NS
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO03-01	ng/kg		2.2 J	380	4				NS
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO04-01	ng/kg		0.68 J	380					NS
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO05-01	ng/kg	0.4	1.5 J	380			 		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO06-01	ng/kg		3.6 J	380		1			NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO01-01	ng/kg	0.3	6.2 J	76					NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO02-01	ng/kg							·	NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO03-01	ng/kg	0.7	5.4	76	76	8.6	8.6		NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO04-01	ng/kg	0.3	3.7 J	76			8.6		NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO05-01	ng/kg	0.5	5.9	76	76	8.6	8.6		NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO06-01	ng/kg	0.3	7.3	76	76	8.6	8.6	9.8	NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO01-01	ng/kg	0.3	9.9	760	760	86	86		NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO02-01	ng/kg	0.3	9.9	760	760	86	86		NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO03-01	ng/kg	0.5	9	760	760				NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO04-01	ng/kg		3 3.7 J	760	760	86	86	30.0	NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO05-01	ng/kg		8.2	760	760	86	86		NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO06-01	ng/kg		3 13	760	760				NS
SW8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO01-01	ng/kg		37.2 J	380	380	43	43		l NS
SW8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO02-01	ng/kg		1 32.5 J	380	380	43	43	10	I NS
SW8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO03-01	ng/kg		7 34.2 J	380	380	43	43		I NS
SW8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO04-01	ng/kg		3 15.3 J	380	380	43	3 43	3 10	1 NS
SW8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO05-01	ng/kg		4 42.1 J	380					1 NS
SW8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO06-01	ng/kg		3 54.6 J	380					I NS
290	2,3,4,7,8-PeCDF	NA-REF2-SO01-01	ng/kg		_+						4 NS

Method				 	T		-					
SW8290 2,3.47,8-PCDF NA-REP3-SO02-01 ng/kg 0.3 12.5 76 8.6 8.6 374 NS SW8290 2,3.47,8-PCDF NA-REP3-SO03-01 ng/kg 0.3 12.1 76 76 8.6 8.6 374 NS SW8290 2,3.47,8-PCDF NA-REP3-SO03-01 ng/kg 0.3 12.1 76 76 8.6 8.6 374 NS SW8290 2,3.47,8-PCDF NA-REP3-SO03-01 ng/kg 0.3 12.1 76 76 8.6 8.6 374 NS SW8290 2,3.47,8-PCDF NA-REP3-SO03-01 ng/kg 0.3 12.1 76 76 8.6 8.6 374 NS SW8290 2,3.78-TCDD NA-REP3-SO03-01 ng/kg 0.3 12.1 76 76 8.6 8.6 374 NS SW8290 2,3.78-TCDD NA-REP3-SO03-01 ng/kg 0.3 0.717 378 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDD NA-REP3-SO03-01 ng/kg 0.3 0.717 38 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDD NA-REP3-SO03-01 ng/kg 0.3 0.59 38 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDD NA-REP3-SO03-01 ng/kg 0.3 0.59 38 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDD NA-REP3-SO03-01 ng/kg 0.3 0.59 38 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDD NA-REP3-SO03-01 ng/kg 0.3 0.59 38 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 0.59 38 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 0.59 38 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 9.3 38 4.3 4.3 2.4 NS SW8290 2,3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 9.3 38 4.3 4.3 2.8 NS SW8290 2,3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 9.3 38 38 4.3 4.3 2.8 NS SW8290 2,3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 9.3 38 38 4.3 4.3 2.8 NS SW8290 0.3 3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 9.3 38 38 4.3 4.3 2.8 NS SW8290 0.3 3.78-TCDF NA-REP3-SO03-01 ng/kg 0.3 9.3 38 38 4.3 4.3 3.2 NS NS SW8290 0.3	Method	Analyte	Some la VD		1							Means Compari Conclusion Reference v
SW8290 2.3.4.7.8-PCDF NA-REF2-SO03-01 ng/kg 0.5 1.2 76 76 8.6 8.6 37.4 NS SW8290 2.3.4.7.8-PCDF NA-REF2-SO04-01 ng/kg 0.3 5.6 76 76 8.6 8.6 37.4 NS SW8290 2.3.4.7.8-PCDF NA-REF2-SO04-01 ng/kg 0.3 5.6 76 76 8.6 8.6 37.4 NS SW8290 2.3.4.7.8-PCDF NA-REF2-SO05-01 ng/kg 0.3 1.2 76 76 8.6 8.6 37.4 NS SW8290 2.3.4.7.8-PCDF NA-REF2-SO06-01 ng/kg 0.3 17.9 76 76 8.6 8.6 37.4 NS SW8290 2.3.7.8-TCDD NA-REF2-SO04-01 ng/kg 0.3 17.9 76 76 8.6 8.6 37.4 NS SW8290 2.3.7.8-TCDD NA-REF2-SO04-01 ng/kg 0.3 0.771 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDD NA-REF2-SO04-01 ng/kg 0.3 0.3 0.771 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.3 0.771 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.391 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.391 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.391 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 0.391 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 0.3 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 0.3 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.3 38 38 4.3 4.3 2.4 NS SW8290 2.3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.5 0.3 38 38 4.3 4.3 2.4 NS SW8290 2.3 3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.5 0.5 38 38 4.3 4.3 3.2 NS SW8290 2.3 3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.6 8.1 38 38 4.3 4.3 3.2 NS SW8290 2.3 3.7.8-TCDF NA-REF2-SO03-01 ng/kg 0.6 8.1 38 38 4.3 4.3 3.			NA PERS SOOS OF									Site
SW8290 2.3.47.8-PCDF NA-REF2-SO05-01 ng/kg 0.3 1.1 76 76 8.6 8.6 37.4 NS SW8290 2.3.47.8-PCDF NA-REF2-SO05-01 ng/kg 0.3 12.1 76 76 8.6 8.6 37.4 NS SW8290 2.3.47.8-PCDF NA-REF2-SO05-01 ng/kg 0.3 12.1 76 76 8.6 8.6 37.4 NS SW8290 2.3.7-8-TCDD NA-REF2-SO05-01 ng/kg 0.3 12.1 76 76 8.6 8.6 37.4 NS SW8290 2.3.7-8-TCDD NA-REF2-SO05-01 ng/kg 0.3 0.971 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.971 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.971 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.301 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.301 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDD NA-REF2-SO03-01 ng/kg 0.3 0.301 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 0.301 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 0.301 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 0.301 38 38 4.3 4.3 2.4 NS SW8290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 3800 43 43 32.8 NS SW2290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 3800 43 43 32.8 NS SW2290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 3800 43 43 32.8 NS SW2290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 3800 43 43 32.8 NS SW2290 2.3.7-8-TCDF NA-REF2-SO03-01 ng/kg 0.3 0.3 3800 43 43 32.8 NS SW2290 2.3 3.3												
SW8290 2,3,4,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,3 12,1 76 76 8,6 8,6 37,4 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,3 17,9 76 76 8,6 8,6 37,4 NS SW8290 2,3,7,8,PCDD NA_REF2_SO05-01 ng/kg 0,3 0,69 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDD NA_REF2_SO05-01 ng/kg 0,3 0,77 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDD NA_REF2_SO05-01 ng/kg 0,3 0,77 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDD NA_REF2_SO05-01 ng/kg 0,3 0,92 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDD NA_REF2_SO05-01 ng/kg 0,3 0,92 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDD NA_REF2_SO05-01 ng/kg 0,3 0,92 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDD NA_REF2_SO05-01 ng/kg 0,3 0,92 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,3 0,92 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,3 0,92 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,3 0,92 38 38 43 43 2,4 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,3 0,93 0,3 0,3 0,3 43 32,8 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,6 8,1 360 360 43 43 32,8 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,6 8,1 360 360 43 43 32,8 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,6 8,1 360 360 43 43 32,8 NS SW8290 2,3,7,8,PCDF NA_REF2_SO05-01 ng/kg 0,6 7,8 360 360 43 43 32,8 NS SW8290 700.1 HpCDD NA_REF2_SO05-01 ng/kg 0,6 7,8 360 360 43 43 32,8 NS SW8290 Total HpCDD NA_REF2_SO05-01 ng/kg 0,6 7,8 360 360 43 43 32,8 NS NS 360		<u> </u>										
SW8290 2,3.7.8-PCDF NA-REF2-S006-01 ng/kg 0.3 17.9 76 76 8.6 8.6 37.4 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.3 0.69 38 38 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDD NA-REF2-S000-01 ng/kg 0.3 0.677 3.8 38 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDD NA-REF2-S000-01 ng/kg 0.3 0.677 3.8 38 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDD NA-REF2-S000-01 ng/kg 0.6 0.96 3.8 38 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDD NA-REF2-S000-01 ng/kg 0.6 0.96 3.8 38 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDD NA-REF2-S000-01 ng/kg 0.3 0.92 3.8 38 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDD NA-REF2-S000-01 ng/kg 0.3 0.92 3.8 3.8 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.3 0.92 3.8 3.8 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.3 0.92 3.8 3.8 4.3 4.3 2.4 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.3 9.91 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.3 9.91 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.3 9.91 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.3 9.93 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 2,3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.6 7.8 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 2.3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.6 7.8 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 2.3.7.8-PCDF NA-REF2-S000-01 ng/kg 0.6 7.8 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 Potal PcDD NA-REF2-S000-01 ng/kg 0.6 7.8 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 Potal PcDD NA-REF2-S000-01 ng/kg 0.6 7.8 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 Potal PcDD NA-REF2-S000-01 ng/kg 0.6 7.8 3.80 3.80 4.3 4.3 3.2.8 NS SW8290 Potal PcDD NA-REF2-S000-01 ng/kg 0.6 7.8 3.												
SW8290 2,3.7,8-TCDD					_							
SW8290 2,37,8-TCDD			The second secon									
SW8290 2.3,7.8-TCDD	7.0000							·				
SW8290 2,3.7,8-TCDD		<u> </u>										
SW8290 2.3.7.8-TCDD NA-REF2-SO05-01 ng/kg 0.3 0.92.1 38 38 4.3 4.3 2.4 NS												
SW8290 2.3.7,8-TCDF												
SW8290 2.3.7.8-TCDF NA-REP2-SO01-01 ng/kg 0.3 1.1 380 380 43 43 32.8 NS SW8290 2.3.7.8-TCDF NA-REP2-SO02-01 ng/kg 0.3 9 380 380 43 43 32.8 NS SW8290 2.3.7.8-TCDF NA-REP2-SO03-01 ng/kg 0.6 8.1 380 380 43 43 32.8 NS SW8290 2.3.7.8-TCDF NA-REP2-SO03-01 ng/kg 0.6 8.1 380 380 43 43 32.8 NS SW8290 2.3.7.8-TCDF NA-REP2-SO03-01 ng/kg 0.6 7.8 380 380 43 43 32.8 NS SW8290 2.3.7.8-TCDF NA-REP2-SO03-01 ng/kg 0.6 7.8 380 380 43 43 32.8 NS SW8290 2.3.7.8-TCDF NA-REP2-SO03-01 ng/kg 0.6 7.8 380 380 43 43 32.8 NS SW8290 2.3.7.8-TCDF NA-REP2-SO03-01 ng/kg 0.3 322												
SW8290 2,3,7,8-TCDF NA-REF2-SO02-01 ng/kg 0.3 9 380 380 43 43 32.8 NS NS NS NS NS NS NS N												<u> </u>
SW8290 2,3,7,8-TCDF NA-REF2-SO03-01 ng/kg 0.6 8.1 380 380 43 43 32.8 NS SW8290 2,3,7,8-TCDF NA-REF2-SO04-01 ng/kg 1.7 2.2 380 380 43 43 32.8 NS SW8290 2,3,7,8-TCDF NA-REF2-SO05-01 ng/kg 0.6 7.8 380 380 43 43 32.8 NS SW8290 2,3,7,8-TCDF NA-REF2-SO05-01 ng/kg 0.6 7.8 380 380 43 43 32.8 NS SW8290 Total HpCDD NA-REF2-SO06-01 ng/kg 0.3 322 380 380 43 43 32.8 NS SW8290 Total HpCDD NA-REF2-SO02-01 ng/kg 0.3 322 380 380 43 43 32.8 NS SW8290 Total HpCDD NA-REF2-SO02-01 ng/kg 0.3 322 380 380 43 43 32.8 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.8 329 329 488 NS NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.8 329 488 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 251 488 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 251 488 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 251 488 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 395 488 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 251 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 251 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 362 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 362 NS NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 362 NS NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 362 NS NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 160 362 NS NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 160 362 NS NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 160 362 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng											32.8	NS
SW8290 Cal HpCDD NA-REF2-SO04-01 ng/kg 0.7 0.7 0.8	7.00									43	32.8	NS
SW8290 2,3,7,8-TCDF NA-REF2-SO05-01 ng/kg 0.6 7.8 380 380 43 43 32.8 NS SW8290 2,3,7,8-TCDF NA-REF2-SO05-01 ng/kg 0.7 10.9 380 380 43 43 32.8 NS SW8290 Total HpCDD NA-REF2-SO01-01 ng/kg 0.3 322 488 NS SW8290 Total HpCDD NA-REF2-SO01-01 ng/kg 0.8 329 488 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.8 329 488 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.8 329 488 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.6 101 488 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.5 251 488 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.5 251 488 NS SW8290 Total HpCDF NA-REF2-SO01-01 ng/kg 0.4 395 488 NS SW8290 Total HpCDF NA-REF2-SO01-01 ng/kg 0.5 251 488 NS SW8290 Total HpCDF NA-REF2-SO01-01 ng/kg 0.5 171 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.5 171 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 171 487 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 362 NS SW8290 Total HpCDD NA-REF2-SO03							+			43	32.8	NS
SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.7 1.09 380 380 43 43 32.8 NS NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.3 322 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.3 322 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.3 322 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.5 101 NA-REF2-SO05-01 ng/kg 0.4 487 NS NS NS NS NS NS NS N							4		43	43	32.8	NS
SW8290 Total HpCDD NA-REF2-SO01-01 ng/kg 0.3 322								_		43	32.8	NS
SW8290 Total HpCDD NA-REF2-SO02-01 ng/kg 0.8 329 488 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.6 101 488 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.6 101 488 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.5 251 488 NS SW8290 Total HpCDD NA-REF2-SO05-01 ng/kg 0.4 395 488 NS SW8290 Total HpCDF NA-REF2-SO05-01 ng/kg 0.4 395 487 NS SW8290 Total HpCDF NA-REF2-SO02-01 ng/kg 0.3 179 487 NS SW8290 Total HpCDF NA-REF2-SO02-01 ng/kg 0.1 170 487 NS SW8290 Total HpCDF NA-REF2-SO02-01 ng/kg 0.1 170 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO05-01 ng/kg 0.4 65.6 487 NS SW8290 Total HpCDF NA-REF2-SO05-01 ng/kg 0.4 263 487 NS SW8290 Total HpCDF NA-REF2-SO05-01 ng/kg 0.4 263 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 263 487 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 263 487 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 198 487 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 166 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 166 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 166 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.5 166 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 362 NS SW8290 Total HpCDD NA-REF2-SO03-01 ng/kg 0.3 195 363 NS SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.3 195 363 NS SW8290 Total								380	43	43	32.8	NS
SW8290								<u> </u>			488	NS
SW8290								,		•	488	NS
SW8290							·				488	NS
SW8290									. "		488	NS
SW8290 Total HpCDF NA-REF2-SO01-01 ng/kg 0.3 179											488	NS
SW8290 Total HpCDF NA-REF2-SO02-01 ng/kg 0.5 171								<u>-</u> _		.	488	NS
SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 1 170						-					487	NS
SW8290 Total HpCDF NA-REF2-SO03-01 ng/kg 0.4 65.6				+							487	NS
SW8290 Total HpCDF NA-REF2-SO05-01 ng/kg 0.5 198											487	NS
SW8290 Total HpCDF NA-REF2-SO06-01 ng/kg 0.4 263												
SW8290 Total HxCDD NA-REF2-SO01-01 ng/kg 0.4 263							<u>.</u> .				487	NS
SW8290 Total HxCDD NA-REF2-SO03-01 ng/kg 0.6 211												
NA-REF2-SO02-01 ng/kg 0.6 211							<u>. </u>			. 1		
NA-REF2-SO03-01 ng/kg 1 167											362	NS
SW8290 Total HxCDD NA-REF2-SO04-01 ng/kg 0.5 106				ng/kg	1	167	·					
SW8290 Total HxCDD NA-REF2-SO05-01 ng/kg 0.4 159		The state of the s			0.5	106	·				362	NS
SW8290 Total HxCDF NA-REF2-SO06-01 ng/kg 0.3 195					0.4	159		·"				
SW8290 Total HxCDF NA-REF2-SO01-01 ng/kg 0.3 203			· · · · · · · · · · · · · · · · · · ·		0.3	195		<u> </u>	- 1.			
SW8290 Total HxCDF NA-REF2-SO03-01 ng/kg 0.3 186		·			0.3	203						
SW8290 Total HxCDF NA-REF2-SO03-01 ng/kg 0.7 189 . 535 NS SW8290 Total HxCDF NA-REF2-SO05-01 ng/kg 0.3 79.3 . . 535 NS SW8290 Total HxCDF NA-REF2-SO05-01 ng/kg 0.4 201 . . . 535 NS SW8290 Total PeCDD NA-REF2-SO06-01 ng/kg 0.3 277 . . . 535 NS SW8290 Total PeCDD NA-REF2-SO01-01 ng/kg 0.3 38.9 .							·		<u> </u>			
SW8290 Total HxCDF NA-REF2-S004-01 ng/kg 0.3 79.3 . 535 NS SW8290 Total HxCDF NA-REF2-S005-01 ng/kg 0.4 201 . . 535 NS SW8290 Total PeCDD NA-REF2-S006-01 ng/kg 0.3 277 . . 535 NS SW8290 Total PeCDD NA-REF2-S001-01 ng/kg 0.3 38.9 . . . 205 NS SW8290 Total PeCDD NA-REF2-S002-01 ng/kg 0.4 46.2 . . . 205 NS SW8290 Total PeCDD NA-REF2-S003-01 ng/kg 0.7 38.3 205 NS SW8290 Total PeCDD NA-REF2-S004-01 ng/kg 0.3 19.5 			"" "" "" "" ""					1.				
SW8290 Total HxCDF NA-REF2-SO05-01 ng/kg 0.4 201 .		·			0.3	79.3		1.				
SW8290 Total PeCDD NA-REF2-SO06-01 ng/kg 0.3 277 .					0.4	201		- l.				
SW8290 Total PeCDD NA-REF2-SO01-01 ng/kg 0.3 38.9 . 205 NS SW8290 Total PeCDD NA-REF2-SO02-01 ng/kg 0.4 46.2 . . 205 NS SW8290 Total PeCDD NA-REF2-SO03-01 ng/kg 0.7 38.3 . . . 205 NS SW8290 Total PeCDD NA-REF2-SO04-01 ng/kg 0.3 19.5 . . . 205 NS SW8290 Total PeCDD NA-REF2-SO05-01 ng/kg 0.5 45.6 . . . 205 NS SW8290 Total PeCDF NA-REF2-SO06-01 ng/kg 0.3 57.4 . . . 205 NS SW8290 Total PeCDF NA-REF2-SO01-01 ng/kg 0.3 162 			<u> </u>		0.3	277		<u> </u>				
SW8290 Total PeCDD NA-REF2-SO02-01 ng/kg 0.4 46.2 .				ng/kg	0.3	38.9			- 			
SW8290 Total PeCDD NA-REF2-SO03-01 ng/kg 0.7 38.3 .				ng/kg	0.4	46.2		1.	- I.			
SW8290 Total PeCDD NA-REF2-SO04-01 ng/kg 0.3 19.5 .				ng/kg	0.7	38.3				-	*	
SW8290 Total PeCDD NA-REF2-SO05-01 ng/kg 0.5 45.6 .		T II	NA-REF2-SO04-01		0.3			<u> </u>	+			
SW8290 Total PeCDD NA-REF2-SO06-01 ng/kg 0.3 57.4 .			NA-REF2-SO05-01		0.5			 				
SW8290 Total PeCDF NA-REF2-SO01-01 ng/kg 0.3 162					0.3		<u> </u> -					
CW0000 T D-OND		otal PeCDF							- :	+		
SW8290 Total PeCDF NA-REF2-SO02-01 ng/kg 0.3 151	W8290 T	otal PeCDF			0.3			- 	- 			

								Residential RBC RBSL		Reference	Means Comparison Conclusion Reference vs.
25.4.1	Amaluta	Sample ID	I Inite	MDL	Result			RBC	RBSL	UTL	Site
Method	Analyte	NA-REF2-SO03-01	ng/kg	0.5	127					608	NS
SW8290	Total PeCDF		ng/kg	0.3	66.7					608	NS
SW8290	Total PeCDF		ng/kg	0.3	127					608	NS
SW8290	Total PeCDF		ng/kg	0.3	197					608	NS
SW8290	Total PeCDF	NA-REF2-SO01-01	ng/kg	0.3	44.5					152	NS
SW8290	Total TCDD	NA-REF2-SO02-01	ng/kg	0.3	54.2					152	NS
SW8290	Total TCDD	NA-REF2-SO03-01	ng/kg	0.6						152	NS
SW8290	Total TCDD	NA-REF2-SO04-01	ng/kg	0.3	14.3	•				152	
SW8290	Total TCDD	NA-REF2-SO05-01	ng/kg	0.3	31.2		 †			152	NS
SW8290	Total TCDD	NA-REF2-SO05-01	ng/kg	0.3	60.9					152	
SW8290	Total TCDD	NA-REF2-SO01-01	ng/kg	0.2						522	NS
SW8290	Total TCDF	NA-REF2-SO02-01	ng/kg	0.2	118		-			522	NS
SW8290	Total TCDF	NA-REF2-SO02-01	ng/kg	0.2		· <u>•</u>		<u>-</u>			NS
SW8290	Total TCDF	NA-REF2-SO04-01	ng/kg	0.2		•	-			1	NS
SW8290	Total TCDF		ng/kg	0.2		•	-	·			NS
SW8290	Total TCDF	NA-REF2-SO05-01	ng/kg	0.3							NS
SW8290	Total TCDF	NA-REF2-SO06-01				41000	4100	1600	160		
ILM04.0	Cyanide	NA-REF2-SO01-01	mg/kg	}		41000	4100	1600	160	ļ	NS
ILM04.0	Cyanide	NA-REF2-SO02-01	mg/kg	+		41000	4100	1600	160		NS
ILM04.0	Cyanide	NA-REF2-SO03-01	mg/kg		1	41000	4100	1600	160		NS
ILM04.0	Cyanide	NA-REF2-SO04-01	mg/kg			41000	4100	1600	160	+	NS
ILM04.0	Cyanide	NA-REF2-SO05-01	mg/kg		ND	41000		1600			NS
ILM04.0	Cyanide	NA-REF2-SO06-01	mg/kg		ND	2000000		78000			
04.0	Aluminum	NA-REF2-SO01-01	mg/kg			2000000		78000			
15.VIO4.0	Aluminum	NA-REF2-SO02-01	mg/kg			2000000		78000			
ILMO4.0	Aluminum	NA-REF2-SO03-01	mg/kg			2000000		78000			
ILMO4.0	Aluminum	NA-REF2-SO04-01	mg/kg								
ILMO4.0	Aluminum	NA-REF2-SO05-01	mg/kg			2000000					
ILMO4.0	Aluminum	NA-REF2-SO06-01	mg/kg					1			1 S
ILMO4.0	Antimony	NA-REF2-SO01-01	mg/kg		2.7 J	820		31 31			I S
ILMO4.0	Antimony	NA-REF2-SO02-01	mg/kg		2 J	820					1 S
ILMO4.0	Antimony	NA-REF2-SO03-01	mg/kg		3 2 J	820		31	1		
ILMO4.0	Antimony	NA-REF2-SO04-01	mg/kį		7 1.6 J	820		31			4 S 4 S
ILMO4.0	Antimony	NA-REF2-SO05-01	mg/kg		2 1.8 J	820					4 S
ILMO4.0	Antimony	NA-REF2-SO06-01	mg/k		4 2 J	820		<u> </u>			
ILMO4.0	Arsenic	NA-REF2-SO01-01	mg/k								
ILMO4.0	Arsenic	NA-REF2-SO02-01	mg/k								
ILMO4.0	Arsenic	NA-REF2-SO03-01	mg/k								
ILMO4.0	Arsenic	NA-REF2-SO04-01	mg/k								
ILMO4.0	Arsenic	NA-REF2-SO05-01	mg/k	_		+					
ILMO4.0	Arsenic	NA-REF2-SO06-01	mg/k								
ILMO4.0	Barium	NA-REF2-SO01-01	mg/k								0 NS 0 NS
ILMO4.0	Barium	NA-REF2-SO02-01	mg/k								
ILMO4.0	Barium	NA-REF2-SO03-01	mg/k								0 NS
ILMO4.0	Barium	NA-REF2-SO04-01	mg/k		3 69.4 K						0 NS
ILMO4.0		NA-REF2-SO05-01	mg/k		7 81.2 K	_					0 NS
ILMO4.0		NA-REF2-SO06-01	mg/k		1 105 K	140000					0 NS
ILMO4.0		NA-REF2-SO01-01			9 ND	4100	_				5 S
ILMO4.0		NA-REF2-SO02-01			7 ND	4100					5 S
04.0		NA-REF2-SO03-01			9 ND	4100	410	160	0 1	6 0.2	5 S

Method	l Analyte	Sample ID	Units	MDL	Result		strial RBSL		dential	Reference	
ILMO4.0		NA-REF2-SO04-01	mg/kg			-			RBSL	UTL	Site
ILMO4.0	Beryllium	NA-REF2-SO05-01	mg/kg	+		410					
ILMO4.0	Beryllium	NA-REF2-SO06-01	mg/kg			410					
ILMO4.0		NA-REF2-SO01-01	mg/kg		0.9 K	100					
ILMO4.0	Cadmium	NA-REF2-SO02-01	mg/kg		1.1 K	100					
ILMO4.0	Cadmium	NA-REF2-SO03-01	mg/kg		1.1 K	100					
ILMO4.0	Cadmium	NA-REF2-SO04-01	mg/kg		1.1 K	1000					
ILMO4.0	Cadmium	NA-REF2-SO05-01	mg/kg	0.27		1000					
ILMO4.0	Cadmium	NA-REF2-SO06-01	mg/kg	0.31		1000				1.26	
ILMO4.0	Calcium	NA-REF2-SO01-01	mg/kg	7.5			100	39	3.9	1.26	
ILMO4.0	Calcium	NA-REF2-SO02-01	mg/kg	7	—	•	 •	 		15400	
ILMO4.0	Calcium	NA-REF2-SO03-01	mg/kg	7.6	3030	•	- -	 	<u>-</u>	15400	
ILMO4.0	Calcium	NA-REF2-SO04-01	mg/kg	6.1	9640	<u>-</u>	 	·	-	15400	
LMO4.0	Calcium	NA-REF2-SO05-01	mg/kg	7.1	8670	<u> </u>	 -	·	<u>-</u>	15400	
LMO4.0	Calcium	NA-REF2-SO06-01	mg/kg	8.1	5270	<u> </u>		·	•	15400	
LMO4.0	Chromium	NA-REF2-SO01-01	mg/kg	0.29	41.9	10000	1000	390		15400	
LMO4.0	Chromium	NA-REF2-SO02-01	mg/kg	0.27	49.7	10000		390	39	39.9	
LMO4.0	Chromium	NA-REF2-SO03-01	mg/kg	0.29	54.4	10000		390	39	39.9	
LMO4.0	Chromium	NA-REF2-SO04-01	mg/kg	0.23	39.2	10000	1	390	39	39.9	
LMO4.0	Chromium	NA-REF2-SO05-01	mg/kg	0.27	32.5	10000		390	39	39.9	
LMO4.0	Chromium	NA-REF2-SO06-01	mg/kg	0.31	42.1	10000		390	39	39.9	
LMO4.0	Cobalt	NA-REF2-SO01-01	mg/kg	0.29	25.9	120000	12000	4700	470	39.9	
LMO4.0	Cobalt	NA-REF2-SO02-01	mg/kg	0.27	30.7	120000	12000	4700	470	28.9	
LMO4.0	Cobalt	NA-REF2-SO03-01	mg/kg	0.29	33.9	120000	12000	4700	470	28.9	
LMO4.0	Cobalt	NA-REF2-SO04-01	mg/kg	0.23	30.2	120000		4700	470	28.9	
LMO4.0	Cobalt	NA-REF2-SO05-01	mg/kg	0.27	23.7	120000		4700		28.9	
LMO4.0	Cobalt	NA-REF2-SO06-01	mg/kg	0.31	30	120000	12000	4700	470 470	28.9	
LMO4.0	Copper	NA-REF2-SO01-01	mg/kg	0.29	131	82000	8200	3100	310	28.9	
LMO4.0	Copper	NA-REF2-SO02-01	mg/kg	0.27	150	82000	8200	3100	310	134 5	
LMO4.0	Copper	NA-REF2-SO03-01	mg/kg	0.29	158	82000	8200	3100	310	134 5	
LMO4.0	Соррег	NA-REF2-SO04-01	mg/kg	0.23	149	82000	8200	3100	310	134 \$	
LMO4.0	Copper	NA-REF2-SO05-01	mg/kg	0.27	121	82000	8200	3100	310	134 5	
	Copper	NIA DEED GOOG OF	mg/kg	0.31	150	82000	8200	3100	310	134 5	
	Iron		mg/kg	4	57400	610000	61000	23000	2300	134 S 60600 S	
_MO4.0	Iron		mg/kg	3.8	67400	610000	61000	23000	2300	60600 S	
	Iron	NA-REF2-SO03-01	mg/kg	4.1	73300	610000	61000	23000	2300		
	Iron	NA-REF2-SO04-01	mg/kg	3.3	62900	610000	61000	23000	2300	60600 S	
	Iron	NA-REF2-SO05-01	mg/kg	3.8	49600	610000	61000	23000	2300	60600 S	
	Iron	1	mg/kg	4.4	62800	610000	61000	23000	2300		
	Lead		mg/kg	0.58	51.8	400	400	400	400	60600 S	
	Lead	NA-REF2-SO02-01	mg/kg	0.54	49.9	400	400	400	400	95.5 N	
	Lead	NA-REF2-SO03-01	mg/kg	0.58	50.5	400	400	400	400	95.5 N	
	Lead	NA-REF2-SO04-01	mg/kg	0.47	22.5	400	400	400	400	95.5 N	
	Lead	NA-REF2-SO05-01	mg/kg	0.55	40.5	400	400	400	400	95.5 N	
	Lead		mg/kg	0.62	55.3	400	400	400		95.5 N	
	Magnesium		mg/kg	2.6	7680 .			_+00	400	95.5 N	
	Magnesium		mg/kg		10200	 	 -			12400 N	
	Magnesium		mg/kg		10900 .	<u>- </u>	 -	 -		12400 N	
MO4.0	Magnesium		mg/kg	2.1	9980 .					12400 N 12400 N	

		Samula III				Indust	rial	Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Magnesium	NA-REF2-SO05-01	mg/kg		9480					12400	
ILMO4.0	Magnesium	NA-REF2-SO06-01	mg/kg		9610					12400	
ILMO4.0	Manganese	NA-REF2-SO01-01	mg/kg		1060	41000	4100	1600	160	1050	S
ILMO4.0	Manganese	NA-REF2-SO02-01	mg/kg		1200	41000	4100	1600	160	1050	
ILMO4.0	Manganese	NA-REF2-SO03-01	mg/kg		1300	41000	4100	1600	160	1050	
ILMO4.0	Manganese	NA-REF2-SO04-01	mg/kg	_	1170	41000	4100	1600	160	1050	S
ILMO4.0	Manganese	NA-REF2-SO05-01	mg/kg		945	41000	4100	1600	160		
ILMO4.0	Manganese	NA-REF2-SO06-01	mg/kg		1210	41000	4100	1600	160		
ILMO4.0	Mercury	NA-REF2-SO01-01	mg/kg		0.18	200	20	7.8	0.78		
ILMO4.0	Mercury	NA-REF2-SO02-01	mg/kg		0.17	200	20	7.8	0.78	0.228	S
ILMO4.0	Mercury	NA-REF2-SO03-01	mg/kg		0.19	200	20	7.8	0.78	0.228	S
ILMO4.0	Mercury	NA-REF2-SO04-01	mg/kg		0.07	200	20	7.8	0.78	0.228	S
ILMO4.0	Mercury	NA-REF2-SO05-01	mg/kg		0.22	200	20	7.8	0.78	0.228	S
ILMO4.0	Mercury	NA-REF2-SO06-01	mg/kg		0.19	200	20	7.8	0.78	0.228	S
ILMO4.0	Nickel	NA-REF2-SO01-01	mg/kg			41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-REF2-SO02-01	mg/kg			41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-REF2-SO03-01	mg/kg	+	1	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-REF2-SO04-01	mg/kg			41000	4100			39.5	S
	Nickel	NA-REF2-SO05-01	mg/kg			41000					S
ILMO4.0	Nickel	NA-REF2-SO06-01	mg/kg		37.4	41000			1		S
ILMO4.0		NA-REF2-SO01-01	mg/kg	-		11000	1100			643	
ILMO4.0	Potassium	NA-REF2-SO02-01	mg/kg			*	-	<u> </u>	·	643	
п-МО4.0	Potassium	NA-REF2-SO03-01	mg/kg	<u> </u>	 	•	-	·	-	643	
D4.0	Potassium			4		<u> </u>		·	-	643	
1∟MO4.0	Potassium	NA-REF2-SO04-01	mg/kg	<u> </u>		•	·	-	-	643	
ILMO4.0	Potassium	NA-REF2-SO05-01	mg/kg	4			-	 	ļ: 	643	
ILMO4.0	Potassium	NA-REF2-SO06-01	mg/kg mg/kg		ND UL	10000	1000	390	39		
ILMO4.0	Selenium	NA-REF2-SO01-01 NA-REF2-SO02-01	mg/kg	4	ND UL	10000				1	
ILMO4.0	Selenium				ND UL	10000					
ILMO4.0	Selenium	NA-REF2-SO03-01	mg/kg	4	1.1 L	10000					
ILMO4.0	Selenium	NA-REF2-SO04-01	mg/kg	4	1.1 L	10000					
ILMO4.0	Selenium	NA-REF2-SO05-01	mg/kg		1.1 L	10000					
ILMO4.0	Selenium	NA-REF2-SO06-01	mg/kg			l		1			NS
ILMO4.0	Silver				-,				1	0.0.	NS
ILMO4.0	Silver	NA-REF2-SO02-01	mg/kg				1				NS
ILMO4.0	Silver	NA-REF2-SO03-01	mg/kg						+		NS
ILMO4.0	Silver	NA-REF2-SO04-01	mg/kg								NS
ILMO4.0	Silver	NA-REF2-SO05-01	mg/kg						-1		NS
ILMO4.0	Silver	NA-REF2-SO06-01	mg/kg	4			1000	390	33		NS
ILMO4.0	Sodium	NA-REF2-SO01-01	mg/kg	+			<u> -</u>	-	<u> </u>) NS
ILMO4.0	Sodium	NA-REF2-SO02-01	mg/kg				·	 	<u>-</u>) NS
ILMO4.0	Sodium	NA-REF2-SO03-01	mg/kg				 	 -	·) NS
ILMO4.0	Sodium	NA-REF2-SO04-01	mg/kg			+	 • 	1.	 		
ILMO4.0	Sodium	NA-REF2-SO05-01	mg/kg			 	-	<u> </u>	+		NS
ILMO4.0	Sodium	NA-REF2-SO06-01	mg/kg				- -	 			NS
ILMO4.0	Thallium	NA-REF2-SO01-01	mg/kg		2 4 L	140			1		
ILMO4.0	Thallium	NA-REF2-SO02-01	mg/kį		5.4 L	140					
ILMO4.0	Thallium	NA-REF2-SO03-01	mg/kį	~	2 4.3 L	140					
ILMO4.0	Thallium	NA-REF2-SO04-01			3 1.7 L	140					
04.0	Thallium	NA-REF2-SO05-01	mg/kg	g 1	ND UL	140) 14	5.5	0.5	5 1.8	2 S

Method	Analyte	Sample ID	Units	MDL	Result	Indust RBC	trial RBSL	Resid RBC	ential RBSL	Reference UTL	Mean Compar Conclusion Reference vs Site
IL.MO4.0	Thallium	NA-REF2-SO06-01	mg/kg	1.2	1.4 L	140	14	5.5		1.82	
ILMO4.0	Vanadium	NA-REF2-SO01-01	mg/kg	0.29	257	14000	1400	550		268	
ILMO4.0	Vanadium	NA-REF2-SO02-01	mg/kg	0.27	299	14000	1400	550		268	
ILMO4.0	Vanadium	NA-REF2-SO03-01	mg/kg	0.29	327	14000	1400	550		268	
ILMO4.0	Vanadium	NA-REF2-SO04-01	mg/kg		278	14000	1400	550	55		
ILMO4.0	Vanadium	NA-REF2-SO05-01	mg/kg	0.27	210	14000	1400	550		268	
ILMO4.0	Vanadium	NA-REF2-SO06-01	mg/kg	0.31	276	14000	1400		55	268	
ILMO4.0	Zinc	NA-REF2-SO01-01	mg/kg		176	610000		550	55	268	
ILMO4.0	Zinc	NA-REF2-SO02-01	mg/kg	0.27	155		61000	23000	2300	224	
ILMO4.0	Zinc	NA-REF2-SO03-01		0.27		610000	61000	23000	2300	224	
ILMO4.0	Zinc		mg/kg		152	610000	61000	23000	2300	224	S
	Zinc		mg/kg	0.23	120	610000	61000	23000	2300	224	S
		NA-REF2-SO05-01	mg/kg	0.27	132	610000	61000	23000	2300	224	S
<u> </u>		NA-REF2-SO06-01	mg/kg	0.31	183	610000	61000	23000	2300	224	S
Means Com	TL abbreviations: NC = Not of	alculated because refe	rence da	ata were	all non-	letected res	ults or w	ere not a	nalyzed.		

Means Comparison Conclusion Reference vs. Site abbreviations:

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Signficant. On average, site data were signficantly greater than reference data.

)						Indus	trial	Reside	ntail	Reference	Means Comparison Conclusion Reference vs
					14		RBSL		RBSL	UTL	Site
Method	Analyte	Sample ID				24000	24000	2700	2700		NC
LM03.2	4,4'-DDD	NA-REF2-SO01-02	ug/kg	0.34		24000	24000	2700	2700		NC
LM03.2	4,4'-DDD	NA-REF2-SO03-02	ug/kg	0.33		24000	24000	2700	2700		NC
LM03.2	4,4'-DDD	NA-REF2-SO05-02	ug/kg	0.28	ND 10	17000	17000	1900	1900	5.8	NS
LM03.2	4,4'-DDE	NA-REF2-SO01-02	ug/kg	0.34		17000	17000	1900	1900		NS
LM03.2	4,4'-DDE	NA-REF2-SO03-02	ug/kg	0.33	1.4 6.5	17000	17000	1900	1900		NS
LM03.2	4,4'-DDE	NA-REF2-SO05-02	ug/kg	0.28		17000	17000	1900	1900		NS
LM03.2	4,4'-DDT	NA-REF2-SO01-02	ug/kg		7.3 J 2.3	17000	17000	1900	1900		NS
LM03.2	4,4'-DDT	NA-REF2-SO03-02	ug/kg	0.33		17000	17000	1900	1900		NS
LM03.2	4,4'-DDT	NA-REF2-SO05-02	ug/kg		6.4 J	340	340	38		NC	NC
LM03.2	Aldrin	NA-REF2-SO01-02	ug/kg		ND	340	340	38		NC	NC
LM03.2		NA-REF2-SO03-02	ug/kg		ND	340	340	38		NC	NC
LM03.2		NA-REF2-SO05-02	ug/kg		ND _	2900	2900			NC	NC
LM03.2	Aroclor-1016	NA-REF2-SO01-02	ug/kg		ND		2900			NC	NC
LM03.2		NA-REF2-SO03-02	ug/kg		ND _	2900	2900	320		NC	NC
LM03.2		NA-REF2-SO05-02			ND	2900	2900	320		NC	NC
LM03.2		NA-REF2-SO01-02			ND	2900	2900			NC	NC
DLM03.2		NA-REF2-SO03-02			ND	2900	2900			NC	NC
OLM03.2		NA-REF2-SO05-02			ND	2900	2900			NC	NC
LM03.2		NA-REF2-SO01-02			ND	2900				NC	NC
DLM03.2		NA-REF2-SO03-02		·	ND	2900				NC	NC
DLM03.2		NA-REF2-SO05-02			8 ND	2900				NC	NC
OLM03.2		NA-REF2-SO01-02			4 ND	2900				NC	NC
M03.2		NA-REF2-SO03-02			3 ND	2900				NC	NC
JLM03.2		NA-REF2-SO05-02			8 ND	2900				NC	NC
OLM03.2		NA-REF2-SO01-02		' — ·-	4 ND	2900				0 NC	NC
OLM03.2		NA-REF2-SO03-02		4	3 ND	2900				0 NC	NC
OLM03.2		NA-REF2-SO05-02		'	8 ND	2900				0 NC	NC
OLM03.2		NA-REF2-SO01-02			4 ND	2900		'		0 NC	NC
OLM03.		NA-REF2-SO03-02			3 ND	2900				ONC	NC
OLM03.		NA-REF2-SO05-02			8 ND_	2900				ONC	NC
OLM03.		NA-REF2-SO01-0			4 ND	2900				0 NC	NC
OLM03		NA-REF2-SO03-0			3 ND	2900				O NC	NC
OLM03.		NA-REF2-SO05-0			28 ND	290				ONC	NC
OLM03.		NA-REF2-SO01-0			4 ND	36				ONC	NC
OLM03.		NA-REF2-SO03-0			33 ND	36				0 NC	NC NC
OLM03.		NA-REF2-SO05-0		-	28 ND	36		-		0 NC	NC
OLM03.		NA-REF2-SO01-0			34 ND	1E+0		6 47000		0 NC	NC
OLM03.		NA-REF2-SO03-0		~	33 ND	1E+0		6 47000		00 NC	NC
OLM03		NA-REF2-SO05-0			28 ND	1E+0		6 47000		00 NC	NC
OLM03		NA-REF2-SO01-0			34 ND			6 47000		00 NC	NC
OLM03		NA-REF2-SO03-0			33 ND	1E+0	/ IE+C	6 47000		00 NC	NC NC
OLM03		NA-REF2-SO05-0			28 ND			6 47000		00 NC	NC
OLM03		NA-REF2-SO01-C			34 ND	1E+0		6 47000		00 NC	NC NC
OLM03		NA-REF2-SO03-0			33 ND	1E+0	_ +	6 47000			NC NC
OLM03		NA-REF2-SO05-0			28 ND	1E+0		6 47000		00 NC	NC
OLM03		NA-REF2-SO01-0)2 ug/l	cg 0.	34 ND	61000				00 NC	NC NC
OLM03		NA-REF2-SO03-0)2 ug/l	cg 0.	33 ND	61000			——	00 NC	NC NC
OLM03		NA-REF2-SO05-0)2 ug/l	(g 0	28 ND	61000				00 NC	
	3.2 Endrin aldehyde	NA-REF2-SO01-			34 ND	61000	00 610	00 2300	00 23	00 NC	NC

						Ind	lustrial				Means Comparise Conclusion
Method OLM03.2	Analyte	Sample ID	Unit	s MDL	Resul	t RBC		RBC	dentail RBSL	Reference	Reference vs
	Endrin aldehyde	NA-REF2-SO03-0	2 ug/kg			61000		_1			Site
	Endrin aldehyde	NA-REF2-SO05-0	2 ug/kg			61000					NC
	Endrin ketone	NA-REF2-SO01-0				61000					NC
	Endrin ketone	NA-REF2-SO03-0		0.33	ND	61000					NC
	Endrin ketone	NA-REF2-SO05-0				610000					NC
	Heptachlor	NA-REF2-SO01-0				1300					NC
	Heptachlor	NA-REF2-SO03-02				1300					NC NC
	Heptachlor	NA-REF2-SO05-02	2 ug/kg			1300					NC
	Heptachlor epoxide	NA-REF2-SO01-02	2 ug/kg	0.34		630					NC
	Heptachlor epoxide	NA-REF2-SO03-02	ug/kg	0.33		630		1			NC
	Heptachlor epoxide	NA-REF2-SO05-02		0.28		630					NC
	Methoxychlor	NA-REF2-SO01-02	ug/kg	0.34		1E+07		390000	70		NC
	Methoxychlor	NA-REF2-SO03-02	ug/kg	0.33		1E+07		390000			NC
	Methoxychlor	NA-REF2-SO05-02	ug/kg	0.28		1E+07		390000	39000 3		NC
	Toxaphene	NA-REF2-SO01-02	ug/kg	0.34		5200		580			NC
	Foxaphene	NA-REF2-SO03-02		0.33		5200		580	580 I		NC
	Toxaphene	NA-REF2-SO05-02	ug/kg	0.28		5200		580	580 1		VC
	dpha-BHC	NA-REF2-SO01-02	ug/kg	0.34	ND	910		100	100 1		۷C
	dpha-BHC	NA-REF2-SO03-02		0.33	VD	910		100			VC
	lpha-BHC	NA-REF2-SO05-02		0.28	_	910		100	100		VC
	lpha-Chlordane	NA-REF2-SO01-02	ug/kg	0.34 1		16000	16000	1800	100 1		VC
	lpha-Chlordane	NA-REF2-SO03-02	ug/kg	0.33 1		16000	16000	1800	1800 N		VC
	lpha-Chlordane	NA-REF2-SO05-02	ug/kg	0.28 N		16000	16000	1800	1800 N		/C
	eta-BHC	NA-REF2-SO01-02	ug/kg	0.34 N		3200	3200	350	1800 N		IC
	eta-BHC	NA-REF2-SO03-02	ug/kg	0.33 N		3200	3200	350	350 N		IC
	eta-BHC	NA-REF2-SO05-02	ug/kg	0.28 N		3200	3200	350	350 N		IC
	elta-BHC	NA-REF2-SO01-02	ug/kg	0.34 N		3200	3200		350 N		IC
	elta-BHC	NA-REF2-SO03-02	ug/kg	0.33 N		3200	3200	350 350	350 N		C
	elta-BHC	NA-REF2-SO05-02	ug/kg	0.28 N		3200	3200		350 N		C
	amma-BHC(Lindane)	NA-REF2-SO01-02	ug/kg	0.34 N		4400	4400	350 490	350 N		C
	amma-BHC(Lindane)	NA-REF2-SO03-02	ug/kg	0.33 N		4400	4400	490	490 N		С
M03.2 ga	amma-BHC(Lindane)	NA-REF2-SO05-02	ug/kg	0.28 N		4400	4400		490 N		С
	mma-Chlordane	NA-REF2-SO01-02	ug/kg	0.34 N			16000	490	490 N		
M03.2 ga	mma-Chlordane	NA-REF2-SO03-02	ug/kg	0.33 N		16000	16000	1800	1800 N		
M03.2 ga	mma-Chlordane	X 7 4	ug/kg	0.28 N			16000	1800	1800 N		
MO3.2 1,2	2,4-Trichlorobenzene	27.4 70	ug/kg	68 N	ightharpoonup			1800	1800 N		
MO3.2 11,2	2,4-Trichlorobenzene	374	ug/kg	65 N			2E+06 7		78000 N		
MO3.2 1,2	2,4-Trichlorobenzene	374 7 7	ug/kg	56 N			2E+06 7		78000 No		
MO3.2 1,2	2-Dichlorobenzene	NA-REF2-SO01-02	ug/kg	68 NI			2E+06 7 2E+07 7		78000 No		
MO3.2 1,2	2-Dichlorobenzene	ATA TOTAL TOTAL	ug/kg	65 NI					00000 NO		
MO3.2 1,2	2-Dichlorobenzene	N7 4 D D D D D D D D D D D D D D D D D D	ug/kg	56 NI					00000 NO		
MO3.2 1,3	3-Dichlorobenzene	27 4 70 70 70 70 70 70 70 70 70 70 70 70 70	ug/kg	68 NI			2E+07 7	E+06 70	00000 NC		
MO3.2 1,3	-Dichlorobenzene	NA-REF2-SO03-02	ug/kg	65 NI	-				30000 NC		
MO3.2 1,3	-Dichlorobenzene		ug/kg	56 NI					30000 NC		
MO3.2 1,4	-Dichlorobenzene		ug/kg	68 NI					0000 NC		
MO3.2 1,4	-Dichlorobenzene		ug/kg	65 NI		40000 2			7000 NC		
MO3.2 1,4	-Dichlorobenzene		ug/kg	56 NI		40000 24			7000 NC		
MO3.2 2,2	'-oxybis(1-chloropropane)	37.4	ig/kg	68 NE		40000 24			7000 NC		
4O3 2 2 2		A V A	ıg/kg	65 NE		82000 8	32000	9100	9100 NC	NC	

							- "				Means
											Comparison
					l	ĺ	İ				Conclusion
						Indu		Reside	entail RBSL	Reference	Reference vs. Site
Method	Analyte	Sample ID		MDL	Result		RBSL	RBC 9100	9100	UTL	NC Site
		NA-REF2-SO05-02	ug/kg		ND	82000	82000		780000		NC
	2,4,5-Trichlorophenol	NA-REF2-SO01-02	ug/kg		ND	2E+08	2E+07		780000		NC
	2,4,5-Trichlorophenol	NA-REF2-SO03-02	ug/kg		ND	2E+08	2E+07 2E+07		780000		NC
		NA-REF2-SO05-02	ug/kg	_	ND	2E+08	520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-REF2-SO01-02	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-REF2-SO03-02	ug/kg		ND ND	520000	520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-REF2-SO05-02	ug/kg	1	ND _		610000		23000		NC
	2,4-Dichlorophenol	NA-REF2-SO01-02	ug/kg		ND		610000		23000		NC
	2,4-Dichlorophenol	NA-REF2-SO03-02	ug/kg		ND		610000		23000		NC
	2,4-Dichlorophenol	NA-REF2-SO05-02	ug/kg		ND	4E+07	4E+06		160000		NC
	2,4-Dimethylphenol	NA-REF2-SO01-02	ug/kg		ND	4E+07	4E+06		160000		NC
	2,4-Dimethylphenol	NA-REF2-SO03-02	ug/kg				4E+06		160000		NC
	2,4-Dimethylphenol	NA-REF2-SO05-02	ug/kg		ND	4E+07	410000		16000		NC
	2,4-Dinitrophenol	NA-REF2-SO01-02	ug/kg		ND_		410000		16000		NC
	2,4-Dinitrophenol	NA-REF2-SO03-02	ug/kg		ND	1	410000		16000		NC
	2,4-Dinitrophenol	NA-REF2-SO05-02	ug/kg		ND		410000		16000		NC
	2,4-Dinitrotoluene	NA-REF2-SO01-02	ug/kg		ND		410000		16000		NC
	2,4-Dinitrotoluene	NA-REF2-SO03-02	ug/kg		ND		410000		16000		NC
OLMO3.2	2,4-Dinitrotoluene	NA-REF2-SO05-02	ug/kg		ND				7800		NC
OLMO3.2	2,6-Dinitrotoluene	NA-REF2-SO01-02	ug/kg		ND		200000		7800		NC
OLMO3.2	2,6-Dinitrotoluene	NA-REF2-SO03-02	ug/kg		ND		200000		7800		NC
	2,6-Dinitrotoluene	NA-REF2-SO05-02	ug/kg	.+	ND		200000		630000		NC
	2-Chloronaphthalene	NA-REF2-SO01-02	ug/kg		ND	2E+08		6E+06			NC
	2-Chloronaphthalene	NA-REF2-SO03-02	ug/kg		ND	2E+08					NC
		NA-REF2-SO05-02	ug/kg	+	ND_	2E+08	+	6E+06			NC
	2-Chlorophenol	NA-REF2-SO01-02	ug/kg		ND	1E+07		390000			NC
OLMO3.2	2-Chlorophenol	NA-REF2-SO03-02	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-REF2-SO05-02	ug/kg		ND_	1E+07	·	390000	310000		NC
	2-Methylnaphthalene	NA-REF2-SO01-02	ug/kg		ND	8E+07			310000		NC
OLMO3.2		NA-REF2-SO03-02	ug/kg	+	ND	8E+07			310000		NC
OLMO3.2		NA-REF2-SO05-02	ug/kg	<u> </u>	ND	8E+07				NC	NC
	2-Nitroaniline	NA-REF2-SO01-02	ug/kg		ND_	120000				NC	NC
	2-Nitroaniline	NA-REF2-SO03-02			5 ND	120000			·) NC	NC
	2-Nitroaniline	NA-REF2-SO05-02			6 ND	120000					NC
	2-Nitrophenol	NA-REF2-SO01-02	$\overline{}$		8 ND	2E+0		630000			NC
	2-Nitrophenol	NA-REF2-SO03-02		<u> </u>	5 ND	2E+0		630000			NC NC
	2-Nitrophenol	NA-REF2-SO05-02		<u> </u>	6 ND	2E+0		630000		O NC	NC
	3,3'-Dichlorobenzidine	NA-REF2-SO01-02			8 ND	13000				0 NC	NC
	3,3'-Dichlorobenzidine	NA-REF2-SO03-02		-	5 ND	13000				0 NC	NC
	3,3'-Dichlorobenzidine	NA-REF2-SO05-02			6 ND	13000				ONC	NC
	3-Nitroaniline	NA-REF2-SO01-02			8 ND	12000				0 NC	NC
	3-Nitroaniline	NA-REF2-SO03-02			5 ND	12000				0 NC	NC
	3-Nitroaniline	NA-REF2-SO05-02		-	6 ND	12000				0 NC	NC
	4,6-Dinitro-2-methylphenol	NA-REF2-SO01-02			8 ND	20000			1	0 NC	NC
	4,6-Dinitro-2-methylphenol	NA-REF2-SO03-02		_	5 ND	20000					NC NC
	4,6-Dinitro-2-methylphenol	NA-REF2-SO05-02			6 ND	20000			5 45000	0 NC	NC NC
	4-Bromophenyl-phenylether	NA-REF2-SO01-02			8 ND	1E+0					NC
	4-Bromophenyl-phenylether	NA-REF2-SO03-02			5 ND	1E+0			45000		NC NC
MO3.2	4-Bromophenyl-phenylether	NA-REF2-SO05-02	ug/k	g 5	6 ND	1E+0	8 1E+0	/ 5E+00	45000	UNC	INC

			Ţ		usau	T					
Method	Analyte	Samuela III	T7.*4		_		ustrial		dentail	Reference	Means Comparise Conclusio Reference
OLMO3.2	4-Chloro-3-methylphenol	Sample ID NA-REF2-SO01-02		MDL	Result		RBSL				Site
OLMO3.2		NA-REF2-SO03-02			ND	4E+07			6 160000		NC
OLMO3.2		NA-REF2-SO05-02			ND	4E+07			5 160000		NC
OLMO3.2		NA-REF2-SO01-02	- -		ND	4E+07	1		6 160000		NC
OLMO3.2		NA-REF2-SO03-02			ND		820000				NC
OLMO3.2		NA-REF2-SO05-02			ND		820000				NC
OLMO3.2		NA-REF2-SO01-02			ND		820000				NC
	4-Chlorophenyl-phenylether	NA-REF2-SO03-02			ND	1E+08			450000		NC
OLMO3.2	4-Chlorophenyl-phenylether	NA-REF2-SO05-02			ND	1E+08			450000		NC
OLMO3.2		NA-REF2-SO01-02	ug/kg		ND	1E+08			450000		NC
OLMO3.2		NA-REF2-SO03-02	ug/kg		ND	120000	+			NC	NC
OLMO3.2	**	NA-REF2-SO05-02	ug/kg		ND	120000				NC	NC
	4-Nitrophenol	NA-REF2-SO01-02	ug/kg		ND	120000				NC	NC
	4-Nitrophenol	NA-REF2-SO03-02	ug/kg		ND	2E+07		630000			NC
	4-Nitrophenol	NA-REF2-SO05-02	ug/kg		ND	2E+07		630000			NC
	Acenaphthene	NA-REF2-SO01-02	ug/kg		ND	2E+07		630000			NC
	Acenaphthene	NA-REF2-SO03-02	ug/kg		ND	1E+08			470000		NC
	Acenaphthene	NA-REF2-SO05-02	ug/kg		ND	1E+08			470000		NC
	Acenaphthylene	NA-REF2-SO03-02	ug/kg	56		1E+08			470000		NC
OLMO3.2	Acenaphthylene	NA-REF2-SO03-02	ug/kg	68		1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthylene	NA-REF2-SO05-02	ug/kg	65		1E+08	1E+07		470000		NC
OLMO3.2	Anthracene	NA-REF2-SO01-02	ug/kg	56		1E+08	1E+07		470000		NC
OLMO3.2	Anthracene	NA-REF2-S001-02	ug/kg	68		6E+08	6E+07	2E+07	2E+06		NC
OLMO3.2	Anthracene	NA-REF2-S005-02	ug/kg	65		6E+08	6E+07	2E+07	2E+06		NC
OLMO3.2	Benzo(a)anthracene	NA-REF2-SO03-02	ug/kg	56		6E+08	6E+07	2E+07	2E+06		NC
OLMO3.2	Benzo(a)anthracene	NA-REF2-SO01-02	ug/kg	68		7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene	NA-REF2-SO05-02	ug/kg	65		7800	7800	870	870		NC
	Benzo(a)pyrene	NA-REF2-SO03-02 NA-REF2-SO01-02	ug/kg	56		7800	7800	870	870		NC
	Benzo(a)pyrene	NA-REF2-SO03-02	ug/kg	68		780	780	87			NC
	Benzo(a)pyrene	NA-REF2-SO05-02	ug/kg	65 1		780	780	87			NC
	Benzo(b)fluoranthene	NA-REF2-SO01-02	ug/kg	56 1		780	780	87	87		NC
	Benzo(b)fluoranthene	NA-REF2-SO03-02	ug/kg	68 1		7800	7800	870	870		NC
OLMO3.2	5		ug/kg	65 1		7800	7800	870	870		NC
		T	ug/kg	56 1		7800	7800	870	870		NC
	Benzo(g,h,i)perylene		ug/kg	68 1		6E+07			230000		NC
			ug/kg	65 N		6E+07			230000		NC
OLMO3.2			ug/kg	56 N		6E+07			230000		NC
OLMO3.2			ug/kg	68 N		78000	78000	8700	8700	NC .	NC
OLMO3.2		<u> </u>	ug/kg	65 N		78000	78000	8700	8700	NC .	NC
OLMO3 2			ug/kg	56 N		78000	78000	8700	8700	NC	NC
			ug/kg	68 N				2E+07	2E+06		NC
			ug/kg	65 N				2E+07	2E+06 l		NC
OLMO3.2			ug/kg	56 N				2E+07	2E+06 l		NC
OLMO3.2			ug/kg	68 N	~	290000 2		32000	32000 1	NC]	NC .
OLMO3.2			ug/kg	65 N		290000 2		32000	32000 1		NC
OLMO3.2 OLMO3.2			ug/kg	56 N		290000 2		32000	32000 N		NC .
			ug/kg	68 N		80000 7	780000	87000	87000 N		NC
			ug/kg	65 N		80000 7		87000	87000 N		<u>vc</u>
		NA-REF2-SO05-02	ug/kg	56 N		80000 7		87000	87000 N		VC _
JLMU3.2	Dibenz(a,h)anthracene	NA-REF2-SO01-02	ug/kg	68 N		780	780	87	87 N		

						Indus	trial	Resid	entail	Reference	Means Comparison Conclusion Reference vs
			X7_24.	MODE	Result		RBSL	RBC	RBSL	UTL	Site
Method	<u>Analyte</u>	Sample ID		65	ND	780	780	87	87	NC	NC
MO3.2	DIDCIIZ(a,ii)anundoiid		ug/kg		ND	780	780	87	87	NC	NC
LMO3.2	Dibenz(a,h)anthracene	NA-REF2-SO05-02	ug/kg		ND	8E+06			31000	NC	NC
	Dibenzofuran	NA-REF2-SO01-02	ug/kg		ND			310000	31000		NC
	Dibenzofuran	NA-REF2-SO03-02	ug/kg		ND			310000	31000		NC
LMO3.2	Dibenzofuran	NA-REF2-SO05-02	ug/kg		ND	2E+09	2E+08	6E+07	6E+06		NC
LMO3.2		NA-REF2-SO01-02	ug/kg		ND	2E+09	2E+08		6E+06		NC
	Diethylphthalate	NA-REF2-SO03-02	ug/kg			2E+09	2E+08		6E+06	58	NC
	Diethylphthalate	NA-REF2-SO05-02	ug/kg		ND	2E+10					NC
LMO3.2		NA-REF2-SO01-02	ug/kg		ND_	2E+10					NC
	Dimethylphthalate	NA-REF2-SO03-02	ug/kg		ND	2E+10	2E+09				NC
LMO3.2		NA-REF2-SO05-02	ug/kg		ND		8E+06		310000		NC
LMO3.2		NA-REF2-SO01-02	ug/kg	-	ND	8E+07	8E+06	 	310000		NC
LMO3.2		NA-REF2-SO03-02	ug/kg		ND	8E+07	8E+06		310000		NC
LMO3.2		NA-REF2-SO05-02		+	ND _	8E+07			310000		NC
LMO3.2		NA-REF2-SO01-02			ND ND	8E+07	8E+06		310000		NC
OLMO3.2		NA-REF2-SO03-02			ND	8E+07	8E+06		310000		NC
OLMO3.2		NA-REF2-SO05-02			ND _	8E+07				NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-REF2-SO01-02			8 ND	73000				NC	NC
DLMO3.2		NA-REF2-SO03-02		· 	5 ND	73000				NC	NC
OLMO3.2		NA-REF2-SO05-02			6 ND	73000				0 NC	NC
OLMO3.2		NA-REF2-SO01-02	ug/kg		8 ND	3600				ONC	NC
PL MO3 2	Hexachlorobenzene	NA-REF2-SO03-02	ug/kş	·	5 ND	3600				0 NC	NC NC
MO3.2	Hexachlorobenzene	NA-REF2-SO05-02	ug/k		6 ND	3600				0 NC	NC NC
OLMO3.2		NA-REF2-SO01-02		7 I	8 ND	1E+0		6 55000			NC
OLMO3.2	2 Hexachlorocyclopentadiene	NA-REF2-SO03-02	ug/k	,	5 ND U.			6 55000		0 NC	NC
OLMO3.2	2 Hexachlorocyclopentadiene	NA-REF2-SO05-02		- <u></u>	6 ND U.			6 55000		0 NC	NC
OLMO3.2	2 Hexachloroethane	NA-REF2-SO01-02			8 ND		41000			0 NC	NC NC
OLMO3.		NA-REF2-SO03-02		·	5 ND		41000			0 NC	NC NC
OLMO3.		NA-REF2-SO05-02	2 ug/k		6 ND		0 41000			0 NC	NC
OLMO3.		NA-REF2-SO01-02	2 ug/k		8 ND	780				O NC	NC
OLMO3.		NA-REF2-SO03-02	2 ug/k		55 ND	780				0 NC 0 NC	NC NC
	2 Indeno(1,2,3-cd)pyrene	NA-REF2-SO05-02	2 ug/k	-	56 ND	780	0 780				NC NC
	2 Isophorone	NA-REF2-SO01-0		o	58 ND		6 6E+0	67000	0 67000	DONC	NC NC
	2 Isophorone	NA-REF2-SO03-0	2 ug/k	·	65 ND	6E+0		67000	0 67000	ONC	NC
	2 Isophorone	NA-REF2-SO05-0	2 ug/k	~	56 ND	6E+0		67000		JUNC	NC
OLMO3.	2 N-Nitroso-di-n-propylamine	NA-REF2-SO01-0		<u> </u>	68 ND	82				NC NC	NC NC
OLMO3	2 N-Nitroso-di-n-propylamine				65 ND	82				NC NC	NC NC
OLMO3	2 N-Nitroso-di-n-propylamine	NA-REF2-SO05-0		g	56 ND	82				91 NC	NC NC
OLMO3	2 N-Nitrosodiphenylamine	NA-REF2-SO01-0		<u> </u>	68 ND	1E+(6 1E+	06 1300	00 1300	OU NC	NC NC
OLMO3	2 N-Nitrosodiphenylamine	NA-REF2-SO03-0		cg	65 ND	1E+0	6 1E+	06 1300	00 1300	00 NC	
OLMO3	.2 N-Nitrosodiphenylamine	NA-REF2-SO05-0		cg	56 ND)6 1E+	06 1300	00 1300	00 NC	NC NC
		NA-REF2-SO01-0			68 ND	8E+0		06 3E+	06 3100	00 NC	NC
	.2 Naphthalene	NA-REF2-SO03-0			65 ND	8E++			06 3100	00 NC	NC
	.2 Naphthalene	NA-REF2-SO05-0		_	56 ND	8E+			06 3100		NC NC
OLMO3	2 Naphthalene	NA-REF2-SO01-0			68 ND		06 1000			00 NC	NC
OLMO3	2 Nitrobenzene	NA-REF2-SO03-0			65 ND		06 1000			00 NC	NC
	Nitrobenzene	NA-REF2-SO05-0			56 ND	1E+	06 1000			00 NC	NC
OLMO3	Nitrobenzene	NA-REF2-SO01-	02 ug/		68 ND	480	00 480	000 53		800 NC	NC
LOLMO3	3.2 Pentachlorophenol 3.2 Pentachlorophenol	NA-REF2-SO03-			65 ND	480		100 53	500 53	300 NC	NC

Method						Ind	ustria <u>l</u>	Dari	3		Means Compariso Conclusion
OLMO3.2	Analyte Pentachlorophenol	Sample ID	Unit	s MDI	Resul	t RBC		RBC	dentail RBSL	Reference	
OLMO3.2		NA-REF2-SO05-(02 ug/kg	g 5	6 ND	48000				UTL	Site
	Phenanthrene	NA-REF2-SO01-0	02 ug/kg	3 6	ND	6E+07			5300		NC
	Phenanthrene	NA-REF2-SO03-0	02 ug/kg	3 6.	ND	6E+07			230000		NC
OLMO3.2		NA-REF2-SO05-0)2 ug/kg	5	ND	6E+07			230000		NC
	Phenol	NA-REF2-SO01-0	2 ug/kg		ND	1E+09					NC
	Phenol	NA-REF2-SO03-0	2 ug/kg	6.5	ND	1E+09					NC
DLMO3.2		NA-REF2-SO05-0	2 ug/kg	56	ND	1E+09					NC
	Pyrene	NA-REF2-SO01-0		68	ND	6E+07			230000		NC
DLMO3.2		NA-REF2-SO03-0		65	ND	6E+07			230000		NC
DI MOS 2	his (2 Ch)	NA-REF2-SO05-02		56	ND	6E+07			230000		NC
I MO2 2	bis(2-Chloroethoxy)methane				ND	5200	5200	580			NC
I MO2 2	bis(2-Chloroethoxy)methane	NA-REF2-SO03-02	2 ug/kg		ND	5200	5200	580	580		NC
LMO2.2	bis(2-Chloroethoxy)methane	NA-REF2-SO05-02	2 ug/kg	-	ND	5200	5200	580	580		NC
LMO3.2	bis(2-Chloroethyl)ether	NA-REF2-SO01-02	ug/kg		ND	5200	5200	580	580		NC
LMO3.2	bis(2-Chloroethyl)ether	NA-REF2-SO03-02			ND	5200	5200	580	580 1		NC
LMO3.2	bis(2-Chloroethyl)ether	NA-REF2-SO05-02	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Ethylhexyl)phthalate	NA-REF2-SO01-02	ug/kg			410000		46000	580 N		NC
LMO3.2 LMO3.2	bis(2-Ethylhexyl)phthalate	NA-REF2-SO03-02		65		410000		46000	46000 N		NC
	bis(2-Ethylhexyl)phthalate	NA-REF2-SO05-02		56		410000		46000	46000 N		VC
LMO3.2 C	di-n-Butylphthalate	NA-REF2-SO01-02		68	ND	2E+08		8E+06	790000		VC
LMO3.2	di-n-Butylphthalate di-n-Butylphthalate	NA-REF2-SO03-02		65		-		8E+06		77 1	
MO3.2	11-n-Butylphthalate	NA-REF2-SO05-02		56	320			8E+06		77 1	
MO3.2	li-n-Octylphthalate	NA-REF2-SO01-02	ug/kg	68						77 N	
MO2.2 d	li-n-Octylphthalate	NA-REF2-SO03-02	ug/kg	65				25.06	160000 N		IC
MO2.2	li-n-Octylphthalate	NA-REF2-SO05-02	ug/kg	56							IC
MO3.2 o		NA-REF2-SO01-02	ug/kg	68					60000 N		IC
MO3.2 o		NA-REF2-SO03-02	ug/kg	65					90000 N		IC
MO3.2 o	··	NA-REF2-SO05-02	ug/kg	56 1					90000 N		C
MO3.2 p		NA-REF2-SO01-02	ug/kg	68 1			1E+06 3		90000 N		C
	-Cresol	NA-REF2-SO03-02	ug/kg	65 1			1E+06 3		39000 N		
MO3.2 p-		NA-REF2-SO05-02	ug/kg	56 N			1E+06 3		39000 N		
		NA-REF2-SO01-02	ng/kg	0.8			38000	4200	39000 N		
	2,3,4,6,7,8,9-OCDD	NA-REF2-SO03-02	ng/kg	1.1			38000		4300	39.6 N	
	,2,3,4,6,7,8,9-OCDD	NA-REF2-SO05-02	ng/kg	1.2			38000	4300	4300	39.6 N	
	2,3,4,6,7,8,9-OCDF	NA-REF2-SO01-02	ng/kg	0.7				4300	4300	39.6 N	
	2,3,4,0,7,8,9-UCDF	NA-REF2-SO03-02	ng/kg	0.9				4300	4300	4.6 N	
	2,3,4,6,7,8,9-OCDF	NA-REF2-SO05-02	ng/kg	1				4300	4300	4.6 N	
	2,3,4,0,7,8-HPCDD	NA-REF2-SO01-02	ng/kg	0.5 1		3800	3800	4300	4300	4.6 N	
	2,3,4,0,7,8-HpCDD		ng/kg	0.8 2			3800	430	430	6 NS	
		NA-REF2-SO05-02	ng/kg	0.8			3800	430	430	6 NS	
	2,3,4,6,7,8-HpCDF	VA-REF2-SO01-02	ng/kg	0.4			3800	430	430	6 NS	
	2,3,4,6,7,8-HpCDF	TA	ng/kg	0.5			3800	430	430	5.1 NS	
		NA-REF2-SO05-02	ng/kg	0.6				430	430	5.1 NS	
	2,3,4,7,8,9-HpCDF	A-REF2-SO01-02	ng/kg	0.5 7.			3800 3800	430	430	5.1 NS	
	<u>4,3,4,7,8,9</u> -HpCDF	T.A	ng/kg	0.6 N				430	430	1 NS	
	2,3,4,7,8,9-HpCDF	A-REF2-SO05-02 1	ng/kg	0.9 4.0			3800	430	430	1 NS	
	2,3,4,7,8-HxCDD	7 4 70 70 70 70 70 70	ng/kg	0.5 2.5			3800	430	430	1 NS	
	<u>,3,4,7,8-HxCD</u> D N		ng/kg	0.6 NI		380	380	43	43 NC	NC	
290 1,2	,3,4,7,8-HxCDD		ng/kg	0.6 1.2		380 380	380	_43	43 NC	NC	

	, <u>, , , , , , , , , , , , , , , , , , </u>					Indu	strial	Resid	entail	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	1,2,3,4,7,8-HxCDF	NA-REF2-SO01-02	ng/kg	0.4	13.7 J	380	380	43	43		NS
	1,2,3,4,7,8-HxCDF	NA-REF2-SO03-02	ng/kg	0.3	2.9 J	380	380	43	43	L	NS
	1,2,3,4,7,8-HxCDF	NA-REF2-SO05-02	ng/kg	0.5	8.1 J	380	380	43	43		NS
	1,2,3,6,7,8-HxCDD	NA-REF2-SO01-02	ng/kg	0.4	7.9 J	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO03-02	ng/kg	1.9	ND UJ	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDD	NA-REF2-SO05-02	ng/kg	0.6	4.5 J	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO01-02	ng/kg	0.4	6	380	380	43	43	1	NS
	1,2,3,6,7,8-HxCDF	NA-REF2-SO03-02	ng/kg	0.3	1.1 J	380	380	43	43		NS
SW8290	1,2,3,6,7,8-HxCDF	NA-REF2-SO05-02	ng/kg	0.5	3.7 J	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO01-02	ng/kg	0.4	11.8 Ј	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO03-02	ng/kg	0.6	6.3 J	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDD	NA-REF2-SO05-02	ng/kg	0.6	11.1 J	380	380	43	43		NS
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO01-02	ng/kg	0.5	0.55 J	380	380	43		NC	NC
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO03-02	ng/kg	0.4	ND	380	380	43		NC	NC
SW8290	1,2,3,7,8,9-HxCDF	NA-REF2-SO05-02	ng/kg	0.6	ND	380	380	43	43	NC	NC
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO01-02	ng/kg	0.5	3.1 J	76	76	8.6	8.6		NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO03-02	ng/kg	0.4	0.89 J	76	76	8.6		.1	NS
SW8290	1,2,3,7,8-PeCDD	NA-REF2-SO05-02	ng/kg	0.7	2.8 J	76	76	8.6	8.6		NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO01-02	ng/kg		3.4 J	760	760	86	1		NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO03-02	ng/kg	0.3	0.95 J	760	760	86	1		NS
SW8290	1,2,3,7,8-PeCDF	NA-REF2-SO05-02	ng/kg	0.5	2 J	760	760	86			NS
SW8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO01-02	ng/kg	0.5	13.5 J	380	380	43	<u> </u>		NS
8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO03-02	ng/kg	0.4	2.5 J	380					NS
ъ ₩8290	2,3,4,6,7,8-HxCDF	NA-REF2-SO05-02	ng/kg	0.6	8.2 J	380			<u> </u>		NS
SW8290	2,3,4,7,8-PeCDF	NA-REF2-SO01-02	ng/kg	0.4	4.4 J	76					NS
SW8290	2,3,4,7,8-PeCDF	NA-REF2-SO03-02	ng/kg	0.3	1.1 J	76					NS
SW8290	2,3,4,7,8-PeCDF	NA-REF2-SO05-02	ng/kg		3.1 J	76					NS
SW8290	2,3,7,8-TCDD	NA-REF2-SO01-02	ng/kg		ND	38				NC	NC
SW8290	2,3,7,8-TCDD	NA-REF2-SO03-02	ng/kg	0.3	ND	38				NC	NC
SW8290	2,3,7,8-TCDD	NA-REF2-SO05-02	ng/kg		ND	38				NC	NC
SW8290	2,3,7,8-TCDF	NA-REF2-SO01-02	ng/kg								NS
SW8290	2,3,7,8-TCDF	NA-REF2-SO03-02	ng/kg		0.85 J	380					NS
SW8290	2,3,7,8-TCDF	NA-REF2-SO05-02	ng/kg	0.7			380	43	43		NS
SW8290	Total HpCDD	NA-REF2-SO01-02	ng/kg	0.5			ļ		<u> -</u>		NS
SW8290	Total HpCDD	NA-REF2-SO03-02					<u> </u>	·	ļ .	1	NS
SW8290	Total HpCDD	NA-REF2-SO05-02					<u> </u>	ļ	-		NS
SW8290	Total HpCDF	NA-REF2-SO01-02		-			-	<u> -</u> -	-		NS
SW8290	Total HpCDF	NA-REF2-SO03-02					ļ	<u> -</u>	 		NS
SW8290	Total HpCDF	NA-REF2-SO05-02					-	ļ. ·	<u> -</u>		NS
SW8290	Total HxCDD	NA-REF2-SO01-02						<u> </u>	 		NS
SW8290	Total HxCDD	NA-REF2-SO03-02					ļ	ļ 	-		NS NS
SW8290	Total HxCDD	NA-REF2-SO05-02					ļ	1.			I NS
SW8290	Total HxCDF	NA-REF2-SO01-02					ļ.	<u> -</u>	<u> -</u>		NS
SW8290	Total HxCDF	NA-REF2-SO03-02						ļ	1-		NS
SW8290	Total HxCDF	NA-REF2-SO05-02					<u> </u>	<u> </u>	<u> -</u>		5 NS
SW8290	Total PeCDD	NA-REF2-SO01-02			_\	_	ļ	ļ	-		NS
SW8290	Total PeCDD	NA-REF2-SO03-02					ļ	ļ			NS
SW8290	Total PeCDD	NA-REF2-SO05-02					<u> </u>		-		NS
3290	Total PeCDF	NA-REF2-SO01-02	ng/kg	; 0.4	4 40.7	7 .		<u>.</u>	<u></u>	12.	1 NS

Method	Analyte	Sample ID	Timite	MDL	Result		ustrial RBSI		dentail	Reference	1
SW8290	Total PeCDF	NA-REF2-SO03-02		0.3			KDSL	RBC	RBSI		Site
SW8290	Total PeCDF	NA-REF2-SO05-02		0.5					ļ·		NS
SW8290	Total TCDD	NA-REF2-SO01-02		0.6			<u> </u>	<u> </u>	<u> -</u>		NS .
SW8290	Total TCDD	NA-REF2-SO03-02	<u> </u>	0.3			 -	 	<u> -</u>		NS NS
SW8290	Total TCDD	NA-REF2-SO05-02		0.6			 	•	-		NS
SW8290	Total TCDF	NA-REF2-SO01-02	1 0 0	0.5			 -	ļ.	-		NS
SW8290	Total TCDF	NA-REF2-SO03-02	ng/kg	0.2			╬	<u> </u>	<u> </u>		NS
SW8290	Total TCDF	NA-REF2-SO05-02	ng/kg	0.4			 -	 	 		NS
ILM04.0	Cyanide	NA-REF2-SO01-02	mg/kg	0.48			4100	1600	160		NS
ILM04.0	Cyanide	NA-REF2-SO03-02	mg/kg	0.48		41000					
ILM04.0	Cyanide	NA-REF2-SO05-02	mg/kg	0.41		41000					
ILMO4.0	Aluminum	NA-REF2-SO01-02	mg/kg	3.2			200000				
ILMO4.0	Aluminum	NA-REF2-SO03-02	mg/kg	7.100	108000		200000				
ILMO4.0	Aluminum	NA-REF2-SO05-02	mg/kg	2.5			200000		7800		
ILMO4.0	Antimony	NA-REF2-SO01-02	mg/kg		2.2 J	820			7800		
ILMO4.0	Antimony	NA-REF2-SO03-02	mg/kg		1.6 J	820			3.1		NS
ILMO4.0	Antimony	NA-REF2-SO05-02	mg/kg		1.1 J	820			3.1	+	NS
ILMO4.0	Arsenic	NA-REF2-SO01-02	mg/kg	1.1	5.9	· 			3.1		NS
ILMO4.0	Arsenic	NA-REF2-SO03-02	mg/kg	1	4.8				0.43		NS
ILMO4.0	Arsenic	NA-REF2-SO05-02	mg/kg	0.83	3.6			 -	0.43		NS
ILMO4.0	Barium	NA-REF2-SO01-02	mg/kg	0.03		140000			0.43		NS .
ILMO4.0	Barium	NA-REF2-SO03-02	mg/kg		198 K	140000			550		
ILMO4.0	Barium	NA-REF2-SO05-02	mg/kg		73.7 K	140000			550 550		
LMO4.0	Beryllium	NA-REF2-SO01-02	mg/kg	0.27		4100				72.3 NC	
LMO4.0	Beryllium	NA-REF2-SO03-02	mg/kg	0.26	0.26			160		+	NC
LMO4.0	Beryllium	NA-REF2-SO05-02	mg/kg	0.21		4100	410	160			NC
LMO4.0	Cadmium	NA-REF2-SO01-02	mg/kg	0.27		1000	100	39	3.9		NC
LMO4.0	Cadmium	NA-REF2-SO03-02	mg/kg	0.26		1000		39	3.9		
	Cadmium	NA-REF2-SO05-02	mg/kg	0.21		1000		39	3.9		
	Calcium	NA-REF2-SO01-02	mg/kg	7	5090	1000	100	39			
LMO4.0	Calcium	NA-REF2-SO03-02	mg/kg	6.9	3890	•			<u> </u>	11600	
	Calcium		mg/kg	5.4	8180	•			<u> </u>	11600	
	Chromium	NA-REF2-SO01-02	mg/kg	0.27		10000	1000	390	39	11600	
LMO4.0	Chromium	NA-REF2-SO03-02	mg/kg	0.26	49.4		1000	390	39	-	
LMO4.0	Chromium		mg/kg	0.21	29.7	10000	1000	390	39	30.8 30.8	
	Cobalt		mg/kg	0.27		120000	12000	4700	470		
	Cobalt		mg/kg	0.26		120000	12000	4700	470		
	Cobalt		mg/kg	0.21		120000	12000	4700	470		
	Copper		mg/kg	0.27	189	82000	8200	3100	310		
	Copper		mg/kg	0.26	179	82000	8200	3100	310	116	
	Copper		mg/kg	0.21	125	82000	8200	3100	310	116	
	ron		mg/kg	3.7		610000	61000	23000		116	
	fron		mg/kg	3.7	87500		61000	23000	2300	51800	
	ron		mg/kg	2.9	51400		61000	23000	2300	51800	
	ead		mg/kg	0.53	48.1	400	400	400	2300	51800	
	ead	1	mg/kg	0.53	19.4	400	400		400	8.7	
LMO4.0 I	ead		mg/kg	0.41	15.4	400		400	400	8.7	
LMO4.0 N	Magnesium		mg/kg		11500 .	400	400	400	400	8.7	
	Magnesium	NA-REF2-SO03-02	mo/ka		14500 .	<u> </u>		· ·		12200 I	

						Indu	otuio!	Reside	mtail	Deference	Means Comparison Conclusion Reference vs.
34-41-3	Analyte	Sample ID	Unite	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method ILMO4.0	Magnesium	NA-REF2-SO05-02	mg/kg	1.9	11200					12200	NS
	Manganese	NA-REF2-SO01-02	mg/kg	0.27	1350	41000	4100	1600	160	890	NS
	Manganese		mg/kg	0.26	1530	41000	4100	1600	160	890	NS
	Manganese	NA-REF2-SO05-02	mg/kg	0.21	933	41000	4100	1600	160	890	NS
	Mercury		mg/kg	0.03	0.22	200	20	7.8	0.78	0.04	NS
	Mercury		mg/kg	0.03	0.08	200	20	7.8	0.78	0.04	NS
	Mercury	NA-REF2-SO05-02	mg/kg	0.03	0.1	200	20	7.8	0.78	0.04	
	Nickel	NA-REF2-SO01-02	mg/kg		46.1	41000	4100	1600	160	32.9	
	Nickel	NA-REF2-SO03-02	mg/kg	0.53	47.9	41000	4100	1600	160	32.9	
	Nickel	NA-REF2-SO05-02	mg/kg	0.21	33.2	41000	4100	1600	160	32.9	
ILMO4.0	Potassium	NA-REF2-SO01-02	mg/kg		371				•	285	
	Potassium	NA-REF2-SO03-02	mg/kg		292				-	285	
	Potassium	NA-REF2-SO05-02	mg/kg	1.2	290					285	
	Selenium	NA-REF2-SO01-02	mg/kg		ND UL	10000	1000	390	39		NS
	Selenium	NA-REF2-SO03-02	mg/kg		ND UL	10000	1000	390	39		NS
ILMO4.0	Selenium	NA-REF2-SO05-02	mg/kg		0.88 L	10000	1000	390	39		NS
ILMO4.0	Silver	NA-REF2-SO01-02	mg/kg	0.27	1.3	10000	1000	390		NC	NC
ILMO4.0	Silver	NA-REF2-SO03-02	mg/kg	0.26	0.57	10000	1000	390		NC	NC
ILMO4.0	Silver		mg/kg	0.21	0.33	10000	1000	390	39	NC	NC
ILMO4.0	Sodium	NA-REF2-SO01-02	mg/kg	26.7	326					2030	
	Sodium	NA-REF2-SO03-02	mg/kg	26.4	422			·		2030	
ILMO4.0	Sodium	NA-REF2-SO05-02	mg/kg	20.7	1080					2030	
104.0	Thallium	NA-REF2-SO01-02	mg/kg	1.1	5.6 L	140		5.5	0.55		NS
MO4.0	Thallium	NA-REF2-SO03-02	mg/kg		3.2 L	140		5.5	0.55		NS
ILMO4.0	Thallium	NA-REF2-SO05-02	mg/kg	0.83	1.3 L	140		5.5	0.55		NS
ILMO4.0	Vanadium	NA-REF2-SO01-02	mg/kg	0.27				550			NS
ILMO4.0	Vanadium	NA-REF2-SO03-02	mg/kg	0.26				550			NS
ILMO4.0	Vanadium	NA-REF2-SO05-02	mg/kg	0.21	213			550	55		NS
ILMO4.0	Zinc	NA-REF2-SO01-02	mg/kg			610000		23000	2300		
ILMO4.0	Zinc	NA-REF2-SO03-02	mg/kg			610000		23000			NS
ILMO4.0	Zinc	NA-REF2-SO05-02	mg/kg			610000		23000			NS
	Chloride	NA-REF2-SO05-02	mg/kg			200000		7800			NS
	Fluoride	NA-REF2-SO05-02	mg/kg			120000				NC	NC
353.2	Nitrate	NA-REF2-SO05-02	mg/kg	0.83	7.16	3E+06	330000	130000	13000	6.74	NS

Reference UTL abbreviations: NC = Not calculated because reference data were all non-detected results or were not analyzed.

Means Comparison Conclusion Reference vs. Site abbreviations:

NA = Not applicable. Data is associated with reference area.

NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.

NS = Not significant. On average, site data were not significantly greater than reference data.

S = Signficant. On average, site data were signficantly greater than reference data.

Method	Amalus						ustrial		dential	Reference	Means Compariso Conclusion Reference
OLM03.2	Analyte 4,4'-DDD	Sample ID	Units					RBC	RBSL	UTL	Site
OLM03.2	4,4'-DDD	NA-TRND-SO01-01	ug/kg	0.29		24000					NC
	4,4'-DDD	NA-TRND-SO02-01	ug/kg	0.31		24000					NC
	4,4'-DDD	NA-TRND-SO03-01 NA-TRND-SO04-31	ug/kg	0.24		24000					NC
	4,4'-DDD	NA-TRND-S005-01	ug/kg		ND	24000		2700			NC
	4,4'-DDD	NA-TRND-S006-01	ug/kg		ND	24000		2700		<u>. </u>	NC
	4,4'-DDD	NA-TRND-S007-01	ug/kg ug/kg	0.25		24000		2700			NC
	4,4'-DDD	NA-TRND-SO08-01	ug/kg	0.35	ND	24000		2700			NC
	4,4'-DDD	NA-TRND-S009-01	ug/kg	0.33		24000		2700		L	NC
OLM03.2	4,4'-DDD	NA-TRND-SO10-01	ug/kg	0.32		24000 24000		2700	2700		NC
OLM03.2	4,4'-DDD	NA-TRND-SO11-01	ug/kg	0.32	18			2700	2700		NC
OLM03.2	4,4'-DDD	NA-TRND-SO12-01	ug/kg	0.24		24000		2700	2700	L	NC
OLM03.2	4,4'-DDD	NA-TRND-SO13-01	ug/kg	0.31		24000		2700	2700	L	NC
OLM03.2	4,4'-DDD	NA-TRND-SO14-01	ug/kg	0.31		24000		2700	2700		NC
OLM03.2	4,4'-DDD	NA-TRND-SO15-01	ug/kg	0.29		24000		2700	2700		NC
OLM03.2	4,4'-DDD	NA-TRND-SO16-01	ug/kg	0.3		24000	24000	2700	2700		NC
OLM03.2	4,4'-DDD	NA-TRND-SO17-01	ug/kg	0.24		24000	24000	2700 2700	2700		NC
OLM03.2	4,4'-DDD	NA-TRND-SO18-01	ug/kg	0.27		24000	24000	2700	2700		NC
OLM03.2	4,4'-DDD	NA-TRND-SO19-01	ug/kg	0.28		24000	24000	2700	2700 2700		NC
	4,4'-DDD	NA-TRND-SO20-01	ug/kg	0.31		24000	24000	2700	2700		NC NC
	4,4'-DDD	NA-TRND-SO21-01	ug/kg	0.26	9.7	24000	24000	2700	2700		NC NC
	4,4'-DDD	NA-TRND-SO22-01	ug/kg	0.25		24000	24000	2700	2700		NC NC
	4,4'-DDD	N	ug/kg	0.32		24000	24000	2700	2700		NC NC
	4,4' -D DD		ug/kg	0.26		24000	24000	2700	2700		
	4,4'-DDD		ug/kg	0.28		24000	24000	2700	2700		NC NC
	4,4'-DDD	NA-TRND-SO26-01	ug/kg	0.27		24000	24000	2700	2700		NC
	4,4'-DDD	NA-TRND-SO27-01	ug/kg	0.3		24000	24000	2700	2700		NC
	\$,4'-DDD		ug/kg	0.26		24000	24000	2700	2700		NC
	4,4'-DDD	NA-TRND-SO29-01	ug/kg	0.27	VD	24000	24000	2700	2700		NC NC
	1,4'-DDD	NA-TRND-SO30-01	ug/kg	0.28	VD	24000	24000	2700	2700		NC
	1,4'-DDD	NA-TRND-SO31-01	ug/kg	0.3	ND	24000	24000	2700	2700		NC
	I,4'-DDD		ug/kg	0.28		24000	24000	2700	2700 1		NC
	,4'-DDD		ug/kg	0.33 1		24000	24000	2700	2700 1		NC
LM03.2 4 LM03.2 4			ug/kg	0.29 1	√D [17000	17000	1900	1900	990	
	I,4'-DDE		ug/kg	0.31 2	.7 J	17000	17000	1900	1900	990	
	,4'-DDE		ug/kg	0.24	6.5	17000	17000	1900	1900	990	
	,4'-DDE	· ·	ug/kg	3		17000	17000	1900	1900	990 1	
	,4'-DDE		ug/kg	0.3		17000	17000	1900	1900	990 1	
	,4'-DDE	374	ug/kg	0.25 N		17000	17000	1900	1900	990 1	
	,4'-DDE	374	ug/kg	0.3 N		17000	17000	1900	1900	990 1	VS.
	,4'-DDE		ug/kg	0.35 N		17000	17000	1900	1900	990 1	
	,4'-DDE	3.7.4. COM-2.77	ug/kg	0.32		17000	17000	1900	1900	990 1	
	,4'-DDE		ug/kg	0.32		17000	17000	1900	1900	990 1	
	,4'-DDE		ug/kg	0.24		17000	17000	1900	1900	990 1	
	,4'-DDE	3.7.4	ıg/kg	0.34 N		17000	17000	1900	1900	990 1	
	,4'-DDE	1	1g/kg	0.31			17000	1900	1900	990 N	
	,4'-DDE		ıg/kg	0.31			17000	1900	1900	990 N	
LM03.2 4,	4'-DDE	NA-TRND-SO15-01 u	ig/kg ig/kg	0.29	4	17000	17000	1900	1900	990 N	

	· · · · · · · · · · · · · · · · · · ·	 									
				1							Means
			1								Comparison
Τ											Conclusion
ł .						Indu	strial		lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	4,4'-DDE	NA-TRND-SO17-01	ug/kg	0.24	ND	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO18-01	ug/kg	0.27	1.1	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO19-01	ug/kg	0.28	25	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO20-01	ug/kg	0.31	ND	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO21-01	ug/kg	2.6		17000	17000	1900	1900	990	NS
	4,4'-DDE	NA-TRND-SO22-01	ug/kg	0.25		17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO23-01	ug/kg	0.32		17000	17000	1900	1900	990	
OLM03.2	4,4'-DDE	NA-TRND-SO24-31	ug/kg	0.26		17000	17000	1900	1900	990	NS
	4,4'-DDE	NA-TRND-SO25-01	ug/kg	0.28	0.53	17000	17000	1900	1900	990	
OLM03.2	4,4'-DDE	NA-TRND-SO26-01	ug/kg	0.27	14	17000	17000	1900	1900	990	
OLM03.2	4,4'-DDE	NA-TRND-SO27-01	ug/kg	0.3	36	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO28-01	ug/kg	0.26	60	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO29-01	ug/kg	0.27	2.4	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO30-01	ug/kg	0.28	5	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO31-01	ug/kg	0.3	ND	17000	17000	1900	1900	990	NS
OLM03.2	4,4'-DDE	NA-TRND-SO32-01	ug/kg	0.28	27	17000	17000	1900	1900	990	NS
	4,4'-DDE	NA-TRND-SO33-01	ug/kg	0.33	ND	17000	17000	1900	1900	990	NS
	4,4'DDT	NA-TRND-SO01-01	ug/kg	0.29	ND	17000	17000	1900	1900	200	
	4,4'-DDT	NA-TRND-SO02-01	ug/kg	0.31		17000	17000	1900	1900	200	
	4,4'-DDT	NA-TRND-SO03-01	ug/kg	0.24	11 J	17000	17000	1900	1900	200	
OLM03.2	4,4'-DDT	NA-TRND-SO04-31	ug/kg	3	840	17000	17000	1900	1900	200	
	4,4'-DDT	NA-TRND-SO05-01	ug/kg	0.3	11	17000	17000	1900	1900	200	
	4,4'-DDT	NA-TRND-SO06-01	ug/kg	0.25		17000	17000	1900	1900	200	
JLM03.2		NA-TRND-SO07-01	ug/kg		ND	17000	17000	1900	1900	200	
OLM03.2			ug/kg	0.35	1	17000	17000	1900	1900	200	
			ug/kg		2.8 J	17000	17000	1900	1900	200	
			ug/kg	0.32	22	17000	17000	1900	1900	200	
			ug/kg	0.97	200	17000	17000	1900	1900	200	
			ug/kg	0.34		17000	17000	1900	1900	200	
		NA-TRND-SO13-01	ug/kg		5.6 J	17000	17000	1900	1900	200	
		NA-TRND-SO14-01	ug/kg	0.31	74	17000	17000	1900	1900	200	
		NA-TRND-SO15-01	ug/kg		ND UJ	17000	17000	1900	1900	200	
OLM03.2			ug/kg		ND	17000	17000	1900	1900	200	
OLM03.2		NA-TRND-SO17-01	-		0.84 J	17000	17000	1900	1900	200	
OLM03.2			ug/kg	0.27		17000	17000	1900	1900	200	
OLM03.2		· · · · · · · · · · · · · · · · · · ·	ug/kg	0.28		17000	17000	1900	1900	200	
OLM03.2			ug/kg	0.31		17000	17000	1900	1900	200	
	4,4'-DDT		ug/kg	2.6		17000	17000	1900	1900	200	
			ug/kg	0.25		17000	17000	1900	1900	200	
OLM03.2			ug/kg	0.32		17000	17000	1900	1900	200	
			ug/kg	0.26		17000	17000	1900	1900	200	
			ug/kg	0.28		17000	17000	1900	1900	200	
OLM03.2	······································		ug/kg	0.27		17000	17000	1900	1900	200	
			ug/kg		28 J	17000	17000	1900	1900	200	
		· · · · · · · · · · · · · · · · · · ·	ug/kg	0.26		17000	17000	1900	1900	200	
OLM03.2			ug/kg	0.27		17000	17000	1900	1900	200	
OLM03.2 4			ug/kg	0.28		17000	17000	1900	1900	200	
QLM03.2			ug/kg	0.3			17000	1900	1900	200	
M03.2	4,4'-DDT	NA-TRND-SO32-01	ug/kg	0.28	20	17000	17000	1900	1900	200	NS

											Means 4
											Comparison
											Conclusion
35.41			l		i		strial		lential	4	Reference vs.
Method OLM03.2	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	4,4'-DDT Aldrin	NA-TRND-SO33-01	ug/kg	0.33		17000		1900	1900		NS
	Aldrin	NA-TRND-SO01-01 NA-TRND-SO02-01	ug/kg	0.29		340		38		NC	NC
OLM03.2	Aldrin		ug/kg	0.31		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO03-01	ug/kg	0.24		340	340	38		NC	NC
OLM03.2 OLM03.2	Aldrin	NA-TRND-S004-31	ug/kg		ND	340		38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO05-01	ug/kg		ND	340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO06-01	ug/kg	0.25		340	340	38		NC	NC
	——————————————————————————————————————	NA-TRND-SO07-01	ug/kg		ND	340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO08-01	ug/kg	0.35		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO09-01	ug/kg	0.32		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO10-01	ug/kg	0.32		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO11-01	ug/kg	0.24		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO12-01	ug/kg	0.34		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO13-01	ug/kg	0.31		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO14-01	ug/kg		ND	340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO15-01	ug/kg	0.29		340	340	38			NC
OLM03.2	Aldrin	NA-TRND-SO16-01	ug/kg		ND	340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO17-01	ug/kg	0.24		340	340	38			NC
OLM03.2	Aldrin	NA-TRND-SO18-01	ug/kg	0.27		340	340	38		NC	NC
	Aldrin	NA-TRND-SO19-01	ug/kg	0.28		340	340	38		NC	NC
OLM03.2	Aldrin	NA-TRND-SO20-01	ug/kg	0.31		340	340	38			NC
	Aldrin	NA-TRND-SO21-01	ug/kg	0.26		340	340	38		NC	NC
	Aldrin	NA-TRND-SO22-01	ug/kg	0.25		340	340	38	38	NC	NC
	Aldrin	NA-TRND-SO23-01	ug/kg	0.32		340	340	38		NC	NC
	Aldrin	NA-TRND-SO24-31	ug/kg	0.26		340	340	38	38	NC	NC
	Aldrin	NA-TRND-SO25-01	ug/kg	0.28		340	340	38		NC	NC
	Aldrin	NA-TRND-SO26-01	ug/kg	0.27		340	340	38		NC	NC
	Aldrin	NA-TRND-SO27-01	ug/kg	0.3		340	340	38			NC
	Aldrin	NA-TRND-SO28-01	ug/kg	0.26		340	340	38	38	NC	NC
	Aldrin	NA-TRND-SO29-01	ug/kg	0.27		340	340	38	38	NC	NC
	Aldrin	NA-TRND-SO30-01	ug/kg	0.28		340	340	38	38	NC	NC
	Aldrin	NA-TRND-SO31-01	ug/kg	0.3	ND	340	340	38	38	NC	NC
	Aldrin		ug/kg	0.28		340	340	38	38	NC	NC
	Aldrin		ug/kg	0.33		340	340	38	38	NC	NC
	Aroclor-1016	NA-TRND-SO01-01	ug/kg	0.29	ND	2900	2900	320	320	NC	NC
	Aroclor-1016		ug/kg	0.31	ND	2900	2900	320	320	NC	NC
	Aroclor-1016		ug/kg	0.24		2900	2900	320	320		NC
	Aroclor-1016		ug/kg	0.3	ND	2900	2900	320	320		NC
	Aroclor-1016		ug/kg	0.3		2900	2900	320	320		NC
	Aroclor-1016		ug/kg	0.25	ND	2900	2900	320	320		NC
	Aroclor-1016		ug/kg	0.3	ND	2900	2900	320	320		NC
	Aroclor-1016	NA-TRND-SO08-01	ug/kg	0.35	ND	2900	2900	320	320		NC
	Aroclor-1016	NA-TRND-SO09-01	ug/kg	0.32	ND	2900	2900	320	320	V 7.1/-	NC
	Aroclor-1016		ug/kg	0.32		2900	2900	320	320		NC
OLM03.2	Aroclor-1016		ug/kg	0.24		2900	2900	320	320		NC
OLM03.2	Aroclor-1016		ug/kg	0.34		2900	2900	320	320		NC
OLM03.2	Aroclor-1016		ug/kg	0.31		2900	2900	320	320		NC
OLM03.2	Aroclor-1016		ug/kg	0.31		2900	2900	320	320		NC _
	Aroclor-1016		ug/kg	0.29		2900	2900	320	320		NC NC

							strial _	Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units			RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	Aroclor-1016	NA-TRND-SO16-01	ug/kg		ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO17-01	ug/kg	0.24		2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO18-01	ug/kg	0.27	ND _	2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO19-01	ug/kg	0.28	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO20-01	ug/kg	0.31	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO21-01	ug/kg	0.26		2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO22-01	ug/kg	0.25		2900		320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO23-01	ug/kg	0.32		2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO24-31	ug/kg	0.26		2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO25-01	ug/kg	0.28		2900		320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO26-01	ug/kg	0.27		2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO27-01	ug/kg		ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO28-01	ug/kg		ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO29-01	ug/kg	0.27		2900	2900	320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO30-01	ug/kg	0.28		2900		320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO31-01	ug/kg	_	ND	2900		320		NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO32-01	ug/kg		ND_	2900				NC	NC
OLM03.2	Aroclor-1016	NA-TRND-SO33-01	ug/kg	0.33	ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO01-01	ug/kg	0.29	ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO02-01	ug/kg	0.31	ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO03-01	ug/kg	0.24	ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO04-31	ug/kg	0.3	ND	2900				NC	NC
M03.2	Aroclor-1221	NA-TRND-SO05-01	ug/kg	0.3	ND	2900				NC	NC
LM03.2	Aroclor-1221	NA-TRND-SO06-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO07-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO08-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO09-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO10-01	ug/kg		ND	2900			1	NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO11-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO12-01	ug/kg		ND	2900		1		NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO13-01	ug/kg		IND	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO14-01	ug/kg		ND .	2900				NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO15-01	ug/kg	0.29	ND	2900) NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO16-01	ug/kg		3 ND	2900			+	NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO17-01			4 ND	2900			1	ONC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO18-01			7 ND	2900		1		0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO19-01			8 ND	2900	$\overline{}$		-	0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO20-01		_	I ND	2900				0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO21-01			6 ND	2900				0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO22-01			5 ND	2900				0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO23-01			2 ND	2900				0 NC	NC NC
OLM03.2	Aroclor-1221	NA-TRND-SO24-31			6 ND	2900				0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO25-01			8 ND	290		 -		0 NC	NC NC
OLM03.2	Aroclor-1221	NA-TRND-SO26-01			7 ND	290				0 NC	NC NC
OLM03.2	Aroclor-1221	NA-TRND-SO27-01		_	3 ND	290		_		0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO28-01			6 ND	290				0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO29-01			7 ND	290				0 NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO30-01	_		8 ND	290				0 NC	NC
103.2	Aroclor-1221	NA-TRND-SO31-01	ug/k	g 0.	3 ND	290	0 2900	320) ₃₂	0 NC	NC

					, all lac			T	·		
Method							<u>istrial</u>	Resid	lential	Reference	Means Compariso Conclusion Reference v
OLM03.2	Analyte	Sample ID	Units			RBC	RBSL	RBC	RBSL	UTL	Site
	Aroclor-1221	NA-TRND-SO32-01	ug/kg	0.28		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1221	NA-TRND-SO33-01	ug/kg	0.33		2900	2900	320		NC	NC
OLM03.2	Aroclor-1232	NA-TRND-S001-01	ug/kg	0.29		2900	2900	320			NC
OLM03.2 OLM03.2	Aroclor-1232	NA-TRND-SO02-01	ug/kg	0.31		2900	2900	320			NC
	Aroclor-1232	NA-TRND-SO03-01	ug/kg	0.24		2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-TRND-SO04-31	ug/kg	0.3		2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-TRND-SO05-01	ug/kg	0.3		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1232	NA-TRND-SO06-01	ug/kg	0.25		2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-TRND-SO07-01	ug/kg	0.3		2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-TRND-SO08-01	ug/kg	0.35		2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-TRND-SO09-01	ug/kg	0.32	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-TRND-SO10-01	ug/kg	0.32		2900	2900	320	320		NC
OLM03.2	Aroclor-1232	NA-TRND-SO11-01	ug/kg	0.24		2900	2900	320	320		NC
	Aroclor-1232	NA-TRND-SO12-01	ug/kg	0.34	ND	2900	2900	320	320		NC
	Aroclor-1232	NA-TRND-SO13-01	ug/kg	0.31	ND T	2900	2900	320	320		NC
	Aroclor-1232	NA-TRND-SO14-01	ug/kg	0.31	ND	2900	2900	320	320		NC
	Aroclor-1232	NA-TRND-SO15-01	ug/kg	0.29	ND	2900	2900	320	320		NC
	Aroclor-1232	NA-TRND-SO16-01	ug/kg	0.3	ND	2900	2900	320	320		NC NC
	Aroclor-1232	NA-TRND-SO17-01	ug/kg	0.24	ND	2900	2900	320	320		NC NC
	Aroclor-1232	NA-TRND-SO18-01	ug/kg	0.27	۷Ď	2900	2900	320	320		NC NC
	Aroclor-1232	NA-TRND-SO19-01	ug/kg	0.28		2900	2900	320	320		NC NC
	Aroclor-1232		ug/kg	0.31 1		2900	2900	320	320		NC A
	Aroclor-1232		ug/kg	0.26		2900	2900	320	320		NC NC
	Aroclor-1232	NA-TRND-SO22-01	ug/kg	0.25		2900	2900	320	320 1		NC NC
	Aroclor-1232		ug/kg	0.32 N		2900	2900	320	320		NC
	Aroclor-1232	NA-TRND-SO24-31	ug/kg	0.26 1		2900	2900	320	320		NC
	Aroclor-1232		ug/kg	0.28		2900	2900	320	320 1		NC NC
	Aroclor-1232	T	ug/kg	0.27		2900	2900	320	320 1		NC
	Aroclor-1232	T	ug/kg	0.3 N		2900	2900	320	320 1		
	Aroclor-1232		ug/kg	0.26 N		2900	2900	320	320 1		NC
OLM03.2	Aroclor-1232		ug/kg	0.27 N		2900	2900	320			NC
	Aroclor-1232		ug/kg	0.28 N		2900	2900	320	320 1		NC
OLM03.2	Aroclor-1232	37.4 (007) 3 77 (0.00)	ug/kg	0.3 N		2900	2900		320 N		VC
OLM03.2	Aroclor-1232		ug/kg	0.28 N		2900	2900	320	320 1		VC
	Aroclor-1232		ug/kg	0.33 N		2900	2900	320	320 N		VC
	Aroclor-1242		ug/kg	0.29 N		2900	2900	320	320 N		VC
OLM03.2	Aroclor-1242		ug/kg	0.31 N		2900	2900	320	320 N		VC
	Aroclor-1242		ug/kg	0.24 N		2900	2900		320 N		VC
OLM03.2	Aroclor-1242	T	ıg/kg	0.3 N		2900		320	320 N		VC
	Aroclor-1242	T	ug/kg	0.3 N		2900	2900	320	320 N		VC
OLM03.2	Aroclor-1242		ıg/kg	0.25 N		2900	2900	320	320 N		1C
OLM03.2	Aroclor-1242		ig/kg	0.23 N		2900	2900	320	320 N		IC .
OLM03.2	Aroclor-1242	274	ig/kg	0.35 N			2900	320	320 N		IC
	Aroclor-1242	274	ig/kg			2900	2900	320	320 N		(C
	Aroclor-1242			0.32 N		2900	2900	320	320 N		IC
	Aroclor-1242	3 Y 4	ig/kg	0.32 N		2900	2900	320	320 N		ic
	Aroclor-1242		ig/kg	0.24 N		2900	2900	320	320 N		IC .
	Aroclor-1242		ıg/kg	0.34 N		2900	2900	320	320 N		ic
	Aroclor-1242		ıg/kg	0.31 N		2900	2900	320	320 N	C N	IC
14		NA-TRND-SO14-01 u	g/kg	0.31 N	ע	2900	2900	320	320 N	C	IC I

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	Aroclor-1242	NA-TRND-SO15-01	ug/kg	0.29	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO16-01	ug/kg	0.3	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO17-01	ug/kg	0.24	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO18-01	ug/kg	0.27	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO19-01	ug/kg	0.28	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO20-01	ug/kg	0.31	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO21-01	ug/kg	0.26	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO22-01	ug/kg	0.25		2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO23-01	ug/kg	0.32	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO24-31	ug/kg	0.26	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO25-01	ug/kg	0.28		2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO26-01	ug/kg	0.27	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1242	NA-TRND-SO27-01	ug/kg		ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO28-01	ug/kg	0.26		2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO29-01	ug/kg	0.27	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO30-01	ug/kg	0.28	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO31-01	ug/kg	0.3	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO32-01	ug/kg	0.28	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1242	NA-TRND-SO33-01	ug/kg	0.33	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO01-01	ug/kg	0.29	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO02-01	ug/kg	0.31	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO03-01	ug/kg	0.24	ND	2900	2900	320		NC	NC
M03.2	Aroclor-1248	NA-TRND-SO04-31	ug/kg		ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO05-01	ug/kg	0.3	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO06-01	ug/kg	0.25		2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO07-01	ug/kg		ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO08-01	ug/kg	0.35		2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO09-01	ug/kg	0.32	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO10-01	ug/kg	0.32		2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO11-01	ug/kg	0.24	ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO12-01	ug/kg	0.34		2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO13-01	ug/kg	0.31		2900	2900	320		NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO14-01	ug/kg			2900				NC	NC
OLM03.2	Aroclor-1248		ug/kg		+	2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO16-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO17-01	ug/kg			2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO18-01	ug/kg		+	2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO19-01	ug/kg		-	2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO20-01	ug/kg	+		2900	 			NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO21-01	ug/kg		ļ	2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO22-01	ug/kg	+		2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO23-01	ug/kg	•		2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO24-31	ug/kg			2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO25-01	ug/kg			2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO26-01	ug/kg			2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO27-01	ug/kg		ND	2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO28-01	ug/kg			2900				NC	NC
OLM03.2	Aroclor-1248	NA-TRND-SO29-01	ug/kg	,		2900				NC	NC
103.2	Aroclor-1248	NA-TRND-SO30-01	ug/kg	0.28	ND	2900	2900	320	320	NC	NC

16.0							ıstrial		lential	Reference	Means Compariso Conclusion Reference vs
Method OLM03.2	Analyte	Sample ID			Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2	Aroclor-1248	NA-TRND-SO31-01	ug/kg	0.3		2900		320	320		NC
r	Aroclor-1248	NA-TRND-SO32-01	ug/kg	0.28		2900		320	320		NC
OLM03.2	Aroclor-1248	NA-TRND-SO33-01	ug/kg	0.33		2900		320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO01-01	ug/kg	0.29		2900		320			NC
OLM03.2	Aroclor-1254	NA-TRND-SO02-01	ug/kg	0.31		2900	2900	320			NC
OLM03.2 OLM03.2	Aroclor-1254	NA-TRND-SO03-01	ug/kg	0.24		2900		320	320		NC
·· <u>····</u>	Aroclor-1254	NA-TRND-SO04-31	ug/kg	0.3		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO05-01	ug/kg	0.3		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO06-01	ug/kg	0.25		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-S007-01	ug/kg	0.3		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO08-01	ug/kg	0.35		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO09-01	ug/kg	0.32		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO10-01	ug/kg	0.32		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1254	NA-TRND-SO11-01	ug/kg	0.24		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1254	NA-TRND-SO12-01	ug/kg	0.34		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1254	NA-TRND-SO13-01	ug/kg	0.31		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1254	NA-TRND-SO14-01	ug/kg	0.31		2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1254	NA-TRND-SO15-01	ug/kg	0.29	ND	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1254	NA-TRND-SO16-01	ug/kg	0.3	ND_	2900	2900	320	320	NC	NC
OLM03.2	Aroclor-1254		ug/kg	0.24	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO18-01	ug/kg	0.27		2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO19-01	ug/kg	0.28	ND	2900	2900	320	320		NC _
OLM03.2	Aroclor-1254	NA-TRND-SO20-01	ug/kg	0.31	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO21-01	ug/kg	0.26	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO22-01	ug/kg	0.25	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO23-01	ug/kg	0.32	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO24-31	ug/kg	0.26	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO25-01	ug/kg	0.28	D	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO26-01	ug/kg	0.27	ND D	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO27-01	ug/kg	0.3	VD.	2900	2900	320	320		NC
OLM03.2	Aroclor-1254		ug/kg	0.26	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO29-01	ug/kg	0.27 N	ND OV	2900	2900	320	320		NC
	Aroclor-1254		ug/kg	0.28	VD.	2900	2900	320	320		NC
	Aroclor-1254	NA-TRND-SO31-01	ug/kg	0.3	VD.	2900	2900	320	320		NC
	Aroclor-1254	NA-TRND-SO32-01	ug/kg	0.28 N	ďΣ	2900	2900	320	320		NC
	Aroclor-1254	NA-TRND-SO33-01	ug/kg	0.33 N	ND	2900	2900	320	320		NC
	Aroclor-1260	NA-TRND-SO01-01	ug/kg	0.29 N	VD QV	2900	2900	320	320		NC
	Aroclor-1260	NA-TRND-SQ02-01	ug/kg	0.31 N	ND D	2900	2900	320	320		NC
	Aroclor-1260		ug/kg	0.24 N	VD	2900	2900	320	320		NC
OLM03.2	Aroclor-1260		ug/kg	0.3 N		2900	2900	320	320		NC
	Aroclor-1260		ug/kg	0.3 N		2900	2900	320	320		NC
OLM03.2	Aroclor-1260		ug/kg	0.25 N		2900	2900	320	320		NC
OLM03.2	Aroclor-1260		ug/kg	0.3 N		2900	2900	320	320 1		NC
OLM03.2	Aroclor-1260		ug/kg	0.35 N		2900	2900	320	320 1		NC
OLM03.2	Aroclor-1260	Tara - 120	ug/kg	0.32 N		2900	2900	320	320 1		NC
OLM03.2	Aroclor-1260	T.:-	ug/kg	0.32	210	2900	2900	320	320 1		
	Aroclor-1260		ug/kg	0.24 N		2900	2900	320	320 1		NC
	Aroclor-1260		ug/kg	0.34 N		2900					NC NC
	Aroclor-1260		ug/kg	0.34 N		2900	2900 2900	320	320 l		NC _

		Analyte Sample ID U				Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs
		Samula III	Limite	MDI.	Result	<u> </u>	RBSL	RBC	RBSL	UTL	Site
Method	Analyte	NA-TRND-SO14-01	ug/kg	0.31		2900	2900	320	320	NC	NC
	Aroclor-1260	NA-TRND-SO15-01	ug/kg	0.29		2900	2900	320	320	NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO15-01	ug/kg		ND	2900	2900	320	320	NC	NC
DLM03.2	Aroclor-1260		ug/kg	0.24		2900	2900	320	320		NC
DLM03.2	Aroclor-1260	NA-TRND-SO17-01	ug/kg	0.27		2900	2900	320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO18-01	ug/kg	0.27		2900	2900	320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO19-01		·	ND	2900	2900	320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO20-01	ug/kg		ND	2900	2900	320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO21-01	ug/kg		ND	2900	2900	320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO22-01	ug/kg		ND	2900	2900	320		NC	NC
OLM03.2	Aroclor-1260	NA-TRND-SO23-01	ug/kg			2900	2900	320		NC	NC
OLM03.2	Aroclor-1260	NA-TRND-SO24-31	ug/kg		ND		2900	320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO25-01	ug/kg		ND	2900 2900	2900	320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO26-01	ug/kg		ND		2900	320		NC NC	NC
OLM03.2	Aroclor-1260	NA-TRND-SO27-01	ug/kg		ND	2900		320		NC	NC
OLM03.2	Aroclor-1260	NA-TRND-SO28-01	ug/kg		ND	2900		320	1	NC	NC
OLM03.2	Aroclor-1260	NA-TRND-SO29-01	ug/kg		ND	2900	2900			NC	NC
OLM03.2	Aroclor-1260	NA-TRND-SO30-01	ug/kg		ND	2900		320		NC	NC
DLM03.2	Aroclor-1260	NA-TRND-SO31-01	ug/kg		ND	2900					NC NC
DLM03.2	Aroclor-1260	NA-TRND-SO32-01	ug/kg		ND	2900				NC	
DLM03.2	Aroclor-1260	NA-TRND-SO33-01	ug/kg		ND .	2900				NC	NC
DLM03.2	Dieldrin	NA-TRND-SO01-01	ug/kg		ND	360				NC	NC
LM03.2	Dieldrin	NA-TRND-SO02-01	ug/kg		I ND	360				NC	NC
M03.2	Dieldrin	NA-TRND-SO03-01	ug/kg		4 ND	360) NC	NC
LM03.2	Dieldrin	NA-TRND-SO04-31	ug/kg	0	ND ND	360				NC	NC
OLM03.2	Dieldrin	NA-TRND-SO05-01	ug/kg		3 ND	360				NC	NC
OLM03.2	Dieldrin	NA-TRND-SO06-01	ug/kg		5 ND	360) NC	NC
OLM03.2	Dieldrin	NA-TRND-SO07-01	ug/kg	0.	3 ND	360				NC	NC
OLM03.2	Dieldrin	NA-TRND-SO08-01	ug/kg	0.3	5 ND	360				0 NC	NC
OLM03.2	Dieldrin	NA-TRND-SO09-01	ug/kg	0.3	2 ND	360				0 NC	NC
OLM03.2		NA-TRND-SO10-01	ug/kg	0.3	2 ND	360	360			0 NC	NC
OLM03.2		NA-TRND-SO11-01	ug/kg	0.2	4 ND	360	360	40		0 NC	NC
OLM03.2		NA-TRND-SO12-01	ug/kg	0.3	4 ND	360				0 NC	NC
	Dieldrin	NA-TRND-SO13-01			1 ND	360	360) 4() 4	0 NC	NC
OLM03.2		NA-TRND-SO14-01			1 ND	360	360) 4(0 NC	NC
OLM03.2		NA-TRND-SO15-01			9 ND	360	360) 40		0 NC	NC
OLM03.2 OLM03.2		NA-TRND-SO16-01			3 ND	360	360) 40		0 NC	NC
OLM03.2		NA-TRND-SO17-01			4 ND	36	360) 40		0 NC	NC
OLM03.2		NA-TRND-SO18-01			7 ND	36	360	0 40		0 NC	NC
OLM03.2 OLM03.2		NA-TRND-SO19-01			8 ND	36	0 36	0 4		0 NC	NC
OLM03.2 OLM03.2		NA-TRND-SO20-01		-	1 ND	36	0 36	0 4		0 NC	NC
OLM03.2 OLM03.2		NA-TRND-SO21-01			6 ND	36	0 36			0 NC	NC
		NA-TRND-SO22-01			25 ND	36	0 36	0 4	4	0 NC	NC
OLM03.2		NA-TRND-SO23-01			32 ND	36	0 36	0 4		0 NC	NC
OLM03.2		NA-TRND-SO24-31			26 ND	36		0 4	0 4	0 NC	NC
OLM03.2		NA-TRND-SO25-01			28 ND	36			0 4	0 NC	NC
OLM03.2		NA-TRND-SO26-0			27 ND	36				IO NC	NC
OLM03.2		NA-TRND-SO27-0		~	.3 ND	36			_1	IO NC	NC
OLM03.2		NA-TRND-SO28-0			26 ND	36				10 NC	NC
OLM03.2	Dieldrin Dieldrin	NA-1RND-SO28-0			27 ND	36				10 NC	NC

Method	A14					Indu	ıstrial	Resid	lential	Reference	Means Compariso Conclusio Reference
OLM03.2		Sample ID			Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLM03.2		NA-TRND-SO30-01	ug/kg	0.28		360	360	40	40	NC	NC
OLM03.2		NA-TRND-SO31-01	ug/kg	0.3		360	360	40		NC	NC
OLM03.2		NA-TRND-SO32-01	ug/kg	0.28		360	360	40	40	NC	NC
OLM03.2		NA-TRND-SO33-01	ug/kg	0.33		360		40	40	NC	NC
OLM03.2		NA-TRND-S001-01	ug/kg	0.29		1E+07	1E+06	470000	47000	NC	NC
OLM03.2		NA-TRND-SO02-01	ug/kg	0.31		1E+07	1E+06	470000	47000	NC	NC
OLM03.2		NA-TRND-SO03-01	ug/kg	0.24		1E+07	1E+06	470000	47000	NC	NC
OLM03.2		NA-TRND-SO04-31	ug/kg	0.3		1E+07	1E+06	470000	47000	NC	NC
OLM03.2		NA-TRND-SO05-01	ug/kg	0.3		1E+07	1E+06		47000	NC	NC
OLM03.2	Endosulfan I	NA-TRND-SO06-01	ug/kg	0.25		1E+07	1E+06	470000	47000		NC
DLM03.2	Endosulfan I	NA-TRND-SO07-01	ug/kg	0.3		1E+07	1E+06	470000	47000		NC
DLM03.2	Endosulfan I	NA-TRND-SO08-01	ug/kg	0.35		1E+07	1E+06	470000	47000		NC
DLM03.2	Endosulfan I		ug/kg	0.32		1E+07	1E+06	470000	47000		NC
DLM03.2	Endosulfan I		ug/kg	0.32		1E+07	1E+06	470000	47000		NC
DLM03.2	Endosulfan I		ug/kg	0.24		1E+07	1E+06	470000	47000		NC
DLM03.2	Endosulfan I		ug/kg	0.34		1E+07	1E+06	470000	47000	·	NC
DLM03.2			ug/kg	0.31		1E+07	1E+06	470000	47000		NC
DLM03.2	Endosulfan I	NA-TRND-SO14-01	ug/kg	0.31	ND D	1E+07	1E+06		47000		NC
DLM03.2	Endosulfan I	1	ug/kg	0.29		1E+07	1E+06	170000	47000		NC
	Endosulfan I	NA-TRND-SO16-01	ug/kg	0.3	4D		1E+06		47000		NC
	Endosulfan I	NA-TRND-SO17-01	ug/kg	0.24 1	ND D		1E+06		47000		NC
	Endosulfan I	NA-TRND-SO18-01	ug/kg	0.27 N	ND T		1E+06 4		47000		NC A
LM03.2	Endosulfan I	NA-TRND-SO19-01	ug/kg	0.28 N			1E+06 4		47000 1		NC NC
	Endosulfan I	NA-TRND-SO20-01	ug/kg	0.31 N	1D		1E+06 4		47000		NC
	Endosulfan I	NA-TRND-SO21-01	ug/kg	0.26 N	1D		1E+06 4		47000 1		NC
	Endosulfan I	NA-TRND-SO22-01	ug/kg	0.25 N	ID I		1E+06 4		47000 1		NC
	Endosulfan I	NA-TRND-SO23-01	ug/kg	0.32 N			1E+06 4		47000 1		NC
	Endosulfan I	NA-TRND-SO24-31	ug/kg	0.26 N			1E+06 4		47000 i		NC
	Endosulfan I	NA-TRND-SO25-01	ug/kg	0.28 N			1E+06 4		47000 N		<u>vc</u>
	Endosulfan I	NA-TRND-SO26-01	ug/kg	0.27 N			1E+06 4		47000 N		NC
	Endosulfan I	NA-TRND-SO27-01	ıg/kg	0.3 N			1E+06 4		47000 N		VC
	Endosulfan I	NA-TRND-SO28-01 1	ıg/kg	0.26 N			1E+06 4		47000 N		VC
	Endosulfan I		ıg/kg	0.27 N				70000	47000 N		
	Endosulfan I		ıg/kg	0.28 N			1E+06 4		47000 N		VC
	Endosulfan I	NA-TRND-SO31-01 U	ıg/kg	0.3 N			1E+06 4		47000 N		IC
	Endosulfan I		ıg/kg	0.28 N			E+06 4		47000 N		1C
	Endosulfan I	N N N N N N N N N N	ıg/kg	0.33 N			E+06 4		47000 N		1C
	Endosulfan II		g/kg	0.29 N			E+06 47		17000 N		IC
	Endosulfan II		g/kg	0.31 N			E+06 47		17000 N		iC
	Endosulfan II	111	g/kg	0.24 N			E+06 47				iC
	Endosulfan II		g/kg	0.3 N			E+06 47		17000 N		C
	Endosulfan II		g/kg	0.3 N					7000 N		IC .
	Endosulfan II			0.25 N			E+06 47		7000 N		IC .
	Endosulfan II	T	g/kg	0.3 N			E+06 47		7000 N		C
.M03.2	Endosulfan II			0.35 NI			E+06 47		7000 N		C
M03.2	Endosulfan II						E+06 47		7000 N		C
	Endosulfan II			0.32 NI			E+06 47		7000 N		C
	Endosulfan II			0.32 NI			E+06 47		7000 N		C
	ndosulfan II			0.24 NI 0.34 NI		E+07 1 E+07 1	E+06 47		7000 N 7000 N		C

		Sample ID				Indu	strial	Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Endosulfan II	NA-TRND-SO13-01	ug/kg	0.31		1E+07		470000	47000		NC
	Endosulfan II	NA-TRND-SO14-01	ug/kg	0.31	ND	1E+07		470000	47000		NC
	Endosulfan II	NA-TRND-SO15-01	ug/kg	0.29	ND	1E+07		470000	47000		NC
	Endosulfan II	NA-TRND-SO16-01	ug/kg	0.3	ND	1E+07	1E+06	470000	47000		NC
	Endosulfan II	NA-TRND-SO17-01	ug/kg	0.24	ND	1E+07		470000	47000		NC
	Endosulfan II	NA-TRND-SO18-01	ug/kg	0.27	ND	1E+07		470000	47000		NC
OLM03.2	Endosulfan II	NA-TRND-SO19-01	ug/kg	0.28	ND	1E+07	1E+06	470000	47000		NC
OLM03.2	Endosulfan II	NA-TRND-SO20-01	ug/kg	0.31	ND	1E+07	1E+06	470000	47000		NC
	Endosulfan II	NA-TRND-SO21-01	ug/kg	0.26	ND	1E+07	1E+06	470000	47000		NC
	Endosulfan II	NA-TRND-SO22-01	ug/kg	0.25	ND	1E+07	1E+06	470000	47000		NC
OLM03.2	Endosulfan II	NA-TRND-SO23-01	ug/kg	0.32	ND	1E+07	1E+06	470000	47000		NC
OLM03.2	Endosulfan II	NA-TRND-SO24-31	ug/kg	0.26	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO25-01	ug/kg	0.28	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO26-01	ug/kg	0.27	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO27-01	ug/kg		ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO28-01	ug/kg	0.26	ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO29-01	ug/kg		ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO30-01	ug/kg		ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO31-01	ug/kg		ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2	Endosulfan II	NA-TRND-SO32-01	ug/kg		ND	1E+07		470000	47000	NC	NC ·
	Endosulfan II	NA-TRND-SO33-01	ug/kg		ND	1E+07	1E+06	470000	47000	NC	NC
OLM03.2 OLM03.2	Endosulfan sulfate	NA-TRND-SO01-01	ug/kg		ND	1E+07		470000			NC
	Endosulfan sulfate	NA-TRND-SO02-01	ug/kg	+	ND	1E+07		470000		NC	NC
M03.2 LM03.2	Endosulfan sulfate	NA-TRND-SO03-01	ug/kg	 	ND	1E+07		470000		NC	NC
OLM03.2	Endosulfan sulfate	NA-TRND-SO04-31	ug/kg		ND	1E+07	4	470000			NC
OLM03.2	Endosulfan sulfate	NA-TRND-SO05-01	ug/kg		ND	1E+07		470000		NC	NC
OLM03.2	Endosulfan sulfate	NA-TRND-SO06-01	ug/kg		ND	1E+07		470000		NC	NC
	Endosulfan sulfate	NA-TRND-SO07-01	ug/kg		ND	1E+07		470000			NC
OLM03.2	Endosulfan sulfate	NA-TRND-SO08-01	ug/kg		ND	1E+07		470000		NC	NC
OLM03.2	Endosulfan sulfate	NA-TRND-SO09-01	ug/kg		ND	1E+07		470000			NC
OLM03.2	<u> </u>	NA-TRND-SO10-01	ug/kg		2 ND	1E+07		470000	<u> </u>		NC
OLM03.2	Endosulfan sulfate	NA-TRND-SO11-01	ug/kg		4 ND	1E+07		470000			NC
OLM03.2	Endosulfan sulfate Endosulfan sulfate	NA-TRND-SO12-01			4 ND			470000			NC
OLM03.2		NA-TRND-SO13-01	ug/kg		i ND	1E+07		5 470000			NC
OLM03.2	Endosulfan sulfate	NA-TRND-SO14-01	ug/kg		1 ND	1E+07		5 470000			NC
OLM03.2	Endosulfan sulfate	NA-TRND-S014-01			9 ND	1E+07		5 470000			NC
OLM03.2		NA-TRND-S015-01			3 ND	1E+07		6 470000			NC
OLM03.2		NA-TRND-SO17-01			4 ND	1E+07		6 470000			NC
OLM03.2					7 ND	1E+07		6 470000		0 NC	NC
OLM03.2		NA-TRND-SO18-01 NA-TRND-SO19-01		'	8 ND	1E+0		6 470000		0 NC	NC
OLM03.2					1 ND	1E+0		6 470000		0 NC	NC
OLM03.2		NA-TRND-SO20-01			6 ND	1E+0		6 470000		0 NC	NC
OLM03.2		NA-TRND-SO21-01			5 ND	1E+0		6 470000			NC
OLM03.2		NA-TRND-SO22-01			2 ND	1E+0		6 470000		0 NC	NC
OLM03.2		NA-TRND-SO23-01			6 ND	1E+0		6 470000		0 NC	NC
OLM03.2		NA-TRND-SO24-31				1E+0		6 470000		0 NC	NC
OLM03.2		NA-TRND-SO25-01			8 ND			6 470000		0 NC	NC
OLM03.2		NA-TRND-SO26-01 NA-TRND-SO27-01			7 ND 3 ND	1E+0°		6 470000		0 NC	NC NC
OLM03.2				, , , , , , , , , , , , , , , , , , , ,	THINE		, 152+0	いゅんへんし	/\ +\/\/\/	ULIV	ITA C

Method	Analyte	Sample ID	Units	MDL	Result		strial	Resid	lential	Reference	
OLM03.2	Endosulfan sulfate	NA-TRND-SO29-01	ug/kg	0.27		1E+07		470000	RBSL	UTL	Site
OLM03.2	_1	NA-TRND-SO30-01	ug/kg	0.28		1E+07		470000			NC
OLM03.2		NA-TRND-SO31-01	ug/kg	0.3		1E+07		470000			NC NC
OLM03.2		NA-TRND-SO32-01	ug/kg	0.28		1E+07		470000			NC NC
OLM03.2		NA-TRND-SO33-01	ug/kg	0.33		1E+07		470000	47000		NC NC
OLM03.2		NA-TRND-SO01-01	ug/kg	0.29		610000		23000	2300		NC
OLM03.2		NA-TRND-SO02-01	ug/kg	0.31		610000	61000	23000	2300		NC
OLM03.2	Endrin	NA-TRND-SO03-01	ug/kg	0.24	ND	610000		23000	2300		NC
OLM03.2	Endrin	NA-TRND-SO04-31	ug/kg	0.3	ND	610000		23000	2300		NC
OLM03.2	Endrin	NA-TRND-SO05-01	ug/kg	0.3	ND	610000		23000	2300		NC
OLM03.2	Endrin	NA-TRND-SO06-01	ug/kg	0.25	_	610000	61000	23000	2300		NC
OLM03.2	Endrin	NA-TRND-SO07-01	ug/kg	0.3		610000	61000	23000	2300		NC
OLM03.2 OLM03.2	Endrin		ug/kg	0.35		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin Endrin		ug/kg	0.32		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin		ug/kg	0.32		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin		ug/kg	0.24		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin	1	ug/kg	0.34		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin		ug/kg	0.31		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin		ug/kg	0.31		610000	61000	23000	2300		NC
OLM03.2	Endrin		ug/kg	0.29		610000	61000	23000	2300		NC
OLM03.2	Endrin		ug/kg	0.3 1		610000	61000	23000	2300		NC
OLM03.2	Endrin		ug/kg	0.24		610000		23000	2300		NC
OLM03.2	Endrin		ug/kg	0.27 1		510000		23000	2300		NC
OLM03.2	Endrin		ug/kg ug/kg	0.28 1		510000		23000	2300		NC
OLM03.2	Endrin		ug/kg ug/kg	0.31		510000		23000	2300		NC
OLM03.2	Endrin		ug/kg	0.25		510000 510000		23000	2300		NC
OLM03.2	Endrin		ug/kg	0.32 1		510000		23000	2300 1	1	NC
OLM03.2	Endrin		ug/kg	0.26 N				23000	2300 1		NC
OLM03.2	Endrin		ug/kg	0.28 N				23000 23000	2300 l		NC
OLM03.2	Endrin		ug/kg	0.27 N		10000	-	23000	2300 1		NC
	Endrin		цg/kg	0.3 N				23000	2300 1		NC
	Endrin	NA-TRND-SO28-01	ug/kg	0.26 N			61000		2300 1		NC
	Endrin		ug/kg	0.27 N				23000	2300 N		NC NC
	Endrin		ıg/kg	0.28 N				23000	2300 N		VC
	Endrin	NA-TRND-SO31-01	ıg/kg	0.3 N				23000	2300 N		VC
	Endrin	NA-TRND-SO32-01	ıg/kg	0.28 N				23000	2300 N		VC
	Endrin	NA-TRND-SO33-01 u	ıg/kg	0.33 N				23000	2300 N		VC
	Endrin aldehyde	NA-TRND-SO01-01 u	ıg/kg	0.29 N				23000	2300 N		VC
	Endrin aldehyde	NA-TRND-SO02-01 u	ıg/kg	0.31 N				23000	2300 N		VC VC
	Endrin aldehyde	NA-TRND-SO03-01 u	ıg/kg	0.24 N				23000	2300 N		VC VC
	Endrin aldehyde		ıg/kg	0.3 N				23000	2300 N		vC -
	Endrin aldehyde		g/kg	0.3 N				23000	2300 N		VC
	Endrin aldehyde		g/kg	0.25 N				23000	2300 N		<u>1C</u>
	Endrin aldehyde		g/kg	0.3 N				23000	2300 N		iC -
	Endrin aldehyde		g/kg	0.35 N				23000	2300 N		iC .
	Endrin aldehyde		g/kg	0.32 N				23000	2300 N		ic
	Endrin aldehyde		g/kg	0.32 N	D 6			23000	2300 N		ic
DLM03.2	Endrin aldehyde	NA-TRND-SO11-01 u	g/kg	0.24 N	D 6			23000	2300 N		

											Means
											Comparison
				1			ļ				Conclusion
						Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Endrin aldehyde	NA-TRND-SO12-01	ug/kg	0.34		610000	61000	23000	2300		NC
	Endrin aldehyde	NA-TRND-SO13-01	ug/kg	0.31		610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO14-01	ug/kg	0.31	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO15-01	ug/kg	0.29		610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO16-01	ug/kg	0.3	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO17-01	ug/kg	0.24	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO18-01	ug/kg	0.27	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO19-01	ug/kg	0.28		610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO20-01	ug/kg	0.31		610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO21-01	ug/kg	0.26	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde	NA-TRND-SO22-01	ug/kg	0.25	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO23-01	ug/kg	0.32	ND	610000	61000	23000	2300	NC	NC
<u> </u>	Endrin aldehyde	NA-TRND-SO24-31	ug/kg	0.26	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO25-01	ug/kg	0.28	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO26-01	ug/kg	0.27	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO27-01	ug/kg	0.3	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO28-01	ug/kg	0.26	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO29-01	ug/kg	0.27	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde	NA-TRND-SO30-01	ug/kg	0.28	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin aldehyde	NA-TRND-SO31-01	ug/kg	0.3	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO32-01	ug/kg	0.28	ND	610000	61000	23000	2300	NC	NC
	Endrin aldehyde	NA-TRND-SO33-01	ug/kg	0.33	ND	610000	61000	23000	2300	NC	NC
_	Endrin ketone	NA-TRND-SO01-01	ug/kg	0.29	ND	610000	61000	23000	2300	NC	NC
LM03.2	Endrin ketone	NA-TRND-SO02-01	ug/kg	0.31	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO03-01	ug/kg	0.24	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO04-31	ug/kg	0.3	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO05-01	ug/kg	0.3	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO06-01	ug/kg	0.25		610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO07-01	ug/kg	0.3	ND	610000	61000	23000	2300		NC
OLM03.2	Endrin ketone	NA-TRND-SO08-01	ug/kg	0.35	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO09-01	ug/kg	0.32	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO10-01	ug/kg	0.32		610000	61000		2300		NC
OLM03.2	Endrin ketone	NA-TRND-SO11-01	ug/kg	0.24	ND	610000	61000	23000	2300	NC	NC
OLM03.2	Endrin ketone	NA-TRND-SO12-01	ug/kg	0.34		610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO13-01	ug/kg	0.31		610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO14-01	ug/kg			610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO15-01	ug/kg			610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO16-01	ug/kg		ND	610000			+		NC
OLM03.2	Endrin ketone	NA-TRND-SO17-01	ug/kg		ND_	610000	61000				NC
OLM03.2	Endrin ketone	NA-TRND-SO18-01	ug/kg		ND	610000	61000			· 	NC
OLM03.2	Endrin ketone	NA-TRND-SO19-01	ug/kg		ND	610000	61000		+		NC
OLM03.2	Endrin ketone	NA-TRND-SO20-01	ug/kg			610000			_		NC
OLM03.2	Endrin ketone	NA-TRND-SO21-01	ug/kg		ND	610000				·	NC
OLM03.2	Endrin ketone	NA-TRND-SO22-01	ug/kg	_	ND	610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO23-01	ug/kg		ND	610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO24-31	ug/kg		ND	610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO25-01	ug/kg		ND	610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO26-01	ug/kg		ND	610000			<u> </u>		NC
M03.2	Endrin ketone	NA-TRND-SO27-01	ug/kg	0.3	ND	610000	61000	23000	2300	NC	NC

						Indu	strial	Resid	lential	Reference	Means Compariso Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
OLM03.2	Endrin ketone	NA-TRND-SO28-01	ug/kg	0.26		610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO29-01	ug/kg	0.27	ND	610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO30-01	ug/kg	0.28	ND	610000					NC
OLM03.2	Endrin ketone	NA-TRND-SO31-01	ug/kg	0.3	ND	610000		23000			NC
OLM03.2	Endrin ketone	NA-TRND-SO32-01	ug/kg	0.28	ND	610000	61000		2300		NC
OLM03.2	Endrin ketone	NA-TRND-SO33-01	ug/kg	0.33	ND	610000	61000				NC
OLM03.2	Heptachlor	NA-TRND-SO01-01	ug/kg	0.29	ND	1300	1300	140			NC
OLM03.2	Heptachlor	NA-TRND-SO02-01	ug/kg	0.31	ND	1300	1300	140	140		NC
OLM03.2	Heptachlor	NA-TRND-SO03-01	ug/kg	0.24	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-TRND-SO04-31	ug/kg	0.3	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-TRND-SO05-01	ug/kg	0.3	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-TRND-SO06-01	ug/kg	0.25	ND	1300	1300	140	140	NC	NC
OLM03.2	Heptachlor		ug/kg	0.3		1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-TRND-SO08-01	ug/kg	0.35		1300	1300	140	140	NC	NC
OLM03.2	Heptachlor	NA-TRND-SO09-01	ug/kg	0.32		1300	1300	140	140	NC	NC
OLM03.2	Heptachlor		ug/kg	0.32		1300	1300	140	140	NC	NC
OLM03.2	Heptachlor		ug/kg	0.24		1300	1300	140	140	NC	NC
OLM03.2	Heptachlor		ug/kg	0.34		1300	1300	140	140	NC	NC
OLM03.2	Heptachlor		ug/kg	0.31		1300	1300	140	140	NC	NC
	Heptachlor		ug/kg	0.31		1300	1300	140	140	NC	NC
	Heptachlor		ug/kg	0.29		1300	1300	140	140	NC	NC
	Heptachlor		ug/kg	0.3		1300	1300	140	140		NC
OLM03.2	Heptachlor		ug/kg	0.24		1300	1300	140	140		NC
OLM03.2 OLM03.2	Heptachlor		ug/kg		ND	1300	1300	140	140		NC
OLM03.2 OLM03.2	Heptachlor		ug/kg	0.28		1300	1300	140	140		NC
OLM03.2 OLM03.2	Heptachlor		ug/kg	0.31	-	1300	1300	140	140		NC
OLM03.2 OLM03.2	Heptachlor Heptachlor		ug/kg	0.26		1300	1300	140	140		NC
OLM03.2 OLM03.2	Heptachlor		ug/kg	0.25		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.32		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.26		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.28		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.27		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.3 1		1300	1300	140	140		NC
	Heptachlor		ug/kg ug/kg	0.26 1		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.28		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.28		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.28		1300	1300	140	140		NC
	Heptachlor		ug/kg	0.23 1		1300	1300	140	140		NC
	Heptachlor epoxide		ug/kg	0.33 1		1300	1300	140	140		NC
	Heptachlor epoxide		ug/kg			630	630	70	70 1		NC
	Heptachlor epoxide		ug/kg ug/kg	0.31 1		630	630	70	70 1		NC
	Heptachlor epoxide		ug/kg	0.3 1		630	630	70	70 1		NC
	Heptachlor epoxide		ug/kg	0.3 1		630	630	70	70 1		NC
	Heptachlor epoxide	****	ug/kg	0.3 P		630	630	70	70 1		NC
	Heptachlor epoxide		ug/kg	0.23 1		630	630	70	70 1	780	NC
	Heptachlor epoxide		ug/kg	0.35 N		630	630	70	70 N		NC
	Heptachlor epoxide		ng/kg	0.33 N		630	630 630	70 70	70 N		NC -
DLM03.2											

		.,,					strial	Resid		Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL		RBSL	UTL	Site
OLM03.2	Heptachlor epoxide	NA-TRND-SO11-01	ug/kg	0.24		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO12-01	ug/kg	0.34		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO13-01	ug/kg	0.31		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO14-01	ug/kg	0.31		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO15-01	ug/kg	0.29	<u> </u>	630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO16-01	ug/kg		ND	630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO17-01	ug/kg	0.24		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO18-01	ug/kg	0.27		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO19-01	ug/kg	0.28		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO20-01	ug/kg	0.31		630	630	70		NC	NC
	Heptachlor epoxide	NA-TRND-SO21-01	ug/kg	0.26		630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO22-01	ug/kg	0.25	ND	630	630	70		NC	NC
	Heptachlor epoxide	NA-TRND-SO23-01	ug/kg	0.32	ND	630	630	70		NC	NC
	Heptachlor epoxide	NA-TRND-SO24-31	ug/kg	0.26	ND	630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO25-01	ug/kg	0.28	ND	630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO26-01	ug/kg	0.27	ND	630	630			NC	NC
	Heptachlor epoxide	NA-TRND-SO27-01	ug/kg	0.3	ND	630	630	70		NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO28-01	ug/kg	0.26	ND	630	630	70	70	NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO29-01	ug/kg	0.27	ND	630	630	70	70	NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO30-01	ug/kg	0.28	ND	630	630	70	70	NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO31-01	ug/kg		ND	630	630	70	70	NC	NC
OLM03.2	Heptachlor epoxide	NA-TRND-SO32-01	ug/kg			630	630	70	70	NC	NC
M03.2	Heptachlor epoxide	NA-TRND-SO33-01	ug/kg		ND	630	630	70	70	NC	NC
M03.2	Methoxychlor	NA-TRND-SO01-01	ug/kg		ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO02-01	ug/kg		ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO03-01	ug/kg		ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO04-31	ug/kg		ND	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO05-01	ug/kg		ND	1E+07		390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO06-01	ug/kg		ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO07-01	ug/kg		ND	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO08-01	ug/kg		ND	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO09-01	ug/kg		ND	1E+07		390000	39000	NC	NC
OLM03.2	1	NA-TRND-SO10-01	ug/kg		ND		1E+06			NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO11-01	ug/kg		ND	1E+07	1E+06	390000	39000	NC	NC
OLM03.2	Methoxychlor	NA-TRND-SO12-01	ug/kg		ND UJ	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO13-01	ug/kg		ND UJ	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO14-01	ug/kg		ND UJ	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO15-01	ug/kg		IU QN	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO16-01	ug/kg	+	ND UJ	1E+07		390000			NC
	Methoxychlor	NA-TRND-SO17-01	ug/kg		ND UJ	1E+07		390000			NC
OLM03.2		NA-TRND-SO18-01	ug/kg		ND UJ			390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO19-01	ug/kg		ND UJ	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO20-01	ug/kg		ND UJ	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO20-01	ug/kg	<u> </u>	ND UJ	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO22-01	ug/kg		ND O	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO22-01	ug/kg		2 ND	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO23-01	ug/kg		5 ND	1E+07		390000			NC
OLM03.2	Methoxychlor				S ND UJ	1E+07		390000			NC
OLM03.2	Methoxychlor	NA-TRND-SO25-01	ug/kg	<u> </u>	7 ND UJ		1E+06				NC
103.2	Methoxychlor	NA-TRND-SO26-01	ug/kg	1 0.2	נט עאן י	IETU	IETU	135000	, 55000	71.10	1.40

Method	Analyte	Sample ID	Units	MDL	Result		strial RBSL	Resi RBC	dential	Reference	
	Methoxychlor	NA-TRND-SO27-01	ug/kg		ND UJ			390000			NC Site
	Methoxychlor	NA-TRND-SO28-01	ug/kg		ND UJ	1E+07	1	390000			NC
	Methoxychlor	NA-TRND-SO29-01	ug/kg		ND UJ	1E+07		390000			NC
	Methoxychlor	NA-TRND-SO30-01	ug/kg		ND UJ	1E+07		390000			NC
	Methoxychlor	NA-TRND-SO31-01	ug/kg	0.3		1E+07		390000			NC
	Methoxychlor	NA-TRND-SO32-01	ug/kg	0.28		1E+07		390000			NC
	Methoxychlor	NA-TRND-SO33-01	ug/kg	0.33		1E+07		390000			NC
1	Toxaphene	NA-TRND-SO01-01	ug/kg	0.29	ND	5200	5200			NC	NC
	Toxaphene	NA-TRND-SO02-01	ug/kg	0.31	ND	5200	5200			NC	NC
	Toxaphene	NA-TRND-SO03-01	ug/kg	0.24	ND	5200	5200	•		NC	NC
	Toxaphene	NA-TRND-SO04-31	ug/kg	0.3	ND	5200	5200	580		NC	NC
	Toxaphene	NA-TRND-SO05-01	ug/kg	0.3	ND	5200	5200	580		NC	NC
	Toxaphene	NA-TRND-SO06-01	ug/kg	0.25	ND	5200	5200	580		NC	NC
	Toxaphene	NA-TRND-SO07-01	ug/kg	0.3	ND	5200	5200	580		NC	NC
	Toxaphene		ug/kg	0.35	ND	5200	5200	580		NC	NC
	Toxaphene	NA-TRND-SO09-01	ug/kg	0.32	ND	5200	5200	580		NC	NC
	Toxaphene		ug/kg	0.32	ND	5200	5200	580		NC	NC
	Toxaphene	NA-TRND-SO11-01	ug/kg	0.24	ND	5200	5200	580		NC	NC
	Гохарнепе		ug/kg	0.34 1	ND	5200	5200	580		NC	NC
	Foxaphene	NA-TRND-SO13-01	ug/kg	0.31		5200	5200	580		NC	NC
	Foxaphene Foxaphene		ug/kg	0.31		5200	5200	580		NC	NC
	l'oxaphene		ug/kg	0.29 1		5200	5200	580	580		NC
	l'oxaphene		ug/kg	0.3		5200	5200	580	580		NC
	Foxaphene Foxaphene		ug/kg	0.24 N		5200	5200	580	580	NC	NC
·	Toxaphene		ug/kg	0.27 N		5200	5200	580	580	NC	NC
			ug/kg	0.28 N		5200	5200	580	580		NC
			ug/kg	0.31 N		5200	5200	580	580		NC
			ug/kg	0.26 N		5200	5200	580	580	NC	NC
			ug/kg	0.25 N		5200	5200	580	580	NC	NC
			ug/kg	0.32 N		5200	5200	580	580	NC	NC
			ug/kg	0.26 N		5200	5200	580	580	NC	NC
		NA-TRND-SO25-01	ug/kg	0.28 N		5200	5200	580	580	NC	NC
		NA-TRND-SO26-01		0.27 N		5200	5200	580	580		NC
			ıg/kg	0.3 N		5200	5200	580	580		NC
···	· · · · · · · · · · · · · · · · · · ·		ıg/kg	0.26 N		5200	5200	580	580	NC	NC
	— ·.••		ıg/kg	0.27 N		5200	5200	580	580	NC	NC
			ıg/kg	0.28 N		5200	5200	580	580	NC	NC
			ıg/kg	0.3 N		5200	5200	580	580	NC	NC
		V 4	ıg/kg	0.28 N		5200	5200	580	580		NC
		- · 	ig/kg	0.33 N		5200	5200	580	580	NC	NC
	* 		g/kg	0.29 N		910	910	100	100		NC
			ıg/kg	0.31 N		910	910	100	100 1		NC
			g/kg	0.24 N		910	910	100	100 1		NC
			g/kg	0.3 N		910	910	100	100 1	NC)	NC
			g/kg	0.3 N		910	910	100	100 1		NC
			g/kg	0.25 N		910	910	100	100 1		NC
		7.4.	g/kg	0.3 N		910	910	100	100 1		NC
			g/kg	0.35 N		910	910	100	1001		NC
PIATO2'7 ST	pha-BHC	NA-TRND-SO09-01 u	g/kg	0.32 N	D T	910	910	100	100 N		NC

						Indu	etrial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
36 03	Amaluta	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method OLM03.2	Analyte alpha-BHC	NA-TRND-SO10-01	ug/kg	0.32		910	910	100	100		NC
	alpha-BHC	NA-TRND-SO11-01	ug/kg	0.24		910	910	100	100		NC
	alpha-BHC	NA-TRND-SO12-01	ug/kg	0.34		910	910	100	100		NC
	alpha-BHC	NA-TRND-SO13-01	ug/kg	0.31		910	910	100	100		NC
	alpha-BHC	NA-TRND-SO14-01	ug/kg	0.31		910	910	100	100	NC	NC
OLM03.2 OLM03.2	alpha-BHC	NA-TRND-SO15-01	ug/kg	0.29		910	910	100	100	NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO16-01	ug/kg		ND	910		100	100	NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO17-01	ug/kg	0.24		910		100		NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO18-01	ug/kg	0.27		910	910	100		NC	NC
OLM03.2 OLM03.2	alpha-BHC	NA-TRND-SO19-01	ug/kg	0.28		910	910	100	100	NC	NC
OLM03.2 OLM03.2	alpha-BHC	NA-TRND-SO20-01	ug/kg	0.31	4	910	910	100	100	NC	NC
OLM03.2 OLM03.2	alpha-BHC	NA-TRND-SO21-01	ug/kg	0.26		910	910	100		NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO22-01	ug/kg	0.25		910	910	100	100	NC	NC
	alpha-BHC	NA-TRND-SO23-01	ug/kg	0.32		910	910			NC	NC
OLM03.2	<u> </u>	NA-TRND-SO24-31	ug/kg	0.26		910	910			NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO25-01	ug/kg	0.28		910	910			NC	NC
OLM03.2 OLM03.2	alpha-BHC alpha-BHC	NA-TRND-SO26-01	ug/kg	0.27		910				NC	NC
OLM03.2 OLM03.2	alpha-BHC	NA-TRND-SO27-01	ug/kg		ND	910				NC	NC
	alpha-BHC	NA-TRND-SO28-01	ug/kg	0.26		910				NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO29-01	ug/kg	0.27		910				NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO30-01	ug/kg	0.28		910				NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO31-01	ug/kg		ND	910				NC	NC
OLM03.2	alpha-BHC	NA-TRND-SO32-01	ug/kg		ND	910	<u> </u>			NC	NC
M03.2 LM03.2	alpha-BHC	NA-TRND-SO33-01	ug/kg		ND	910				NC	NC
OLM03.2	alpha-Chlordane	NA-TRND-SO01-01	ug/kg		ND	16000			1800		NS
OLM03.2	alpha-Chlordane	NA-TRND-SO02-01	ug/kg		ND	16000			1800	0.87	NS
OLM03.2 OLM03.2	alpha-Chlordane	NA-TRND-SO03-01	ug/kg		ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO04-31	ug/kg	+	ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO05-01	ug/kg		ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO06-01	ug/kg	 .	ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO07-01	ug/kg		ND	16000	+				NS
OLM03.2	alpha-Chlordane	NA-TRND-SO08-01	ug/kg		ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO09-01			ND		16000				NS
OLM03.2	alpha-Chlordane	NA-TRND-SO10-01	ug/kg		ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO11-01	ug/kg		ND	16000		+			NS
OLM03.2	alpha-Chlordane	NA-TRND-SO12-01	ug/kg		ND	16000			-	0.87	NS
OLM03.2	alpha-Chlordane	NA-TRND-SO13-01	ug/kg		ND	16000				0.87	NS
OLM03.2		NA-TRND-SO14-01	ug/kg		ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO15-01	ug/kg		ND	16000					NS
OLM03.2	 	NA-TRND-SO16-01	ug/kg		ND	16000		_			NS
OLM03.2		NA-TRND-SO17-01	ug/kg	-	ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO18-01	ug/kg		7 ND	16000					7 NS
OLM03.2		NA-TRND-SO19-01	ug/kg		ND	16000					NS
OLM03.2	alpha-Chlordane	NA-TRND-SO20-01	ug/kg	-	I ND	16000					NS
OLM03.2		NA-TRND-SO21-01	ug/kg		5 ND	16000					NS
OLM03.2		NA-TRND-SO22-01	ug/kg		5 ND	16000					NS
OLM03.2		NA-TRND-SO23-01	ug/kg		ND	16000					7 NS
OLM03.2 OLM03.2	1	NA-TRND-SO24-31	ug/kg		6 ND	16000					7 NS
LIVIUS.2	alpha-Chlordane	NA-TRND-SO25-01	ug/kg		8 ND	16000					7 NS

Method	Analyte	Samuela III					strial		lential	Reference	Means Compariso Conclusio Reference
	alpha-Chlordane	Sample ID NA-TRND-SO26-01	Units		Result		RBSL	RBC	RBSL	UTL	Site
	alpha-Chlordane		ug/kg	0.27		16000		1800	1		NS NS
	alpha-Chlordane	NA-TRND-SO27-01	ug/kg	0.3	2.7			1800			NS
	alpha-Chlordane	NA-TRND-SO28-01	ug/kg	0.26		16000		1800			NS
	alpha-Chlordane	NA-TRND-SO29-01	ug/kg	0.27		16000		1800			NS
	alpha-Chlordane	NA-TRND-SO30-01	ug/kg	0.28		16000		1800	1800		NS
	alpha-Chlordane	NA-TRND-SO31-01	ug/kg	0.3		16000		1800	1800	0.87	NS
	alpha-Chlordane	NA-TRND-SO32-01	ug/kg	0.28		16000		1800	1800	0.87	NS
	beta-BHC	NA-TRND-SO33-01	ug/kg	0.33		16000	16000	1800	1800		NS
	beta-BHC	NA-TRND-SO01-01	ug/kg	0.29		3200	3200	350		NC	NC
	beta-BHC	NA-TRND-SO02-01	ug/kg	0.31		3200	3200	350	350	NC	NC
	beta-BHC	NA-TRND-SO03-01	ug/kg	0.24		3200	3200	350		NC	NC
	beta-BHC	NA-TRND-S004-31	ug/kg	0.3		3200	3200	350	350	NC	NC
	beta-BHC		ug/kg	0.3		3200	3200	350	350	NC	NC
	beta-BHC	NA-TRND-SO06-01	ug/kg	0.25		3200	3200	350	350	NC	NC
	beta-BHC		ug/kg	0.3		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.35		3200	3200	350	350	NC	NC
	beta-BHC		ug/kg	0.32		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.32		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.24		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.34		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.31		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.31		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.29		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.3		3200	3200	350	350		NC
-	beta-BHC	-	ug/kg	0.24		3200	3200	350	350	NC	NC
	beta-BHC		ug/kg	0.27		3200	3200	350	350		NC
	beta-BHC		ug/kg	0.28		3200	3200	350	350	NC	NC
	peta-BHC		ug/kg	0.31		3200	3200	350	350		NC
	peta-BHC		ug/kg	0.26		3200	3200	350	350		NC
	peta-BHC		ug/kg	0.25		3200	3200	350	350		NC
	peta-BHC		ug/kg	0.32		3200	3200	350	350		NC
	peta-BHC		ug/kg	0.26		3200	3200	350	350		NC
LM03.2 E			ug/kg	0.28		3200	3200	350	350		NC
****	peta-BHC		ug/kg	0.27		3200	3200	350	350		NC
	eta-BHC		ug/kg	0.3		3200	3200	350	350		NC
	eta-BHC	1	ug/kg	0.26 N		3200	3200	350	350		NC
	eta-BHC		ug/kg	0.27		3200	3200	350	350		NC
	eta-BHC		ug/kg	0.28 N		3200	3200	350	350		NC
	eta-BHC		ıg/kg	0.3 N		3200	3200	350	350		NC
	eta-BHC		ıg/kg	0.28 N		3200	3200	350	350	NC	NC
	elta-BHC		ıg/kg	0.33 N		3200	3200	350	350		NC
-	elta-BHC		ıg/kg	0.29 N		3200	3200	350	350 1		NC
LM03.2 d		£	ıg/kg	0.31 N		3200	3200	350	350 1	NC	NC
			ıg/kg	0.24 N		3200	3200	350	350 1	VC I	NC
· 	elta-BHC		ıg/kg	0.3 N		3200	3200	350	350 1		NC
	elta-BHC		ıg/kg	0.3 N		3200	3200	350	350 1		NC
	elta-BHC		ıg/kg	0.25 N	D	3200	3200	350	350 N		NC
LM03.2 d			g/kg	0.3 N		3200	3200	350	350 N		NC
LM03.2 d	elta-BHC		g/kg	0.35 N		3200	3200	350	350 1		

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Madhad	Amaluta	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method OLM03.2	Analyte delta-BHC	NA-TRND-SO09-01	ug/kg	0.32		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO10-01	ug/kg	0.32		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO11-01	ug/kg	0.24		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO12-01	ug/kg	0.34		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO13-01	ug/kg	0.31		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO14-01	ug/kg	0.31		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO15-01	ug/kg	0.29		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO16-01	ug/kg		ND	3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO17-01	ug/kg	0.24	1	3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO18-01	ug/kg	0.27		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO19-01	ug/kg	0.28		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO20-01	ug/kg	0.31		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO21-01	ug/kg	0.26		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO22-01	ug/kg	0.25		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO23-01	ug/kg	0.32		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO24-31	ug/kg	0.26		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO25-01	ug/kg	0.28		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO26-01	ug/kg	0.27		3200	3200	350		NC	NC
	delta-BHC	NA-TRND-SO27-01	ug/kg	A	ND	3200	3200	350		NC	NC
OLM03.2	delta-BHC	NA-TRND-SO28-01	ug/kg	0.26		3200	3200	350		NC	NC
OLM03.2	delta-BHC	NA-TRND-SO29-01	ug/kg	0.27		3200	3200	350		NC	NC
OLM03.2	delta-BHC	NA-TRND-SO30-01	ug/kg	0.28		3200	3200	350		NC	NC
M03.2	delta-BHC	NA-TRND-SO31-01	ug/kg		ND	3200	3200	350		NC	NC
OLM03.2	delta-BHC	NA-TRND-SO32-01	ug/kg			3200	3200	350		NC	NC
OLM03.2	delta-BHC	NA-TRND-SO33-01	ug/kg	0.33		3200	3200	350	350	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO01-01	ug/kg	0.29		4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO02-01	ug/kg			4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO03-01	ug/kg			4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO04-31	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO05-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO06-01	ug/kg	0.25	ND	4400	4400	490	490	NC	NC ·
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO07-01	ug/kg	0.3	ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO08-01			ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-S009-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO10-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO11-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO12-01	ug/kg	 	ND	4400	4400	490		NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO13-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO14-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO15-01	ug/kg	0.29	ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO16-01	ug/kg	0.3	ND	4400	4400	490		NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO17-01	ug/kg	0.24	ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO18-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO19-01	ug/kg	0.28	ND	4400	4400	490		NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO20-01	ug/kg		ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO21-01	ug/kg	0.26	ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO22-01	ug/kg	0.25	ND	4400	4400	490	490	NC	NC
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO23-01	ug/kg		ND	4400	4400	490	490	NC	NC
M03.2	gamma-BHC(Lindane)	NA-TRND-SO24-31	ug/kg		ND	4400	4400	490	490	NC	NC

OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	Analyte gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane)	Sample ID NA-TRND-SO25-01 NA-TRND-SO26-01	Units ug/kg	MDL				}			Means Compariso
OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane)	NA-TRND-SO25-01 NA-TRND-SO26-01	+	MDL						1	
OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane)	NA-TRND-SO25-01 NA-TRND-SO26-01	+	MDL							
OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane)	NA-TRND-SO25-01 NA-TRND-SO26-01	+	MDL	1			73			Conclusion
OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane) gamma-BHC(Lindane)	NA-TRND-SO25-01 NA-TRND-SO26-01	+		Domile		ustrial RBSL		dential RBSL	Reference	
OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	amma-BHC(Lindane) amma-BHC(Lindane)	NA-TRND-SO26-01		0.28		4400				UTL NC	Site
OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	amma-BHC(Lindane) amma-BHC(Lindane)		ug/kg	0.27		4400			· 	NC	NC
OLM03.2 g OLM03.2 g OLM03.2 g OLM03.2 g	amma-BHC(Lindane)	NA-TRND-SO27-01	ug/kg	·	ND	4400				NC	NC
OLM03.2 g OLM03.2 g OLM03.2 g		NA-TRND-SO28-01	ug/kg	0.26	4.	4400				NC	NC
OLM03.2 g:	annia-DNC(Lingage)	NA-TRND-SO29-01	ug/kg	0.27		4400				NC	NC NC
	amma-BHC(Lindane)	NA-TRND-SO30-01	ug/kg	0.28		4400				NC NC	NC NC
	amma-BHC(Lindane)	NA-TRND-SO31-01	ug/kg		ND	4400		4		NC	NC
	amma-BHC(Lindane)	NA-TRND-SO32-01	ug/kg	0.28		4400			+		NC NC
	amma-BHC(Lindane)	NA-TRND-SO33-01	ug/kg	0.33		4400					
	amma-Chlordane	NA-TRND-SO01-01	ug/kg	0.29		16000			1800		NC NC
OLM03.2 g	amma-Chlordane	NA-TRND-SO02-01	ug/kg	0.31		16000			1800		
	·	NA-TRND-SO03-01	ug/kg	0.24		16000			1800		NC NC
	···.	NA-TRND-SO04-31	ug/kg		ND	16000			1800		NC NC
		NA-TRND-SO05-01	ug/kg		ND	16000			1800		NC NC
OLM03.2 gz	amma-Chlordane		ug/kg	0.25		16000	-		1800		NC NC
OLM03.2 ga	amma-Chlordane	NA-TRND-SO07-01	ug/kg	0.3		16000			1800	~~~	NC NC
OLM03.2 ga		NA-TRND-SO08-01	ug/kg	0.35		16000			1800		NC NC
OLM03.2 ga		NA-TRND-SO09-01	ug/kg	0.32		16000			1800		NC NC
OLM03.2 ga			ug/kg	0.32		16000	-		1800		NC NC
OLM03.2 ga			ug/kg	0.24		16000			1800		NC
OLM03.2 ga			ug/kg	0.34		16000	16000		1800		NC NC
OLM03.2 ga			ug/kg	0.31		16000	16000		1800		NC A
OLM03.2 ga			ug/kg	0.31		16000	16000		1800		NC NC
OLM03.2 ga			ug/kg	0.29		16000	16000		1800		NC
OLM03.2 ga			ug/kg	0.3		16000		-	1800		NC NC
OLM03.2 ga			ug/kg	0.24		16000	16000		1800		NC NC
OLM03.2 ga			ug/kg	0.27		16000			1800		NC
OLM03.2 ga			ug/kg	0.28		16000	16000	-	1800		NC NC
OLM03.2 ga		·	ug/kg	0.31		16000	16000	1800	1800		NC
OLM03.2 ga			ug/kg	0.26		16000	16000	1800	1800		NC
OLM03.2 ga	mma-Chlordane		ug/kg	0.25		16000	16000	1800	1800		NC
			ug/kg	0.32		16000	16000	1800	1800		NC
OLM03.2 ga	mma-Chlordane	ATA (1990) 170 (1990) 4 4 4	ug/kg	0.26		16000			1800		NC
OLM03.2 ga			ug/kg	0.28		16000	16000	1800	1800		NC NC
OLM03.2 ga			ug/kg	0.27		16000	16000	1800	1800		NC
OLM03.2 ga			ug/kg	0.3	2.1	16000	16000	1800	1800		NC
OLM03.2 ga	mma-Chlordane		ug/kg	0.26		16000	16000	1800	1800		NC
OLM03.2 ga			ug/kg	0.27		16000	16000	1800	1800		NC
OLM03.2 ga	mma-Chlordane		ug/kg	0.28		16000	16000	1800	1800		NC
OLM03.2 ga			ug/kg	0.3		16000	16000	1800	1800		NC
OLM03.2 ga			ug/kg	0.28		16000	16000	1800	1800		NC
OLM03.2 ga			ug/kg	0.33		16000	16000	1800	1800		NC
OLMO3.2 1,2			ug/kg	-		2E+07	2E+06		78000		NC I
	2,4-Trichlorobenzene		ug/kg			2E+07	2E+06		78000 1		NC NC
OLMO3.2 1,2			ug/kg			2E+07	2E+06		78000 1		NC NC
OLMO3.2 1,2			ug/kg	61		2E+07	2E+06		78000 1		NC NC
OLMO3.2 1,2			ug/kg	60 1		2E+07	2E+06		78000 1		
			ug/kg		-	2E+07	2E+06		78000 1		NC A
			ug/kg	60 1		2E+07	2E+06		78000 1		NC NC

											Means Comparison Conclusion
							strial		ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site NC
	1,2,4-Trichlorobenzene	NA-TRND-SO08-01	ug/kg		ND	2E+07		780000	78000		
	1,2,4-Trichlorobenzene	NA-TRND-SO09-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO10-01	ug/kg	-	ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO11-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO12-01	ug/kg		ND UJ	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO13-01	ug/kg		ND UJ	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO14-01	ug/kg		ND UJ	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO15-01	ug/kg		ND UJ	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO16-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO17-01	ug/kg	-	ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO18-01	ug/kg	1	ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO19-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO20-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO21-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO22-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO23-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO24-31	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO25-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO26-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO27-01	ug/kg	1	ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO28-01	ug/kg	1	ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO29-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO30-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO31-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO32-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2,4-Trichlorobenzene	NA-TRND-SO33-01	ug/kg		ND	2E+07		780000	78000		NC
	1,2-Dichlorobenzene	NA-TRND-SO01-01	ug/kg		ND UJ	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO02-01	ug/kg		ND UJ	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO03-01	ug/kg		ND UJ	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO04-31	ug/kg		ND	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO05-01	ug/kg		ND	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO06-01	ug/kg		ND UJ	2E+08	L		700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO07-01	ug/kg		ND		2E+07				NC
	1,2-Dichlorobenzene	NA-TRND-SO08-01	ug/kg		ND	2E+08		7E+06		_	NC
	1,2-Dichlorobenzene	NA-TRND-SO09-01	ug/kg	-	ND	2E+08		7E+06			NC
	1,2-Dichlorobenzene	NA-TRND-SO10-01	ug/kg		ND	2E+08		7E+06		-	NC
	1,2-Dichlorobenzene	NA-TRND-SO11-01	ug/kg		ND	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO12-01	ug/kg		ND UJ	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO13-01	ug/kg	+	ND UJ	2E+08		· · · · · · · · · · · · · · · · · · ·	700000		NC
-	1,2-Dichlorobenzene	NA-TRND-SO14-01	ug/kg	} 	ND UJ	2E+08		+	700000	+	NC
	1,2-Dichlorobenzene	NA-TRND-SO15-01	ug/kg	 	ND UJ	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO16-01	ug/kg	 	ND	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO17-01	ug/kg		ND	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO18-01	ug/kg		ND	2E+08		7E+06			NC
	1,2-Dichlorobenzene	NA-TRND-SO19-01	ug/kg		ND	2E+08		7E+06			NC
	1,2-Dichlorobenzene	NA-TRND-SO20-01	ug/kg	_	ND	2E+08		7E+06			NC
	1,2-Dichlorobenzene	NA-TRND-SO21-01	ug/kg	·	ND	2E+08		7E+06			NC
	1,2-Dichlorobenzene	NA-TRND-SO22-01	ug/kg		ND		2E+07				NC
MO3.2	1,2-Dichlorobenzene	NA-TRND-SO23-01	ug/kg	64	ND	2E+08	2E+07	7E+06	700000	NC	NC

						Índi	ustrial	Resi	dential	Reference	Means Compariso Conclusion Reference v
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO24-31	ug/kg	53	ND	2E+08	2E+07	7E+06	700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO25-01	ug/kg	56	ND	2E+08			700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO26-01	ug/kg	55	ND	2E+08			700000	<u> </u>	NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO27-01	ug/kg		ND	2E+08			700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO28-01	ug/kg		ND	2E+08	+		700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO29-01	ug/kg		ND	2E+08			700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO30-01	ug/kg	56	ND	2E+08			700000		NC
	1,2-Dichlorobenzene	NA-TRND-SO31-01	ug/kg	61	ND	2E+08	 -		700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO32-01	ug/kg	57	ND	2E+08			700000		NC
OLMO3.2	1,2-Dichlorobenzene	NA-TRND-SO33-01	ug/kg	65	ND	2E+08			700000		NC
	1,3-Dichlorobenzene	NA-TRND-SO01-01	ug/kg	58	ND UJ	6E+07			230000		NC
	1,3-Dichlorobenzene	NA-TRND-SO02-01	ug/kg	62	ND UJ	6E+07			230000	*	NC
	1,3-Dichlorobenzene	NA-TRND-SO03-01	ug/kg	48	ND UJ	6E+07			230000		NC
	1,3-Dichlorobenzene	NA-TRND-SO04-31	ug/kg	61	ND	6E+07			230000		NC
	1,3-Dichlorobenzene	NA-TRND-SO05-01	ug/kg	60	ND	6E+07	6E+06		230000		NC
	1,3-Dichlorobenzene	NA-TRND-SO06-01	ug/kg	51	ND UJ	6E+07	6E+06		230000		NC
	1,3-Dichlorobenzene	NA-TRND-SO07-01	ug/kg	60	ND	6E+07	6E+06		230000		NC
-	1,3-Dichlorobenzene	NA-TRND-SO08-01	ug/kg	69	ND	6E+07	6E+06		230000	<u>. </u>	NC
	1,3-Dichlorobenzene	NA-TRND-SO09-01	ug/kg	64	ND	6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-TRND-SO10-01	ug/kg	63	ND	6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-TRND-SO11-01	ug/kg	48	ND	6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-TRND-SO12-01	ug/kg	67	ND UJ	6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-TRND-SO13-01	ug/kg	62	ND UJ	6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-TRND-SO14-01	ug/kg	62	ND UJ	6E+07	6E+06	2E+06	230000	NC	NC
	,3-Dichlorobenzene	NA-TRND-SO15-01	ug/kg	58	ND UJ	6E+07	6E+06	2E+06	230000	NC	NC
	1,3-Dichlorobenzene	NA-TRND-SO16-01	ug/kg	61	ND	6E+07	6E+06	2E+06	230000	NC	NC
	VIV	NA-TRND-SO17-01	ug/kg	48	ND	6E+07	6E+06	2E+06	230000	NC	NC
-	,3-Dichlorobenzene		ug/kg	54	ND	6E+07	6E+06	2E+06	230000		NC
		NA-TRND-SO19-01	ug/kg	56	ND	6E+07	6E+06	2E+06	230000		NC
		NA-TRND-SO20-01	ug/kg	62	ND	6E+07	6E+06	2E+06	230000	NC	NC
		NA-TRND-SO21-01	ug/kg	52	ND	6E+07	6E+06	2E+06	230000	NC	NC
			ug/kg		ND	6E+07		2E+06	230000	NC	NC
			ug/kg	64	ND	6E+07	6E+06	2E+06	230000	NC	NC
		NA-TRND-SO24-31	ug/kg	53	ND	6E+07			230000	77.1	NC
			ug/kg	56	ND	6E+07	6E+06	2E+06	230000		NC
			ug/kg	55	ND	6E+07	6E+06	2E+06	230000	NC	NC
			ug/kg	60		6E+07	6E+06	2E+06	230000	NC	NC
			ug/kg	51	-	6E+07	6E+06	2E+06	230000	NC	NC
		NA-TRND-SO29-01	ug/kg	54	ND	6E+07	6E+06	2E+06	230000	NC	NC
			ug/kg	56	ND	6E+07	6E+06	2E+06	230000	NC	NC
			ug/kg	61		6E+07	6E+06	2E+06	230000		NC
			ug/kg	57		6E+07			230000		NC
			ug/kg	65		6E+07	6E+06	2E+06	230000	NC	NC
		NA-TRND-SO01-01	ug/kg	58	ND UJ	240000	240000	27000	27000	NC	NC
		NA-TRND-SO02-01	ug/kg	62	UD UJ	240000	240000	27000	27000		NC
		NA-TRND-SO03-01	ug/kg			240000		27000	27000		NC
		NA-TRND-SO04-31	ug/kg	61		240000		27000	27000		NC
			ug/kg	60		240000		27000	27000		NC _
OLMO3.2 1	,4-Dichlorobenzene		ug/kg					27000	27000		NC

		***				Indu	strial	Reside	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	1,4-Dichlorobenzene	NA-TRND-SO07-01	ug/kg		ND	240000	240000	27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-TRND-SO08-01	ug/kg		ND	240000	240000	27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-TRND-SO09-01	ug/kg		ND	240000		27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-TRND-SO10-01	ug/kg		ND	240000	240000	27000	27000	NC	NC
	1.4-Dichlorobenzene	NA-TRND-SO11-01	ug/kg	48	ND	240000	240000	27000	27000	NC	NC
	1.4-Dichlorobenzene	NA-TRND-SO12-01	ug/kg		ND UJ	240000	240000	27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-TRND-SO13-01	ug/kg	62	ND UJ	240000	240000	27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-TRND-SO14-01	ug/kg	62	ND UJ	240000	240000	27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-TRND-SO15-01	ug/kg		ND UJ			27000	27000	NC	NC
-	1.4-Dichlorobenzene	NA-TRND-SO16-01	ug/kg		ND		240000	27000	27000	NC	NC
	1.4-Dichlorobenzene	NA-TRND-SO17-01	ug/kg		ND		240000	27000	27000	NC	NC
	1,4-Dichlorobenzene	NA-TRND-SO18-01	ug/kg		ND		240000	27000	27000	NC	NC
	1.4-Dichlorobenzene	NA-TRND-SO19-01	ug/kg		ND		240000	27000	27000		NC
02000	1,4-Dichlorobenzene	NA-TRND-SO20-01	ug/kg		ND		240000	27000	27000		NC ·
	1.4-Dichlorobenzene	NA-TRND-SO21-01	ug/kg		ND	1	240000	27000	27000		NC
<u> </u>	1,4-Dichlorobenzene	NA-TRND-SO22-01	ug/kg		ND		240000	27000	27000		NC
	1.4-Dichlorobenzene	NA-TRND-SO23-01	ug/kg		ND		240000	27000	27000		NC
	1,4-Dichlorobenzene	NA-TRND-SO24-31	ug/kg		ND		240000		27000		NC
	1.4-Dichlorobenzene	NA-TRND-SO25-01	ug/kg		ND		240000	27000	27000		NC
	1,4-Dichlorobenzene	NA-TRND-SO26-01	ug/kg		ND		240000	27000	27000		NC
		NA-TRND-SO20-01	ug/kg		ND		240000		27000		NC
	1,4-Dichlorobenzene				ND		240000		27000		NC
	1,4-Dichlorobenzene	NA-TRND-SO28-01	ug/kg		ND		240000		27000		NC
	1,4-Dichlorobenzene	NA-TRND-SO29-01	ug/kg		ND ND		240000		27000		NC
	1,4-Dichlorobenzene	NA-TRND-SO30-01	ug/kg		ND		240000		27000		NC
OLMO3.2	1,4-Dichlorobenzene	NA-TRND-SO31-01	ug/kg		ND		240000	 -			NC
	1,4-Dichlorobenzene	NA-TRND-SO32-01	ug/kg	1	ND		240000		27000		NC NC
	1,4-Dichlorobenzene	NA-TRND-SO33-01	ug/kg		ND UJ	82000		9100	9100		NC NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO01-01	ug/kg	-	ND UJ	82000					NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO02-01	ug/kg						9100		NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO03-01	ug/kg		ND UJ	82000	+			NC NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO04-31	ug/kg		ND	82000				NC	NC
		NA-TRND-SO05-01	ug/kg		ND	82000					NC
	2,2'-oxybis(1-chloropropane)		ug/kg		ND UJ			1			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO07-01	ug/kg		ND	82000		· · · · ·			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO08-01	ug/kg		ND	82000				NC	
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO09-01	ug/kg		ND	82000				NC	NC
OLMO3.2	2,2'-oxybis(1-chloropropane)	NA-TRND-SO10-01	ug/kg	+	ND	82000	+		1	NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO11-01	ug/kg		ND	82000				NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO12-01	ug/kg		ND UJ	82000				NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO13-01	ug/kg		ND UJ		·			NC	NC NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO14-01	ug/kg		ND UJ					NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO15-01	ug/kg		ND UJ					NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO16-01	ug/kg		ND ND	82000		+		NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO17-01	ug/kg		ND	82000				NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO18-01	ug/kg		1 ND	82000				NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO19-01	ug/kg		5 ND	82000		+		NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO20-01	ug/kg	-	2 ND	82000	+		+	NC	NC .
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO21-01	ug/kg		2 ND	82000	· · · · · · · · · · · · · · · · · · ·	+		NC	NC
403.2	2,2'-oxybis(1-chloropropane)	NA-TRND-SO22-01	ug/kg	50	ND	82000	82000	9100	9100	NC	NC

											Means
						1					Compariso
					ļ						Conclusion
1 36.433			1	İ			ustrial		dential	Reference	
Method OLMO3.2	Analyte 2,2'-oxybis(1-chloropropane)	Sample ID		MDL	Result			RBC		UTL	Site
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO23-01	ug/kg		ND	82000					NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO24-31	ug/kg	·	ND	82000		9100			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO25-01 NA-TRND-SO26-01	ug/kg		ND	82000		9100			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO27-01	ug/kg		ND	82000		9100			NC
.,	2,2'-oxybis(1-chloropropane)	NA-TRND-SO28-01	ug/kg		ND ND	82000		9100			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-S029-01	ug/kg ug/kg		ND ND	82000		9100		<u> </u>	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO30-01	ug/kg		ND	82000		9100			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO31-01	ug/kg		ND	82000		9100			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO32-01	ug/kg		ND	82000 82000	+	9100			NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-SO33-01	ug/kg		ND	82000		9100 9100			NC
	2,4,5-Trichlorophenol	NA-TRND-SO01-01	ug/kg		ND UJ	2E+08					NC
	2,4,5-Trichlorophenol	NA-TRND-SO02-01	ug/kg		ND UJ	2E+08	1		780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO03-01	ug/kg		ND UJ	2E+08			780000 780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO04-31	ug/kg		ND OJ	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO05-01	ug/kg		ND	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO06-01	ug/kg		ND UJ	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO07-01	ug/kg		ND ND	2E+08			780000		NC
OLMO3.2	2,4,5-Trichlorophenol	NA-TRND-SO08-01	ug/kg		ND _	2E+08			780000		NC NC
	2,4,5-Trichlorophenol	NA-TRND-SO09-01	ug/kg	64		2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO10-01	ug/kg		ND	2E+08	+		780000		NC
OLMO3.2	2,4,5-Trichlorophenol	NA-TRND-SO11-01	ug/kg		ND	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO12-01	ug/kg		ND UJ	2E+08			780000		NC NC
OLMO3.2	2,4,5-Trichlorophenol	NA-TRND-SO13-01	ug/kg		ND UJ	2E+08			780000		NC NC
OLMO3.2	2,4,5-Trichlorophenol	NA-TRND-SO14-01	ug/kg		ND UJ	2E+08			780000		NC NC
OLMO3.2	2,4,5-Trichlorophenol	NA-TRND-SO15-01	ug/kg		ND UJ	2E+08			780000		NC
	2,4,5-Trichlorophenol	NA-TRND-SO16-01	ug/kg	61		2E+08			780000		NC NC
OLMO3.2 2		NA-TRND-SO17-01	ug/kg	48	7070	2E+08			780000		NC
	2,4,5-Trichlorophenol	1901	ug/kg	54		2E+08			780000		NC NC
OLMO3.2 2	2,4,5-Trichlorophenol		ug/kg	56	1	2E+08			780000		NC
			ug/kg	62		2E+08			780000		NC
	2,4,5-Trichlorophenol		ug/kg	52		2E+08			780000		NC NC
OLMO3.2 2	2,4,5-Trichlorophenol		ug/kg	50		2E+08			780000		NC NC
	2,4,5-Trichlorophenol		ug/kg	64 1		2E+08			780000		NC
	2,4,5-Trichlorophenol		ug/kg	53 1		2E+08			780000		NC
			ug/kg	56 1		2E+08			780000		NC
			ug/kg	55 1		2E+08			780000 1		NC
	2,4,5-Trichlorophenol		ug/kg	60 1	ND QV	2E+08			780000		NC
	2,4,5-Trichlorophenol		ug/kg	51 1		2E+08			780000		NC
	2,4,5-Trichlorophenol		ug/kg	54 1		2E+08			780000		NC .
	2,4,5-Trichlorophenol	NA-TRND-SO30-01	ug/kg	56 1	ΔĎ	2E+08	2E+07				NC
	2,4,5-Trichlorophenol	NA-TRND-SO31-01	ug/kg	61 1		2E+08			780000 1		NC
	2,4,5-Trichlorophenol	NA-TRND-SO32-01	ug/kg	57 1		2E+08	2E+07				NC
	,4,5-Trichlorophenol	NA-TRND-SO33-01	ug/kg	65 N					780000 I		NC
	.,4,6-Trichlorophenol	NA-TRND-SO01-01	ug/kg	58 1	VD UJ		520000	58000	58000 1		NC
	.4,6-Trichlorophenol	NA-TRND-SO02-01	ug/kg		ID UJ			58000	58000		NC
			ug/kg		נט עו			58000	58000 1		VC -
OLMO3.2 2			ug/kg	61 N				58000	58000 1		VC
OLMO3.2 2	,4,6-Trichlorophenol	NA-TRND-SO05-01	ug/kg	60 N				58000	58000 N		NC NC

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Mathad	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method OLMO3.2	2,4,6-Trichlorophenol	NA-TRND-SO06-01	ug/kg			520000		58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO07-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO08-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO09-01	ug/kg	1	ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO10-01	ug/kg		ND	1	520000	58000	58000	-	NC
	2,4,6-Trichlorophenol	NA-TRND-SO11-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO12-01	ug/kg				520000		58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO13-01	ug/kg				520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO14-01	ug/kg				520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO15-01	ug/kg				520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO16-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO17-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO18-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO19-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO20-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO21-01	ug/kg	<u> </u>	ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO22-01	ug/kg		ND		520000	58000	58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO23-01	ug/kg		ND		520000		58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO24-31	ug/kg		ND		520000		58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO25-01	ug/kg		ND		520000		58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO26-01	ug/kg	+	ND		520000		.58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO27-01	ug/kg		ND		520000		58000		NC
	2,4,6-Trichlorophenol	NA-TRND-SO28-01	ug/kg		ND		520000		58000	- k	NC
		NA-TRND-SO29-01	ug/kg		ND		520000				NC
	2,4,6-Trichlorophenol	NA-TRND-SO30-01	ug/kg		ND		520000				NC
	2,4,6-Trichlorophenol	NA-TRND-SO31-01	ug/kg		ND		520000				NC
	2,4,6-Trichlorophenol	NA-TRND-SO32-01	ug/kg		ND ND		520000				NC
	2,4,6-Trichlorophenol	NA-TRND-SO33-01	ug/kg		ND		520000				NC
	2,4,6-Trichlorophenol	NA-TRND-SO01-01	ug/kg		ND UJ		610000				NC
	2,4-Dichlorophenol	NA-TRND-SO02-01		+	ND UJ		610000				NC
	2,4-Dichlorophenol	NA-TRND-SO03-01	ug/kg	+	ND UJ		610000	<u> </u>			NC
	2,4-Dichlorophenol	NA-TRND-S003-01	ug/kg ug/kg		ND		610000				NC
	2,4-Dichlorophenol	NA-TRND-SO05-01	ug/kg		ND		610000	4			NC
	2,4-Dichlorophenol 2,4-Dichlorophenol	NA-TRND-SO06-01	ug/kg		ND UJ		610000				NC
		NA-TRND-S007-01	ug/kg		ND		610000				NC
	2,4-Dichlorophenol	NA-TRND-S008-01	ug/kg		ND		610000				NC
	2,4-Dichlorophenol 2,4-Dichlorophenol	NA-TRND-S009-01	ug/kg	_	ND		610000				NC
		NA-TRND-SO10-01	ug/kg	+	ND		610000				NC
	2,4-Dichlorophenol	NA-TRND-SO11-01	ug/kg		ND		610000				NC
	2,4-Dichlorophenol	NA-TRND-S012-01	ug/kg		ND UJ		610000				NC
	2,4-Dichlorophenol	NA-TRND-S012-01	ug/kg		ND UJ		610000				NC
	2,4-Dichlorophenol	NA-TRND-S013-01	ug/kg		ND UJ		610000				NC
	2,4-Dichlorophenol	NA-TRND-S014-01	ug/kg		ND UJ		610000				NC
	2,4-Dichlorophenol	NA-TRND-S015-01	ug/kg		ND		610000				NC
	2,4-Dichlorophenol				ND		610000				NC
1	2,4-Dichlorophenol	NA-TRND-SO17-01	ug/kg		ND		610000				NC
	2,4-Dichlorophenol	NA-TRND-SO18-01	ug/kg				610000				NC
	2,4-Dichlorophenol	NA-TRND-SO19-01	ug/kg		ND		610000				NC
	2,4-Dichlorophenol	NA-TRND-SO20-01	ug/kg		ND						NC
MO3.2	2,4-Dichlorophenol	NA-TRND-SO21-01	ug/kg	32	ND	05+00	610000	23000	<u>√</u> ∠3000	UINC	TINC

											Means Compariso Conclusion
					ĺ	Indus	strial		dential	Reference	
Method	Analyte	Sample ID	Units				RBSL	RBC	RBSL	UTL	Site
	2,4-Dichlorophenol	NA-TRND-SO22-01	ug/kg		ND	6E+06				NC	NC
	2,4-Dichlorophenol	NA-TRND-SO23-01	ug/kg		ND	6E+06	610000	230000	23000	NC	NC
	2,4-Dichlorophenol	NA-TRND-SO24-31	ug/kg		ND	6E+06				NC	NC
	2,4-Dichlorophenol	NA-TRND-SO25-01	ug/kg		ND	6E+06	610000	230000	23000	NC	NC
	2,4-Dichlorophenol	NA-TRND-SO26-01	ug/kg	55	ND	6E+06				NC	NC
	2,4-Dichlorophenol	NA-TRND-SO27-01	ug/kg	60	ND	6E+06	610000	230000	23000	NC	NC
	2,4-Dichlorophenol	NA-TRND-SO28-01	ug/kg	51	ND	6E+06	610000	230000	23000	NC	NC
	2,4-Dichlorophenol	NA-TRND-SO29-01	ug/kg	54	ND	6E+06 6	610000	230000			NC
	2,4-Dichlorophenol	NA-TRND-SO30-01	ug/kg	56	ND	6E+06	610000	230000	23000		NC
	2,4-Dichlorophenol	NA-TRND-SO31-01	ug/kg	61	ND	6E+06 6			23000		NC
	2,4-Dichlorophenol	NA-TRND-SO32-01	ug/kg	57	ND	6E+06 6			23000		NC
	2,4-Dichlorophenol	NA-TRND-SO33-01	ug/kg	65	ND	6E+06 6			23000		NC
	2,4-Dimethylphenol	NA-TRND-SO01-01	ug/kg	58	ND UJ			2E+06			NC
	2,4-Dimethylphenol	NA-TRND-SO02-01	ug/kg	62	ND UJ			2E+06			NC
	2,4-Dimethylphenol	NA-TRND-SO03-01	ug/kg	48	ND UJ				160000		NC
	2,4-Dimethylphenol	NA-TRND-SO04-31	ug/kg	61	ND				160000		NC NC
OLMO3.2	2,4-Dimethylphenol	NA-TRND-SO05-01	ug/kg	60					160000		NC
	2,4-Dimethylphenol		ug/kg		ND UJ				160000		NC NC
OLMO3.2	2,4-Dimethylphenol		ug/kg	60					160000		NC NC
OLMO3.2	2,4-Dimethylphenol		ug/kg	69					160000		NC NC
OLMO3.2	2,4-Dimethylphenol		ug/kg	64					160000		NC NC
OLMO3.2	2,4-Dimethylphenol		ug/kg	63					160000		
OLMO3.2	2,4-Dimethylphenol		ug/kg	48					160000		NC NC
OLMO3.2	2,4-Dimethylphenol		ug/kg		ND UJ				160000		NC
OLMO3.2	2,4-Dimethylphenol		ug/kg		ND UJ				160000		NC
			ug/kg		ND UJ						NC
			ug/kg		ND UJ				160000		NC
			ug/kg	61					160000		NC
			ug/kg	48					160000		NC
			ug/kg	54]					160000		NC
			ug/kg	56 1					160000		NC
			ug/kg	62 1					160000		NC
			ug/kg	52 1					160000		NC
									160000		NC
			ug/kg	50 1					160000		NC
			ug/kg	64 1					160000		NC
	100		ug/kg	53 1					160000 1		VC
		·	ug/kg	56 1					160000 1		NC
			ug/kg	55 1					160000 1		NC
			ug/kg	60 1					160000 1		VC
			ug/kg	51 N					160000 1		VC
			ug/kg	54 N					160000 1		VC
			ug/kg	56 N					1 00000 1		VC
	4 754		ug/kg	61 N					1 00000		NC
			ug/kg	57 N					1 00000		NC
			ug/kg	65 N					1 00000		VC
			ug/kg			4E+06 41	10000 1	60000	16000 N		VC
			ug/kg	62 N		4E+06 41			16000 N		1C
			ug/kg	48 N		4E+06 41			16000 N		IC
OLMO3.2 2	.4-Dinitrophenol	NA-TRND-SO04-31	ug/kg	61 N		4E+06 41			16000 N		IC IC

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	2,4-Dinitrophenol	NA-TRND-SO05-01	ug/kg		ND		410000		16000	1	NC
	2,4-Dinitrophenol	NA-TRND-SO06-01	ug/kg		ND UJ		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO07-01	ug/kg		ND		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO08-01	ug/kg		ND		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO09-01	ug/kg		ND		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO10-01	ug/kg		ND		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO11-01	ug/kg		ND		410000	-	16000	<u> </u>	NC
	2,4-Dinitrophenol	NA-TRND-SO12-01	ug/kg		ND UJ		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO13-01	ug/kg		ND UJ		410000	<u> </u>	16000		NC
	2,4-Dinitrophenol	NA-TRND-SO14-01	ug/kg	·	ND UJ		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO15-01	ug/kg		ND UJ		410000		16000	1	NC
	2,4-Dinitrophenol	NA-TRND-SO16-01	ug/kg	1	ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO17-01	ug/kg		ND		410000			<u> </u>	NC
	2,4-Dinitrophenol	NA-TRND-SO18-01	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO19-01	ug/kg	<u> </u>	ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO20-01	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO21-01	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO22-01	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO23-01	ug/kg		ND		410000		16000	1	NC
	2,4-Dinitrophenol	NA-TRND-SO24-31	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO25-01	ug/kg		ND		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO26-01	ug/kg		ND		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO27-01	ug/kg		ND		410000		16000		NC
	2,4-Dinitrophenol	NA-TRND-SO28-01	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO29-01	ug/kg	1	ND	1	410000				NC
	2,4-Dinitrophenol	NA-TRND-SO30-01	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO31-01	ug/kg		ND		410000				NC
	2,4-Dinitrophenol	NA-TRND-SO32-01	ug/kg		ND		410000		···		NC
	2,4-Dinitrophenol	NA-TRND-SO33-01	ug/kg		ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO01-01	ug/kg		ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO02-01	ug/kg		ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO03-01	ug/kg		ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO04-31			ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO05-01	ug/kg		ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO06-01	ug/kg		ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO07-01	ug/kg		ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO08-01	ug/kg		ND		410000			+	NC
	2,4-Dinitrotoluene	NA-TRND-SO09-01	ug/kg		ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO10-01	ug/kg	+	ND	,	410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO11-01	ug/kg	 	ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO12-01	ug/kg	_	ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO13-01	ug/kg		ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO14-01	ug/kg		ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO15-01	ug/kg	 	ND UJ		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO16-01	ug/kg	_	ND		410000	_			NC
	2,4-Dinitrotoluene	NA-TRND-SO17-01	ug/kg		ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO18-01	ug/kg		ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO19-01	ug/kg	+	ND		410000				NC
	2,4-Dinitrotoluene	NA-TRND-SO20-01	ug/kg		ND		410000				NC

ı		T	1	1	T					
ļ							1			Means
			1				ŀ			Compariso
1 .									1_	Conclusion
Method	Analyte	Sample III	Timida	NATOT		Industrial		idential	Reference	
	2,4-Dinitrotoluene	NA-TRND-SO21-01		MDL	Result ND	 				Site
	2.4-Dinitrotoluene	NA-TRND-SO22-01	ug/kg		ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO23-01	ug/kg		ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO24-31	ug/kg ug/kg		ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO25-01		-	ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO26-01	ug/kg ug/kg		ND DN	4E+06 41000		-	+	NC
	2,4-Dinitrotoluene	NA-TRND-SO27-01	ug/kg ug/kg	77.00	ND ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO28-01	ug/kg		ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO29-01	ug/kg		ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO30-01	+		ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO31-01	ug/kg ug/kg		ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-S032-01	ug/kg		ND ND	4E+06 41000				NC
	2,4-Dinitrotoluene	NA-TRND-SO33-01	ug/kg		ND	4E+06 41000				NC
	2,6-Dinitrotoluene	NA-TRND-S001-01	ug/kg		ND UJ	4E+06 41000 2E+06 20000				NC
	2,6-Dinitrotoluene	NA-TRND-SO02-01	ug/kg		ND UJ	2E+06 200000				NC
	2,6-Dinitrotoluene	NA-TRND-SO03-01	ug/kg		ND UJ	2E+06 200000				NC
	2,6-Dinitrotoluene		ug/kg		ND 03	2E+06 200000				NC
	2,6-Dinitrotoluene		ug/kg		ND	2E+06 200000				NC
	2,6-Dinitrotoluene		ug/kg		ND UJ	2E+06 200000		+		NC
	2,6-Dinitrotoluene		ug/kg	60		2E+06 200000		+		NC
	2,6-Dinitrotoluene		ug/kg	69		2E+06 200000				NC
	2,6-Dinitrotoluene		ug/kg	64		2E+06 200000				NC
	· · · · · · · · · · · · · · · · · · ·		ug/kg	63		2E+06 200000				NC
		······································	ug/kg	48		2E+06 200000			·	NC
	2,6-Dinitrotoluene		ug/kg		ND UJ	2E+06 200000				NC
OLMO3.2 2	2,6-Dinitrotoluene		ug/kg		ND UJ	2E+06 200000				NC
	· · · · · · · · · · · · · · · · · ·	"	ug/kg		ND UJ	2E+06 200000		7800 7800		NC
			ug/kg			2E+06 200000				NC
OLMO3.2 2			ug/kg	61		2E+06 200000				NC
OLMO3.2 2			ug/kg	48		2E+06 200000				NC
OLMO3.2 2			ug/kg	54		2E+06 200000		7800 7800		NC
OLMO3.2 2			ug/kg	56		2E+06 200000		7800		NC
OLMO3.2 2		NIA (TIP)	ug/kg	62 1		2E+06 200000				NC NC
			ug/kg	52 1		2E+06 200000		7800 7800		NC NC
OLMO3.2 2			ug/kg	50 1		2E+06 200000				NC NC
OLMO3.2 2	,6-Dinitrotoluene		ug/kg	64 1		2E+06 200000				NC NC
	,6-Dinitrotoluene		ug/kg	53 1		2E+06 200000		7800		
OLMO3.2 2			ug/kg	56 N		2E+06 200000		7800		NC NC
OLMO3.2 2	,		ug/kg	55 N		2E+06 200000	· .	7800		NC NC
OLMO3.2 2			ug/kg	60 N		2E+06 200000		7800		NC NC
	,6-Dinitrotoluene		ug/kg	51 N		2E+06 200000		7800		NC NC
	,6-Dinitrotoluene		ug/kg	54 N		2E+06 200000		7800		NC NC
OLMO3.2 2			ug/kg	56 N		2E+06 200000		7800		NC NC
			ug/kg	61 N		2E+06 200000				NC NC
			ug/kg	57 N		2E+06 200000 2E+06 200000		7800		NC
			ig/kg	65 N		2E+06 200000 2E+06 200000		7800		NC
			ug/kg					7800		NC
			ig/kg			2E+08 2E+07		630000		NC
			ig/kg			2E+08 2E+07 2E+08 2E+07		630000 630000		NC NC

Method	
Method Analyte Sample ID Units MDL Result RBC RBSL RBC RBSL UT	Reference vs. L Site NC NC NC NC NC NC NC N
Method	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO05-01 ug/kg 61 ND 2E+08 2E+07 6E+06 630000 NC	NC NC NC NC NC NC NC NC NC NC NC NC NC N
OLMO3.2 2-Chloronaphthalene NA-TRND-SO05-01 ug/kg 51 ND UJ 2E+08 2E+07 6E+06 630000 NC	NC NC NC NC NC NC NC NC NC NC NC NC NC N
OLMO3.2 2-Chloronaphthalene NA-TRND-SO06-01 ug/kg 51 ND UJ 2E+08 2E+07 6E+06 630000 NC	NC NC NC NC NC NC NC NC NC NC NC NC NC N
OLMO3.2 2-Chloronaphthalene NA-TRND-SO07-01 ug/kg 60 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO08-01 ug/kg 69 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO10-01 ug/kg 64 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO11-01 ug/kg 63 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO12-01 ug/kg 67 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO14-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO15-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC <	NC NC NC NC NC NC NC NC NC NC NC NC NC N
OLMO3.2 2-Chloronaphthalene NA-TRND-SO09-01 ug/kg 64 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO11-01 ug/kg 63 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO11-01 ug/kg 67 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO13-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO14-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO17-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC	NC NC NC NC NC NC NC NC NC NC NC NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO09-01 ug/kg 64 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO11-01 ug/kg 63 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO12-01 ug/kg 67 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO13-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO14-01 ug/kg 62 ND UJ 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO17-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO	NC NC NC NC NC NC NC NC NC NC NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO10-01 ug/kg 63 ND 2E+08 2E+07 6E+06 63000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO11-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO13-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO13-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO15-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC	NC NC NC NC NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO12-01 ug/kg 67 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO13-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO15-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO15-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO17-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO19-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC NC NC NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO13-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO14-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO15-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 61 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO17-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC <	NC NC NC NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO14-01 ug/kg 62 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO15-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 61 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO19-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC	NC NC NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO15-01 ug/kg 58 ND UJ 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 61 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO19-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC	NC NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO16-01 ug/kg 61 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO17-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC	NC NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO17-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO19-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 62 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC MO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO17-01 ug/kg 48 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO24-31 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC MO3.2 2-Chloronaphthalene NA-TRND-SO26-01 ug/kg	
OLMO3.2 2-Chloronaphthalene NA-TRND-SO18-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO19-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO19-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 62 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 64 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO24-31 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC MO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO27-01 ug/kg	
OLMO3.2 2-Chloronaphthalene NA-TRND-SO20-01 ug/kg 62 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 64 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO24-31 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO27-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO21-01 ug/kg 52 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO24-31 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC MO3.2 2-Chloronaphthalene NA-TRND-SO26-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO22-01 ug/kg 50 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 64 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO24-31 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC MO3.2 2-Chloronaphthalene NA-TRND-SO26-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO23-01 ug/kg 64 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO24-31 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO26-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO24-31 ug/kg 53 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC MO3.2 2-Chloronaphthalene NA-TRND-SO26-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO25-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC MO3.2 2-Chloronaphthalene NA-TRND-SO26-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO27-01 ug/kg 60 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
MO3.2 2-Chloronaphthalene NA-TRND-SO26-01 ug/kg 55 ND 2E+08 2E+07 6E+06 630000 NC 6LMO3.2 2-Chloronaphthalene NA-TRND-SO27-01 ug/kg 60 ND 2E+08 2E+07 6E+06 630000 NC 0LMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC 0LMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC 0LMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO27-01 ug/kg 60 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO28-01 ug/kg 51 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO29-01 ug/kg 54 ND 2E+08 2E+07 6E+06 630000 NC OLMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO30-01 ug/kg 56 ND 2E+08 2E+07 6E+06 630000 NC	NC
	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO31-01 ug/kg 61 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO32-01 ug/kg 57 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chloronaphthalene NA-TRND-SO33-01 ug/kg 65 ND 2E+08 2E+07 6E+06 630000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO01-01 ug/kg 58 ND UJ 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO02-01 ug/kg 62 ND UJ 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO03-01 ug/kg 48 ND UJ 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO04-31 ug/kg 61 ND 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO05-01 ug/kg 60 ND 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO06-01 ug/kg 51 ND UJ 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO07-01 ug/kg 60 ND 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO08-01 ug/kg 69 ND 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO09-01 ug/kg 64 ND 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO10-01 ug/kg 63 ND 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO11-01 ug/kg 48 ND 1E+07 1E+06 390000 39000 NC	NC NC
OLMO3.2 2-Chlorophenol NA-TRND-SO12-01 ug/kg 67 ND UJ 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+07 1E+06 390000 39000 NC	
OLMO3.2 [2-Chlorophenol] NA-TRND-SO14-01 ug/kg 62 ND UJ 1E+07 1E+06 390000 NC	NC I
OLMO3.2 [2-Chlorophenol] NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+07 1E+06 390000 NC	NC NC
OLMO3.2 2-Chlorophenol NA-TRND-SO16-01 ug/kg 61 ND 1E+07 1E+06 390000 39000 NC	NC
OLMO3.2 2-Chlorophenol NA-TRND-SO17-01 ug/kg 48 ND 1E+07 1E+06 390000 39000 NC	NC NC
OLMO3.2 2-Chlorophenol NA-TRND-SO18-01 ug/kg 54 ND 1E+07 1E+06 390000 39000 NC	NC NC NC
MO3.2 2-Chlorophenol NA-TRND-SO19-01 ug/kg 56 ND 1E+07 1E+06 390000 39000 NC	NC NC

											Means Compariso
						Indu	strial	Book	امتعددا	D-f	Conclusion
Method	Analyte	Sample ID	Unite	MDL	Result		RBSL	RBC	dential RBSL	Reference UTL	Reference vs Site
	2-Chlorophenol	NA-TRND-SQ20-01	ug/kg		ND	1E+07		390000			NC Site
-	2-Chlorophenol	NA-TRND-SO21-01	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TRND-SO22-01	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TRND-S023-01	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TRND-SO24-31	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TRND-S025-01	ug/kg		ND	1E+07		390000			NC
_	2-Chlorophenol	NA-TRND-SQ26-01	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TRND-SO27-01	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TRND-SO28-01	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol	NA-TRND-SO29-01	ug/kg		ND	1E+07		390000	`		NC
	2-Chlorophenol	NA-TRND-SO30-01	ug/kg		ND	1E+07		390000		<u> </u>	NC
	2-Chlorophenol	NA-TRND-SO31-01	ug/kg		ND	1E+07		390000			NC
	2-Chlorophenol		ug/kg		ND	1E+07		390000		·	NC
	2-Chlorophenol		ug/kg		ND	1E+07		390000	+	 	NC
	2-Methylnaphthalene		ug/kg		ND UJ	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg	-	ND UJ	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND UJ	8E+07	8E+06		310000	4.	NC
	2-Methylnaphthalene	NA-TRND-SO04-31	ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene	NA-TRND-SO05-01	ug/kg		ND	8E+07	8E+06		310000	A	NC
	2-Methylnaphthalene	NA-TRND-SO06-01	ug/kg		ND UJ	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TRND-SO07-01	ug/kg		ND 03	8E+07	8E+06		310000	1	NC
	2-Methylnaphthalene	NA-TRND-SO08-01	ug/kg		ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TRND-S009-01	ug/kg		ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	NA-TRND-SO10-01	ug/kg		ND	8E+07	8E+06		310000		NC
·	2-Methylnaphthalene		ug/kg		ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	···	ug/kg		ND UJ	8E+07	8E+06		310000		NC
	2-Methylnaphthalene	···	ug/kg		ND UJ	8E+07	8E+06	• • • • • • • • • • • • • • • • • • • 	310000		NC
	2-Methylnaphthalene		ug/kg		ND UJ	8E+07	8E+06		310000	1	NC
	2-Methylnaphthalene	· · · · · · · · · · · · · · · · · · ·	ug/kg		ND UJ	8E+07	8E+06		310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07	8E+06		310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene	——————————————————————————————————————	ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07		4.11	310000		NC
	2-Methylnaphthalene		ug/kg	_	ND	8E+07			310000	4.	NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC
	2-Methylnaphthalene		ug/kg		ND	8E+07			310000		NC NC
	2-Nitroaniline	-	ug/kg			120000	12000				
	2-Nitroaniline		ug/kg			120000	12000	-		NC NC	NC NC

					<u> </u>	<u> </u>					Means
											Comparison
											Conclusion
						Indu	strial	Resid	lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	2-Nitroaniline	NA-TRND-SO03-01	ug/kg	48	ND UJ	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO04-31	ug/kg	61	ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO05-01	ug/kg	60	ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO06-01	ug/kg	51	ND UJ	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO07-01	ug/kg	60	ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO08-01	ug/kg	69	ND	120000	12000	4700	470	NC	NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO09-01	ug/kg	64	ND	120000	12000	4700	470	NC	NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO10-01	ug/kg	63	ND	120000	12000	4700	470	NC	NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO11-01	ug/kg	48	ND	120000	12000	4700	470	NC	NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO12-01	ug/kg	67	ND UJ	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO13-01	ug/kg	62	ND UJ	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO14-01	ug/kg	62	ND UJ	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO15-01	ug/kg		ND UJ		12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO16-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO17-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO18-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO19-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO20-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO21-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO22-01	ug/kg	50	ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO23-01	ug/kg		ND	120000	12000	4700	470		NC
QLMO3.2	2-Nitroaniline	NA-TRND-SO24-31	ug/kg		ND	120000	12000	4700	470		NC
MO3.2	2-Nitroaniline	NA-TRND-SO25-01	ug/kg		ND	120000	12000	4700	470		NC
JLMO3.2	2-Nitroaniline		ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline		ug/kg	60	ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO28-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO29-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline	NA-TRND-SO30-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline		ug/kg			120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline		ug/kg			120000	12000	4700	470		NC
OLMO3.2	2-Nitroaniline		ug/kg			120000	12000	4700	470		NC
OLMO3.2	2-Nitrophenol		ug/kg	58	ND UJ	2E+07	2E+06		63000		NC
OLMO3.2	2-Nitrophenol		ug/kg				2E+06		63000		NC
OLMO3.2	2-Nitrophenol		ug/kg		ND UJ	2E+07			63000		NC
OLMO3.2	2-Nitrophenol		ug/kg	61	ND	2E+07	2E+06		63000		NC
OLMO3.2	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
OLMO3.2	2-Nitrophenol		ug/kg		ND UJ	2E+07	2E+06		63000		NC
OLMO3.2	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
OLMO3.2	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND UJ	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND UJ	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND UJ	2E+07	2E+06		63000		NC
	2-Nitrophenol	····	ug/kg		ND UJ	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07	2E+06		63000		NC

-						Yndu	strial	Posid	lential	Reference	Means Comparison Conclusion
Method	Analyte	Sample ID	Limite	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Reference vs Site
	2-Nitrophenol	NA-TRND-SO19-01	ug/kg		ND	2E+07		630000			NC Site
	2-Nitrophenol	NA-TRND-SO20-01	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TRND-SO21-01	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TRND-SO22-01	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TRND-SO23-01	ug/kg		ND	2E+07		630000		1	NC
	2-Nitrophenol	NA-TRND-SO24-31	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TRND-SO25-01	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TRND-SO26-01	ug/kg		ND	2E+07		630000	63000		NC
	2-Nitrophenol	NA-TRND-SO27-01	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol	NA-TRND-SO28-01	ug/kg		ND	2E+07		630000	63000		NC
	2-Nitrophenol	NA-TRND-SO29-01	ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol		ug/kg		ND	2E+07		630000			NC
	2-Nitrophenol		ug/kg		ND	2E+07		630000	63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07		630000	63000		NC
	2-Nitrophenol		ug/kg		ND	2E+07		630000	63000	1	NC
	3,3'-Dichlorobenzidine		ug/kg		ND UJ	13000	13000		1400	1	NC
	3,3'-Dichlorobenzidine	**************************************	ug/kg		ND UJ	13000	13000		1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND UJ	13000	13000		1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000		1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000		1400	1	NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND UJ	13000	13000		1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000		1400	L.	NC A
OLMO3.2	3,3'-Dichlorobenzidine	-	ug/kg		ND	13000	13000		1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000		1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg	48	ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND UJ	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg	62	ND UJ	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg	62	ND UJ	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO15-01	ug/kg	58	ND UJ	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO16-01	ug/kg	61	ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg	48	ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO18-01	ug/kg	54	ND	13000	13000	1400	1400	NC	NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO19-01	ug/kg	56	ND	13000	13000		1400	NC	NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO20-01	ug/kg	62	ND	13000	13000	1400	1400	NC	NC
	3,3'-Dichlorobenzidine	NA-TRND-SO21-01	ug/kg	52	ND	13000	13000	1400	1400	NC	NC
	3,3'-Dichlorobenzidine	NA-TRND-SO22-01	ug/kg	50	ND	13000	13000		1400		NC
	3,3'-Dichlorobenzidine	NA-TRND-SO23-01	ug/kg	64	ND	13000	13000	1400	1400		NC
	3,3'-Dichlorobenzidine	NA-TRND-SO24-31	ug/kg		ND	13000	13000	1400	1400		NC
	3,3'-Dichlorobenzidine	NA-TRND-SO25-01	ug/kg		ND	13000	13000	1400	1400		NC
	3,3'-Dichlorobenzidine		ug/kg	55	ND	13000	13000	1400	1400		NC
	3,3'-Dichlorobenzidine	NA-TRND-SO27-01	ug/kg	60	ND	13000	13000	1400	1400	NC	NC
•	3,3'-Dichlorobenzidine	NA-TRND-SO28-01	ug/kg	51	ND	13000	13000	1400	1400	NC	NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO29-01	ug/kg	54	ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO30-01	ug/kg	56	ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO31-01	ug/kg	61	ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine	NA-TRND-SO32-01	ug/kg	57	ND	13000	13000	1400	1400		NC
OLMO3.2	3,3'-Dichlorobenzidine		ug/kg		ND	13000	13000	1400	1400		NC .
OLMO3.2	3-Nitroaniline		ug/kg		ND UJ		12000	4700	470		NC

						Indu	strial	Docid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	3-Nitroaniline	NA-TRND-SO02-01	ug/kg		ND UJ	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO03-01	ug/kg		ND UJ	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO04-31	ug/kg		ND	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO05-01	ug/kg		ND	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO06-01	ug/kg		ND UJ	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO07-01	ug/kg		ND	120000	12000	4700	470	NC	NC
	3-Nitroaniline	NA-TRND-SO08-01	ug/kg	69	ND	120000	12000	4700	470	NC	NC
	3-Nitroaniline	NA-TRND-SO09-01	ug/kg	64	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO10-01	ug/kg	63	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO11-01	ug/kg	48	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO12-01	ug/kg	67	ND UJ	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO13-01	ug/kg	62	ND UJ	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO14-01	ug/kg	62	ND UJ	120000	12000	4700	470	NC	NC .
OLMO3.2	3-Nitroaniline	NA-TRND-SO15-01	ug/kg	58	ND UJ	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO16-01	ug/kg	61	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO17-01	ug/kg	48	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO18-01	ug/kg	54	ND	120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO19-01	ug/kg	56	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO20-01	ug/kg	62	ND	120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO21-01	ug/kg	52	ND	120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO22-01	ug/kg	50	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO23-01	ug/kg	64	ND	120000	12000	4700	470	NC	NC
MO3.2	3-Nitroaniline	NA-TRND-SO24-31	ug/kg	53	ND	120000	12000	4700	470	NC	NC
ULMO3.2	3-Nitroaniline	NA-TRND-SO25-01	ug/kg	56	ND	120000	12000	4700	470	NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO26-01	ug/kg	55	ND	120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO27-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO28-01	ug/kg		ND	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO29-01	ug/kg		ND	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO30-01	ug/kg		ND	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO31-01	ug/kg		ND	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO32-01	ug/kg		ND	120000	12000	4700	470		NC
	3-Nitroaniline	NA-TRND-SO33-01	ug/kg		ND	120000	12000	4700	470		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO01-01	ug/kg			200000	20000	7800	780	 	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO02-01	ug/kg		ND UJ		20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO03-01	ug/kg		ND UJ		20000	7800		NC	NC NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO04-31	ug/kg		ND	200000	20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO05-01	ug/kg		ND	200000	20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO06-01	ug/kg			200000	20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO07-01	ug/kg		ND	200000	20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO08-01	ug/kg		ND	200000	20000	7800 7800	780		NC NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO09-01 NA-TRND-SO10-01	ug/kg			200000	20000	7800	780 780		NC NC
	4,6-Dinitro-2-methylphenol 4,6-Dinitro-2-methylphenol	NA-TRND-SO11-01	ug/kg			200000	20000	7800	780 780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO12-01	ug/kg ug/kg		ND UJ		20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO12-01	ug/kg		ND UJ		20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO13-01	ug/kg		ND UJ		20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO15-01	ug/kg		ND UJ		20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO15-01	ug/kg			200000	20000	7800	780		NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO10-01	ug/kg			200000	20000	7800	780		NC

							ıstrial	+	dential	Reference	Means Compariso Conclusion Reference v
Method	Analyte	Sample ID		MDL	Result		RBSL	RBC	RBSL	UTL	Site
	4,6-Dinitro-2-methylphenol	NA-TRND-SO18-01	ug/kg		ND	200000		1		NC	NC
I	4,6-Dinitro-2-methylphenol	NA-TRND-SO19-01	ug/kg		ND	200000				NC	NC
_	4,6-Dinitro-2-methylphenol	NA-TRND-SO20-01	ug/kg		ND	200000		+		NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO21-01	ug/kg		ND	200000				NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO22-01	ug/kg		ND	200000				NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO23-01	ug/kg	_	ND	200000	· · ·			NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO24-31	ug/kg		ND	200000	20000	<u> </u>		NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO25-01	ug/kg		ND	200000	20000		+	NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO26-01	ug/kg		ND	200000	20000			NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO27-01	ug/kg		ND	200000	20000	7800	780	NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO28-01	ug/kg		ND	200000	20000	7800		NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO29-01	ug/kg		ND	200000	20000	7800		NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO30-01	ug/kg		ND	200000	20000	7800		NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO31-01	ug/kg		ND	200000	20000	7800		NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO32-01	ug/kg		ND	200000	20000	7800		NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-SO33-01	ug/kg		ND	200000	20000	7800		NC	NC
	4-Bromophenyl-phenylether	NA-TRND-SO01-01	ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether	NA-TRND-SO02-01	ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether	NA-TRND-SO03-01	ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether	NA-TRND-SO04-31	ug/kg		ND	1E+08			450000		NC
	4-Bromophenyl-phenylether	NA-TRND-SO05-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether	NA-TRND-SO06-01	ug/kg		ND UJ	1E+08	1E+07	5E+06	450000	NC	NC
	4-Bromophenyl-phenylether	NA-TRND-SO07-01	ug/kg		ND	1E+08	1E+07	5E+06	450000	NC	NC
	4-Bromophenyl-phenylether	NA-TRND-SO08-01	ug/kg		ND	1E+08	1E+07	5E+06	450000	NC	NC
	4-Bromophenyl-phenylether	NA-TRND-SO09-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether	NA-TRND-SO10-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether	NA-TRND-SO11-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether		ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether		ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether		ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Bromophenyl-phenylether		ug/kg		ND UJ	1E+08	1E+07		450000		NC
	1-Bromophenyl-phenylether		ug/kg	61		1E+08			450000		NC
			ug/kg		ND				450000		NC
			ug/kg	54		1E+08			450000		NC
	I-Bromophenyl-phenylether		ug/kg	56		1E+08			450000		NC
	1-Bromophenyl-phenylether		ug/kg	62		1E+08			450000		NC
			ug/kg	52		1E+08			450000		NC
			ug/kg	50		1E+08			450000	-	NC
			ug/kg	64		1E+08			450000		NC
	-Bromophenyl-phenylether		ug/kg	53		1E+08			450000		NC
	l-Bromophenyl-phenylether		ug/kg	56		1E+08			450000		NC
	-Bromophenyl-phenylether		ug/kg	55		1E+08			450000		NC
	-Bromophenyl-phenylether		ug/kg	60		1E+08			450000		NC
	-Bromophenyl-phenylether		ug/kg	51		1E+08			450000		NC
			ug/kg	54		1E+08			450000		NC
			ug/kg	56		1E+08			450000		NC
			ug/kg	61		1E+08	1E+07	5E+06	450000	NC	NC
			ug/kg	57	ND	1E+08	1E+07	5E+06	450000	NC	NC 4
OLMO3.2 4	-Bromophenyl-phenylether	NA-TRND-SO33-01	ug/kg	65	ND	1E+08			450000		NC

											Means Comparison Conclusion
					T	RBC	strial RBSL	RBC	ential RBSL	Reference	Reference vs.
Method	Analyte	Sample ID	Units		Result	4E+07	4E+06		160000	UTL	Site NC
	4-Chloro-3-methylphenol	NA-TRND-SO01-01	ug/kg		ND UJ				160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO02-01	ug/kg		ND UJ	4E+07 4E+07			160000	 	NC
	4-Chloro-3-methylphenol	NA-TRND-SO03-01	ug/kg		ND UJ					1	
	4-Chloro-3-methylphenol	NA-TRND-SO04-31	ug/kg		ND	4E+07	_		160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO05-01	ug/kg		ND ND III	4E+07	4E+06		160000		NC_
	4-Chloro-3-methylphenol	NA-TRND-SO06-01	ug/kg		ND UJ	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO07-01	ug/kg		ND	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO08-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO09-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO10-01	ug/kg		ND	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO11-01	ug/kg		ND	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO12-01	ug/kg		ND UJ	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO13-01	ug/kg		ND UJ	4E+07			160000	+	NC
	4-Chloro-3-methylphenol	NA-TRND-SO14-01	ug/kg		ND UJ	4E+07	4E+06		160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO15-01	ug/kg		ND UJ	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO16-01	ug/kg		ND	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO17-01	ug/kg		ND	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO18-01	ug/kg		ND	4E+07	4E+06		160000	<u> </u>	NC
	4-Chloro-3-methylphenol	NA-TRND-SO19-01	ug/kg		ND	4E+07			160000		NC
	4-Chloro-3-methylphenol	NA-TRND-SO20-01	ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO21-01	ug/kg		ND	4E+07	4E+06		160000		NC
QLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO22-01	ug/kg	50	ND	4E+07	4E+06		160000		NC
MO3.2	4-Chloro-3-methylphenol	NA-TRND-SO23-01	ug/kg	64	ND	4E+07	4E+06	2E+06	160000	NC	NC
LMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO24-31	ug/kg	53	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO25-01	ug/kg	56	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO26-01	ug/kg	55	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO27-01	ug/kg	60	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO28-01	ug/kg	51	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO29-01	ug/kg	54	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO30-01	ug/kg	56	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO31-01	ug/kg	61	ND	4E+07	4E+06	2E+06	160000	NC	NC
	4-Chloro-3-methylphenol	NA-TRND-SO32-01	ug/kg	57	ND	4E+07	4E+06	2E+06	160000	NC	NC
OLMO3.2	4-Chloro-3-methylphenol	NA-TRND-SO33-01	ug/kg	65	ND	4E+07	4E+06	2E+06	160000	NC	NC
	4-Chloroaniline	NA-TRND-SO01-01	ug/kg		ND UJ		820000				NC
	4-Chloroaniline	NA-TRND-SO02-01	ug/kg		ND UJ		820000				NC
	4-Chloroaniline	NA-TRND-SO03-01	ug/kg		ND UJ		820000				NC
	4-Chloroaniline	NA-TRND-SO04-31	ug/kg		ND		820000				NC
	4-Chloroaniline	NA-TRND-SO05-01	ug/kg		ND		820000				NC
	4-Chloroaniline	NA-TRND-SO06-01	ug/kg		ND UJ		820000				NC
	4-Chloroaniline	NA-TRND-SO07-01	ug/kg		ND		820000				NC
	4-Chloroaniline	NA-TRND-SO08-01	ug/kg		ND		820000				NC
	4-Chloroaniline	NA-TRND-SO09-01	ug/kg		ND		820000				NC ·
	4-Chloroaniline	NA-TRND-SO10-01	ug/kg		ND		820000	_			NC
	4-Chloroaniline	NA-TRND-SO11-01	ug/kg		ND		820000				NC
	4-Chloroaniline	NA-TRND-SO12-01	ug/kg		ND UJ		820000				NC
	4-Chloroaniline	NA-TRND-SO13-01	ug/kg		ND UJ		820000				NC
	4-Chloroaniline		ug/kg		ND UJ		820000				NC
	4-Chloroaniline	NA-TRND-SO14-01			ND UJ		820000				NC
	4-Chloroaniline	NA-TRND-SO15-01 NA-TRND-SO16-01	ug/kg ug/kg		ND OJ		820000				NC

	· · · · · · · · · · · · · · · · · · ·				ĺ	1				T	Means
											Compariso
						}					Conclusion
						Indu	strial	Resid	lential	Reference	Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	4-Chloroaniline	NA-TRND-SO17-01	ug/kg	48	ND	8E+06	820000	310000	31000	NC	NC
OLMQ3.2	4-Chloroaniline	NA-TRND-SO18-01	ug/kg	54	ND	8E+06	820000	310000	31000	NC	NC
	4-Chloroaniline	NA-TRND-SO19-01	ug/kg	56	ND	8E+06	820000	310000	31000	NC	NC
	4-Chloroaniline	NA-TRND-SO20-01	ug/kg	62	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO21-01	ug/kg	52	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO22-01	ug/kg	50	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO23-01	ug/kg	64	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO24-31	ug/kg	53	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO25-01	ug/kg	56	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO26-01	ug/kg	55	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO27-01	ug/kg	60	ND	8E+06	820000	310000	31000	1	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO28-01	ug/kg	51	ND	8E+06	820000	310000	31000		NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO29-01	ug/kg	54	ND		820000		31000	NC	NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO30-01	ug/kg	56	ND	_	820000		31000		NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO31-01	ug/kg		ND		820000		31000		NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO32-01	ug/kg	57	ND		820000				NC
OLMO3.2	4-Chloroaniline	NA-TRND-SO33-01	ug/kg	65	ND		820000				NC
OLMO3.2	4-Chlorophenyl-phenylether	NA-TRND-SO01-01	ug/kg	58	ND UJ	1E+08			450000		NC
OLMO3.2	4-Chlorophenyl-phenylether	NA-TRND-SO02-01	ug/kg	62	ND UJ	1E+08		1	450000		NC
OLMO3.2	4-Chlorophenyl-phenylether	NA-TRND-SO03-01	ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Chlorophenyl-phenylether	NA-TRND-SO04-31	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Chlorophenyl-phenylether	NA-TRND-SO05-01	ug/kg		ND	1E+08	1E+07		450000		NC _
	4-Chlorophenyl-phenylether	NA-TRND-SO06-01	ug/kg		ND UJ	1E+08	1E+07		450000		NC
	4-Chlorophenyl-phenylether	NA-TRND-SO07-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Chlorophenyl-phenylether	NA-TRND-SO08-01	ug/kg		ND	1E+08	1E+07		450000		NC
 	4-Chlorophenyl-phenylether	NA-TRND-SO09-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Chlorophenyl-phenylether	NA-TRND-SO10-01	ug/kg		ND	1E+08	1E+07		450000		NC NC
	4-Chlorophenyl-phenylether	NA-TRND-SO11-01	ug/kg		ND	1E+08	1E+07		450000		NC
	4-Chlorophenyl-phenylether		ug/kg		ND UJ	1E+08	1E+07		450000		NC NC
	4-Chlorophenyl-phenylether	NA-TRND-SO13-01	ug/kg		ND UJ	1E+08			450000		NC
	4-Chlorophenyl-phenylether	NA-TRND-SO14-01	ug/kg		ND UJ	1E+08	1E+07		450000		NC NC
	4-Chlorophenyl-phenylether	NA-TRND-SO15-01	ug/kg		ND UJ	1E+08			450000		NC
	4-Chlorophenyl-phenylether	NA-TRND-SO16-01	ug/kg		ND				450000		NC NC
	4-Chlorophenyl-phenylether	NA-TRND-SO17-01	ug/kg		ND				450000		NC NC
	4-Chlorophenyl-phenylether	NA-TRND-SO18-01	ug/kg		ND				450000		NC NC
	4-Chlorophenyl-phenylether	NA-TRND-SO19-01	ug/kg		ND	1E+08			450000		NC NC
	4-Chlorophenyl-phenylether	NA-TRND-SO20-01	ug/kg		ND	1E+08			450000		NC .
	4-Chlorophenyl-phenylether	NA-TRND-SO21-01	ug/kg		ND	1E+08			450000		NC NC
		NA-TRND-SO22-01	ug/kg	$\overline{}$	ND	1E+08			450000		NC NC
	4-Chlorophenyl-phenylether		ug/kg		ND	1E+08			450000		NC NC
			ug/kg		ND	1E+08			450000		NC NC
			ug/kg		ND	1E+08			450000		NC NC
			ug/kg		ND	1E+08					
			ug/kg	-	ND				450000		NC NC
					ND ND	1E+08			450000		NC
	·	·	ug/kg			1E+08			450000		NC
			ug/kg		ND	1E+08			450000		NC
	4-Chlorophenyl-phenylether		ug/kg		ND	1E+08			450000		NC
			ug/kg		ND	1E+08			450000		NC
OLIVIOS.2	4-Chlorophenyl-phenylether	NA-TRND-SO32-01	ug/kg	57]	ND	1E+08	1E+07	⊃E+06	450000	NC	NC

								ĺ			
			1	1							Means Comparison
36-0				ļ							Comparison
36-42				İ		Indu	strial	Docid	lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	1-Chlorophenyl-phenylether	NA-TRND-SO33-01	ug/kg		ND	1E+08	1E+07		450000		NC Site
	I-Nitroanaline	NA-TRND-SO01-01	ug/kg			120000	12000	4700			NC
	-Nitroanaline	NA-TRND-SO02-01	ug/kg			120000	12000	4700			NC
	I-Nitroanaline	NA-TRND-SO03-01	ug/kg		ND UJ		12000	4700	470		NC
	I-Nitroanaline	NA-TRND-SO04-31	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2 4-		NA-TRND-SO05-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2 4-	·	NA-TRND-SO06-01	ug/kg			120000	12000	4700	470		NC
	I-Nitroanaline	NA-TRND-SO07-01	ug/kg		ND	120000	12000	4700	470		NC
	-Nitroanaline	NA-TRND-SO08-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2 4-		NA-TRND-SO09-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-		NA-TRND-SO10-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2 4-		NA-TRND-SO11-01	ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2 4-		NA-TRND-SO12-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-		NA-TRND-SO13-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-		NA-TRND-SO14-01	ug/kg			120000	12000	4700	470		NC
	-Nitroanaline	NA-TRND-SO15-01	ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline	NA-TRND-SO16-01	ug/kg		ND	120000	12000	4700	470		NC
	-Nitroanaline	NA-TRND-SO17-01	ug/kg		ND	120000	12000	4700	470		NC
	-Nitroanaline	NA-TRND-SO18-01	ug/kg		ND	120000	12000	4700	470		NC
		NA-TRND-SO19-01	ug/kg		ND	120000	12000	4700	470		NC
		NA-TRND-SO20-01	ug/kg		ND	120000	12000	4700	470		NC
		NA-TRND-SO21-01	ug/kg		ND	120000	12000	4700	470		NC
MO3.2 4-		NA-TRND-SO22-01	ug/kg		ND	120000	12000	4700	470		NC
LMO3.2 4-			ug/kg		ND	120000	12000	4700	470		NC
	-Nitroanaline		ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg		ND	120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg	54	ND	120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg	56	ND	120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg	61	ND	120000	12000	4700	470		NC
OLMO3.2 4-	-Nitroanaline		ug/kg	57	ND	120000	12000	4700	470		NC
OLMO3.2 4-			ug/kg			120000	12000	4700	470		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO01-01	ug/kg	58	ND UJ	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO02-01	ug/kg		ND UJ	2E+07	2E+06	\longrightarrow	63000		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO03-01	ug/kg	48	ND UJ	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO04-31	ug/kg	61	ND	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO05-01	ug/kg	60	ND	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO06-01	ug/kg	51	ND UJ	2E+07	2E+06	630000	63000		NC
OLMO3.2 4-	-Nitrophenol		ug/kg	60	ND	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol		ug/kg	69	ND	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO09-01	ug/kg	64	ND	2E+07	2E+06	630000	63000		NC
OLMO3.2 4-1	-Nitrophenol	NA-TRND-SO10-01	ug/kg	63	ND	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol		ug/kg	48	ND	2E+07	2E+06		63000		NC
OLMO3.2 4-	-Nitrophenol	NA-TRND-SO12-01	ug/kg	67	ND UJ	2E+07	2E+06		63000		NC
			ug/kg	62	ND UJ	2E+07	2E+06		63000		NC
OLMO3.2 4-1	-Nitrophenol		ug/kg			2E+07	2E+06		63000		NC
MO3.2 4-1	-Nitrophenol	NA-TRND-SO15-01	ug/kg	58	ND UJ	2E+07	2E+06		63000		NC

							strial	Resid	lential	Reference	Means Compariso Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	4-Nitrophenol	NA-TRND-SO16-01	ug/kg	61		2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO17-01	ug/kg	48	ND	2E+07	2E+06	630000	63000	NC	NC
	4-Nitrophenol	NA-TRND-SO18-01	ug/kg	54	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO19-01	ug/kg	56	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO20-01	ug/kg		ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO21-01	ug/kg		ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO22-01	ug/kg	50	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO23-01	ug/kg	64	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO24-31	ug/kg	53	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO25-01	ug/kg	56	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO26-01	ug/kg	55	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO27-01	ug/kg	60	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO28-01	ug/kg	51	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO29-01	ug/kg	54	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO30-01	ug/kg	56	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO31-01	ug/kg	61	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO32-01	ug/kg	57	ND	2E+07	2E+06	630000	63000	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO33-01	ug/kg	65	ND	2E+07	2E+06	630000			NC
OLMO3.2	Acenaphthene		ug/kg	58	430 J	1E+08			470000		NC
OLMO3.2	Acenaphthene		ug/kg	62	ND UJ	1E+08	1E+07		470000	<u> </u>	NC
OLMO3.2	Acenaphthene		ug/kg	48	ND UJ	1E+08	1E+07		470000		NC
OLMO3.2.	Acenaphthene		ug/kg	61	ND	1E+08	1E+07		470000	 	NC
OLMO3.2	Acenaphthene		ug/kg	60	ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO06-01	ug/kg	51	ND UJ	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO07-01	ug/kg	60	ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO08-01	ug/kg	69	ND	1E+08			470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO09-01	ug/kg	64	ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO10-01	ug/kg	63	ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO11-01	ug/kg	48	ND	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO12-01	ug/kg	67	ND UJ	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO13-01	ug/kg	62	ND UJ	1E+08	1E+07		470000		NC
OLMO3.2	Acenaphthene	NA-TRND-SO14-01	ug/kg	62	ND UJ	1E+08			470000		NC
OLMO3.2	Acenaphthene		ug/kg	58	ND UJ	1E+08	1E+07	5E+06	470000	NC	NC
OLMO3.2	Acenaphthene		ug/kg		ND	1E+08			470000		NC
OLMO3.2	Acenaphthene		ug/kg	48	ND	1E+08			470000		NC
OLMO3.2	Acenaphthene		ug/kg		ND	1E+08			470000		NC
OLMO3.2	Acenaphthene		ug/kg	56	ND	1E+08			470000		NC
OLMO3.2	Acenaphthene		ug/kg		ND	1E+08			470000		NC
OLMO3.2	Acenaphthene		ug/kg		ND	1E+08			470000		NC
	Acenaphthene		ug/kg		ND	1E+08			470000		NC
	Acenaphthene		ug/kg		ND	1E+08			470000		NC
	Acenaphthene		ug/kg		ND	1E+08			470000		NC
	Acenaphthene		ug/kg		ND	1E+08		100 400	470000		NC
	Acenaphthene		ug/kg		ND	1E+08			470000		NC
	Acenaphthene		ug/kg	_	ND	1E+08			470000		NC
	Acenaphthene		ug/kg		ND	1E+08					
	Acenaphthene		ug/kg ug/kg	_	ND ND	$\overline{}$		$\overline{}$	470000		NC
_	Acenaphthene					1E+08			470000		NC
	Acenaphthene		ug/kg ug/kg		ND ND	1E+08 1E+08			470000 470000		NC NC

											Means Comparison Conclusion
							strial		lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL		RBC	RBSL	RBC	RBSL	UTL	Site
	Acenaphthene	NA-TRND-SO32-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthene	NA-TRND-SO33-01	ug/kg		ND	1E+08			470000		NC
	Acenaphthylene	NA-TRND-SO01-01	ug/kg		ND UJ	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO02-01	ug/kg		ND UJ	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO03-01	ug/kg		ND UJ	1E+08	1E+07		470000	4-	NC
	Acenaphthylene	NA-TRND-SO04-31	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO05-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO06-01	ug/kg		ND UJ	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO07-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO08-01	ug/kg		ND	1E+08	1E+07		470000		NC
<u> </u>	Acenaphthylene	NA-TRND-SO09-01	ug/kg		ND	1E+08	1E+07		470000		NC
L	Acenaphthylene	NA-TRND-SO10-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO11-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO12-01	ug/kg		ND UJ	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO13-01	ug/kg		ND UJ	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO14-01	ug/kg		ND UJ	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO15-01	ug/kg		ND UJ	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO16-01	ug/kg	61	ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO17-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO18-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO19-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO20-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO21-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene		ug/kg		ND	1E+08			470000		NC
	Acenaphthylene		ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene		ug/kg		ND	1E+08			470000		NC
	Acenaphthylene		ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene		ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene		ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene		ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO29-01	ug/kg	54		1E+08	1E+07		470000		NC
	Acenaphthylene	NA-TRND-SO30-01	ug/kg		ND	1E+08	1E+07		470000		NC
	Acenaphthylene		ug/kg		ND	1E+08			470000		NC
	Acenaphthylene	NA-TRND-SO32-01	ug/kg		ND		1E+07				NC
	Acenaphthylene		ug/kg		ND	1E+08			470000		NC
	Anthracene		ug/kg		750 J	6E+08			2E+06		NC
	Anthracene		ug/kg		ND UJ	6E+08			2E+06		NC
	Anthracene		ug/kg		ND UJ	6E+08					NC
	Anthracene		ug/kg		ND	6E+08					NC
OLMO3.2			ug/kg		ND	6E+08					NC
OLMO3.2			ug/kg		ND UJ	6E+08					NC
OLMO3.2			ug/kg		ND	6E+08			2E+06		NC
OLMO3.2			ug/kg		ND	6E+08			2E+06		NC
OLMO3.2			ug/kg		ND		6E+07		2E+06		NC
OLMO3.2			ug/kg		ND		6E+07				NC
OLMO3.2			ug/kg		ND		6E+07		2E+06	*.	NC
OLMO3.2	· ·		ug/kg		ND UJ		6E+07		2E+06		NC
OLMO3.2			ug/kg		ND UJ	6E+08	6E+07				NC
мО3.2	Anthracene	NA-TRND-SO14-01	ug/kg	62	ND UJ	6E+08	6E+07	2E+07	2E+06	NC	NC

											Means
											Compariso
]											Conclusion
34.45.4	A T4		** •.				strial		lential	₹	Reference v
Method OLMO3.2	Analyte Anthracene	Sample ID			Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	Anthracene	NA-TRND-SO15-01	ug/kg		ND UJ	6E+08		2E+07	2E+06		NC
	·	NA-TRND-SO16-01	ug/kg		ND	6E+08		2E+07	2E+06		NC
	Anthracene	NA-TRND-SO17-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06	·	NC
	Anthracene	NA-TRND-SO18-01	ug/kg		ND	6E+08		2E+07	2E+06		NC
	Anthracene Anthracene	NA-TRND-SO19-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
-	Anthracene	NA-TRND-SO20-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
	Anthracene	NA-TRND-SO21-01 NA-TRND-SO22-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
H	Anthracene	NA-TRND-S022-01	ug/kg		ND	6E+08	6E+07	2E+07	2E+06	<u> </u>	NC
H	Anthracene	NA-TRND-S023-01	ug/kg		ND ND	6E+08	6E+07	2E+07	2E+06		NC
	Anthracene		ug/kg ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
	Anthracene	NA-TRND-SO26-01	ug/kg ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
	Anthracene	NA-TRND-SO27-01	ug/kg		ND		6E+07	2E+07	2E+06		NC
	Anthracene		ug/kg		ND	6E+08	6E+07	2E+07 2E+07	2E+06 2E+06		NC
\vdash	Anthracene		ug/kg	54		6E+08	6E+07	2E+07	2E+06		NC
	Anthracene		ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC NC
	Anthracene		ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
	Anthracene	· · · · · · · · · · · · · · · · · · ·	ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
	Anthracene		ug/kg		ND	6E+08	6E+07	2E+07	2E+06		NC
	Benzo(a)anthracene	T-12.	ug/kg		9800 J	7800	7800	870	2E+06 870		NC
	Benzo(a)anthracene		ug/kg		ND UJ	7800	7800	870	870		NC
	Benzo(a)anthracene		ug/kg		ND UJ	7800	7800	870	870		NC .
	Benzo(a)anthracene	NA-TRND-SO04-31	ug/kg	61	380	7800	7800	870	870		NC
	Benzo(a)anthracene	NA-TRND-SO05-01	ug/kg	60	130	7800	7800	870	870		NC
	Benzo(a)anthracene	NA-TRND-SO06-01	ug/kg		ND UJ	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene	NA-TRND-SO07-01	ug/kg		ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg		ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg		ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg		ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg		ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg	67	ND UJ	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg		ND UJ	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg		ND UJ	7800	7800	870	870		NC
OLMO3.2			ug/kg		ND UJ	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg	61	ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg	48	ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene	NA-TRND-SO18-01	ug/kg	54	ND	7800	7800	870	870		NC
			ug/kg	56	ND	7800	7800	870	870		NC
	Benzo(a)anthracene	NA-TRND-SO20-01	ug/kg	62	ND	7800	7800	870	870		NC
			ug/kg	52	ND	7800	7800	870	870		NC
			ug/kg	50	ND	7800	7800	870	870		NC
·			ug/kg	64	ND	7800	7800	870	870		NC
		····	ug/kg	53	77	7800	7800	870	870		NC
			ug/kg	56	ND	7800	7800	870	870		NC
	Benzo(a)anthracene		ug/kg	55	ND	7800	7800	870	870		NC
-			ug/kg	60	77	7800	7800	870	870	4	NC
OLMO3.2	Benzo(a)anthracene		ug/kg	51	ND	7800	7800	870	870		NC
OLMO3.2	Benzo(a)anthracene		ug/kg	54	450	7800	7800	870	870		NC
OLMO3.2 I	Benzo(a)anthracene		ug/kg		ND	7800	7800	870	870		NC

Method				Means Comparison
Method Analyte Sample ID Units MDL Result RBC RBSL				Conclusion
OLMO3.2 Benzo(a)anthracene NA-TRND-SO31-01 ug/kg 61 ND 7800 780		Residential	_	Reference vs.
OLMO3.2 Benzo(a)anthracene NA-TRND-SO32-01 ug/kg 57 ND 7800 7800 OLMO3.2 Benzo(a)anthracene NA-TRND-SO01-01 ug/kg 230 12000 J 780 7800 OLMO3.2 Benzo(a)pyrene NA-TRND-SO01-01 ug/kg 230 12000 J 780 7800 OLMO3.2 Benzo(a)pyrene NA-TRND-SO02-01 ug/kg 16 ND UJ 780 7800 OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 13 33 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 61 440 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 100 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 100 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO08-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-11 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 55 ND 780 780 OLMO3.2 B	RBC		UTL	Site
DLMO3.2 Benzo(a)pyrene	870		NC	NC
DLMO3.2 Benzo(a)pyrene NA-TRND-SO01-01 ug/kg 16 ND UJ 780 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 13 33 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 13 33 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO04-31 ug/kg 61 440 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO04-01 ug/kg 60 100 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO06-01 ug/kg 60 100 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO06-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO07-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 ND J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 16 ND J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 50 ND 780 7	870		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 13 33 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 13 33 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 61 440 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 100 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO06-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO08-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO08-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 78 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 16 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO12-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO12-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 56 ND 780 780 OLMO3.2 Benz	870		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO03-01 ug/kg 13 33 J 780 780	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 61 440 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 100 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO06-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO08-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 781 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/k	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO05-01 ug/kg 60 100 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO06-01 ug/kg 13 35 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO07-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO08-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 781 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO06-01 ug/kg 13 35 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO07-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 18 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO07-01 ug/kg 60 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO08-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO12-01 ug/kg 16 NB 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 15 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg </td <td>87</td> <td></td> <td>NC</td> <td>NC</td>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO08-01 ug/kg 69 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO201-01 <td< td=""><td>87</td><td></td><td>NC</td><td>NC</td></td<>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO09-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO12-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 <td< td=""><td>87</td><td></td><td>NC</td><td>NC</td></td<>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO10-01 ug/kg 63 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO12-01 ug/kg 18 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO11-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO12-01 ug/kg 18 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 62 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO12-01 ug/kg 18 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 56 ND 780 780 DLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 50 ND 780 780 OLMO3.2	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO13-01 ug/kg 16 78 J 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Ben	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO14-01 ug/kg 16 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO23-01 ug/kg 53 93 780 780 OLMO3.2	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO15-01 ug/kg 15 ND UJ 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 MO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 62 ND 780 780 MO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 62 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 53 93 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg <td>87</td> <td></td> <td>NC</td> <td>NC</td>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO16-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 56 ND 780 780 MO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO3-01 ug/kg	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO17-01 ug/kg 48 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 56 ND 780 780 MO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 62 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO23-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 53 93 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO18-01 ug/kg 54 76 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 56 ND 780 780 MO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 62 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO23-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg <td>87</td> <td></td> <td>NC</td> <td>NC</td>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO19-01 ug/kg 56 ND 780 780 MO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 62 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO23-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 53 93 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO29-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 54 410 780 780 OLMO3.2	87		NC	NC
MO3.2 Benzo(a)pyrene NA-TRND-SO20-01 ug/kg 62 ND 780 780	87		NC NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO21-01 ug/kg 52 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO23-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 53 93 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO27-01 ug/kg 60 97 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg </td <td>87</td> <td></td> <td>NC NC</td> <td>NC</td>	87		NC NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO22-01 ug/kg 50 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO23-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 53 93 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO27-01 ug/kg 60 97 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg </td <td>87</td> <td></td> <td>NC</td> <td>NC</td>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO23-01 ug/kg 64 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 53 93 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO27-01 ug/kg 60 97 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg </td <td>87</td> <td></td> <td>NC</td> <td>NC</td>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO24-31 ug/kg 53 93 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO27-01 ug/kg 60 97 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg </td <td>87</td> <td></td> <td>NC</td> <td>NC</td>	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO25-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO27-01 ug/kg 60 97 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO29-01 ug/kg 54 410 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 57 ND 780 780 OLMO3.2	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO26-01 ug/kg 55 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO27-01 ug/kg 60 97 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO39-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO27-01 ug/kg 60 97 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO39-01 ug/kg 54 410 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 65 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800 7800	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO28-01 ug/kg 51 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO29-01 ug/kg 54 410 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 65 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800	87 87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO29-01 ug/kg 54 410 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 65 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800			NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO30-01 ug/kg 56 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 65 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800 7800	87 87		NC NC	NC NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO31-01 ug/kg 61 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 65 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800 7800				
OLMO3.2 Benzo(a)pyrene NA-TRND-SO32-01 ug/kg 57 ND 780 780 OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 65 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800	87		NC	NC
OLMO3.2 Benzo(a)pyrene NA-TRND-SO33-01 ug/kg 65 ND 780 780 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800 7800	87 87		NC	NC
OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO01-01 ug/kg 230 15000 J 7800 7800	87		NC	NC NC
			NC	NC
[OEMO3.2 [Benzo(b)]nuoraniniene [NA-1 KND-3002-01 [ug/kg] 02[ND 0] 70001 70001	870		NC	NC
	870		NC	NC
OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO03-01 ug/kg 48 ND UJ 7800 7800 OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO04-31 ug/kg 61 750 7800 7800	870		NC	NC ·
	870		NC	NC
	870		NC	NC
	870		NC	NC
	870		NC	NC
	870		NC	NC
OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO09-01 ug/kg 64 ND 7800 7800	870		NC	NC
OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO10-01 ug/kg 63 ND 7800 7800	870		NC	NC
OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO11-01 ug/kg 48 ND 7800 7800	870		NC	NC
OLMO3.2 Benzo(b)fluoranthene NA-TRND-SO12-01 ug/kg 67 ND UJ 7800 7800 MO3.2 Benzo(b)fluoranthene NA-TRND-SO13-01 ug/kg 62 110 J 7800 7800	870 870		NC NC	NĆ NC

											Means
											Compariso
	ı										Conclusion
							strial		lential	Reference	Reference vs
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
	Benzo(b)fluoranthene	NA-TRND-SO14-01	ug/kg		ND UJ	7800	7800	870		NC	NC
-	Benzo(b)fluoranthene	NA-TRND-SO15-01	ug/kg		ND UJ	7800	7800	870		NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO16-01	ug/kg		ND	7800	7800	870		NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO17-01	ug/kg		ND	7800	7800	870		NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO18-01	ug/kg	54			7800	870		NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO19-01	ug/kg		ND	7800	7800	870		NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO20-01	ug/kg	62	130		7800	870		NC	NC
1	Benzo(b)fluoranthene	NA-TRND-SO21-01	ug/kg		ND	7800	7800	870	<u> </u>		NC
	Benzo(b)fluoranthene	NA-TRND-SO22-01	ug/kg		ND	7800	7800	870		NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO23-01	ug/kg		ND	7800	7800	870		NC	NC
$\overline{}$	Benzo(b)fluoranthene	NA-TRND-SO24-31	ug/kg	53	110		7800	870			NC
	Benzo(b)fluoranthene	NA-TRND-SO25-01	ug/kg		ND	7800	7800	870	870		NC
	Benzo(b)fluoranthene	NA-TRND-SO26-01	ug/kg		ND	7800	7800	870			NC
	Benzo(b)fluoranthene	NA-TRND-SO27-01	ug/kg	60			7800	870		NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO28-01	ug/kg		ND	7800	7800	870			NC
\vdash	Benzo(b)fluoranthene	NA-TRND-SO29-01	ug/kg	54	500		7800	870			NC
-	Benzo(b)fluoranthene	NA-TRND-SO30-01	ug/kg		ND	7800	7800	870			NC
<u></u>	Benzo(b)fluoranthene	NA-TRND-SO31-01	ug/kg		ND	7800	7800	870			NC
	Benzo(b)fluoranthene	NA-TRND-SO32-01	ug/kg		ND	7800	7800	870	870		NC
	Benzo(b)fluoranthene	NA-TRND-SO33-01	ug/kg		ND	7800	7800	870	870		NC
	Benzo(g,h,i)perylene	NA-TRND-SO01-01	ug/kg		6400 J	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO02-01	ug/kg		ND UJ	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO03-01	ug/kg		ND UJ	6E+07	6E+06		230000	1	NC
	Benzo(g,h,i)perylene	NA-TRND-SO04-31	ug/kg	61	320	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO05-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene		ug/kg		53 J	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO07-01	ug/kg		ND	6E+07	6E+06		230000	L	NC
	Benzo(g,h,i)perylene	NA-TRND-SO08-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO09-01	ug/kg		ND	6E+07	6E+06		230000		NC
		NA-TRND-SO10-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO11-01	ug/kg		ND	6E+07	6E+06		230000		NC
OLMO3.2			ug/kg		ND UJ	6E+07			230000		NC
			ug/kg		72 J	6E+07			230000		NC
			ug/kg		ND UJ	6E+07			230000		NC
			ug/kg		ND UJ	6E+07			230000		NC
			ug/kg		ND	6E+07			230000		NC
	***************************************		ug/kg		ND	6E+07			230000		NC
			ug/kg		ND	6E+07			230000		NC
			ug/kg		ND	6E+07			230000		NC
			ug/kg		ND	6E+07			230000		NC
			ug/kg		ND	6E+07			230000		NC
			ug/kg		ND	6E+07			230000		NC
			ug/kg		ND	6E+07			230000		NC
_			ug/kg	53		6E+07			230000		NC
~			ug/kg		ND	6E+07	6E+06	2E+06	230000	NC	NC
			ug/kg		ND	6E+07	6E+06	2E+06	230000	NC	NC
	Benzo(g,h,i)perylene		ug/kg	60		6E+07	6E+06	2E+06	230000	NC	NC
			ug/kg	51	ND	6E+07	6E+06	2E+06	230000	NC	NC
OLMO3.2	Benzo(g,h,i)perylene	NA-TRND-SO29-01	ug/kg	54	280	6E+07	6E+06	2E+06	230000	NC	NC

							-				Means
				1							Comparison
			ļ								Conclusion
			1			Indu	strial	Resid	lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Benzo(g,h,i)perylene	NA-TRND-SO30-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO31-01	ug/kg		ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO32-01	ug/kg	1	ND	6E+07	6E+06		230000		NC
	Benzo(g,h,i)perylene	NA-TRND-SO33-01	ug/kg		ND	6E+07	6E+06		230000	I	NC
	Benzo(k)fluoranthene	NA-TRND-SO01-01	ug/kg		2900 J	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO02-01	ug/kg		ND UJ	78000	78000	8700	8700		NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO03-01	ug/kg		ND UJ	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO04-31	ug/kg		ND	78000	78000	8700	8700		NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO05-01	ug/kg		ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO06-01	ug/kg		ND UJ	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO07-01	ug/kg		ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO08-01	ug/kg		ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO09-01	ug/kg		ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO10-01	ug/kg		ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO11-01	ug/kg	-	ND	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO12-01	ug/kg		ND UJ	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO13-01	ug/kg		ND UJ	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO14-01	ug/kg		ND UJ	78000	78000	8700	8700	NC	NC
	Benzo(k)fluoranthene	NA-TRND-SO15-01	ug/kg	58	ND UJ	78000	78000	8700	8700		NC
	Benzo(k)fluoranthene	NA-TRND-SO16-01	ug/kg	61	ND	78000	78000	8700	8700	NC	NC
	Benzo(k)fluoranthene	NA-TRND-SO17-01	ug/kg		ND	78000	78000	8700	8700		NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO18-01	ug/kg	54	ND	78000	78000	8700	8700	NC	NC
MO3.2	Benzo(k)fluoranthene	NA-TRND-SO19-01	ug/kg	56	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO20-01	ug/kg	62	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO21-01	ug/kg	52	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO22-01	ug/kg	50	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO23-01	ug/kg	64	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO24-31	ug/kg	53	69	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO25-01	ug/kg	56	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO26-01	ug/kg	55	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO27-01	ug/kg	60	90	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO28-01	ug/kg	51	ND	78000	78000	8700	8700		NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO29-01	ug/kg	54	250	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO30-01	ug/kg	56	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SQ31-01	ug/kg	61	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO32-01	ug/kg	57	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Benzo(k)fluoranthene	NA-TRND-SO33-01	ug/kg	65	ND	78000	78000	8700	8700	NC	NC
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO01-01	ug/kg	58	ND UJ	4E+08	4E+07	2E+07	2E+06	83	NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO02-01	ug/kg	62	ND UJ	4E+08	4E+07	2E+07	2E+06	83	NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO03-01	ug/kg	48	ND UJ	4E+08	4E+07	2E+07	2E+06	83	NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO04-31	ug/kg	61	ND	4E+08	4E+07	2E+07	2E+06	83	NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO05-01	ug/kg	60		4E+08	4E+07	2E+07	2E+06		NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO06-01	ug/kg	51	ND UJ	4E+08	4E+07	2E+07	2E+06	83	NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO07-01	ug/kg	60	ND	4E+08	4E+07	2E+07	2E+06	83	NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO08-01	ug/kg	69	110	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO09-01	ug/kg	64	ND	4E+08	4E+07	2E+07	2E+06	83	NS
OLMO3.2	Butylbenzylphthalate	NA-TRND-SO10-01	ug/kg	63	110	4E+08	4E+07	2E+07	2E+06	83	NS
QLMO3.2	Butylbenzylphthalate	NA-TRND-SO11-01	ug/kg	48	ND	4E+08	4E+07	2E+07	2E+06	83	NS
MO3.2	Butylbenzylphthalate	NA-TRND-SO12-01	ug/kg	67	ND UJ	4E+08	4E+07	2E+07	2E+06	83	NS

											Means
								ĺ			Compariso
			1							ĺ	Conclusion
					[strial	Resid	lential	Reference	Reference v
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Butylbenzylphthalate	NA-TRND-SO13-01	ug/kg		91 J	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO14-01	ug/kg	62	ND UJ	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO15-01	ug/kg	58	ND UJ	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO16-01	ug/kg	61	69	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO17-01	ug/kg	48	ND	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO18-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06	83	NS
l	Butylbenzylphthalate	NA-TRND-SO19-01	ug/kg		ND	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO20-01	ug/kg	62	110	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO21-01	ug/kg	52	ND	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO22-01	ug/kg	50		4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO23-01	ug/kg		99 J	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	NA-TRND-SO24-31	ug/kg		ND	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate		ug/kg		ND	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate	·····	ug/kg		ND	4E+08	4E+07	2E+07	2E+06	83	NS
	Butylbenzylphthalate		ug/kg		ND	4E+08	4E+07	2E+07	2E+06		NS
	Butylbenzylphthalate		ug/kg		ND	4E+08	4E+07	2E+07	2E+06	1	NS
	Butylbenzylphthalate		ug/kg		ND	4E+08		2E+07	2E+06		NS
	Butylbenzylphthalate		ug/kg		ND	4E+08		2E+07	2E+06		NS
	Butylbenzylphthalate		ug/kg		ND	4E+08		2E+07	2E+06		NS
	Butylbenzylphthalate		ug/kg		ND	4E+08		2E+07	2E+06	1	NS
	Butylbenzylphthalate		ug/kg		ND	4E+08		2E+07	2E+06		NS
	Carbazole		ug/kg				290000	32000	<u> </u>		NC
	Carbazole		ug/kg				290000	32000		4	NC
	Carbazole		ug/kg				290000	32000			NC
	Carbazole		ug/kg				290000		32000	1	NC
	Carbazole	***************************************	ug/kg				290000	32000	32000		NC
	Carbazole		ug/kg				290000	32000	32000		NC
	Carbazole		ug/kg				290000	32000	32000		NC
	Carbazole		ug/kg				290000	32000	32000		NC
	Carbazole		ug/kg				290000	32000	32000		NC
	Carbazole		ug/kg				290000	32000	32000		NC
OLMO3.2 OLMO3.2	Carbazole		ug/kg				290000	32000	32000		NC
			ug/kg				290000				NC
OLMO3.2 OLMO3.2			ug/kg				290000				NC
	**************************************		ug/kg				290000				NC
OLMO3.2 OLMO3.2			ug/kg				290000				NC
OLMO3.2 OLMO3.2	THE CO. LANSING MICH.		ug/kg				290000				NC
OLMO3.2 OLMO3.2			ug/kg				290000	32000			NC
OLMO3.2 OLMO3.2			ug/kg				290000	32000			NC
OLMO3.2 OLMO3.2			ug/kg				290000	32000			NC
OLMO3.2 OLMO3.2	The state of the s		ug/kg				290000	77.0			NC
OLMO3.2 OLMO3.2			ug/kg				290000		-		NC
			ug/kg				290000				NC
OLMO3.2			ug/kg				290000		32000		NC
OLMO3.2			ug/kg				290000				NC
OLMO3.2			ug/kg				290000				NC
OLMO3.2			ug/kg		_		290000				NC
OLMO3.2			ug/kg				290000				NC
OLMO3.2	Carbazole	NA-TRND-SO28-01	ug/kg	51	ND	290000	290000	32000	32000	NC	NC

											Means
						1					Comparison
						1					Conclusion
1						Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
OLMO3.2	Carbazole	NA-TRND-SO29-01	ug/kg		ND		290000	32000	32000		NC
	Carbazole	NA-TRND-SO30-01	ug/kg		ND		290000	32000	32000		NC
	Carbazole	NA-TRND-SO31-01	ug/kg		ND	_	290000	32000	32000		NC
	Carbazole	NA-TRND-SO32-01	ug/kg		ND		290000	32000	32000		NC
OLMO3.2	Carbazole	NA-TRND-SO33-01	ug/kg		ND		290000	32000	32000		NC
	Chrysene	NA-TRND-SO01-01	ug/kg		9400 J		780000	87000	87000		NC
	Chrysene	NA-TRND-SO02-01	ug/kg			1	780000	87000	87000		NC
	Chrysene	NA-TRND-SO03-01	ug/kg	48			780000		87000		NC
	Chrysene	NA-TRND-SO04-31	ug/kg	61		1	780000	87000	87000		NC
OLMO3.2		NA-TRND-SO05-01	ug/kg	60			780000	87000	87000		NC
	Chrysene	NA-TRND-SO06-01	ug/kg	51	51 J		780000	87000	87000		NC
	Chrysene	NA-TRND-SO07-01	ug/kg		ND		780000	87000	87000	1.	NC
OLMO3.2		NA-TRND-SO08-01	ug/kg		ND		780000	87000	87000		NC
	Chrysene	NA-TRND-SO09-01	ug/kg		ND		780000	87000	87000		NC
OLMO3.2		NA-TRND-SO10-01	ug/kg	63	1		780000	87000	87000		NC
	Chrysene	NA-TRND-SO11-01	ug/kg		ND	 	780000	87000	87000	1	NC
	Chrysene	NA-TRND-SO12-01	ug/kg		ND UJ		780000	87000	87000		NC
	Chrysene	NA-TRND-SO13-01	ug/kg		83 J		780000	87000	87000	I	NC
	Chrysene	NA-TRND-SO14-01	ug/kg		<u> </u>		780000	87000	87000		NC
OLMO3.2	· · · · · · · · · · · · · · · · · · ·	NA-TRND-SO15-01	ug/kg		ND UJ		780000	87000	87000		NC
	Chrysene	NA-TRND-SO16-01	ug/kg		ND		780000	87000	87000		NC
	Chrysene	NA-TRND-SO17-01	ug/kg		ND		780000	87000	87000		NC
	Chrysene	NA-TRND-SO18-01	ug/kg	54			780000	87000	87000	1	NC
<i></i>	Chrysene	NA-TRND-SO19-01	ug/kg	1	ND		780000	87000	87000	1	NC
	Chrysene	NA-TRND-SO20-01	ug/kg	62			780000	87000	87000	L	NC
	Chrysene	NA-TRND-SO21-01	ug/kg		ND		780000	87000	87000		NC
	Chrysene	NA-TRND-SO22-01	ug/kg		ND		780000	87000	87000	A.=	NC
	Chrysene	NA-TRND-SO23-01	ug/kg		ND		780000	87000	87000		NC
	Chrysene	NA-TRND-SO24-31	ug/kg	53			780000	87000	87000		NC
OLMO3.2		NA-TRND-SO25-01	ug/kg		ND		780000	87000	87000		NC
	Chrysene	NA-TRND-SO26-01	ug/kg	55	ND		780000	87000	87000		NC
OLMO3.2		NA-TRND-SO27-01	ug/kg	60	110	780000	780000	87000	87000	NC	NC
OLMO3.2		NA-TRND-SO28-01	ug/kg	51	ND	780000	780000	87000	87000	NC	NC
OLMO3.2		NA-TRND-SO29-01	ug/kg	54			780000				NC
OLMO3.2	Chrysene	NA-TRND-SO30-01	ug/kg	56	ND	780000	780000	87000	87000	NC .	NC
OLMO3.2		NA-TRND-SO31-01	ug/kg	61	ND	780000	780000	87000			NC
OLMO3.2	Chrysene	NA-TRND-SO32-01	ug/kg	57	ND	780000	780000	87000	87000	NC	NC
OLMO3.2	Chrysene	NA-TRND-SO33-01	ug/kg	65	ND	780000	780000	87000	87000	NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO01-01	ug/kg	58	2100 J	780	780	87	87	NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO02-01	ug/kg	62	ND UJ	780	780	87	87	NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO03-01	ug/kg	48	ND UJ	780	780	87		NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO04-31	ug/kg	61	ND	780	780	87		NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO05-01	ug/kg	60	ND	780	780	87		NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO06-01	ug/kg	51	ND UJ	780	780	87	87	NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO07-01	ug/kg	60	ND	780	780	87	87	NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO08-01	ug/kg	69	ND	780	780	87	87	NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO09-01	ug/kg	64	ND	780	780	87	87	NC	NC
OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO10-01	ug/kg	63	ND	780	780	87	87	NC	NC
ИО3.2	Dibenz(a,h)anthracene	NA-TRND-SO11-01	ug/kg	48	ND	780	780	87	87	NC	NC

							· · · · · · · · · · · · · · · · · · ·				Means
								ļ			Comparisor
			i			<u> </u>		:			Conclusion
						T4	strial	Domin	lential	Reference	1
Mathad	Analyte	Sample ID	TIME	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method OLMO3.2	Dibenz(a,h)anthracene	Sample ID NA-TRND-SO12-01	Units		ND UJ	780	780	87		NC	NC Site
		NA-TRND-S012-01	ug/kg		ND UJ	780	780	87		NC	NC NC
	Dibenz(a,h)anthracene		ug/kg		ND UJ	780	780	87		NC	NC NC
	Dibenz(a,h)anthracene	NA-TRND-SO14-01	ug/kg		ND UJ	780	780	87			NC NC
	Dibenz(a,h)anthracene	NA-TRND-SO15-01	ug/kg			780	780			NC	
	Dibenz(a,h)anthraçene	NA-TRND-SO16-01	ug/kg		ND		780	87 87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO17-01	ug/kg		ND ND	780	780	87		NC	NC NC
	Dibenz(a,h)anthracene	NA-TRND-SO18-01	ug/kg		ND	780 780	780	87		NC NC	NC NC
	Dibenz(a,h)anthracene	NA-TRND-SO19-01	ug/kg								
	Dibenz(a,h)anthracene	NA-TRND-SO20-01	ug/kg		ND	780	780	87 87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO21-01	ug/kg		ND	780	780			NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO22-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO23-01	ug/kg		ND	780	780	87	I	NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO24-31	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO25-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO26-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO27-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO28-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO29-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO30-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO31-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO32-01	ug/kg		ND	780	780	87		NC	NC
	Dibenz(a,h)anthracene	NA-TRND-SO33-01	ug/kg		ND	780	780	87		NC	NC
	Dibenzofuran	NA-TRND-SO01-01	ug/kg		110 J		820000				NC
	Dibenzofuran	NA-TRND-SO02-01	ug/kg		ND UJ		820000				NC
	Dibenzofuran	NA-TRND-SO03-01	ug/kg		ND UJ		820000				NC
	Dibenzofuran	NA-TRND-SO04-31	ug/kg	·	ND		820000				NC
	Dibenzofuran	NA-TRND-SO05-01	ug/kg		ND		820000		+		NC
OLMO3.2	Dibenzofuran	NA-TRND-SO06-01	ug/kg		ND UJ	8E+06	820000	310000		1	NC
	Dibenzofuran	NA-TRND-SO07-01	ug/kg		ND		820000				NC
OLMO3.2	Dibenzofuran	NA-TRND-SO08-01	ug/kg		ND		820000				NC
	Dibenzofuran	NA-TRND-\$009-01	ug/kg		ND		820000				NC
	Dibenzofuran	NA-TRND-\$010-01	ug/kg		ND		820000				NC
	Dibenzofuran	NA-TRND-SO11-01	ug/kg		ND		820000				NC
OLMO3.2	Dibenzofuran	NA-TRND-\$012-01	ug/kg		ND UJ			<u> </u>			NC
	Dibenzofuran	NA-TRND-SQ13-01	ug/kg		ND UJ		820000				NC
	Dibenzofuran	NA-TRND-SO14-01	ug/kg		ND UJ		820000				NC
OLMO3.2	Dibenzofuran	NA-TRND-SO15-01	ug/kg		ND UJ		820000				NC
	Dibenzofuran	NA-TRND-SO16-01	ug/kg		ND		820000				NC
OLMO3.2	Dibenzofuran	NA-TRND-SO17-01	ug/kg	48	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO18-01	ug/kg	54	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO19-01	ug/kg	56	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO20-01	ug/kg	62	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO21-01	ug/kg	52	ND		820000				NC
OLMO3.2	Dibenzofuran	NA-TRND-SO22-01	ug/kg		ND	8E+06	820000	310000			NC
	Dibenzofuran	NA-TRND-SO23-01	ug/kg		ND		820000				NC
	Dibenzofuran	NA-TRND-SO24-31	ug/kg		ND	 	820000				NC
	Dibenzofuran	NA-TRND-SO25-01	ug/kg	1	ND	-	820000				NC
	Dibenzofuran	NA-TRND-SO26-01	ug/kg		ND		820000	1			NC
	Dibenzofuran	NA-TRND-S020-01	ug/kg	-	ND		820000				NC NC

_	•		Ì								Means
											Comparison Conclusion
						Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	Dibenzofuran	NA-TRND-SO28-01	ug/kg	51	ND	8E+06	820000	310000	31000	NC	NC
<u> </u>	Dibenzofuran	NA-TRND-SO29-01	ug/kg	54	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO30-01	ug/kg	56	ND	·8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO31-01	ug/kg	61	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO32-01	ug/kg	57	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Dibenzofuran	NA-TRND-SO33-01	ug/kg	65	ND	8E+06	820000	310000	31000	NC	NC
OLMO3.2	Diethylphthalate	NA-TRND-SO01-01	ug/kg	58	ND UJ	2E+09	2E+08	6E+07	6E+06	194	NC
OLMO3.2	Diethylphthalate	NA-TRND-SO02-01	ug/kg	62	ND UJ	2E+09	2E+08	6E+07	6E+06	194	NC
OLMO3.2	Diethylphthalate	NA-TRND-SO03-01	ug/kg	48	ND UJ	2E+09	2E+08	6E+07	6E+06	194	NC
OLMO3.2	Diethylphthalate	NA-TRND-SO04-31	ug/kg	61	ND	2E+09	2E+08	6E+07	6E+06	194	NC
OLMO3.2	Diethylphthalate	NA-TRND-SO05-01	ug/kg	60	ND	2E+09	2E+08	6E+07	6E+06	194	NC
OLMO3.2	Diethylphthalate	NA-TRND-SO06-01	ug/kg	51	ND UJ	2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-TRND-SO07-01	ug/kg		ND	2E+09	2E+08		6E+06	194	NC
	Diethylphthalate	NA-TRND-SO08-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO09-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO10-01	ug/kg	63	ND	2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-TRND-SO11-01	ug/kg	48	ND	2E+09	2E+08	6E+07	6E+06	194	NC
	Diethylphthalate	NA-TRND-SO12-01	ug/kg			2E+09	2E+08	6E+07	6E+06		
	Diethylphthalate	NA-TRND-SO13-01	ug/kg		ND UJ	2E+09	2E+08	6E+07	6E+06		
	Diethylphthalate	NA-TRND-SO14-01	ug/kg		ND UJ	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO15-01	ug/kg		ND UJ	2E+09	2E+08		6E+06		
 	Diethylphthalate	NA-TRND-SO16-01	ug/kg			2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO17-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO18-01	ug/kg		ND	2E+09	1		6E+06		
	Diethylphthalate	NA-TRND-SO19-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO20-01	ug/kg		ND	2E+09	2E+08		6E+06		
-	Diethylphthalate	NA-TRND-SO21-01	ug/kg		ND	2E+09			6E+06		
	Diethylphthalate	NA-TRND-SO22-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO23-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO24-31	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO25-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO26-01	ug/kg		ND	2E+09	2E+08		6E+06		
	Diethylphthalate	NA-TRND-SO27-01	ug/kg		ND	2E+09			6E+06	I .	NC
	Diethylphthalate	NA-TRND-SO28-01	ug/kg		ND	2E+09		6E+07	6E+06		
	Diethylphthalate	NA-TRND-SO29-01	ug/kg		ND	2E+09		6E+07	6E+06	1	
	Diethylphthalate	NA-TRND-SO30-01	ug/kg	···	ND	2E+09		6E+07	6E+06		
	Diethylphthalate	NA-TRND-SO31-01	ug/kg		ND	2E+09		6E+07	6E+06		NC
-	Diethylphthalate	NA-TRND-SO32-01	ug/kg		ND	2E+09		6E+07	6E+06		
	Diethylphthalate	NA-TRND-SO33-01	ug/kg		ND	2E+09		6E+07	6E+06		NC
	Dimethylphthalate	NA-TRND-SO01-01	ug/kg		ND UJ	2E+10		8E+08			NC
	Dimethylphthalate	NA-TRND-SO02-01	ug/kg		ND UJ			8E+08			NC
	Dimethylphthalate	NA-TRND-SO03-01	ug/kg		ND UJ		2E+09				NC
	Dimethylphthalate	NA-TRND-SO04-31	ug/kg		ND	2E+10					NC
	Dimethylphthalate	NA-TRND-SO05-01	ug/kg	_	ND			8E+08			NC
	Dimethylphthalate	NA-TRND-SO06-01	ug/kg		ND UJ	2E+10					NC
	Dimethylphthalate	NA-TRND-SO07-01	ug/kg		ND	2E+10	-				NC
	Dimethylphthalate	NA-TRND-SO08-01	ug/kg		ND	2E+10	 				NC
	Dimethylphthalate	NA-TRND-SO09-01	ug/kg		ND	2E+10					NC
		NA-TRND-SO10-01	ug/kg		ND	2E+10					NC

						Indi	ıstrial	Dogi	dential	Reference	Means Compariso Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	Site
	Dimethylphthalate	NA-TRND-SO11-01	ug/kg		ND	2E+10	<u></u>		-		NC Site
	Dimethylphthalate	NA-TRND-SO12-01	ug/kg		ND UJ	2E+10		8E+08			NC
The second second second	Dimethylphthalate	NA-TRND-SO13-01	ug/kg		ND UJ	2E+10					NC
OLMO3.2	Dimethylphthalate	NA-TRND-SO14-01	ug/kg		ND UJ	2E+10					NC
OLMO3.2	Dimethylphthalate	NA-TRND-SO15-01	ug/kg		ND UJ	2E+10					NC
	Dimethylphthalate	NA-TRND-SO16-01	ug/kg		ND	2E+10		8E+08			NC
	Dimethylphthalate	NA-TRND-SO17-01	ug/kg	48		2E+10	2E+09	8E+08			NC
	Dimethylphthalate	NA-TRND-SO18-01	ug/kg		ND	2E+10					NC
	Dimethylphthalate	NA-TRND-SO19-01	ug/kg		ND	2E+10	2E+09	8E+08			NC
	Dimethylphthalate	NA-TRND-SO20-01	ug/kg		ND	2E+10		8E+08			NC
	Dimethylphthalate	NA-TRND-SO21-01	ug/kg		ND	2E+10		8E+08			NC
	Dimethylphthalate	NA-TRND-SO22-01	ug/kg	* **	ND	2E+10		8E+08			NC
	Dimethylphthalate	NA-TRND-SO23-01	ug/kg		ND	2E+10	2E+09	8E+08			NC
	Dimethylphthalate	NA-TRND-SO24-31	ug/kg		ND	2E+10		8E+08			NC
OLMO3.2	Dimethylphthalate	NA-TRND-SO25-01	ug/kg		ND	2E+10		8E+08			NC
OLMO3.2	Dimethylphthalate	NA-TRND-SO26-01	ug/kg		ND	2E+10		8E+08		1	NC
OLMO3.2	Dimethylphthalate	NA-TRND-SO27-01	ug/kg		ND	2E+10		8E+08			NC
	Dimethylphthalate	NA-TRND-SO28-01	ug/kg		ND	2E+10	2E+09	8E+08		L	NC
	Dimethylphthalate	NA-TRND-SO29-01	ug/kg		ND	2E+10		8E+08	 		NC
OLMO3.2	Dimethylphthalate	NA-TRND-SO30-01	ug/kg		ND	2E+10	2E+09	8E+08	 		NC
	Dimethylphthalate	NA-TRND-SO31-01	ug/kg		ND	2E+10	2E+09	8E+08	·		NC
	Dimethylphthalate	NA-TRND-SO32-01	ug/kg		ND	2E+10	2E+09	8E+08			NC A
	Dimethylphthalate		ug/kg		ND	2E+10	2E+09	8E+08			NC
	Fluoranthene	NA-TRND-SO01-01	ug/kg		3500 J	8E+07	8E+06		310000		NS
OLMO3.2	Fluoranthene	NA-TRND-SO02-01	ug/kg		ND UJ	8E+07			310000		NS
OLMO3.2	Fluoranthene	NA-TRND-SO03-01	ug/kg		ND UJ	8E+07			310000		NS
OLMO3.2	Fluoranthene	NA-TRND-SO04-31	ug/kg	61	340	8E+07			310000		NS
OLMO3.2	Fluoranthene	····	ug/kg	60	190	8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg		58 J	8E+07			310000		NS
OLMO3.2	Fluoranthene	· · · · · · · · · · · · · · · · · · ·	ug/kg		ND	8E+07			310000		NS
OLMO3.2	Fluoranthene	NA-TRND-SO08-01	ug/kg	69	73	8E+07	8E+06		310000		NS
OLMO3.2	Fluoranthene		ug/kg		ND	8E+07	8E+06		310000		NS
OLMO3.2	Fluoranthene		ug/kg	63		8E+07			310000		N\$
OLMO3.2	Fluoranthene		ug/kg		ND	8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg			8E+07	$\overline{}$		310000		NS
OLMO3.2	Fluoranthene		ug/kg		100 J	8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg			8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg		ND UJ	8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg	$\overline{}$	ND	8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg		ND	8E+07		··-	310000		NS
OLMO3.2	Fluoranthene		ug/kg	54		8E+07			310000		NS NS
OLMO3.2	Fluoranthene		ug/kg		ND	8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg	62		8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg	52		_			310000		NS
OLMO3.2	Fluoranthene		ug/kg		ND	8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg	64		8E+07			310000		NS
OLMO3.2	Fluoranthene		ug/kg	53		8E+07			310000		NS
	····		ug/kg		ND ND	8E+07			310000		NS _
			ug/kg	55		8E+07					

											Means
											Comparison
											Conclusion
				l			strial		lential	Reference	Reference vs.
Method	Analyte	Sample ID		MDL		RBC	RBSL	RBC		UTL	Site
	Fluoranthene	NA-TRND-SO27-01	ug/kg		ND	8E+07	8E+06		310000		NS
	Fluoranthene	NA-TRND-SO28-01	ug/kg		ND	8E+07	8E+06		310000		NS
	Fluoranthene	NA-TRND-SO29-01	ug/kg	54	1100 ND	8E+07 8E+07	8E+06		310000 310000		NS NS
	Fluoranthene	NA-TRND-SO30-01	ug/kg		ND	8E+07	8E+06		310000		NS
	Fluoranthene Fluoranthene	NA-TRND-SO31-01 NA-TRND-SO32-01	ug/kg ug/kg		ND	8E+07			310000		NS
	Fluoranthene	NA-TRND-SO32-01	ug/kg		ND	8E+07			310000		NS
OLMO3.2		NA-TRND-SO01-01	ug/kg		240 J	8E+07	8E+06		310000		NC
OLMO3.2		NA-TRND-SO02-01	ug/kg		ND UJ	8E+07	8E+06		310000		NC
	Fluorene	NA-TRND-S002-01	ug/kg		ND UJ	8E+07	8E+06		310000		NC
	Fluorene	NA-TRND-S003-01	ug/kg		ND 03	8E+07			310000		NC
	Fluorene	NA-TRND-\$005-01	ug/kg		ND	8E+07			310000		NC
-	Fluorene	NA-TRND-SO06-01	ug/kg		ND UJ	8E+07			310000		NC
	Fluorene	NA-TRND-S007-01	ug/kg		ND	8E+07			310000		NC
	Fluorene	NA-TRND-SO08-01	ug/kg		ND	8E+07			310000		NC
	Fluorene	NA-TRND-SO09-01	ug/kg		ND	8E+07	8E+06		310000		NC
	Fluorene	NA-TRND-SO10-01	ug/kg		ND	8E+07	8E+06		310000		NC
	Fluorene	NA-TRND-SO11-01	ug/kg		ND	8E+07			310000	<u> </u>	NC
	Fluorene	NA-TRND-SO12-01	ug/kg		ND UJ	8E+07			310000		NC
	Fluorene	NA-TRND-SO13-01	ug/kg		ND UJ	8E+07			310000		NC
	Fluorene	NA-TRND-SO14-01	ug/kg		ND UJ	8E+07			310000		NC
	Fluorene	NA-TRND-SO15-01	ug/kg		ND UJ	8E+07			310000		NC
	Fluorene	NA-TRND-SO16-01	ug/kg		ND	8E+07			310000		NC
	Fluorene	NA-TRND-SO17-01	ug/kg		ND	8E+07			310000		NC
	Fluorene	NA-TRND-SO18-01	ug/kg		ND	8E+07			310000		NC
	Fluorene	NA-TRND-SO19-01	ug/kg	56	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Fluorene	NA-TRND-SO20-01	ug/kg	62	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Fluorene	NA-TRND-SO21-01	ug/kg	52	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Fluorene	NA-TRND-SO22-01	ug/kg	50	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Fluorene	NA-TRND-SO23-01	ug/kg	64	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Fluorene	NA-TRND-SO24-31	ug/kg	53	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Fluorene	NA-TRND-SO25-01	ug/kg	56	ND	8E+07			310000		NC
OLMO3.2	Fluorene	NA-TRND-SO26-01	ug/kg	55	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Fluorene	NA-TRND-SO27-01	ug/kg	60	ND	8E+07			310000		NC
OLMO3.2	Fluorene	NA-TRND-SO28-01	ug/kg	51	ND	8E+07			310000		NC
OLMO3.2	Fluorene	NA-TRND-SO29-01	ug/kg	54		8E+07			310000		NC
OLMO3.2	Fluorene	NA-TRND-SO30-01	ug/kg		ND	8E+07			310000		NC
OLMO3.2	, 	NA-TRND-SO31-01	ug/kg		ND	8E+07			310000		NC
OLMO3.2		NA-TRND-SO32-01	ug/kg		ND	8E+07			310000		NC
OLMO3.2		NA-TRND-SO33-01	ug/kg		ND	8E+07			310000		NC
	Hexachloro-1,3-butadiene	NA-TRND-SO01-01	ug/kg		ND UJ	73000		8200			NC
	Hexachloro-1,3-butadiene	NA-TRND-SO02-01	ug/kg		ND UJ	73000	73000	8200			NC
	Hexachloro-1,3-butadiene	 	ug/kg	<u></u>	ND UJ	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene		ug/kg		ND	73000	73000	8200			NC
	Hexachloro-1,3-butadiene		ug/kg		ND	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene		ug/kg		ND UJ	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene		ug/kg		ND	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene	NA-TRND-SO08-01	ug/kg		ND	73000	73000	8200	8200		NC
4O3.2	Hexachloro-1,3-butadiene	NA-TRND-SO09-01	ug/kg	64	ND	73000	73000	8200	8200	NC	NC

										<u> </u>	Means
											Compariso
i l											Conclusion
				1			strial	Resid	lential	Reference	
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO10-01	ug/kg	63	ND	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO11-01	ug/kg	48	ND	73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-TRND-SO12-01	ug/kg	67	ND UJ	73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-TRND-SO13-01	ug/kg	62	ND UJ	73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-TRND-SO14-01	ug/kg	62	ND UJ	73000	73000	8200	8200	NC	NC
-	Hexachloro-1,3-butadiene	NA-TRND-SO15-01	ug/kg	58	ND UJ	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO16-01	ug/kg	61	ND	73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-TRND-SO17-01	ug/kg	48	ND	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO18-01	ug/kg	54	ND	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO19-01	ug/kg	56	ND	73000	73000	8200	8200		NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO20-01	ug/kg	62	ND	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO21-01	ug/kg	52	ND	73000	.73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO22-01	ug/kg	50	ND	73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-TRND-SO23-01	ug/kg	64	ND	73000	73000	8200	8200		NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO24-31	ug/kg	53	ND	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene	NA-TRND-SO25-01	ug/kg	56	ND	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene	NA-TRND-SO26-01	ug/kg	55	ND	73000	73000	8200	8200		NC
	Hexachloro-1,3-butadiene	NA-TRND-SO27-01	ug/kg	60	ND	73000	73000	8200	8200	1	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO28-01	ug/kg	51	ND	73000	73000	8200	8200		NC
<u> </u>	Hexachloro-1,3-butadiene	NA-TRND-SO29-01	ug/kg	54	ND	73000	73000	8200	8200	NC	NC
	Hexachloro-1,3-butadiene	NA-TRND-SO30-01	ug/kg	56	ND	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO31-01	ug/kg	61	ND	73000	73000	8200	8200		NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO32-01	ug/kg	57	ND	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO33-01	ug/kg	65	ND	73000	73000	8200	8200	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO01-01	ug/kg	58	ND UJ	3600	3600	400	400	NC	NC
	Hexachlorobenzene	NA-TRND-SO02-01	ug/kg	62	ND UJ	3600	3600	400	400	NC	NC
	Hexachlorobenzene	NA-TRND-SO03-01	ug/kg	48	ND UJ	3600	3600	400	400	NC	NC
	Hexachlorobenzene	NA-TRND-SO04-31	ug/kg	61	ND	3600	3600	400	400	NC	NC
	Hexachlorobenzene	NA-TRND-SO05-01	ug/kg	60	ND	3600	3600	400	400	NC	NC
	Hexachlorobenzene	NA-TRND-SO06-01	ug/kg	51	ND UJ	3600	3600	400	400	NC	NC
	Hexachlorobenzene	NA-TRND-SO07-01	ug/kg	60	ND	3600	3600	400	400	NC	NC
	Hexachlorobenzene		ug/kg		ND	3600	3600	400	400	NC	NC
			ug/kg	64	ND	3600	3600	400	400	NC	NC
			ug/kg	63	ND	3600	3600	400	400	NC	NC
		NA-TRND-SO11-01	ug/kg	48	ND	3600	3600	400	400	NÇ	NC
			ug/kg	67	ND UJ	3600	3600	400	400	NC	NC
			ug/kg		ND UJ	3600	3600	400	400		NC
			ug/kg		ND UJ	3600	3600	400	400	NC	NC
			ug/kg		ND UJ	3600	3600	400	400	NC	NC
			ug/kg		ND	3600	3600	400	400	NC	NC
			ug/kg		ND	3600	3600	400	400	NC	NC
			ug/kg		ND	3600	3600	400	400	NC	NC
			ug/kg	56	ND	3600	3600	400	400		NC
			ug/kg	62	ND	3600	3600	400	400	NC	NC
		NA-TRND-SO21-01	ug/kg	52	ND	3600	3600	400	400		NC
	Hexachlorobenzene	NA-TRND-SO22-01	ug/kg	50	ND	3600	3600	400	400		NC
			ug/kg	64	ND	3600	3600	400	400		NC
OLMO3.2 I	Hexachlorobenzene		ug/kg		ND	3600	3600	400	400		NC
OLMO3.2 I			ug/kg		ND	3600	3600	400	400		NC

						Indu	strial Residential RBSL RBC RBSL		Reference	Means Comparison Conclusion Reference vs.	
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	Hexachlorobenzene	NA-TRND-SO26-01	ug/kg	55	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO27-01	ug/kg	60	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO28-01	ug/kg	51	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO29-01	ug/kg	54	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO30-01	ug/kg	56	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO31-01	ug/kg	61	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO32-01	ug/kg	57	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorobenzene	NA-TRND-SO33-01	ug/kg	65	ND	3600	3600	400	400	NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO01-01	ug/kg	58	ND UJ	1E+07	1E+06	550000	55000	NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO02-01	ug/kg	62	ND UJ	1E+07	1E+06	550000	55000	NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO03-01	ug/kg	48	ND UJ	1E+07	1E+06	550000	55000	NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO04-31	ug/kg	61	ND UJ	1E+07	1E+06	550000	55000	NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO05-01	ug/kg	60	ND UJ	1E+07	1E+06	550000	55000	NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO06-01	ug/kg	51	ND UJ	1E+07	1E+06	550000	55000	NC	NC
	Hexachlorocyclopentadiene	NA-TRND-SO07-01	ug/kg	60	ND UJ	1E+07	1E+06	550000	55000	NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO08-01	ug/kg		ND UJ	1E+07	· · · · · · · · · · · · · · · · · · ·	550000	55000		NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO09-01	ug/kg		ND UJ	1E+07		550000			NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO10-01	ug/kg		ND UJ	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO11-01	ug/kg		ND UJ	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO12-01	ug/kg		ND UJ	1E+07		550000			NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO13-01	ug/kg		ND UJ	1E+07		550000	55000		NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO14-01	ug/kg		ND UJ	1E+07		550000		L	NC
MO3.2	Hexachlorocyclopentadiene	NA-TRND-SO15-01	ug/kg		ND UJ	1E+07		550000			NC
JLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO16-01	ug/kg		ND	1E+07		550000	55000		NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO17-01	ug/kg		ND	1E+07		550000	55000		NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO18-01	ug/kg		ND	1E+07		550000	55000		NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO19-01	ug/kg		ND	1E+07		550000	55000	1	NC
	Hexachlorocyclopentadiene	NA-TRND-SO20-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO21-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO22-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO23-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO24-31	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO25-01	ug/kg		ND		1E+06		55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO26-01	ug/kg		ND	1E+07		550000	55000		NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO27-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO28-01	ug/kg		ND	1E+07		550000			NC
	Hexachlorocyclopentadiene	NA-TRND-SO29-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO30-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO31-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO32-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachlorocyclopentadiene	NA-TRND-SO33-01	ug/kg		ND	1E+07		550000	55000		NC
	Hexachloroethane	NA-TRND-S001-01	ug/kg				410000		46000		NC
	Hexachloroethane	NA-TRND-SO02-01	ug/kg				410000	46000	46000		NC NC
	Hexachloroethane	NA-TRND-S002-01	ug/kg		ND UJ			46000	46000		NC
	Hexachloroethane	NA-TRND-S003-01	ug/kg			410000		46000	46000		NC
	Hexachloroethane	NA-TRND-\$005-01	ug/kg			410000		46000	46000		NC
	Hexachloroethane	NA-TRND-SO06-01			ND UJ			46000	46000		NC NC
	Hexachloroethane	NA-TRND-S000-01	ug/kg			410000		46000	46000		NC NC
	Hexachloroethane	NA-TRND-SO08-01	ug/kg ug/kg			410000		46000			NC NC

			1		1	T		T		<u> </u>	7.7
						1					Means
]							Comparison
						Indi	ıstrial	Docie	lential	Reference	Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result		RBSL	RBC	RBSL	UTL	1
OLMO3.2	Hexachloroethane	NA-TRND-SO09-01	ug/kg		ND		410000	<u> </u>	1		Site NC
\vdash	Hexachloroethane	NA-TRND-SO10-01	ug/kg		ND		410000				NC
	Hexachloroethane	NA-TRND-SO11-01	ug/kg		ND		410000				NC
	Hexachloroethane	NA-TRND-SO12-01	ug/kg				410000				NC
	Hexachloroethane	NA-TRND-SO13-01	ug/kg				410000				NC
OLMO3.2	Hexachloroethane	NA-TRND-SO14-01	ug/kg			+	410000				NC
OLMO3.2	Hexachloroethane	NA-TRND-SO15-01	ug/kg				410000		4		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO16-01	ug/kg		ND		410000				NC
OLMO3.2	Hexachloroethane	NA-TRND-SO17-01	ug/kg		ND		410000				NC
OLMO3.2	Hexachloroethane	NA-TRND-SO18-01	ug/kg		ND	-	410000				NC
OLMO3.2	Hexachloroethane	NA-TRND-SO19-01	ug/kg		ND		410000		-		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO20-01	ug/kg		ND		410000		46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO21-01	ug/kg		ND		410000		46000	<u>. </u>	NC
OLMO3.2	Hexachloroethane	NA-TRND-SO22-01	ug/kg		ND		410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO23-01	ug/kg	64	ND		410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO24-31	ug/kg	53	ND		410000		46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO25-01	ug/kg	56	ND		410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO26-01	ug/kg	55	ND		410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO27-01	ug/kg		ND		410000		46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO28-01	ug/kg	51	ND		410000		46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO29-01	ug/kg	54			410000		46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO30-01	ug/kg	56			410000		46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO31-01	ug/kg	61	ND	410000	410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO32-01	ug/kg	57			410000	46000	46000		NC
OLMO3.2	Hexachloroethane	NA-TRND-SO33-01	ug/kg	65	ND	410000	410000	46000	46000		NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-SO01-01	ug/kg	230	6300 J	7800	7800	870	870		NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-SO02-01	ug/kg	62	ND UJ	7800	7800	870	870		NC
		NA-TRND-SO03-01	ug/kg	48	ND UJ	7800	7800	870	870		NC
OLMO3.2	indeno(1,2,3-cd)pyrene	NA-TRND-SO04-31	ug/kg	61	320	7800	7800	870	870		NC
***		NA-TRND-SO05-01	ug/kg	60	ND	7800	7800	870	870	2000	NC
		NA-TRND-SO06-01	ug/kg	51	ND UJ	7800	7800	870	870		NC
			ug/kg		ND	7800	7800	870	870	NC	NC
		NA-TRND-SO08-01	ug/kg	69	ND	7800	7800	870	870	NC	NC
		NA-TRND-SO09-01	ug/kg	64	ND	7800	7800	870	870		NC
	177.00.00		ug/kg	63	ND	7800	7800	870	870		NC
			ug/kg	48	ND	7800	7800	870	870	NC	NC
			ug/kg		ND UJ	7800	7800	870	870		NC
			ug/kg		62 J	7800	7800	870	870		NC
			ug/kg		ND UJ	7800	7800	870	870		NC
			ug/kg		ND UJ	7800	7800	870	870		NC
			ug/kg		ND	7800	7800	870	870		NC
			ug/kg		ND	7800	7800	870	870		NC
			ug/kg		ND	7800	7800	870	870	NC	NC
			ug/kg		ND	7800	7800	870	870		NC
			ug/kg		ND	7800	7800	870	870	NC	NC
			ug/kg		ND	7800	7800	870	870		NC
			ug/kg		ND	7800	7800	870	870		NC
			ug/kg		ND	7800	7800	870	870		NC
OLMO3.2 I	ndeno(1,2,3-cd)pyrene	NA-TRND-SO24-31	ug/kg	53	ND	7800	7800	870	870		NC

						·	-4-1-1	Decid	la4fal	70.00	Means Comparison Conclusion
30.0	A Td	Committee ID	W724-	MDL	D	RBC	strial RBSL	RBC	lential RBSL	Reference UTL	Reference vs. Site
Method	Analyte Indeno(1,2,3-cd)pyrene	NA-TRND-SO25-01	ug/kg	56		7800	7800	870	870		NC
OLMO3.2 OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-SO26-01	ug/kg ug/kg		ND	7800	7800	870	870		NC
	Indeno(1,2,3-cd)pyrene	NA-TRND-SO27-01	ug/kg	60		7800	7800	870	870		NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-SO28-01	ug/kg		ND 31	7800	7800	870 870	870		NC
	Indeno(1,2,3-cd)pyrene	NA-TRND-SO29-01	ug/kg	54			7800	870	870		NC
	Indeno(1,2,3-cd)pyrene	NA-TRND-SO30-01	ug/kg		ND	7800	7800	870	870		NC
	Indeno(1,2,3-cd)pyrene	NA-TRND-SO31-01	ug/kg		ND	7800	7800	870	870		NC
	Indeno(1,2,3-cd)pyrene	NA-TRND-SO32-01	ug/kg		ND	7800	7800	870	870		NC
	Indeno(1,2,3-cd)pyrene	NA-TRND-SO33-01	ug/kg		ND	7800	7800	870	870		NC
	Isophorone	NA-TRND-S001-01	ug/kg		ND UJ	6E+06			670000		NC
	Isophorone	NA-TRND-SO02-01	ug/kg		ND UJ	6E+06			670000		NC
	Isophorone	NA-TRND-S002-01	ug/kg		ND UJ	6E+06			670000		NC
	Isophorone	NA-TRND-S003-01	ug/kg		ND O3	6E+06			670000		NC
	Isophorone	NA-TRND-SO05-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-SO06-01	ug/kg		ND UJ	6E+06			670000		NC
	Isophorone	NA-TRND-S007-01	ug/kg		ND OJ	6E+06			670000		NC
	Isophorone	NA-TRND-S008-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-S009-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-S010-01	ug/kg		ND	6E+06			670000		NC
		NA-TRND-S011-01	ug/kg		ND	6E+06			670000		NC
	Isophorone Isophorone	NA-TRND-SO12-01	ug/kg		ND UJ	6E+06			670000		NC
	Isophorone	NA-TRND-SO13-01	ug/kg		ND UJ	6E+06			670000		NC
	Isophorone	NA-TRND-\$014-01	ug/kg		ND UJ	6E+06			670000	-	NC
	Isophorone	NA-TRND-S015-01	ug/kg		ND UJ	6E+06			670000		NC
	Isophorone	NA-TRND-SO16-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-S017-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-SO18-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-SO19-01	ug/kg		ND	6E+06			670000		NC
OLMO3.2	<u> </u>	NA-TRND-SO20-01	ug/kg		ND	6E+06			670000		NC
OLMO3.2		NA-TRND-SO21-01	ug/kg		ND	6E+06			670000		NC
OLMO3.2		NA-TRND-SO22-01	ug/kg		ND	6E+06			670000		NC
OLMO3.2		NA-TRND-SO23-01	ug/kg		ND	6E+06			670000		NC
OLMO3.2		NA-TRND-SO24-31	ug/kg		ND		6E+06				NC
OLMO3.2		NA-TRND-SO25-01	ug/kg		ND		6E+06				NC
	Isophorone	NA-TRND-SO26-01	ug/kg		ND		6E+06				NC
OLMO3.2	-	NA-TRND-SO27-01	ug/kg		ND		6E+06				NC
	Isophorone	NA-TRND-SO28-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-SO29-01	ug/kg		ND	6E+06			670000		NC
OLMO3.2	·····	NA-TRND-SO30-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-SO31-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-SO32-01	ug/kg		ND	6E+06			670000		NC
	Isophorone	NA-TRND-SO33-01	ug/kg		ND	6E+06			670000		NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO01-01	ug/kg		ND UJ	820	820	91		NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO02-01	ug/kg		ND UJ	820	820	91		NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO03-01	ug/kg		ND UJ	820	820	91		NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO04-31	ug/kg		ND	820	820	91		NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO05-01	ug/kg		ND	820	820	91		NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO06-01	ug/kg		ND UJ	820	820	91		NC	NC
	N-Nitroso-di-n-propylamine		ug/kg		ND OJ	820	820	91		NC	NC

Method							Indu	ustrial Residential		dential	Reference	Means Compariso Conclusion Reference v
OLM03.2 N-Nitroso-di-n-propylamine NA-TRND-S009-01 ug/kg 64 ND 820 820 91 9 9 9 9 9 9 9 9	Method	Analyte	Sample ID	Units	MDL	Result				RBSL	UTL	Site
OLM03.2 N-Nitroso-di-n-propylamine NA-TRND-SO10-01 ug/kg 64 ND 820 820 91 5 5 5 5 5 5 5 5 5			NA-TRND-SO08-01	ug/kg	69		820	820			NC	NC
OLM03.2 N-Nitroso-di-n-propylamine NA-TRND-SO10-01 ug/kg 63 ND 820 820 91 9 9 9 9 9 9 9 9			NA-TRND-SO09-01		64	ND	820	<u> </u>			NC	NC
DLM03.2 N-Nitroso-di-n-propylamine NA-TRND-SO11-01 ug/kg 67 ND UJ 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine	NA-TRND-SO10-01	+							NC	NC
DLM03.2 N-Nitroso-di-n-propylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine								-1	NC	NC
OLM03.2 N-Nitroso-di-n-propylamine NA-TRND-SO14-01 ug/kg 62 ND UJ 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine	NA-TRND-SO12-01								NC	NC
OLM03.2 N-Nitroso-di-n-propylamine NA-TRND-SO14-01 ug/kg 62 ND UJ 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine		7 7	-						NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 820 820 91 99 90 90 90 90 90 9	OLMO3.2	N-Nitroso-di-n-propylamine	NA-TRND-SO14-01								NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO16-01 ug/kg 48 ND 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine									NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO17-01 ug/kg 48 ND 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine									NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO19-01 ug/kg 54 ND 820 820 91 99 90 90 90 90 90 9	OLMO3.2	N-Nitroso-di-n-propylamine									NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO19-01 ug/kg 56 ND 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine	<u> </u>								NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO20-01 ug/kg 52 ND 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine	NA-TRND-SO19-01								NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO22-01 ug/kg 50 ND 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine	NA-TRND-SQ20-01								NC	NC -
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO22-01 ug/kg 50 ND 820 820 91 9 9 9 9 9 9 9 9						17.5					NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO23-01 ug/kg 53 ND 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine									NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO24-31 ug/kg 55 ND 820 820 91 9 9 9 0 0 0 0 0 0 0											NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO25-01 ug/kg 56 ND 820 820 91 9 9 9 9 9 9 9 9	OLMO3.2	N-Nitroso-di-n-propylamine	******	 							NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO26-01 ug/kg 55 ND 820 820 91 9 9 9 9 9 9 9 9				 							NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO27-01 ug/kg 51 ND 820 820 91 9											NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO28-01 ug/kg 51 ND 820 820 91 9 9 9 9 9 9 9 9				 +							NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO30-01 ug/kg 56 ND 820 820 91 9 9 9 9 9 0 0 0 0 0	$\overline{}$										NC	NC
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO31-01 ug/kg 56 ND 820 820 91 9 9 9 9 9 9 9 9							*********				NC	NC A
OLMO3.2 N-Nitroso-di-n-propylamine NA-TRND-SO31-01 ug/kg 61 ND 820 820 91 9 9 9 9 9 9 9 9							-				NC	NC NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO03-01 ug/kg 57 ND 820 820 91 9 9 9 9 9 9 9 9					$\overline{}$						NC	NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO03-01 ug/kg 65 ND 820 820 91 9											NC	NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO01-01 ug/kg 58 71 J 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO03-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO03-01 ug/kg 48 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO04-31 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO05-01 ug/kg 60 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO06-01 ug/kg 51 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO07-01 ug/kg 60 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO09-01 ug/kg 64 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 63 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 64 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 65 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO14-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 65 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 65 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenyla											NC	NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO02-01 ug/kg 62 ND UJ 1E+06 1B+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO03-01 ug/kg 48 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO05-01 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO05-01 ug/kg 60 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO06-01 ug/kg 60 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO07-01 ug/kg 60 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg	DLMO3.2			-								NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO03-01 ug/kg 48 ND UJ 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO04-31 ug/kg 61 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO05-01 ug/kg 60 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO06-01 ug/kg 60 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO07-01 ug/kg 60 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 64 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63	DLMO3.2	N-Nitrosodiphenylamine										NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO04-31 ug/kg 61 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO05-01 ug/kg 60 ND 1E+06 1E+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO06-01 ug/kg 51 ND UJ 1E+06 18+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO07-01 ug/kg 60 ND 1E+06 18+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 18+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 64 ND 1E+06 18+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 18+06 130000 13000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg	DLMO3.2	N-Nitrosodiphenylamine										NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO05-01 ug/kg 60 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO06-01 ug/kg 51 ND UJ 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO07-01 ug/kg 60 ND 1E+06 12+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 12+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO09-01 ug/kg 64 ND 1E+06 12+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63 ND 1E+06 12+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 <												NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO06-01 ug/kg 51 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 60 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO09-01 ug/kg 64 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 u				*								NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO07-01 ug/kg 60 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO09-01 ug/kg 64 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO12-01 ug/kg 67 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 u												NC NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO08-01 ug/kg 69 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO09-01 ug/kg 64 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO12-01 ug/kg 67 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO09-01 ug/kg 64 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO12-01 ug/kg 67 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01		**************************************				$\overline{}$						NC NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO10-01 ug/kg 63 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO12-01 ug/kg 67 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO14-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01												NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO11-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO12-01 ug/kg 67 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 54 ND 1E+06 1E+06 130000 <t< td=""><td>DLMO3.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NC</td></t<>	DLMO3.2											NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO12-01 ug/kg 67 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 54 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01	DLMO3.2											NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO13-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO14-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 54 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 <t< td=""><td>DLMO3.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NC</td></t<>	DLMO3.2											NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO14-01 ug/kg 62 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 54 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 ug/kg 62 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 u	DLMO3.2											NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO15-01 ug/kg 58 ND UJ 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 54 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 ug/kg 62 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 ug/kg 52 ND 1E+06 1E+06 130000 130000	DLMO3.2 1											NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO16-01 ug/kg 61 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 54 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 ug/kg 62 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 ug/kg 52 ND 1E+06 1E+06 130000 130000												NC NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO17-01 ug/kg 48 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 54 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 ug/kg 62 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 ug/kg 52 ND 1E+06 1E+06 130000 130000												
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO18-01 ug/kg 54 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 ug/kg 62 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 ug/kg 52 ND 1E+06 1E+06 130000 130000												NC NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO19-01 ug/kg 56 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 ug/kg 62 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 ug/kg 52 ND 1E+06 1E+06 130000 130000												NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO20-01 ug/kg 62 ND 1E+06 1E+06 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 ug/kg 52 ND 1E+06 1E+06 130000 130000												NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO21-01 ug/kg 52 ND 1E+06 1E+06 130000 130000												NC
							~					NC
OLY (02.2 N. N								*				NC
OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO22-01 ug/kg 50 ND 1E+06 1E+06 130000 130000 OLMO3.2 N-Nitrosodiphenylamine NA-TRND-SO23-01 ug/kg 64 ND 1E+06 1E+06 130000 130000												NC NC

						Total	strial	David	lential		Means Comparison Conclusion
Method	Analyte	Sample ID	Units	MDI	Result	RBC	RBSL	RBC	RBSL	Reference UTL	
	N-Nitrosodiphenylamine	NA-TRND-SO24-31	ug/kg	<u> </u>	ND	1E+06			130000		Site NC
	N-Nitrosodiphenylamine	NA-TRND-SO25-01	ug/kg		ND	1E+06			130000	<u> </u>	NC
	N-Nitrosodiphenylamine	NA-TRND-SO26-01	ug/kg		ND	1E+06			130000		NC
	N-Nitrosodiphenylamine	NA-TRND-SO27-01	ug/kg		ND	1E+06		· · · · · · · · · · · · · · · · · · ·	130000		NC
	N-Nitrosodiphenylamine	NA-TRND-SO28-01	ug/kg		ND	1E+06			130000		NC
	N-Nitrosodiphenylamine	NA-TRND-SO29-01	ug/kg		ND	1E+06			130000	_	NC
	N-Nitrosodiphenylamine	NA-TRND-SO30-01	ug/kg		ND	1E+06			130000		NC
	N-Nitrosodiphenylamine	NA-TRND-SO31-01	ug/kg		ND	1E+06	·		130000		NC
	N-Nitrosodiphenylamine	NA-TRND-SO32-01	ug/kg		ND	1E+06			130000		NC
		NA-TRND-SO33-01	ug/kg		ND	1E+06			130000		NC
	Naphthalene	NA-TRND-SO01-01	ug/kg		ND UJ	8E+07			310000		NC
	Naphthalene	NA-TRND-SO02-01	ug/kg		ND UJ	8E+07			310000		NC
	Naphthalene	NA-TRND-SO03-01	ug/kg		ND UJ	8E+07			310000		NC
	Naphthalene	NA-TRND-SO04-31	ug/kg		ND	8E+07			310000		NC
OLMO3.2	Naphthalene	NA-TRND-SO05-01	ug/kg	60	ND	8E+07			310000		NC
OLMO3.2	Naphthalene	NA-TRND-SO06-01	ug/kg	51	ND UJ	8E+07			310000		NC
OLMO3.2	Naphthalene	NA-TRND-SO07-01	ug/kg	60	ND	8E+07			310000		NC
OLMO3.2	Naphthalene	NA-TRND-SO08-01	ug/kg	69	ND	8E+07	8E+06	3E+06	310000		NC
OLMO3.2	Naphthalene	NA-TRND-SO09-01	ug/kg	64	ND	8E+07			310000		NC
OLMO3.2	Naphthalene	NA-TRND-SO10-01	ug/kg	63	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Naphthalene	NA-TRND-SO11-01	ug/kg	48	ND	8E+07	8E+06	3E+06	310000	NC	NC
QLMO3.2	Naphthalene	NA-TRND-SO12-01	ug/kg	67	ND UJ	8E+07	8E+06	3E+06	310000	NC	NC
MO3.2	Naphthalene	NA-TRND-SO13-01	ug/kg	62	ND UJ	8E+07	8E+06	3E+06	310000	NC	NC
JLMO3.2	Naphthalene	NA-TRND-SO14-01	ug/kg	62	ND UJ	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Naphthalene	NA-TRND-SO15-01	ug/kg	58	ND UJ	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Naphthalene	NA-TRND-SO16-01	ug/kg	61	ND	8E+07	8E+06	3E+06	310000	NC	NC
OLMO3.2	Naphthalene	NA-TRND-SO17-01	ug/kg	48	ND	8E+07	8E+06	3E+06	310000	NC	NC
	Naphthalene	NA-TRND-SO18-01	ug/kg	54	ND	8E+07	8E+06	3E+06	310000	NC	NC
	Naphthalene	NA-TRND-SO19-01	ug/kg	56	ND	8E+07	8E+06	3E+06	310000	NC	NC
	Naphthalene	NA-TRND-SO20-01	ug/kg		ND	8E+07	8E+06	3E+06	310000	NC	NC
	Naphthalene	NA-TRND-SO21-01	ug/kg		ND	8E+07	8E+06	3E+06	310000	NC	NC
	Naphthalene	NA-TRND-SO22-01	ug/kg		ND	8E+07			310000		NC
			ug/kg		ND	8E+07	8E+06	3E+06	310000	NC	NC
	Naphthalene		ug/kg		ND	8E+07			310000		NC
	Naphthalene		ug/kg		ND	8E+07			310000		NC
	Naphthalene		ug/kg		ND	8E+07			310000		NC
	Naphthalene	NA-TRND-SO27-01	ug/kg		ND	8E+07			310000		NC
	Naphthalene	NA-TRND-SO28-01	ug/kg		ND	8E+07			310000		NC
	Naphthalene	NA-TRND-SO29-01	ug/kg		ND	8E+07			310000		NC
	Naphthalene	NA-TRND-SO30-01	ug/kg		ND	8E+07			310000		NC
	Naphthalene	NA-TRND-SO31-01	ug/kg		ND	8E+07			310000		NC
	Naphthalene Naphthalene		ug/kg		ND ND	8E+07			310000		NC
······································	Naphthalene Nitrobenzene	NA-TRND-SO33-01	ug/kg		ND III	8E+07			310000		NC
			ug/kg		ND UJ			39000	3900		NC
	Nitrobenzene	NA-TRND-SO02-01	ug/kg		ND UJ			39000	3900		NC
	Nitrobenzene		ug/kg		ND UJ			39000	3900		NC
	Nitrobenzene		ug/kg		ND			39000	3900		NC
	Nitrobenzene Nitrobenzene		ug/kg ug/kg		ND UJ			39000 39000	3900 3900		NC NC

							_				Means Compariso Conclusion
					ĺ		strial		lential	-	Reference v
Method	Analyte	Sample ID		MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Nitrobenzene	NA-TRND-SO07-01	ug/kg		ND		100000	39000			NC
	Nitrobenzene	NA-TRND-SO08-01	ug/kg		ND		100000	39000			NC
	Nitrobenzene	NA-TRND-SO09-01	ug/kg	64			100000	39000			NC
	Nitrobenzene	NA-TRND-SO10-01	ug/kg	63			100000	39000			NC
	Nitrobenzene	NA-TRND-SO11-01	ug/kg		ND		100000				NC
	Nitrobenzene	NA-TRND-SO12-01	ug/kg		ND UJ		100000	39000			NC
	Nitrobenzene	NA-TRND-SO13-01	ug/kg		ND UJ		100000	39000			NC
	Nitrobenzene	NA-TRND-SO14-01	ug/kg		ND UJ		100000	39000			NC
	Nitrobenzene	NA-TRND-SO15-01	ug/kg		ND UJ		100000				NC
	Nitrobenzene	NA-TRND-SO16-01	ug/kg		ND		100000	39000			NC
	Nitrobenzene	NA-TRND-SO17-01	ug/kg		ND		100000	39000			NC
	Nitrobenzene	NA-TRND-SO18-01	ug/kg		ND		100000	39000			NC
	Nitrobenzene	NA-TRND-SO19-01	ug/kg		ND		100000	39000		4	NC
	Nitrobenzene	NA-TRND-SO20-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO21-01	ug/kg		ND		100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO22-01	ug/kg		ND	1E+06	100000	39000	3900	<u> </u>	NC
	Nitrobenzene	NA-TRND-SO23-01	ug/kg		ND	1E+06	100000	_39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO24-31	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO25-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO26-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO27-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO28-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO29-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO30-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO31-01	ug/kg		ND		100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO32-01	ug/kg		ND	1E+06	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO33-01	ug/kg	65	ND	1E+06	100000	39000	3900	NC	NC
	Pentachlorophenol	NA-TRND-SO01-01	ug/kg		ND UJ	48000	48000	5300	5300	NC	NC
	Pentachlorophenol		ug/kg		ND UJ	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO03-01	ug/kg		ND UJ	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO04-31	ug/kg		ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol		ug/kg		ND	48000	48000	5300			NC
		NA-TRND-SO06-01	ug/kg	51	ND UJ	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO07-01	ug/kg	60	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO08-01	ug/kg		ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol		ug/kg		ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO10-01	ug/kg	63	ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO11-01	ug/kg		ND	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO12-01	ug/kg	67	ND UJ	48000	48000	5300	5300	NC	NC
	Pentachlorophenol	NA-TRND-SO13-01	ug/kg	62	ND UJ	48000	48000	5300	5300	NC	NC
OLMO3.2	Pentachlorophenol	NA-TRND-SO14-01	ug/kg	62	ND UJ	48000	48000	5300			NC
OLMO3.2	Pentachlorophenol	NA-TRND-SO15-01	ug/kg	58	ND UJ	48000	48000	5300	5300	NC	NC
OLMO3.2	Pentachlorophenol	NA-TRND-SO16-01	ug/kg	61	ND	48000	48000	5300	5300		NC
OLMO3.2	Pentachlorophenol	NA-TRND-SO17-01	ug/kg	48	ND	48000	48000	5300	5300		NC
OLMO3.2	Pentachlorophenol		ug/kg		ND	48000	48000	5300	5300		NC
OLMO3.2	Pentachlorophenol		ug/kg	_	ND	48000	48000	5300	5300		NC
	Pentachlorophenol		ug/kg		ND	48000	48000	5300	5300		NC
	Pentachlorophenol		ug/kg		ND	48000	48000	5300	5300		NC
	Pentachlorophenol		ug/kg		ND	48000	48000	5300	5300		NC NC

											Means Comparison Conclusion
	4 .14.	G. 1.70	W7 44	2577		RBC	strial RBSL	Resid RBC	ential RBSL	Reference	Reference vs.
Method	Analyte Pentachlorophenol	Sample ID	Units		Result ND	48000	48000	5300	5300	UTL	Site NC
		NA-TRND-SO23-01	ug/kg		ND ND			5300	5300		NC NC
	Pentachlorophenol	NA-TRND-SO24-31	ug/kg		ND	48000	48000 48000	5300	5300		NC NC
	Pentachlorophenol Pentachlorophenol	NA-TRND-SO25-01 NA-TRND-SO26-01	ug/kg		ND	48000 48000	48000	5300	5300		NC
1			ug/kg		ND			5300			NC NC
	Pentachlorophenol Pentachlorophenol	NA-TRND-SO27-01 NA-TRND-SO28-01	ug/kg		ND	48000 48000	48000 48000	5300	5300 5300		NC NC
	Pentachlorophenol	NA-TRND-S029-01	ug/kg		ND	48000	48000	5300	5300		NC
	Pentachlorophenol	NA-TRND-SO30-01	ug/kg		ND	48000	48000	5300	5300		NC NC
	Pentachlorophenol	NA-TRND-SO31-01	ug/kg		ND	48000	48000	5300	5300		NC
	Pentachlorophenol	NA-TRND-SO32-01	ug/kg		ND						
	Pentachlorophenol	NA-TRND-SO32-01	ug/kg		ND ND	48000 48000	48000 48000	5300 5300	5300		NC NC
	Phenanthrene	NA-TRND-S001-01	ug/kg		2100 J	6E+07			5300 230000		NC NC
	Phenanthrene	NA-TRND-SO01-01	ug/kg		ND UJ	6E+07			230000		NC
	Phenanthrene	NA-TRND-S002-01	ug/kg		ND UJ	6E+07			230000		
			ug/kg	61		6E+07					NC NC
	Phenanthrene Phenanthrene	NA-TRND-SO04-31	ug/kg	60	120				230000		NC
·		NA-TRND-SO05-01	ug/kg		210	6E+07	6E+06				NC
	Phenanthrene	NA-TRND-SO06-01	ug/kg		ND UJ	6E+07	6E+06		230000		NC
	Phenanthrene	NA-TRND-SO07-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO08-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO09-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO10-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO11-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO12-01	ug/kg		ND UJ	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO13-01	ug/kg		ND UJ	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO14-01	ug/kg		ND UJ	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO15-01	ug/kg		ND UJ	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO16-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO17-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO18-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO19-01	ug/kg		ND	6E+07			230000		NC
	Phenanthrene	NA-TRND-SO20-01	ug/kg	62	77	6E+07			230000		NC
	Phenanthrene		ug/kg		ND	6E+07			230000		NC
	Phenanthrene		ug/kg		ND	6E+07			230000		NC
	Phenanthrene		ug/kg		ND	6E+07			230000		NC
	Phenanthrene		ug/kg	53		6E+07			230000		NC
	Phenanthrene		ug/kg		ND		6E+06				NC
	Phenanthrene		ug/kg		ND	6E+07			230000		NC
	Phenanthrene		ug/kg		ND	6E+07			230000		NC
	Phenanthrene		ug/kg		ND	6E+07			230000		NC
-	Phenanthrene		ug/kg	54			6E+06				NC
	Phenanthrene		ug/kg		ND		6E+06				NC
	Phenanthrene		ug/kg		ND		6E+06				NC
	Phenanthrene		ug/kg		ND	6E+07			230000		NC
· · · · · · · · · · · · · · · · · · ·	Phenanthrene		ug/kg		ND	6E+07			230000		NC
OLMO3.2			ug/kg		ND UJ	1E+09			5E+06		NC
OLMO3.2			ug/kg		ND UJ	1E+09			5E+06		NC
OLMO3.2			ug/kg		ND UJ	1E+09		-	5E+06		NC
OLMO3.2			ug/kg		ND	1E+09			5E+06		NC
MO3.2	Phenol	NA-TRND-SO05-01	ug/kg	60	ND	1E+09	1E+08	5E+07	5E+06	NC	NC

											Means
<u> </u>											Compariso
								1			Conclusion
Madhad	A 1	01-70	<u>.</u>				ıstrial		dential	Reference	1
Method OLMO3.2	Analyte Phenol	Sample ID NA-TRND-SO06-01	Units		Result		RBSL	RBC	RBSL	UTL	Site
	Phenol	NA-TRND-S006-01	ug/kg		ND UJ		-1				NC
	Phenol		ug/kg		ND	1E+09		5E+07			NC
<u> </u>	Phenol	NA-TRND-SO08-01	ug/kg		ND	1E+09		5E+07			NC
	Phenol	NA-TRND-SO09-01	ug/kg		ND	1E+09					NC
	Phenol	NA-TRND-SO10-01	ug/kg		ND	1E+09		5E+07			NC
	Phenol	NA-TRND-SO11-01	ug/kg		ND	1E+09		5E+07			NC
	Phenol	NA-TRND-SO12-01	ug/kg		ND UJ	1E+09		5E+07			NC
	Phenol	NA-TRND-SO13-01	ug/kg		ND UJ	1E+09		5E+07			NC
	Phenol	NA-TRND-SO14-01	ug/kg		ND UJ	1E+09		5E+07			NC
	Phenol	NA-TRND-SO15-01	ug/kg		ND UJ	1E+09		5E+07	1.		NC
	Phenol	NA-TRND-SO16-01	ug/kg		ND	1E+09	4	5E+07	4		NC
	Phenol	NA-TRND-SO17-01 NA-TRND-SO18-01	ug/kg		ND	1E+09		5E+07			NC
	Phenol		ug/kg		ND	1E+09					NC
	Phenol	NA-TRND-S019-01	ug/kg		ND	1E+09					NC
	Phenol		ug/kg		ND	1E+09		<u> </u>			NC
	Phenol		ug/kg		ND	1E+09		5E+07			NC
	Phenol		ug/kg		ND	1E+09					NC
	Phenol		ug/kg		ND	1E+09		5E+07			NC
	Phenol		ug/kg		ND	1E+09		5E+07	5E+06		NC
	Phenol		ug/kg		ND	1E+09	1E+08				NC
	Phenol		ug/kg		ND	1E+09	1E+08		5E+06		NC
	Phenol	***************************************	ug/kg		ND	1E+09	1E+08		5E+06		NC_
	Phenol		ug/kg		ND	1E+09	1E+08		5E+06		NC
	Phenol	NA-TRND-SO29-01 NA-TRND-SO30-01	ug/kg		ND	1E+09	1E+08		5E+06		NC
	Phenol		ug/kg		ND	1E+09		5E+07			NC
	Phenol		ug/kg		ND	1E+09			5E+06		NC
	Phenol		ug/kg		ND	1E+09		5E+07	5E+06		NC
	Pyrene		ug/kg	65		1E+09	1E+08		5E+06		NC
	Pyrene		ug/kg	-	13000 J		6E+06		230000	70	
OLMO3.2		· · · · · · · · · · · · · · · · · · ·	ug/kg		ND UJ	6E+07	6E+06		230000		
OLMO3.2			ug/kg		58 J	6E+07	6E+06		230000	·	
OLMO3.2		NIA CONTRACTOR CONTRACTOR	ug/kg	61	480				230000	70	
OLMO3.2			ug/kg	60	370 76 J	6E+07			230000		
OLMO3.2	·		ug/kg		ND	6E+07			230000		
OLMO3.2		<u> </u>	ug/kg	69		6E+07			230000		
OLMO3.2			ug/kg ug/kg	-		6E+07			230000		
OLMO3.2				64		6E+07			230000	70	
OLMO3.2	·· '		ug/kg	63		6E+07			230000		
OLMO3.2			ug/kg	48		6E+07			230000		
OLMO3.2			ug/kg		76 J	6E+07			230000		
OLMO3.2 I		***************************************	ug/kg		140 J	6E+07			230000		
OLMO3.2			ug/kg	$\overline{}$	ND UJ	6E+07			230000		
OLMO3.2			ug/kg		ND UJ	6E+07		-	230000		
OLMO3.2 I			ug/kg	61		6E+07			230000	70	
OLMO3.2 I	_T		ug/kg	48		6E+07			230000		
OLMO3.2 D			ug/kg	54		6E+07			230000		
OLMO3.2 I			ug/kg	56		6E+07			230000	70	
OLMO3.2 I	-	~	ug/kg	62		6E+07			230000		
JUNIO2.2	YIEHE	NA-TRND-SO21-01	ug/kg	52	60	6E+07	6E+06	2E+06	230000	70	S

											Means
											Comparison Conclusion
						Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Pyrene	NA-TRND-SO22-01	ug/kg		ND	6E+07	6E+06	2E+06	230000	70	
	Pyrene	NA-TRND-SO23-01	ug/kg		ND	6E+07	6E+06	2E+06	230000	70	s
	Pyrene	NA-TRND-SO24-31	ug/kg	53	150	6E+07	6E+06		230000	70	S
	Ругеле	NA-TRND-SO25-01	ug/kg	56	ND	6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO26-01	ug/kg	55		6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO27-01	ug/kg	60	60	6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO28-01	ug/kg	51	ND	6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO29-01	ug/kg	54	1100	6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO30-01	ug/kg	56	ND	6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO31-01	ug/kg	61	ND	6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO32-01	ug/kg		ND	6E+07	6E+06	2E+06	230000	70	S
	Pyrene	NA-TRND-SO33-01	ug/kg		ND	6E+07	6E+06	2E+06	230000	70	S
	bis(2-Chloroethoxy)methane	NA-TRND-SO01-01	ug/kg		ND UJ	5200	5200	580	580	NC	NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO02-01	ug/kg		ND UJ	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO03-01	ug/kg		ND UJ	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO04-31	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO05-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO06-01	ug/kg		ND UJ	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO07-01	ug/kg		ND	5200	5200	580	580	<u> </u>	NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO08-01	ug/kg	<u> </u>	ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO09-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO10-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO11-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO12-01	ug/kg		ND UJ	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO13-01	ug/kg		ND UJ	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO14-01	ug/kg		ND UJ	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO15-01	ug/kg		ND UJ	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO16-01	ug/kg	1	ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO17-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO18-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO19-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO20-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethoxy)methane		ug/kg		ND	5200	5200	580			NC
		NA-TRND-SO22-01	ug/kg		ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO23-01	ug/kg		ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO24-31	ug/kg		ND	5200	5200	580			NC
		NA-TRND-SO25-01	ug/kg		ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO26-01	ug/kg		ND	5200	5200	580		1	NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO27-01	ug/kg		ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO28-01	ug/kg		ND	5200	5200	580		NC	NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO29-01	ug/kg		ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO30-01	ug/kg		ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO31-01	ug/kg	 	ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO32-01	ug/kg		ND	5200	5200	580			NC
	bis(2-Chloroethoxy)methane	NA-TRND-SO33-01	ug/kg		ND	5200	5200	580	580		NC
	bis(2-Chloroethyl)ether	NA-TRND-SO01-01	ug/kg		ND UJ	5200	5200	580		NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-SO02-01	ug/kg		ND UJ	5200	5200	580		NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-SO03-01	ug/kg		ND UJ	5200	5200	580			NC
	bis(2-Chloroethyl)ether	NA-TRND-S003-01	ug/kg		ND	5200	5200	580			NC

				<u> </u>	T	1		T		T	T
						İ					Means
			Į								Compariso
						T 3.		n	34. 1		Conclusion
Method	Analyte	Sample ID	Timita	MINT	Result		ustrial RBSL	RBC	lential RBSL	Reference	1
	bis(2-Chloroethyl)ether	NA-TRND-SO05-01	ug/kg		ND	5200				UTL	Site
	bis(2-Chloroethyl)ether	NA-TRND-S006-01	ug/kg		ND UJ	5200				NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-S007-01	ug/kg		ND	5200		580	4	NC	NC
$\overline{}$	bis(2-Chloroethyl)ether	NA-TRND-SO08-01	ug/kg		ND	5200		580		NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-S009-01	ug/kg		ND	5200		580 580		NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-SO10-01	ug/kg		ND	5200		580		NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-SO11-01	ug/kg		ND	5200		580		NC NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-SO12-01	ug/kg		ND UJ	5200		580			NC
	bis(2-Chloroethyl)ether	NA-TRND-SO13-01	ug/kg		ND UJ	5200		580		NC NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-SO14-01	ug/kg		ND UJ	5200		580		NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-S015-01	ug/kg		ND UJ	5200					NC
	bis(2-Chloroethyl)ether	NA-TRND-SO16-01	ug/kg		ND 03	5200		580 580		NC NC	NC
	bis(2-Chloroethyl)ether	NA-TRND-S017-01	ug/kg		ND	5200		580	L	NC NC	NC NC
	bis(2-Chloroethyl)ether	NA-TRND-SO18-01	ug/kg		ND	5200		580			NC
	bis(2-Chloroethyl)ether		ug/kg		ND	5200		580	580	NC NC	NC NC
	bis(2-Chloroethyl)ether	NA-TRND-SO20-01	ug/kg		ND	5200		580	580		NC NC
	bis(2-Chloroethyl)ether	NA-TRND-SO21-01	ug/kg		ND	5200		580	580		
	bis(2-Chloroethyl)ether	NA-TRND-SO22-01	ug/kg		ND	5200		580	580		NC NC
	bis(2-Chloroethyl)ether	NA-TRND-SO23-01	ug/kg		ND	5200	5200	580	580		NC
-	bis(2-Chloroethyl)ether	NA-TRND-SO24-31	ug/kg		ND	5200	5200	580	580		NC NC
	bis(2-Chloroethyl)ether	NA-TRND-SO25-01	ug/kg		ND	5200	5200	580	580		
	bis(2-Chloroethyl)ether		ug/kg		ND	5200	5200	580	580		NC NC
	bis(2-Chloroethyl)ether	 	ug/kg		ND	5200	5200	580	580		NC NC
	bis(2-Chloroethyl)ether		ug/kg		ND	5200	5200	580	580		NC NC
	bis(2-Chloroethyl)ether	·	ug/kg		ND	5200	5200	580	580		NC NC
	bis(2-Chloroethyl)ether		ug/kg		ND	5200	5200	580	580		NC NC
	bis(2-Chloroethyl)ether		ug/kg		ND	5200		580	580		NC
	bis(2-Chloroethyl)ether		ug/kg		ND	5200	5200	580	580		NC NC
· · · · · · · · · · · · · · · · · · ·	bis(2-Chloroethyl)ether		ug/kg		ND	5200	5200	580	580		NC NC
	bis(2-Ethylhexyl)phthalate		ug/kg				410000	46000	46000	785	
,	bis(2-Ethylhexyl)phthalate	NA-TRND-SO02-01	ug/kg				410000	46000	46000	785	
	bis(2-Ethylhexyl)phthalate	V-100-17	ug/kg				410000	46000	46000	785	
			ug/kg				410000	46000			
			ug/kg				410000	46000	46000		
			ug/kg				410000		46000		
			ug/kg			_	410000	46000	46000	785	
			ug/kg				410000	46000	46000	785	
	bis(2-Ethylhexyl)phthalate		ug/kg	_			410000	46000	46000	785	
	bis(2-Ethylhexyl)phthalate		ug/kg	63			410000	46000	46000	785	
	bis(2-Ethylhexyl)phthalate		ug/kg				410000		46000	785 785	
	· · · · · · · · · · · · · · · · · · ·		ug/kg				410000	46000	46000	785	
			ug/kg				410000		46000	785	
		***	ug/kg				410000	46000	46000	785	
			ug/kg				410000	46000	46000	785	
			ug/kg	61		-	410000	46000	46000	785	
	pis(2-Ethylhexyl)phthalate	· · · · · · · · · · · · · · · · · · ·	ug/kg	48			410000	46000	46000	785 785	
			ug/kg	54			410000	46000	46000	785	
			ug/kg	56			410000	46000	46000		
			ug/kg	62			410000	46000	46000	785 785	

											Means Comparison Conclusion
							strial		lential	4	Reference vs.
Method OLMO3.2	Analyte bis(2-Ethylhexyl)phthalate	Sample ID NA-TRND-SO21-01	Units	MDL 52	Result	RBC	RBSL 410000	RBC 46000	RBSL 46000	UTL 785	Site
			ug/kg	50			410000	46000	46000		
	bis(2-Ethylhexyl)phthalate	NA-TRND-SO22-01 NA-TRND-SO23-01	ug/kg	64			410000	46000			
	bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate		ug/kg	53			410000	46000	46000		
	bis(2-Ethylhexyl)phthalate	NA-TRND-SO24-31 NA-TRND-SO25-01	ug/kg				410000	46000	46000		
	bis(2-Ethylhexyl)phthalate	NA-TRND-SO25-01	ug/kg	55		<u> </u>	410000	46000	46000		
	bis(2-Ethylhexyl)phthalate	NA-TRND-SO20-01	ug/kg	60			410000	46000	46000		
		·	ug/kg	51			410000	46000	46000		
	bis(2-Ethylhexyl)phthalate	NA-TRND-SO28-01	ug/kg	54			410000	46000	46000	785	
-	bis(2-Ethylhexyl)phthalate bis(2-Ethylhexyl)phthalate	NA-TRND-SO29-01 NA-TRND-SO30-01	ug/kg	56			410000	46000	46000	785	
	bis(2-Ethylhexyl)phthalate	NA-TRND-SO31-01	ug/kg	61			410000	46000	46000		
	bis(2-Ethylhexyl)phthalate	NA-TRND-SO32-01	ug/kg	57			410000	46000	46000		
			ug/kg	65			410000	46000	46000		
	bis(2-Ethylhexyl)phthalate di-n-Butylphthalate	NA-TRND-SO33-01 NA-TRND-SO01-01	ug/kg ug/kg		140 190 J	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO02-01			340 J	2E+08			780000	280	
	di-n-Butylphthalate	NA-TRND-SO02-01	ug/kg		120 J	2E+08			780000	280	
			ug/kg	61			2E+07		780000		
	di-n-Butylphthalate	NA-TRND-SO04-31	ug/kg	60	150				780000	280	
	di-n-Butylphthalate	NA-TRND-SO05-01	ug/kg		220	2E+08	2E+07			280	
	di-n-Butylphthalate	NA-TRND-SO06-01	ug/kg		200 J	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO07-01	ug/kg	60	98		2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO08-01	ug/kg	69	190				780000	280	
	di-n-Butylphthalate	NA-TRND-SO09-01	ug/kg	64	150		2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO10-01	ug/kg	63	300		2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO11-01	ug/kg		ND	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO12-01	ug/kg	67		2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO13-01	ug/kg		490 J	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO14-01	ug/kg			2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO15-01	ug/kg		170 J	2E+08	2E+07	·	780000	280	
	di-n-Butylphthalate	NA-TRND-SO16-01	ug/kg	61	670	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO17-01	ug/kg		ND	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO18-01	ug/kg	54	440	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO19-01	ug/kg	56	69	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO20-01	ug/kg	62	110	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO21-01	ug/kg	52		2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO22-01	ug/kg	50		2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO23-01	ug/kg	64			2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO24-31	ug/kg		ND	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO25-01	ug/kg		ND	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO26-01	ug/kg	55		2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO27-01	ug/kg		ND	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO28-01	ug/kg	51	220	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO29-01	ug/kg		ND 710	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO30-01	ug/kg	56		2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO31-01	ug/kg	61	120	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO32-01	ug/kg		ND 700	2E+08	2E+07		780000	280	
	di-n-Butylphthalate	NA-TRND-SO33-01	ug/kg	65	230	2E+08	2E+07		780000	280	
	di-n-Octylphthalate	NA-TRND-SO01-01	ug/kg		ND UJ	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO02-01	ug/kg		ND UJ	4E+07			160000		NC
и03.2	di-n-Octylphthalate	NA-TRND-SO03-01	ug/kg	48	ND UJ	4E+07	4E+06	2E+06	160000	NC	NC

						Indu	estrial	Post	dential	Defe	Means Compariso Conclusion
Method	Analyte	Sample ID	Units	MDI	Result		RBSL	RBC		Reference	1
\vdash	di-n-Octylphthalate	NA-TRND-SO04-31	ug/kg		ND	4E+07	4E+06		160000		Site NC
	di-n-Octylphthalate	NA-TRND-SO05-01	ug/kg		ND	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO06-01	ug/kg		ND UJ	4E+07	4E+06	1	160000		NC
	di-n-Octylphthalate	NA-TRND-SO07-01	ug/kg	-	ND OJ	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO08-01	ug/kg		ND	4E+07	4E+06		160000		
	di-n-Octylphthalate	NA-TRND-SO09-01	ug/kg		ND	4E+07	4E+06		160000		NC NC
	di-n-Octylphthalate	NA-TRND-SO10-01	ug/kg		ND	4E+07	4E+06		160000		NC NC
	di-n-Octylphthalate	NA-TRND-SO11-01	ug/kg		ND	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO12-01	ug/kg		ND UJ	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO13-01	ug/kg		ND UJ	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO14-01	ug/kg		ND UJ	4E+07	4E+06		160000	*	NC
	di-n-Octylphthalate	NA-TRND-SO15-01	ug/kg		ND UJ	4E+07	4E+06		160000		NC
******	di-n-Octylphthalate	NA-TRND-SO16-01	ug/kg		ND	4E+07	4E+06		160000		NC NC
	di-n-Octylphthalate		ug/kg		ND	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO18-01	ug/kg		ND	4E+07	4E+06	~	160000		NC
	di-n-Octylphthalate		ug/kg		ND	4E+07	4E+06		160000		NC
			ug/kg		ND	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO21-01	ug/kg		ND	4E+07	4E+06		160000		NC
	di-n-Octylphthalate	NA-TRND-SO22-01	ug/kg		ND	4E+07	4E+06		160000		NC
			ug/kg		ND	4E+07	4E+06		160000		NC
· · · · · · · · · · · · · · · · · · ·			ug/kg		ND	4E+07	4E+06		160000		NC
			ug/kg		ND	4E+07	4E+06		160000		NC A
	· · · · · · · · · · · · · · · · · · ·		ug/kg		ND	4E+07	4E+06		160000		NC
			ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2		NA-TRND-SO28-01	ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	di-n-Octylphthalate	NA-TRND-SO29-01	ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2			ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	di-n-Octylphthalate		ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	i-n-Octylphthalate		ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	li-n-Octylphthalate		ug/kg		ND	4E+07	4E+06		160000		NC
OLMO3.2	o-Cresol		ug/kg		ND UJ	1E+08	1E+07		390000		NC
OLMO3.2	o-Cresol		ug/kg	62	ND UJ	1E+08	1E+07		390000		NC
OLMO3.2 c	o-Cresol	NA-TRND-SO03-01	ug/kg	48	ND UJ	1E+08			390000		NC
OLMO3.2		NA-TRND-SO04-31	ug/kg		ND				390000	· - · - · - · · · · · · · · · · · · · ·	NC
OLMO3.2	· · · · · · · · · · · · · · · · · · ·		ug/kg	60	ND				390000		NC
OLMO3.2		NA-TRND-SO06-01	ug/kg	51	ND UJ				390000		NC
OLMO3.2 c		NA-TRND-SO07-01	ug/kg	60	ND				390000		NC
OLMO3.2 c		NA-TRND-SO08-01	ug/kg	69	ND				390000		NC
OLMO3.2 c			ug/kg	64	ND				390000		NC
OLMO3.2 c		NA-TRND-SO10-01	ug/kg	63	ND				390000		NC
OLMO3.2 c	··· · · · · · · · · · · · · · · · · ·	NA-TRND-SO11-01	ug/kg	48	ND				390000		NC
OLMO3.2 o			ug/kg	67	ND UJ				390000		NC
OLMO3.2 o			ug/kg	62					390000		NC
OLMO3.2 o	o-Cresol		ug/kg						390000		NC
OLMO3.2 o	-Cresol		ug/kg						390000		NC NC
OLMO3.2 o			ug/kg	61					390000		NC
OLMO3.2 o			ug/kg	48					390000		NC NC
OLMO3.2 o			ug/kg	54					390000		NC a
OLMO3.2 o			ug/kg	56					390000		NC NC

							<u></u>				Means
											Comparison
											Conclusion
		i	l			Indu	strial		lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2	o-Cresol	NA-TRND-SO20-01	ug/kg		ND	1E+08	1E+07		390000		NC
OLMO3.2	o-Cresol	NA-TRND-SO21-01	ug/kg		ND	1E+08	1E+07		390000		NC
OLMO3.2	o-Cresol	NA-TRND-SO22-01	ug/kg	50	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO23-01	ug/kg	64	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO24-31	ug/kg	53	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO25-01	ug/kg	56	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO26-01	ug/kg	55	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO27-01	ug/kg	60	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO28-01	ug/kg		ND	1E+08	1E+07		390000		NC
OLMO3.2	o-Cresol	NA-TRND-SO29-01	ug/kg	54	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO30-01	ug/kg		ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO31-01	ug/kg	61	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO32-01	ug/kg	57	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-SO33-01	ug/kg	65	ND	1E+08	1E+07	4E+06	390000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO01-01	ug/kg	58	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO02-01	ug/kg	62	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO03-01	ug/kg	48	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO04-31	ug/kg	61	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO05-01	ug/kg	60	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO06-01	ug/kg	51	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO07-01	ug/kg	60	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO08-01	ug/kg	69	ND	1E+07	1E+06	390000	39000	NC	NC
MO3.2	p-Cresol	NA-TRND-SO09-01	ug/kg	64	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO10-01	ug/kg	63	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO11-01	ug/kg	48	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO12-01	ug/kg	67	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO13-01	ug/kg	62	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO14-01	ug/kg	62	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol '	NA-TRND-SO15-01	ug/kg	58	ND UJ	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO16-01	ug/kg	61	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO17-01	ug/kg	48	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2		NA-TRND-SO18-01	ug/kg		ND	1E+07	1E+06	390000			NC
OLMO3.2	p-Cresol	NA-TRND-SO19-01	ug/kg	56	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO20-01	ug/kg	62	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO21-01	ug/kg	52	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO22-01	ug/kg	50	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO23-01	ug/kg	64	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO24-31	ug/kg	53	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO25-01	ug/kg	56	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO26-01	ug/kg	55	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO27-01	ug/kg	60	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO28-01	ug/kg		ND	1E+07	1E+06	390000	39000		NC
OLMO3.2	p-Cresol	NA-TRND-SO29-01	ug/kg	54	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO30-01	ug/kg	56	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol		ug/kg	61	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol		ug/kg	57	ND	1E+07	1E+06	390000	39000	NC	NC
OLMO3.2	p-Cresol	NA-TRND-SO33-01	ug/kg	65	ND	1E+07	1E+06	390000	39000	NC	NC
SW8290	1,2,3,4,6,7,8,9-OCDD	 	ng/kg	0.3	616	38000	38000	4300	4300	1180	S
8290	1,2,3,4,6,7,8,9-OCDD		ng/kg	0.2	1320	38000	38000	4300	4300	1180	S

											Means Comparise Conclusion
				į		Indu	strial	Resid	lential	Reference	Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO03-01	ng/kg	0.4	1250	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO04-31	ng/kg	2	20040 J	38000	38000	4300	4300	1180	s
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO05-01	ng/kg	16.6	2970	38000	38000	4300	4300	1180	s
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO06-01	ng/kg	0.5	2520	38000	38000	4300	4300	1180	S
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO07-01	ng/kg	1.4	1050	38000	38000	4300	4300	1180	S
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO08-01	ng/kg	2.6	4300 J	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO09-01	ng/kg	0.6	4180 J	38000	38000	4300	4300	1180	S
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO10-01	ng/kg	2.4	3150	38000	38000	4300	4300	1180	S
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO11-01	ng/kg	3.4	334	38000	38000	4300	4300	1180	S
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO12-01	ng/kg	0.5	1500	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO13-01	ng/kg	1.7	1300	38000	38000	4300	4300	1180	manus.
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO14-01	ng/kg	0.6	774	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO15-01	ng/kg	0.6	1090	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO16-01	ng/kg	1.4	687	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO17-01	ng/kg	2.8	349	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO18-01	ng/kg	1.1	577	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO19-01	ng/kg	2	756	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	 	ng/kg	3.6	1090	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD		ng/kg	0.7	. 1280	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO22-01	ng/kg	0.6	1900	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO23-01	ng/kg	0.6	1120	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO24-31	ng/kg	1.5	417	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO25-01	ng/kg	2.4	89.8	38000	38000	4300	4300	1180	
SW8290	1,2,3,4,6,7,8,9-OCDD		ng/kg	2.6	1270	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD	 	ng/kg	4	335	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD		ng/kg	0.2	949	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD		ng/kg	0.3	449	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD	 	ng/kg	4.8	920	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9 - OCDD		ng/kg	4.2	371	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD		ng/kg	1.4	565	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDD		ng/kg	2.7	769	38000	38000	4300	4300	1180	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.2	217	38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.2	352		38000	4300	4300		
	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.3		38000	38000	4300	4300	212 212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	1.6			38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	13.4		38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.4	3960	38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	1.2	475	38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	2.1		38000	38000				
	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.5		38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	2	-	38000	38000	4300	4300	212	
-	1,2,3,4,6,7,8,9-OCDF		ng/kg	2.8	113	38000		4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF	1		0.4		38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg ng/kg	1.2			38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF			+		38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.5		38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	0.5		38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF		ng/kg	1.1		38000	38000	4300	4300	212	
	1,2,3,4,6,7,8,9-OCDF 1,2,3,4,6,7,8,9-OCDF		ng/kg	2.2		38000	38000	4300	4300	212	
J 11 047U	1,4,J,7,U,1,0,7-UCDF	NA-TRND-SO18-01	ng/kg	0.9	73.2	38000	38000	4300	4300	212	S (

								-			Means
											Comparison
											Conclusion
						Indu	strial	Resid	lential	Reference	
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO19-01	ng/kg	1.6	75.1	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO20-01	ng/kg	2.9	258	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO21-01	ng/kg	0.6	95.2	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO22-01	ng/kg	0.5	149	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO23-01	ng/kg	0.5	154	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO24-31	ng/kg	1.3	58.5	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO25-01	ng/kg	2.1	17.5	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO26-01	ng/kg	2.2	190	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO27-01	ng/kg	3.4	90.1	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO28-01	ng/kg	0.2	80.9	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO29-01	ng/kg	0.2	77.6	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO30-01	ng/kg	3.8	73.1	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO31-01	ng/kg	3.4	57.9	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO32-01	ng/kg	1.1	78.7	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8,9-OCDF	NA-TRND-SO33-01	ng/kg	2.1	115	38000	38000	4300	4300	212	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO01-01	ng/kg	0.2	149	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO02-01	ng/kg	0.2	324	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO03-01	ng/kg	0.3	304	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO04-31	ng/kg	1.5	4290 J	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO05-01	ng/kg	9.1	972	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO06-01	ng/kg	0.4	985	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO07-01	ng/kg	0.8	300	3800	3800	430	430	235	S
18290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO08-01	ng/kg	1.7	1380	3800	3800	430	430	235	S
5W8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO09-01	ng/kg	0.4	1340	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO10-01	ng/kg	1.6	822	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO11-01	ng/kg	2.1	71.4	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO12-01	ng/kg	0.4	349	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO13-01	ng/kg	0.7	314	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO14-01	ng/kg	0.4	111	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO15-01	ng/kg	0.5	142	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO16-01	ng/kg	1	163	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO17-01	ng/kg	1.5	67.2	3800	3800	430	430	235	S
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO18-01	ng/kg	0.8	89.2	3800	3800	430	430	235	S
	1,2,3,4,6,7,8-HpCDD		ng/kg	1.3	121	3800	3800	430	430	235	
SW8290	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO20-01	ng/kg	2.2	262	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	 	ng/kg	0.5	117	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	+	ng/kg	0.5	165	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD		ng/kg	0.5	227	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO24-31	ng/kg	1	78.8	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO25-01	ng/kg	1.4	19.6	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO26-01	ng/kg	1.5	306	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO27-01	ng/kg	2.2	80.1	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO28-01	ng/kg	0.2	85.1	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO29-01	ng/kg	0.2	95	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD		ng/kg	2.8	107	3800	3800	430	430	235	
-	1,2,3,4,6,7,8-HpCDD	· · · · · · · · · · · · · · · · · · ·	ng/kg	2.7	69.3	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	· ·	ng/kg	0.9	99.1	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDD	······································	ng/kg	1.8	153	3800	3800	430	430	235	
	1,2,3,4,6,7,8-HpCDF	 	ng/kg	0.1	141	3800	3800	430	430	258	

											Means Compariso Conclusion
Method	Analyte	Sala ID	¥1	NEDT	3		strial		lential	1	Reference vs.
SW8290	1,2,3,4,6,7,8-HpCDF	Sample ID NA-TRND-SO02-01	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,4,6,7,8-HpCDF		ng/kg	0.2	314	3800	3800	430		258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO03-01	ng/kg		256 2150 J		3800	430		258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO04-31 NA-TRND-SO05-01	ng/kg	5		3800	3800	430		258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-S005-01	ng/kg		938	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF		ng/kg		2740 J	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO07-01	ng/kg	0.5	359	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO08-01 NA-TRND-SO09-01	ng/kg	1	1150	3800	3800	430	430		
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-S010-01	ng/kg	0.2	1110	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF		ng/kg	0.9	868	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO12-01	ng/kg	1.2	82.9	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF		ng/kg	0.3	279	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO13-01	ng/kg	0.4	256	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO14-01	ng/kg	0.3	60.3	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF		ng/kg	0.3	107	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO16-01 NA-TRND-SO17-01	ng/kg	0.6	163	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO17-01	ng/kg		48.7	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-S019-01	ng/kg	0.5	58.3	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO19-01	ng/kg	0.9	77.9	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	· · · · · · · · · · · · · · · · · · ·	ng/kg	1.2	380	3800	3800	430	430	258	
SW8290		NA-TRND-SO21-01	ng/kg	0.3	77.6	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF		ng/kg	0.3	134	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF		ng/kg	0.3	151	3800	3800	430	430	258	
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO24-31	ng/kg	0.7	64.6	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF		ng/kg	0.9	21.8	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO26-01	ng/kg	0.9	269	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO27-01	ng/kg	1.4	87.3	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO28-01	ng/kg	0.1	89.9	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF	NA-TRND-SO29-01	ng/kg	0.1	81.2	3800	3800	430	430	258	
	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7- 7	ng/kg	1.6	72.3	3800	3800	430	430	258	
			ng/kg	1.5	59.7	3800	3800	430	430	258	
			ng/kg	0.6	87.7	3800	3800	430	430	258	
			ng/kg	1	129	3800	3800	430	430	258	
			ng/kg	0.2	33.9	3800	3800	430	430	41.9	
			ng/kg	0.2	64.1	3800	3800	430	430	41.9	
			ng/kg	0.2	39.6	3800	3800	430	430	41.9	
			ng/kg	1.4	300	3800	3800	430	430	41.9	
			ng/kg	6.5	140	3800	3800	430	430	41.9	
			ng/kg	0.3	857	3800	3800	430	430	41.9	
	· · · · · · · · · · · · · · · · · · ·		ng/kg	0.7	84.8	3800	3800	430	430	41.9	
			ng/kg	1.4	209	3800	3800	430	430	41.9	
	· · · · · · · · · · · · · · · ·		ng/kg	0.3	198	3800	3800	430	430	41.9	
			ng/kg	1.3	187	3800	3800	430	430	41.9	
			ng/kg	1.7	18	3800	3800	430	430	41.9	77.7-1
			ng/kg	0.4	53.2	3800	3800	430	430	41.9	
			ng/kg	0.5	34.8	3800	3800	430	430	41.9	
_			ng/kg	0.4	9.5	3800	3800	430	430	41.9	S
			ng/kg	0.4	13.9	3800	3800	430	430	41.9	S
			ng/kg	0.8	22.1	3800	3800	430	430	41.9	S
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO17-01	ng/kg	1.1	7.4	3800	3800	430	430	41.9	S

			1			*****					Moone
											Means Comparison
											Conclusion
		•		ļ		Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO18-01	ng/kg	0.6		3800	3800	430	430		
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO19-01	ng/kg	1.1		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO20-01	ng/kg	1.6		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO21-01	ng/kg	0.4		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO22-01	ng/kg	0.4		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO23-01	ng/kg	0.4		3800	3800	430	430	41.9	S
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO24-31	ng/kg	1	8.9	3800	3800	430	430	41.9	S
SW8290	1,2,3,4,7,8,9-HpCDF		ng/kg	1.3	3.3 J	3800	3800	430	430	41.9	S
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO26-01	ng/kg	1.2	29.8	3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO27-01	ng/kg	1.9		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO28-01	ng/kg	0.2		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO29-01	ng/kg	0.2	14.2	3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF		ng/kg		3.5 J	3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO31-01	ng/kg	1.9		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO32-01	ng/kg	0.8		3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8,9-HpCDF	NA-TRND-SO33-01	ng/kg	1.3	19.6	3800	3800	430	430	41.9	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO01-01	ng/kg	0.2	11.9	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO02-01	ng/kg	0.2	19.2	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO03-01	ng/kg		20.7 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO04-31	ng/kg		144 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO05-01	ng/kg	8.6		380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO06-01	ng/kg	0.4		380	380	43	43	13.7	
8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO07-01	ng/kg		19 J	380	380	43	43	13.7	
5W8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO08-01	ng/kg	L	73.6 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO09-01	ng/kg		74.7 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO10-01	ng/kg		43.7 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO11-01	ng/kg		2.8 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO12-01	ng/kg	0.4		380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO13-01	ng/kg	0.4	14.2	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO14-01	ng/kg	0.5	4.1 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO15-01	ng/kg	0.5		380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	NA-TRND-SO16-01	ng/kg	0.9		380	380	43	43	13.7	
	1,2,3,4,7,8-HxCDD	NA-TRND-SO17-01			4.8 J	380		43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg		4.5 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg		6.1 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg			380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg		4.7 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg	0.5		380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg			380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg	·	3.9 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg		1.1 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg			380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg			380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg			380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg			380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD	<u> </u>	ng/kg		2.6 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg		4 J	380	380	43	43	13.7	
SW8290	1,2,3,4,7,8-HxCDD		ng/kg		ND	380	380	43	43	13.7	
3290	1,2,3,4,7,8-HxCDD		ng/kg			380	380	43	43	13.7	
	1-3-3-7,11,15	,= :: : : : : : : : : : : : : : : : : :	100							20.7	

SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<											Means Compariso Conclusion
SW8290 1,2,3,4,7 SW8290 1,2,3,4,7	A 3- 4 -						strial		lential		Reference vs
SW8290 1,2,3,4,7 SW8290 1,2,3,4,7	Analyte	Sample ID	Units	MDL		RBC	RBSL	RBC	RBSL	UTL	Site
SW8290 1,2,3,4,7 SW8290 1,2,3,4,7		NA-TRND-SO01-01	ng/kg		82.4 J	380	380	43		97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7,<		NA-TRND-SO02-01	ng/kg		139 J	380	380	43		97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,	<u> </u>	NA-TRND-SO03-01	ng/kg		104 J	380	380	43		97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO04-31	ng/kg		767 J	380	380	43		97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO05-01	ng/kg		439 J	380	380	43		97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3		NA-TRND-SO06-01	ng/kg	0.3	1600	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-S007-01	ng/kg		173 J	380	380	43	43	97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO08-01	ng/kg		489 J	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<			ng/kg		487 J	380	380	43	43	97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3	· · · · · · · · · · · · · · · · · · ·	NA-TRND-SO10-01	ng/kg		371 J	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3		NA-TRND-SO11-01	ng/kg		24.5 J	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,		NA-TRND-SO12-01	ng/kg	0.3	161	380	380	43	43	97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO13-01	ng/kg	0.2	102	380	380	43	43	97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO14-01	ng/kg	0.3	23.4	380	380	43	43	97.8	
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO15-01	ng/kg	0.3	66.8	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO16-01	ng/kg	0.5	97.4	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO17-01	ng/kg	0.7	14.4	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO18-01	ng/kg	0.4	34.1	380	380	43	43	97.8	S
SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,4,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7, SW8290 1,2,3,6,7,<		NA-TRND-SO19-01	ng/kg	0.6	37.1	380	380	43	43	97.8	S
SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290<	7,8-HxCDF	NA-TRND-SO20-01	ng/kg	1	115	380	380	43	43	97.8	S
SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,1 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290<	7,8-HxCDF	NA-TRND-SO21-01	ng/kg	0.3	18.8	380	380	43	43	97.8	
SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,4,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,5 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	7,8-HxCDF	NA-TRND-SO22-01	ng/kg	0.3	43.1	380	380	43	43	97.8	
SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF	NA-TRND-SO23-01	ng/kg	0.3	75	380	380	43	43	97.8	
SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF	NA-TRND-SO24-31	ng/kg	0.6	22.2	380	380	43	43	97.8	
SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF	NA-TRND-SO25-01	ng/kg	0.6	9.3	380	380	43	43	97.8	
SW8290 1,2,3,4,7,1 SW8290 1,2,3,4,7,3 SW8290 1,2,3,4,7,3 SW8290 1,2,3,4,7,3 SW8290 1,2,3,4,7,3 SW8290 1,2,3,4,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3 SW8290 1,2,3,6,7,3	,8-HxCDF	NA-TRND-SO26-01	ng/kg	0.6	123	380	380	43	43	97.8	
SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF	NA-TRND-SO27-01	ng/kg	0.9	43.3 J	380	380	43	43	97.8	
SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,4,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,6 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF	NA-TRND-SO28-01	ng/kg	0.1	49.6	380	380	43	43	97.8	
SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF	NA-TRND-SO29-01	ng/kg	0.1	40.7	380	380	43	43	97.8	
SW8290 1,2,3,4,7,8 SW8290 1,2,3,4,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF	NA-TRND-SO30-01	ng/kg	1.2	7	380	380	43	43	97.8	
SW8290 1,2,3,4,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF		ng/kg	1.2	29.7	380	380	43	43	97.8	
SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF		ng/kg	0.6	37.9	380	380	43	43	97.8	
SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDF		ng/kg	0.7	47.3	380	380	43	43	97.8	
SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDD		ng/kg	0.2	16.4	380	380	43	43	29.1	
SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDD		ng/kg	0.2	30.9	380	380	43	43	29.1	
\$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} 1,2,3,6,7,8 \\ \$\text{SW8290} \qquad \qq \qquad \qu	,8-HxCDD		ng/kg	0.2	30.4	380	380	43	43	29.1	
3W8290 1,2,3,6,7,8 3W8290 1,2,3,6,7,8 3W8290 1,2,3,6,7,8 3W8290 1,2,3,6,7,8 3W8290 1,2,3,6,7,8 3W8290 1,2,3,6,7,8	,8-HxCDD		ng/kg	1.3	364	380	380	43	43	29.1	
SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDD		ng/kg	6.7	108	380	380	43	43	29.1	
\$W8290 1,2,3,6,7,8 \$W8290 1,2,3,6,7,8 \$W8290 1,2,3,6,7,8	,8-HxCDD		ng/kg	0.3	125	380	380	43	43	29.1	
\$\text{SW8290} 1,2,3,6,7,8 \\ \text{SW8290} 1,2,3,6,7,8 \\ \text{SW8290} 1,2,3,6,7,8 \\ \text{SW8290} 1,2,3,6,7,8 \\ \text{SW8290} \qq \qu	,8-HxCDD	~~ ~	ng/kg	0.6	35.2	380	380	43	43	29.1	
SW8290 1,2,3,6,7,8 SW8290 1,2,3,6,7,8	,8-HxCDD		ng/kg	1.2	137	380	380	43	43	29.1	
SW8290 1,2,3,6,7,8	,8-HxCDD	****	ng/kg	0.3	135	380	380	43	43	29.1	
	,8-HxCDD		ng/kg	1	78.9	380	380	43	43	29.1	
	,8-HxCDD		ng/kg	1.3	6.7	380	380	43			
	,8-HxCDD		ng/kg	0.3	37.2	380	380	43	43	29.1	
	,8-HxCDD		ng/kg	0.4	29.8	380	380	43	43	29.1	
	,8-HxCDD		ng/kg	0.4	8.3				43	29.1	
<u></u>	,8-HxCDD					380	380	43	43	29.1	
	,8-HxCDD		ng/kg ng/kg	0.4	13.5	380 380	380	43	43	29.1 I	· · · · · · · · · · · · · · · · · · ·

						T Al	atrial	D	iential	Def	Means Comparison Conclusion
Method	Analyte	Sample ID	Timita	MIN	Result	RBC	strial RBSL	RBC	RBSL	•	Reference vs.
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO17-01	ng/kg	1	7.6	380	380	43	43	UTL 29.1	Site
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO18-01	ng/kg	0.5	8.4	380	380	43	43		
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO19-01	ng/kg	0.3	10.3	380	380	43	43	29.1	 -
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO20-01	ng/kg	1.4	26.8	380	380	43	43	29.1	· · · · · · · · · · · · · · · · · · ·
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO21-01	ng/kg	0.4	8.8	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO22-01	ng/kg	0.4	12	380	380	43	43	29.1 29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO23-01	ng/kg	0.4	23.8	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO24-31	ng/kg	0.4	7.5	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO25-01	ng/kg		3.2 J	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO26-01	ng/kg	0.9	31.6	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO27-01	ng/kg	1.4	11	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO28-01	ng/kg	0.2	9.8	380	380	43	43		
<u> </u>	1,2,3,6,7,8-HxCDD	NA-TRND-SO29-01		0.2	10.7	380	380		43	29.1	
	1,2,3,6,7,8-HxCDD	NA-TRND-SO29-01	ng/kg	1.7	5.1	380	380	43 43	43	29.1	
	1,2,3,6,7,8-HxCDD	NA-TRND-SO31-01	ng/kg ng/kg	1.7	7.2	380	380	43	43	29.1 29.1	
	1,2,3,6,7,8-HxCDD	NA-TRND-SO32-01	ng/kg	0.7	9.7	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDD	NA-TRND-SO33-01	ng/kg	1.3	16.5	380	380	43	43	29.1	
SW8290	1,2,3,6,7,8-HxCDF	NA-TRND-S001-01	ng/kg	0.1	26.9	380	380	43	43	41.2	
SW8290	1,2,3,6,7,8-HxCDF		ng/kg	0.1	51.5	380	380	43	43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	NA-TRND-S003-01	ng/kg	0.1	37.8	380	380	43	43	41.2	
SW8290	1,2,3,6,7,8-HxCDF	 	ng/kg	0.8	315	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	3.8	163	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF	NA-TRND-SO06-01	ng/kg	0.2	424	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF	NA-TRND-SO07-01	ng/kg	0.4	65.7	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF	·	ng/kg	0.7	215	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.7	209	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.6	148	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.8	10.2	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.2	59.4	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.2	43	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.2	10.1	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.3	25.2	380	380	43	43	41.2	
			ng/kg	0.4	37.7	380	380	43	43	41.2	
			ng/kg	0.5	5.2	380	380	43	43	41.2	
	- ` 		ng/kg	0.3	12.2	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.5	12.6	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.8	41.8	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.2	7.6	380	380	43	43	41.2	
	1,2,3,6,7,8-HxCDF		ng/kg	0.3	16.8	380	380	43	43	41.2	
 	1,2,3,6,7,8-HxCDF		ng/kg	0.2	29.1	380	380	43	43	41.2	
 	1,2,3,6,7,8-HxCDF		ng/kg	0.5	10.6	380	380	43	43	41.2	
			ng/kg	0.5		380	380	43	43	41.2	
			ng/kg	0.5	52.4	380	380	43	43	41.2	
_			ng/kg	0.8	19.1	380	380	43	43	41.2	
			ng/kg	0.1	19.2	380	380	43	43	41.2	
			ng/kg	0.1	15.1	380	380	43	43	41.2	
			ng/kg		3.8 J	380	380	43	43	41.2	
			ng/kg	1	11.3	380	380	43	43	41.2	
		trah-	ng/kg	0.5	15.3	380	380	43	43	41.2	

					:						Means 🗸
											Compariso
İ											Conclusion
							strial		lential	1	Reference vs.
Method SW8290	Analyte 1,2,3,6,7,8-HxCDF	Sample ID	Units			RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO33-01 NA-TRND-SO01-01	ng/kg	0.7	22.4	380	380	. 43	1		
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO02-01	ng/kg		28.3 J 46.2 J	380	380	43	43		
SW8290	1,2,3,7,8,9-HxCDD		ng/kg			380	380	43	43		
SW8290		NA-TRND-SO03-01 NA-TRND-SO04-31	ng/kg	0.2	47.2	380	380	43	43		
SW8290	1,2,3,7,8,9-HxCDD		ng/kg		472 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-S005-01	ng/kg		141 J	380	380	43	43		
	1,2,3,7,8,9-HxCDD	NA-TRND-S006-01	ng/kg		176 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO07-01	ng/kg		53 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO08-01	ng/kg		203 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO09-01	ng/kg		196 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO10-01	ng/kg		116 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO11-01	ng/kg		10.5 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO12-01	ng/kg		59.4 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO13-01	ng/kg	$\overline{}$	45.5 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO14-01	ng/kg	0.4		380	380	43	43	35.9	
SW8290 SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO15-01	ng/kg	0.4		380	380	43	43	35.9	
	1,2,3,7,8,9-HxCDD		ng/kg		29.7 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO17-01	ng/kg		13.6 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD		ng/kg		14.9 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO19-01	ng/kg		17.5 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO20-01	ng/kg		39.7 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO21-01	ng/kg		12.6 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO22-01	ng/kg		16 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD		ng/kg	0.4	43.9	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO24-31	ng/kg		16.8 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO25-01	ng/kg	0.9	11.3	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO26-01	ng/kg		44.9 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO27-01	ng/kg		20.5 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO28-01	ng/kg		16.6 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO29-01	ng/kg		21 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO30-01	ng/kg	1.8	7.5	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO31-01	ng/kg	1.8	15	380	380	43	43	35.9	S
	1,2,3,7,8,9-HxCDD		ng/kg	0.7		380	380	43	43	35.9	S
SW8290	1,2,3,7,8,9-HxCDD	NA-TRND-SO33-01	ng/kg		23.8 J	380	380	43	43	35.9	
SW8290	1,2,3,7,8,9-HxCDF		ng/kg		6.6 J	380	380	43	43	3.8	S
SW8290	1,2,3,7,8,9-HxCDF		ng/kg		11.7 J	380	380	43	43	3.8	S
	1,2,3,7,8,9-HxCDF	 	ng/kg		6.4 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF		ng/kg		40.3 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF		ng/kg		19.6 J	380	380	43	43	3.8	
· · · · · · · · · · · · · · · · · · ·	1,2,3,7,8,9-HxCDF		ng/kg	0.3		380	380	43	43		
	1,2,3,7,8,9-HxCDF		ng/kg		15.8 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF		ng/kg		32.2 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF		ng/kg		27.4 J	380	380	43	43	3.8	
_	1,2,3,7,8,9-HxCDF		ng/kg		29.8 J	380	380	43	43	3.8	S
	1,2,3,7,8,9-HxCDF		ng/kg	1	2.4 J	380	380	43	43	3.8	S
	1,2,3,7,8,9-HxCDF	NA-TRND-SO12-01	ng/kg	0.3	9.8 J	380	380	43	43	3.8	S
	1,2,3,7,8,9-HxCDF	NA-TRND-SO13-01	ng/kg	0.3	5.6 J	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO14-01	ng/kg	0.4	1.6 J	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	**************************************	ng/kg	0.4	2.6 J	380	380	43	43		1.0

						Indu	strial	Resid	lential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Linite	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO16-01	ng/kg		4.5 J	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO17-01	ng/kg		ND	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO18-01	ng/kg		2.5 J	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-S019-01	ng/kg		2.2 J	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SQ20-01	ng/kg	1.2	5.5	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO21-01	ng/kg		1.4 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO22-01	ng/kg		3.7 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO23-01	ng/kg		3.9 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO24-31	ng/kg		1.3 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO25-01	ng/kg		ND	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO26-01	ng/kg		5.9 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO27-01	ng/kg	1.1		380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO28-01	ng/kg		3.5 J	380	380	43	43	3.8	
SW8290	1,2,3,7,8,9-HxCDF	NA-TRND-SO29-01	ng/kg		2.7 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO30-01	ng/kg		ND J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO31-01	ng/kg		1.9 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO32-01	ng/kg		2.5 J	380	380	43	43	3.8	
	1,2,3,7,8,9-HxCDF	NA-TRND-SO33-01	ng/kg		2.5 J	380	380	43	43	3.8	
	1,2,3,7,8,9-11XCD1 1,2,3,7,8-PeCDD	NA-TRND-SO01-01	ng/kg	0.1	7.2	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	NA-TRND-SO02-01	ng/kg	0.1	11.8	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	NA-TRND-SO03-01	ng/kg	0.2	10	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	NA-TRND-SO04-31	ng/kg	0.9	108	76	76	8.6	8.6	9.8	
8290	1,2,3,7,8-PeCDD	NA-TRND-SO05-01	ng/kg	6.1	44.1	76	76	8.6	8.6	9.8	
€√8290	1,2,3,7,8-PeCDD	NA-TRND-SO06-01	ng/kg	0.2	53.2	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	NA-TRND-S007-01	ng/kg	0.2	13.9	76	76	8.6	8.6	9.8	
SW8290	1,2,3,7,8-PeCDD		ng/kg	0.9	48.1	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	0.4	71.1	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	0.8	34.5	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg		2.1 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	0.3	13.9	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	 	ng/kg	0.2	11.9	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	0.2		76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	0.3		76	76	8.6	8.6		
	1,2,3,7,8-PeCDD		ng/kg	0.4		76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg		3.6 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	NA-TRND-SO18-01	ng/kg		3.5 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	NA-TRND-SO19-01	ng/kg		4.1 J	76	76	8.6	8.6	9.8	
<u> </u>	1,2,3,7,8-PeCDD	NA-TRND-SO20-01	ng/kg	1		76	76	8.6	8.6	9.8	
-	1,2,3,7,8-PeCDD	NA-TRND-SQ21-01	ng/kg		3.1 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg		4.2 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	0.3		76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg		4.1 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg		2.4 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	0.8		76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	1.4		76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD	······································	ng/kg		4.4 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg		4.6 J	76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg	1.2		76	76	8.6	8.6	9.8	
	1,2,3,7,8-PeCDD		ng/kg		3.6 J	76	76	8.6	8.6	9.8	

						Indu	strial	Recia	iential	Reference	Means Compariso Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	1,2,3,7,8-PeCDD	NA-TRND-SO32-01	ng/kg		4.1 J	76		8.6	1		NS
SW8290	1,2,3,7,8-PeCDD	NA-TRND-SO33-01	ng/kg	1		76	76	8.6			NS
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO01-01	ng/kg	0.09	26.6	760	760	86			
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO02-01	ng/kg	0.1	25.2	760	760	86			
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO03-01	ng/kg	0.1	18.7	760	760	86			
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO04-31	ng/kg	0.6		760	760	86			
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO05-01	ng/kg	3.6		760	760	86			
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO06-01	ng/kg	0.2		760	760	86		30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-S007-01	ng/kg	0.3		760	760	86		30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO08-01	ng/kg	0.6		760	760	86		30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO09-01	ng/kg	0.2		760	760	86			
	1,2,3,7,8-PeCDF	NA-TRND-SO10-01	ng/kg	0.5	110	760	760	86		30.6	
	1,2,3,7,8-PeCDF	NA-TRND-SO11-01	ng/kg		3.1 J	760	760	86	L.	30.6	
	1,2,3,7,8-PeCDF	NA-TRND-SO12-01	ng/kg	0.2	34.3	760	760	86		30.6	
	1,2,3,7,8-PeCDF	NA-TRND-SO13-01	ng/kg	0.1	23.5	760	760	86			
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO14-01	ng/kg		3.8 J	760	760	86			
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO15-01	ng/kg	0.2	17.1	760	760	86	86		
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO16-01	ng/kg	0.3	20.4	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO17-01	ng/kg	0.4	5	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO18-01	ng/kg	0.3	9.7	760	760	86	86	30.6	
	1,2,3,7,8-PeCDF	NA-TRND-SO19-01	ng/kg	0.4	9.7	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO20-01	ng/kg	0.6	23.8	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO21-01	ng/kg		4.6 J	760	760	86	86	30.6	
	1,2,3,7,8-PeCDF	NA-TRND-SO22-01	ng/kg	0.3	7.1	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO23-01	ng/kg	0.3	14.9	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO24-31	ng/kg	0.4	6.4	760	. 760	86	86	30.6	
	1,2,3,7,8-PeCDF	NA-TRND-SO25-01	ng/kg		2.9 J	760	760	86	86	30.6	
	1,2,3,7,8-PeCDF	NA-TRND-SO26-01	ng/kg	0.5	31.6	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO27-01	ng/kg		10.8 Ĵ	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO28-01	ng/kg	0.1	7.8	760	760	86	_	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO29-01	ng/kg	0.1	9.3	760	760	86		30.6	747
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO30-01	ng/kg	0.8	1.3 J	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO31-01	ng/kg	0.9	7.3	760	760	86			
SW8290	1,2,3,7,8-PeCDF		ng/kg	0.4	$\overline{}$	760	760	86	86	30.6	
SW8290	1,2,3,7,8-PeCDF		ng/kg	0.6	11.2	760	760	86	86	30.6	7.70
SW8290	2,3,4,6,7,8-HxCDF		ng/kg	0.1	54.8 J	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO02-01	ng/kg	0.2	120	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO03-01	ng/kg	0.2	75.4	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF		ng/kg	1	562	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF		ng/kg	4.8	282	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF		ng/kg	0.3	494	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF		ng/kg	0.5	106	380	380	43	43	101	
	2,3,4,6,7,8-HxCDF	NA-TRND-SO08-01	ng/kg	0.8	377	380	380	43	43	101	
	2,3,4,6,7,8-HxCDF	NA-TRND-SO09-01	ng/kg	0.2	387	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO10-01	ng/kg	0.7	248	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO11-01	ng/kg	0.9	30.4	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO12-01	ng/kg	0.3	113	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO13-01	ng/kg	0.3	87.4	380	380	43	43	101	
	2,3,4,6,7,8-HxCDF		ng/kg	0.3	22.2	380	380	43	43	101	

						Indu	strial	Doció	lential	Poforono	Means Comparison Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO15-01	ng/kg	0.3	48.5	380	380	43	43		
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO16-01	ng/kg	0.5	70.8	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO17-01	ng/kg	0.7	9.4	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO18-01	ng/kg	0.4	21.2	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO19-01	ng/kg	0.6	22.6	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO20-01	ng/kg	1	77.7	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO21-01	ng/kg	0.3	13.6	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO22-01	ng/kg	0.4	42.6	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO23-01	ng/kg	0.3	63.5	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO24-31	ng/kg	0.6	19.8	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO25-01	ng/kg	0.7	7.8	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO26-01	ng/kg	0.7	105	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO27-01	ng/kg	1	45.6	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO28-01	ng/kg	0.1	48.3	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-S029-01	ng/kg	0.1	32.9	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SQ30-01	ng/kg	1.3	6.2	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO31-01	ng/kg	1.2	22	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO32-01	ng/kg	0.6	35.4	380	380	43	43	101	
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-SO33-01	ng/kg	0.8	42.6	380	380	43	43	101	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO01-01	ng/kg	0.09	23.7	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO02-01	ng/kg	0.05	38.2	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO03-01	ng/kg	0.1	36	76	76	8.6	8.6	37.4	
78290	2,3,4,7,8-PeCDF	NA-TRND-S004-31	ng/kg	0.7	302	76	76	8.6	8.6	37.4	
s W8290	2,3,4,7,8-PeCDF	NA-TRND-S005-01	ng/kg	3.7	122	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO06-01	ng/kg	0.2	311	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S007-01	ng/kg	0.3	50.9	.76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO08-01	ng/kg	0.6	169	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO09-01	ng/kg	0.2	175	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO10-01	ng/kg	0.5	119	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S011-01	ng/kg	0.7	7.1	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO12-01	ng/kg	0.2	48	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO13-01	ng/kg	0.2	36.3	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF	NA-TRND-SO14-01		0.2	7.8	76	76	8.6	8.6		
SW8290	2,3,4,7,8-PeCDF	* 1	ng/kg	0.2	25.8	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF		ng/kg	0.3	33.4	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF		ng/kg	0.4	6.9	76	76	8.6	8.6	37.4	
··	2,3,4,7,8-PeCDF		ng/kg	0.4	10	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF		ng/kg	0.3	9.6	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF	NA-TRND-SO20-01	ng/kg	0.6	34.8	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF	NA-TRND-S021-01	ng/kg	0.0	6.7	76	76	8.6	8.6	37.4	
-	2,3,4,7,8-PeCDF		ng/kg	0.2	13.5	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF		ng/kg	0.3	25	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF		ng/kg	0.5	9.1	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF		ng/kg	_	3.3 J	76	76	8.6	8.6	37.4	
SW8290	2,3,4,7,8-PeCDF	· · · · · · · · · · · · · · · · · · ·	ng/kg	0.5	49.4	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF		ng/kg	0.9	20	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF		ng/kg	0.5	16.6	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF		ng/kg	0.1	14	76	76	8.6	8.6	37.4	
	2,3,4,7,8-PeCDF	-	ng/kg		2.1 J	76	76	8.6	8.6	37.4	

	· -										Means Compariso Conclusion
						Indu	strial	Resid	lential	Reference	Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO31-01	ng/kg	0.9	9.9	76		8.6	8.6	37.4	NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO32-01	ng/kg	0.4	12.2	76		. 8.6	8.6	37.4	NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO33-01	ng/kg	0.6	16.9	76		8.6	8.6	37.4	NS
SW8290	2,3,7,8-TCDD	NA-TRND-SO01-01	ng/kg	0.09	1.3	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TRND-SO02-01	ng/kg	0.1	1.8	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TRND-SO03-01	ng/kg	0.09	1.5	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TRND-SO04-31	ng/kg	0.6	23.5	38	38	4.3	4.3	2.4	NS
SW8290 .	2,3,7,8-TCDD	NA-TRND-SO05-01	ng/kg	3.2	11	38	38	4.3	4.3	2.4	NS
	2,3,7,8-TCDD	NA-TRND-SO06-01	ng/kg	0.2	15.7	38	38	4.3	4.3	2.4	NS
	2,3,7,8-TCDD	NA-TRND-SO07-01	ng/kg	0.3	2.2	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TRND-SO08-01	ng/kg	0.5	6	38	38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TRND-SO09-01	ng/kg	0.2	7.4	38	. 38	4.3	4.3	2.4	NS
SW8290	2,3,7,8-TCDD	NA-TRND-SO10-01	ng/kg	0.4	5.6	38	38	4.3	4.3	2.4	NS
-	2,3,7,8-TCDD	NA-TRND-SO11-01	ng/kg	0.5	ND	38	38	4.3	4.3		NS
	2,3,7,8-TCDD	NA-TRND-SO12-01	ng/kg	0.2	2.3	38	38	4.3	4.3		NS
	2,3,7,8-TCDD	NA-TRND-SO13-01	ng/kg	0.1	2.2	38	38	4.3	4.3		NS
	2,3,7,8-TCDD	NA-TRND-SO14-01	ng/kg		0.5 J	38	38	4.3	4.3		NS
	2,3,7,8-TCDD	NA-TRND-SO15-01	ng/kg	0.2	1.2	38	38	4.3	4.3		NS
	2,3,7,8-TCDD	NA-TRND-SO16-01	ng/kg	0.2		38	38	4.3	4.3	· ·	NS
	2,3,7,8-TCDD	NA-TRND-SO17-01	ng/kg		0.61 J	38	38	4.3		1	NS
	2,3,7,8-TCDD	NA-TRND-SO18-01	ng/kg		0.62 J	38	38	4.3			NS
	2,3,7,8-TCDD	NA-TRND-SO19-01	ng/kg		0.74 J	38	38	4.3			NS .
	2,3,7,8-TCDD	NA-TRND-SO20-01	ng/kg	0.4	1.7	38	38	4.3			NS
	2,3,7,8-TCDD	NA-TRND-SO21-01	ng/kg		0.49 J	38	38	4.3		·	NS
	2,3,7,8-TCDD	NA-TRND-SO22-01	ng/kg		0.68 J	38	38	4.3			NS
	2,3,7,8-TCDD	NA-TRND-SO23-01	ng/kg	0.2	1.5	38	38	4.3			NS
	2,3,7,8-TCDD	NA-TRND-SO24-31	ng/kg		0.71 J	38	38	4.3	4.3		NS
	2,3,7,8-TCDD	NA-TRND-SO25-01	ng/kg		0.42 J	38	38	4.3			NS
	2,3,7,8-TCDD	NA-TRND-SO26-01	ng/kg	0.4		38	38	4.3	4.3		NS
	2,3,7,8-TCDD	NA-TRND-SO27-01	ng/kg	0.6		38	38	4.3	4.3	I	NS
	2,3,7,8-TCDD	NA-TRND-SO28-01	ng/kg		0.65 J	38	38	4.3	4.3	<u> </u>	NS
	2,3,7,8-TCDD	NA-TRND-SO29-01	ng/kg		0.72 J	38	38	4.3	1		NS
	2,3,7,8-TCDD		ng/kg		ND	38					NS
	2,3,7,8-TCDD		ng/kg		ND	38					NS
	2,3,7,8-TCDD	NA-TRND-SO32-01	ng/kg		0.56 J	38		4.3			NS
	2,3,7,8-TCDD	NA-TRND-SO33-01	ng/kg		0.92 J	38	38	4.3			NS
	2,3,7,8-TCDF	NA-TRND-SO01-01	ng/kg	0.5		380		43			
	2,3,7,8-TCDF	NA-TRND-SO02-01	ng/kg	0.5		380		43			
	2,3,7,8-TCDF	NA-TRND-SO03-01	ng/kg	1		380		43			
	2,3,7,8-TCDF										
	2,3,7,8-TCDF	NA-TRND-SO04-31 NA-TRND-SO05-01	ng/kg ng/kg	1.9 3.4		380 380		43 43			
				_							NS
	2,3,7,8-TCDF	NA-TRND-\$006-01	ng/kg	0.6				43			NS
	2,3,7,8-TCDF	NA-TRND-SO07-01	ng/kg	1 1 4		380		43			******
	2,3,7,8-TCDF	NA-TRND-SO08-01	ng/kg	1.4		380		43			
	2,3,7,8-TCDF	NA-TRND-SO09-01	ng/kg	5.9		380		43			
	2,3,7,8-TCDF	NA-TRND-SO10-01	ng/kg	1.3		380					
	2,3,7,8-TCDF	NA-TRND-SO11-01	ng/kg	0.3		380		43			
	2,3,7,8-TCDF	NA-TRND-SO12-01	ng/kg			380				<u> </u>	NS
SW8290	2,3,7,8-TCDF	NA-TRND-S013-01	ng/kg	1.3	15.6	380	380	43	43	32.8	INS

						T- 3	strial	10 2-3	lential		Means Comparison Conclusion
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL		Reference vs.
SW8290	2,3,7,8-TCDF	NA-TRND-SO14-01	ng/kg	1.4	2.9	380	380	43	43	UTL 32.8	Site
SW8290	2,3,7,8-TCDF	NA-TRND-SO15-01	ng/kg	1.4		380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO16-01	ng/kg	1.1	13.3	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO17-01	ng/kg	0.9	4.2	380	380	43	43		····
SW8290	2,3,7,8-TCDF	NA-TRND-SO18-01	+	1.2	6.3	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-S019-01	ng/kg ng/kg	1.1	7.1	380	380	43	43	32.8 32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO20-01	ng/kg	3.1	15.4	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO21-01	ng/kg	0.8	3.8	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-S022-01	ng/kg	2.1	4.9	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO23-01	ng/kg	3	10.4	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-S023-01	ng/kg	0.8	6.2	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO25-01	ng/kg	0.4	2.1	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-S025-01	ng/kg	0.4	24.1	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO27-01	ng/kg	0.8	6.8	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO28-01	ng/kg	0.5	6	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO29-01	ng/kg	0.7	7.4	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO30-01	ng/kg	0.7	1.5	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO31-01	ng/kg	0.4	6.5	380	380	43	43	32.8	
	2,3,7,8-TCDF	NA-TRND-SQ32-01	ng/kg	2.2	4.8	380	380	43	43	32.8	
SW8290	2,3,7,8-TCDF	NA-TRND-SO33-01	ng/kg	0.7	9.7	380	380	43	43	32.8	
SW8290	Total HpCDD	NA-TRND-S001-01	ng/kg	0.7	300	360	360			488	
SW8290	Total HpCDD	NA-TRND-SO02-01	ng/kg	0.2	594	-		•		488	
18290	Total HpCDD	NA-TRND-SO03-01	ng/kg	0.3	587		•	•	- 1	488	
s W8290	Total HpCDD	NA-TRND-SO04-31	ng/kg		8360 J	•	•			488	
SW8290	Total HpCDD	NA-TRND-SO05-01	ng/kg	9.1	1930	<u> </u>	•	•	•	488	
SW8290	Total HpCDD	NA-TRND-SO06-01	ng/kg	0.4	1920	•	•	•	•	488	
SW8290	Total HpCDD	NA-TRND-SO07-01	ng/kg	0.8	598	-	·		-	488	
SW8290	Total HpCDD	NA-TRND-SO08-01	ng/kg	1.7	2760	•	•	-		488	
SW8290	Total HpCDD	NA-TRND-S009-01	ng/kg	0.4	2640	<u>-</u>	•	•		488	
SW8290	Total HpCDD	· 	ng/kg	1.6	1630	•	•	•		488	
SW8290	Total HpCDD	h.	ng/kg	2.1	142	•	•	·	·	488	
SW8290	Total HpCDD		ng/kg	0.4	672	•	-	<u>-</u>	•	488	
	Total HpCDD		ng/kg	0.7	630	•	-		<u> </u>	488	
	Total HpCDD	T	ng/kg	0.4	201	-	·		•	488	
SW8290	Total HpCDD		ng/kg	0.5	290	-			•	488	
SW8290	Total HpCDD	 	ng/kg	1	333	-	•		-	488	
SW8290	Total HpCDD		ng/kg	1.5	141	-			-	488	
SW8290	Total HpCDD		ng/kg	0.8	177				-	488	
SW8290	Total HpCDD		ng/kg	1.3	240					488	
SW8290	Total HpCDD		ng/kg	2.2	560				-	488	
SW8290	Total HpCDD		ng/kg	0.5	224			·	-	488	
SW8290	Total HpCDD		ng/kg	0.5	327		<u> </u>		-	488	
SW8290	Total HpCDD		ng/kg	0.5	439	-				488	
SW8290	Total HpCDD	· • · · · · · · · · · · · · · · · · · ·	ng/kg	1	154					488	
SW8290	Total HpCDD	 	ng/kg	1.4	42.1	.		-		488	
	Total HpCDD	· · · · · · · · · · · · · · · · · · ·	ng/kg	1.5	647				-	488	
	Total HpCDD		ng/kg	2.2	162					488	
	Total HpCDD		ng/kg	0.2	174	. 			·	488	
	Total HpCDD	· · · · · · · · · · · · · · · · · · ·	ng/kg	0.2	188	·	.	·		488	

											Means Comparison
							strial		lential	Reference	1
Method	Analyte	Sample ID	+	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
SW8290	Total HpCDD	NA-TRND-SO30-01	ng/kg	2.8	201					488	
SW8290	Total HpCDD		ng/kg	2.7	152	-	<u>. </u>			488	
SW8290	Total HpCDD		ng/kg	0.9	195			-		488	
SW8290	Total HpCDD		ng/kg	1.8	316	-				488	
SW8290	Total HpCDF	NA-TRND-SO01-01	ng/kg	0.2	254	<u> </u>	ļ	-		487	
SW8290	Total HpCDF		ng/kg	0.2	596	ļ		-		487	<u> </u>
SW8290	Total HpCDF		ng/kg	0.2	445	<u>l </u>	<u> </u>].		487	1
SW8290	Total HpCDF		ng/kg	1.2	4480 J		-		<u>.</u>	487	S
SW8290	Total HpCDF	NA-TRND-SO05-01	ng/kg	5.7	1540				J	487	S
SW8290	Total HpCDF	NA-TRND-SO06-01	ng/kg	0.3	4760 J	ļ				487	S
SW8290	Total HpCDF	NA-TRND-SO07-01	ng/kg	0.6	635					487	S
SW8290	Total HpCDF	NA-TRND-SO08-01	ng/kg	1.1	1980					487	S
SW8290	Total HpCDF	NA-TRND-SO09-01	ng/kg	0.3	1880			1.		487	S
SW8290	Total HpCDF	NA-TRND-SO10-01	ng/kg	1	1560		ļ. — —	1.		487	s
SW8290	Total HpCDF		ng/kg	1.4	181					487	
SW8290	Total HpCDF		ng/kg	0.3	486			1.	_	487	
SW8290	Total HpCDF		ng/kg	0.5	418			İ		487	
	Total HpCDF	NA-TRND-SO14-01	ng/kg	0.3	123				<u> </u>	487	
	Total HpCDF	NA-TRND-SO15-01	ng/kg	0.4	201	i. —		<u> </u>		487	
	Total HpCDF	NA-TRND-SO16-01	ng/kg	0.7	273			<u>-</u>		487	
	Total HpCDF	NA-TRND-SO17-01	ng/kg	0.9	83.4			 		487	
	Total HpCDF	NA-TRND-SO18-01	ng/kg	0.5	104		<u> </u>	<u> </u>		487	1
	Total HpCDF	NA-TRND-SO19-01	ng/kg	1	137			 	<u> </u>	487	
	Total HpCDF	NA-TRND-SO20-01	ng/kg	1.4	624	<u> </u>	'	 	-	487	
	Total HpCDF		ng/kg	0.4	141		·	'	•	487	
	Total HpCDF		ng/kg	0.4	262		<u> </u>			487	
	Total HpCDF		ng/kg	0.4	282		·	<u> </u>		487	
	Total HpCDF		ng/kg	0.8	110	•			·	487	
	Total HpCDF		ng/kg	1.1	37.6			-	•	487	
	Total HpCDF		ng/kg	1	445	i•	<u>•</u>	 • • • • • • • • • • • • • • • • • • •	•	487	
	Total HpCDF		ng/kg	1.6	168				<u> </u>	487	
	Total HpCDF		ng/kg	0.1	173		<u> • </u>	•	-	487	
		NA-TRND-SO29-01	ng/kg	0.1	146	<u>-</u>	·	-	·		
		-		1.8	126			·	•	487	
	Total HpCDF		ng/kg				<u> </u>	<u> </u>	-	487	
	Total HpCDF		ng/kg	1.7	107		·	-	-	487	
			ng/kg	0.7	164	<u>·</u>	·	l-	ļ:	487	
	Total HpCDF		ng/kg	1.2	229	-	·	•	ļ	487	
	Total HxCDD		ng/kg	0.2	262				•	362	
	Total HxCDD		ng/kg	0.2	427				-	362	
	Total HxCDD		ng/kg	0.2	450	<u> </u>		-	·	362	
	Total HxCDD		ng/kg	1.3	4260			-	ŀ	362	
	Total HxCDD		ng/kg	7.4	1630			<u> </u>	-	362	
	Total HxCDD		ng/kg	0.4	2130			<u> -</u>		362	
	Total HxCDD		ng/kg	0.6	511	<u> </u>		<u> </u>	ļ <u>.</u>	362	
	Total HxCDD		ng/kg	1.2	1950			<u> -</u>		362	
	Total HxCDD		ng/kg	0.3	1910					362	
	Total HxCDD		ng/kg	1	1190			<u> </u>		362	S
	Total HxCDD		ng/kg	1.3	90					362	S
SW8290	Total HxCDD	NA-TRND-SO12-01	ng/kg	0.3	496			ļ	[.	362	

Method								strial		lential	Reference	Means Comparison Conclusion Reference vs.
SW8290 Total HxCDD					MDL	Result	RBC	RBSL	RBC	RBSL		Site
SW8290 Total HACDD					0.4							
SW8290 Total HxCDD				ng/kg	0.4				•		362	S
SW8290 Total HxCDD NA-TRND-SO18-01 ng/kg 0.0 125				+								
SW8290 Total HxCDD		1			0.7							
SW8290 Total HxCDD NA-TRND-SO20-01 ng/kg 0.9 143 362 S S S S S S S S S			•				ļ					
SW8290 Total HxCDD NA-TRND-SO20-01 ng/kg 1.5 407 362 S S S S S S S S S		III			0.6					<u>. </u>	li .	
SW8290 Total HxCDD NA-TRND-SO21-01 ng/kg 0.4 98.7 362 S S S S S S S S S				ng/kg	0.9					•		
SW8290 Total HxCDD NA-TRND-SO22-01 ng/kg 0.4 153 362 SW8290 Total HxCDD NA-TRND-SO23-01 ng/kg 0.4 327 362 SW8290 Total HxCDD NA-TRND-SO23-01 ng/kg 0.9 115 362 SW8290 Total HxCDD NA-TRND-SO23-01 ng/kg 0.9 151 362 SW8290 Total HxCDD NA-TRND-SO23-01 ng/kg 0.9 151 362 SW8290 Total HxCDD NA-TRND-SO23-01 ng/kg 0.9 481 362 SW8290 Total HxCDD NA-TRND-SO27-01 ng/kg 1.5 161 362 SW8290 Total HxCDD NA-TRND-SO27-01 ng/kg 1.5 161 362 SW8290 Total HxCDD NA-TRND-SO29-01 ng/kg 0.2 148 362 SW8290 Total HxCDD NA-TRND-SO29-01 ng/kg 0.2 148 362 SW8290 Total HxCDD NA-TRND-SO39-01 ng/kg 0.2 146 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 1.9 47.6 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 1.9 47.6 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 1.9 47.6 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 1.9 122 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 1.9 123 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 1.9 123 363 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.8 143 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.1 347 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.1 347 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.1 347 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.2 476 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.2 476 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.9 4020 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.9 4020 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.9 4020 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.0 4020 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.0 4020 S335 SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.0 4020 S335 SW8290 Total HxCDF NA-TRND-SO10-01 ng/kg 0.0 4020 S335 SW8290 Tot			NA-TRND-SO20-01	ng/kg	1.5					•		L
SW8290 Total HxCDD NA-TRND-SO23-01 ng/kg 0.4 327 362 S		I	NA-TRND-SO21-01	ng/kg	0.4	98.7					362	S
SW8290 Total HxCDD NA-TRND-SO24-31 ng/kg 0.9 115 362 S SW8290 Total HxCDD NA-TRND-SO25-01 ng/kg 0.9 51.9 362 S SW8290 Total HxCDD NA-TRND-SO25-01 ng/kg 0.9 481 362 S SW8290 Total HxCDD NA-TRND-SO26-01 ng/kg 0.9 481 362 S SW8290 Total HxCDD NA-TRND-SO27-01 ng/kg 0.2 148 362 S SW8290 Total HxCDD NA-TRND-SO28-01 ng/kg 0.2 148 362 S SW8290 Total HxCDD NA-TRND-SO29-01 ng/kg 0.2 148 362 S SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.2 148 362 S SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.2 148 362 S SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.2 143 362 S SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.8 143 362 S SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.8 143 362 S SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 0.1 347 533 NS S SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.1 347 533 NS S SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.2 483 535 NS S SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.2 476 535 NS S SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.2 476 535 NS S SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.2 4320 535 NS S S SW8290 Total HxCDF NA-TRND-SO00-01 ng/kg 0.2 4320 535 NS S S S S S S S S S S S S S S S S S	SW8290	Total HxCDD	NA-TRND-SO22-01	ng/kg	0.4	153					362	S
SW8290 Total HxCDD NA-TRND-SO25-01 ng/kg 0.9 51.9 362 S SW8290 Total HxCDD NA-TRND-SO25-01 ng/kg 0.9 481 362 S S S S S S S S S	SW8290	Total HxCDD	NA-TRND-SO23-01	ng/kg	0.4	327					362	S
SW8290 Total HxCDD NA-TRND-SO26-01 ng/kg 0.9 481	SW8290	Total HxCDD	NA-TRND-SO24-31	ng/kg	0.9	115	•				362	S
SW8290	SW8290	Total HxCDD	NA-TRND-SO25-01	ng/kg	0.9	51.9					362	S
SW8290 Total HxCDD NA-TRND-SO27-01 ng/kg 0.2 148 362 SW8290 Total HxCDD NA-TRND-SO28-01 ng/kg 0.2 148 362 SW8290 Total HxCDD NA-TRND-SO29-01 ng/kg 0.2 166 362 SW8290 Total HxCDD NA-TRND-SO30-01 ng/kg 1.9 47.6 362 SW8290 Total HxCDD NA-TRND-SO31-01 ng/kg 1.9 47.6 362 SW8290 Total HxCDD NA-TRND-SO31-01 ng/kg 1.9 122 362 SW8290 Total HxCDD NA-TRND-SO31-01 ng/kg 1.9 122 362 SW8290 Total HxCDD NA-TRND-SO31-01 ng/kg 1.3 238 362 SW8290 Total HxCDD NA-TRND-SO31-01 ng/kg 0.1 347 353 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.1 347 353 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.2 683 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.2 683 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.2 476 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.9 4020 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.9 4020 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.9 4020 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.9 4020 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.4 711 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.4 711 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.4 711 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.8 2260 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.8 2260 535 NS SW8290 Total HxCDF NA-TRND-SO01-01 ng/kg 0.8 2260 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.8 2260 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.6 1630 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.6 1630 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.5 485 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.7 27.9 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.7	SW8290	Total HxCDD	NA-TRND-SO26-01	ng/kg	0.9	481					362	S
SW8290 Total HxCDD NA-TRND-SO28-01 ng/kg 0.2 148 362 S S S S S S S S S	SW8290	Total HxCDD	NA-TRND-SO27-01		1.5	161						
SW8290 Total HxCDD NA-TRND-SO29-01 ng/kg 1.9 47.6 362 S S S S S S S S S	SW8290	Total HxCDD	NA-TRND-SO28-01		0.2	148						
SW8290	SW8290	Total HxCDD			0.2	166						
SW8290 Total HxCDD NA-TRND-SO31-01 ng/kg 1.9 122	SW8290	Total HxCDD				47.6						
SW8290 Total HxCDD NA-TRND-SO32-01 ng/kg 0.8 143	SW8290	Total HxCDD	NA-TRND-SO31-01			122						
SW8290 Total HxCDD	SW8290	Total HxCDD			0.8	143						
Total HxCDF									_			
Reg Total HxCDF												
SW8290 Total HxCDF NA-TRND-S003-01 ng/kg 0.2 476								-				
SW8290 Total HxCDF NA-TRND-SO04-31 ng/kg 0.9 4020 . 535 NS SW8290 Total HxCDF NA-TRND-SO05-01 ng/kg 4.6 1870 . 535 NS SW8290 Total HxCDF NA-TRND-SO06-01 ng/kg 0.2 4320 . 535 NS SW8290 Total HxCDF NA-TRND-SO07-01 ng/kg 0.4 711 . 535 NS SW8290 Total HxCDF NA-TRND-SO08-01 ng/kg 0.4 711 . 535 NS SW8290 Total HxCDF NA-TRND-SO09-01 ng/kg 0.4 711 . 535 NS SW8290 Total HxCDF NA-TRND-SO10-01 ng/kg 0.4 711 . 535 NS SW8290 Total HxCDF NA-TRND-SO10-01 ng/kg 0.6 1630 . 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 . 535								_		_		
SW8290 Total HxCDF NA-TRND-SO05-01 ng/kg 4.6 1870 535 NS SW8290 Total HxCDF NA-TRND-SO06-01 ng/kg 0.2 4320 535 NS SW8290 Total HxCDF NA-TRND-SO08-01 ng/kg 0.4 711 535 NS SW8290 Total HxCDF NA-TRND-SO09-01 ng/kg 0.8 2260 535 NS SW8290 Total HxCDF NA-TRND-SO010-01 ng/kg 0.6 1630 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 535 NS SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.9 148 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.3 686 535 NS SW8290 Total HxCDF NA-T		·	 									
SW8290 Total HxCDF NA-TRND-SO06-01 ng/kg 0.2 4320 . 535 NS SW8290 Total HxCDF NA-TRND-SO07-01 ng/kg 0.4 711 . . 535 NS SW8290 Total HxCDF NA-TRND-SO08-01 ng/kg 0.8 2260 . . 535 NS SW8290 Total HxCDF NA-TRND-SO09-01 ng/kg 0.2 2240 . . 535 NS SW8290 Total HxCDF NA-TRND-SO10-01 ng/kg 0.6 1630 . . 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 . . 535 NS SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.9 148 . . 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.2 509 . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.3 320 . .							_					
SW8290 Total HxCDF NA-TRND-SO07-01 ng/kg 0.4 711 . 535 NS SW8290 Total HxCDF NA-TRND-SO08-01 ng/kg 0.8 2260 . 535 NS SW8290 Total HxCDF NA-TRND-SO09-01 ng/kg 0.6 1630 . 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 . 535 NS SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.9 148 . 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.3 686 . 535 NS SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.2 509 . 535 NS SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . 535		<u> </u>										
SW8290 Total HxCDF NA-TRND-SO08-01 ng/kg 0.8 2260 . 535 NS SW8290 Total HxCDF NA-TRND-SO09-01 ng/kg 0.2 2240 . . 535 NS SW8290 Total HxCDF NA-TRND-SO10-01 ng/kg 0.6 1630 . . 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 . . 535 NS SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.3 686 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.2 509 . . 535 NS SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.3 134 . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.3 320 . . 535 NS SW8290 Tota			1							-		
SW8290 Total HxCDF NA-TRND-SO09-01 ng/kg 0.2 2240 . 535 NS SW8290 Total HxCDF NA-TRND-SO10-01 ng/kg 0.6 1630 . . 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 . . 535 NS SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.3 686 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.2 509 . . 535 NS SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.3 134 . . 535 NS SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . . 535 NS SW8290 Total										<u> </u>		
SW8290 Total HxCDF NA-TRND-SO10-01 ng/kg 0.6 1630 . 535 NS SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 . 535 NS SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.3 686 . . 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.2 509 . . 535 NS SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.3 134 . . 535 NS SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.7 27.9 . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-0									•			
SW8290 Total HxCDF NA-TRND-SO11-01 ng/kg 0.9 148 535 NS SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.3 686 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.2 509 535 NS SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.3 134 535 NS SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 535 NS SW8290 Total HxCDF NA-TRND-SO17-01 ng/kg 0.7 27.9 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 535 NS SW8290 Total HxCDF NA-TRND-SO19-01 ng/kg 0.6 167 535 NS SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 0.3								•	•	•		
SW8290 Total HxCDF NA-TRND-SO12-01 ng/kg 0.3 686 . 535 NS SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.2 509 . . 535 NS SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.3 134 . . 535 NS SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO17-01 ng/kg 0.5 485 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.7 27.9 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 							•	·	·	•		
SW8290 Total HxCDF NA-TRND-SO13-01 ng/kg 0.2 509 . 535 NS SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.3 134 . . 535 NS SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO17-01 ng/kg 0.7 27.9 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 . . 535 NS SW8290 Total HxCDF NA-TRND-SO19-01 ng/kg 0.6 167 . . 535 NS SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 0.6 167 . . . 535 NS			1				·	•				
SW8290 Total HxCDF NA-TRND-SO14-01 ng/kg 0.3 134 . . 535 NS SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . . 535 NS SW8290 Total HxCDF NA-TRND-SO17-01 ng/kg 0.7 27.9 . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 . . 535 NS SW8290 Total HxCDF NA-TRND-SO19-01 ng/kg 0.6 167 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 0.6 167 <						-	_	·				
SW8290 Total HxCDF NA-TRND-SO15-01 ng/kg 0.3 320 . . 535 NS SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO17-01 ng/kg 0.7 27.9 . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 . . 535 NS SW8290 Total HxCDF NA-TRND-SO19-01 ng/kg 0.6 167 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 0.6 167 535 NS SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 0.3 114 <								•	•			
SW8290 Total HxCDF NA-TRND-SO16-01 ng/kg 0.5 485 . . 535 NS SW8290 Total HxCDF NA-TRND-SO17-01 ng/kg 0.7 27.9 . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 . . 535 NS SW8290 Total HxCDF NA-TRND-SO19-01 ng/kg 0.6 167 . . 535 NS SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 1 565 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO21-01 ng/kg 0.3 114 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO22-01 ng/kg 0.3 266 535 NS SW8290 Total HxCDF NA-TRND-SO23-01 ng/kg 0.6 118 . . . <							·	•	•	•		
SW8290 Total HxCDF NA-TRND-SO17-01 ng/kg 0.7 27.9 . . 535 NS SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO19-01 ng/kg 0.6 167 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 0.3 114 535 NS SW8290 Total HxCDF NA-TRND-SO22-01 ng/kg 0.3 266 535 NS SW8290 Total HxCDF NA-TRND-SO23-01 ng/kg 0.3 347 . <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td></td><td></td></td<>								•	•			
SW8290 Total HxCDF NA-TRND-SO18-01 ng/kg 0.4 147 .								•		•		
SW8290 Total HxCDF NA-TRND-SO19-01 ng/kg 0.6 167 .							-	•	•	•		
SW8290 Total HxCDF NA-TRND-SO20-01 ng/kg 1 565 . . 535 NS SW8290 Total HxCDF NA-TRND-SO21-01 ng/kg 0.3 114 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO22-01 ng/kg 0.3 266 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO23-01 ng/kg 0.3 347 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO24-31 ng/kg 0.6 118 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO25-01 ng/kg 0.6 45.9 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO26-01 ng/kg 0.6 637 . . . 535 NS		· ·					-	•	•	-		
SW8290 Total HxCDF NA-TRND-SO21-01 ng/kg 0.3 114 .							<u>. </u>	•	•			
SW8290 Total HxCDF NA-TRND-SO22-01 ng/kg 0.3 266 . . 535 NS SW8290 Total HxCDF NA-TRND-SO23-01 ng/kg 0.3 347 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO24-31 ng/kg 0.6 118 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO25-01 ng/kg 0.6 45.9 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO26-01 ng/kg 0.6 637 . . . 535 NS							:	•	-	<u>-</u>		
SW8290 Total HxCDF NA-TRND-SO23-01 ng/kg 0.3 347 .							•	•		•		
SW8290 Total HxCDF NA-TRND-SO24-31 ng/kg 0.6 118 . . 535 NS SW8290 Total HxCDF NA-TRND-SO25-01 ng/kg 0.6 45.9 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO26-01 ng/kg 0.6 637 . . 535 NS							-	•	•	-		
SW8290 Total HxCDF NA-TRND-SO25-01 ng/kg 0.6 45.9 . . . 535 NS SW8290 Total HxCDF NA-TRND-SO26-01 ng/kg 0.6 637 . . 535 NS							-	•	-	•		
SW8290 Total HxCDF NA-TRND-SO26-01 ng/kg 0.6 637							•	-	-			
							•	·		•		
PRODUCTION 1000 100								·		<u> </u>		
3290 Total HxCDF NA-TRND-SO28-01 ng/kg 0.1 258							•	·	•	•		

						Indu	strial	Resid	lential	Reference	Means Compariso Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Total HxCDF	NA-TRND-SO29-01	ng/kg	0.1	 		i.			535	
	Total HxCDF		ng/kg	1.2						535	
	Total HxCDF		ng/kg	1.2		ļ				535	
	Total HxCDF	 	ng/kg	0.6						535	
	Total HxCDF		ng/kg	0.7	257					535	
	Total PeCDD	····	ng/kg	0.1				l		205	
	Total PeCDD		ng/kg	0.2						205	
	Total PeCDD		ng/kg	0.2		<u>. </u>			<u>. </u>	205	
	Total PeCDD		ng/kg	0.9					Í	205	
	Total PeCDD		ng/kg	6.1	984	•		-	-	205	
	Total PeCDD		ng/kg	0.2		<u> </u>	•	-	-	205	
	Total PeCDD		ng/kg	0.4	+			-	 	205	
	Total PeCDD	 	ng/kg	0.9		<u>. </u>	<u> </u>	ļ	[205	
	Total PeCDD		ng/kg	0.4			Ė	<u>.</u>	-	205	
	Total PeCDD	· · · · · · · · · · · · · · · · · · ·	ng/kg	0.8		-	1-	-	-	205	4
	Total PeCDD	•	ng/kg	0.9		-		-	•	205	
	Total PeCDD		ng/kg	0.3			•		·	205	
	Total PeCDD		ng/kg	0.2		 	 	•	-	205	
	Total PeCDD	 	ng/kg	0.3			-		·	205	
	Total PeCDD		ng/kg	0.3		 	 		·	205	
	Total PeCDD		ng/kg	0.3		-	<u>-</u>		 	205	
	Total PeCDD		ng/kg	0.5		-	•	-	-	205	L.
	Total PeCDD	 	ng/kg	0.3			-		<u> </u>	205	
	Total PeCDD	 	ng/kg	0.4			•			205	
	Total PeCDD		ng/kg	0.0		 			-	205	
	Total PeCDD		ng/kg	0.3		 	<u> </u>		-	205	
	Total PeCDD		ng/kg	0.3		 	<u> </u>		-	205	
	Total PeCDD		ng/kg	0.4		 		·	-	205	
	Total PeCDD		ng/kg	0.3	ļ	-	•	-	 	205	
	Total PeCDD		ng/kg	0.7		 	 	·	·	205	
	Total PeCDD			0.7			- -	· -	 	205	
	Total PeCDD		ng/kg	1.4		1	·	ŀ	·	205	
	Total PeCDD	NA-TRND-SO27-01	ng/kg						ļ.		
	Total PeCDD						•		 	205	
	Total PeCDD	NA-TRND-SO29-01		0.1			·	·	·	205	
	Total PeCDD		ng/kg	1.2			-		ļ:	205	
			ng/kg	1.4				<u> -</u>	 	205	
	Total PeCDD Total PeCDD		ng/kg	0.6	•		•	 	<u> </u>	205	
	 		ng/kg	1			-	 	-	205	
	Total PeCDF		ng/kg	0.09				 	-	608	
	Total PeCDF	T	ng/kg	0.1				<u> -</u>	-	608	
	Total PeCDF		ng/kg	0.1			-	<u> </u>	ļ		NS
	Total PeCDF		ng/kg	0.7			·	<u> </u>	-	608	
	Total PeCDF		ng/kg	3.7			ļ	<u> </u>	·	608	
	Total PeCDF		ng/kg	0.2				<u> -</u>		608	
	Total PeCDF	· · · · · · · · · · · · · · · · · · ·	ng/kg	0.3			-	<u> </u>		608	
	Total PeCDF		ng/kg	0.6			<u> -</u>	<u> </u>			NS
	Total PeCDF	****	ng/kg	0.2				ļ	.	608	
-	Total PeCDF		ng/kg	0.5				<u> -</u>		608	
SW8290	Total PeCDF	NA-TRND-SO11-01	ng/kg	0.6	92.7	<u> -</u>	ļ <u>. </u>	ļ.].	608	NS

5											Means
,				}							Comparison
								.		-	Conclusion
Method	Analyte	Sample ID	T Ton Salar	MDL	Result	RBC	strial RBSL	RBC	lential RBSL	-	Reference vs.
SW8290	Total PeCDF	NA-TRND-SO12-01	Units ng/kg	0.2		ico C	KDSL	RBC	KDSL	UTL 608	Site
SW8290	Total PeCDF	NA-TRND-SO13-01	ng/kg	0.1		-		<u> </u>	•	608	
SW8290	Total PeCDF	NA-TRND-SO14-01	ng/kg	0.1			·		-	608	
SW8290	Total PeCDF	NA-TRND-S015-01	ng/kg	0.2	370			<u> </u>	·	608	
SW8290	Total PeCDF	NA-TRND-SO16-01	ng/kg	0.2	536			·	-	608	
SW8290	Total PeCDF	NA-TRND-SO17-01	ng/kg	0.3		•	ļ.		· -	608	
SW8290	Total PeCDF	NA-TRND-SO18-01	ng/kg	0.4	123		<u> </u>	•	<u>-</u>	608	
SW8290	Total PeCDF	NA-TRND-SO19-01	ng/kg	0.4	122	•			-	608	
SW8290	Total PeCDF	NA-TRND-SO20-01	ng/kg	0.6	443	•	•			608	
SW8290	Total PeCDF	NA-TRND-SO21-01	ng/kg	0.0	87.3	-	•		•	608	
SW8290	Total PeCDF	NA-TRND-SO22-01	ng/kg	0.2				•		608	
SW8290	Total PeCDF	NA-TRND-SO23-01	ng/kg	0.3	286		*	•		608	
SW8290	Total PeCDF	NA-TRND-SO24-31	ng/kg	0.5	110	•	•	•	-	608	
SW8290	Total PeCDF	NA-TRND-SO25-01	ng/kg	0.5	44.2	•		•	-	608	
SW8290	Total PeCDF	NA-TRND-SO26-01	ng/kg	0.5	704		-	•	•	608	
SW8290	Total PeCDF	NA-TRND-S027-01	ng/kg	0.9	321	•	•	•	-	608	
SW8290	Total PeCDF	NA-TRND-SO28-01	ng/kg	0.1	223	<u> </u>	•	•	•	608	
SW8290	Total PeCDF	NA-TRND-SO29-01	ng/kg	0.1	175			·		608	
SW8290	Total PeCDF	NA-TRND-SO30-01	ng/kg	0.1	31.4	•		<u>-</u>	•	608	
SW8290	Total PeCDF	NA-TRND-SO31-01	ng/kg	0.9	134			•		608	
	Total PeCDF		ng/kg	0.4	154	·		•		608	
GW8290	Total PeCDF	NA-TRND-SO33-01	ng/kg	0.6	211	·		•		608	
	Total TCDD		ng/kg	0.09	131	·	•		•	152	
SW8290	Total TCDD		ng/kg	0.1	105	•	•			152	
SW8290	Total TCDD		ng/kg	0.09	118		·	•	•	152	
	Total TCDD		ng/kg	0.6	1220	•	•		·	152	
	Total TCDD		ng/kg	3.2	724	•	•	-	·	152	
	Total TCDD	 	ng/kg	0.2	1110	-	·	•		152	
	Total TCDD		ng/kg	0.2	186	•	•	•		152	
	Total TCDD		ng/kg	0.5	407	•	-	•	•	152	
	Total TCDD		ng/kg	0.2	512	•			•	152	
	Total TCDD		ng/kg	0.4	442	•	-	•	•	152	
	Total TCDD	NA-TRND-SO11-01		0.5		-	•	•	•	152	
	Total TCDD		ng/kg	0.2	152	<u>- </u>	•	•	•	152	
	Total TCDD	· · · · · · · · · · · · · · · · · · ·	ng/kg	0.1	163		•	•	•	152	
	Total TCDD	 	ng/kg	0.2	29.3	•				152	
	Total TCDD	·	ng/kg	0.2	126			·	·	152	
	Total TCDD	· 	ng/kg	0.2	209	•		·		152	
	Total TCDD		ng/kg	0.3		-	:	•		152	
	Total TCDD		ng/kg	0.2	39.8	-	•	- -		152	
	Total TCDD		ng/kg	0.3	41.1		•	•	-	152	
	Total TCDD	,	ng/kg	0.4	112	-	-	<u>. </u>	•	152	
	Total TCDD	 	ng/kg	0.2	22.5		•	·		152	
	Total TCDD	4	ng/kg	0.2	60.6		- -	-		152	
	Total TCDD		ng/kg	0.2	89.9	-		•		152	
	Total TCDD		ng/kg	0.4	49	•	<u>.</u>	•	•	152	
	Total TCDD	·	ng/kg	0.4	15			•	-	152	
	Total TCDD		ng/kg	0.4	231		•		•	152	
	Total TCDD	NA-TRND-SO27-01		0.6	67	•	•	<u> </u>	•	152	

											Means Compariso Conclusion
M-4L-3	A 1 4 _	6	TT	MEN	D 14	RBC	strial RBSL	RBC	RBSL	Reference	1
Method SW8290	Analyte Total TCDD	Sample ID NA-TRND-SO28-01		MDL 0.1	Result	RBC	KBSL	KBC	KDSL	UTL	Site
SW8290			ng/kg		62.2		·	·	·	152	<u> </u>
	Total TCDD	NA-TRND-SO29-01	ng/kg	0.1	62.1	•	-		<u> </u>	152	
SW8290 SW8290	Total TCDD Total TCDD	NA-TRND-SO30-01	ng/kg	0.5	ـــــــ	•	•	-	ļ -	152	
		NA-TRND-SO31-01	ng/kg	0.7	39.5	-		<u> -</u>	•	152	
SW8290 SW8290	Total TCDD Total TCDD	NA-TRND-SO32-01	ng/kg	0.3	60.7	•	•	-	-	152	
SW8290	Total TCDF	NA-TRND-SO33-01 NA-TRND-SO01-01	ng/kg	0.5		•	-		·	152	NS S
SW8290	Total TCDF	NA-TRND-SO02-01	ng/kg ng/kg	0.08		-	-	·	<u> </u>	-	NS
	Total TCDF	NA-TRND-SO02-01	ng/kg	0.06		·					NS
SW8290	Total TCDF		ng/kg		3330 J	<u>·</u>	-				NS
	Total TCDF		ng/kg	2.3		•	-	-			NS
	Total TCDF	<u> </u>	ng/kg		2210 J	•		<u> </u>	•		NS
	Total TCDF	NA-TRND-S007-01	ng/kg	0.1		•	*		-		NS
	Total TCDF		ng/kg	0.3		*	-	ļ .	ļ . —	1	NS
	Total TCDF		ng/kg	0.1	673	<u>. </u>	•		•		NS
	Total TCDF	NA-TRND-SO10-01	ng/kg	0.1		•	-	·	·		NS
	Total TCDF	NA-TRND-SO11-01	ng/kg	0.3		<u> </u>	•		-		NS
	Total TCDF	NA-TRND-SO12-01	ng/kg	0.1	312	•	•	- 	i -		NS
	Total TCDF	NA-TRND-SO13-01	ng/kg	0.07	258	-			·		NS
	Total TCDF	NA-TRND-SO14-01	ng/kg	0.07	56.7	•	•	<u>-</u>			NS
	Total TCDF	NA-TRND-SO15-01	ng/kg	0.1	331	•	•	-	<u> - </u>	4	NS
	Total TCDF	NA-TRND-SO16-01	ng/kg	0.2				·	•		NS A
	Total TCDF	NA-TRND-SO17-01	ng/kg	0.2	85.3		,			-	NS
	Total TCDF	NA-TRND-SO18-01	ng/kg	0.2	86						NS
	Total TCDF	NA-TRND-SO19-01	ng/kg	0.2	87.8						NS
	Total TCDF	NA-TRND-SO20-01	ng/kg	0.3							NS
SW8290	Total TCDF	NA-TRND-SO21-01	ng/kg	0.2	64.1						NS
SW8290	Total TCDF	NA-TRND-SO22-01	ng/kg	0.2	135	<u>.</u>					NS
	Total TCDF	NA-TRND-SO23-01	ng/kg	0.1	200						NS
	Total TCDF	{	ng/kg	0.3	94.9					*****	NS
	Total TCDF		ng/kg	0.3					l.		NS
	Total TCDF		ng/kg	0.3							NS
SW8290	Total TCDF	NA-TRND-SO27-01		0.4							NS
	Total TCDF		ng/kg	0.06							NS
SW8290	Total TCDF		ng/kg	0.07		***				12-1	NS
SW8290	Total TCDF	NA-TRND-SO30-01	ng/kg	0.4	10.5						NS
SW8290	Total TCDF	NA-TRND-SO31-01	ng/kg	0.4	104			 -			NS
SW8290	Total TCDF	NA-TRND-SO32-01	ng/kg	0.2	98						NS
SW8290	Total TCDF		ng/kg	0.3	146	,] <u>.</u>	ļ.		NS
ILM04.0	Cyanide		mg/kg		0.72	41000	4100	1600	160	+	
ILM04.0	Cyanide		mg/kg	-		41000		1600	160		
ILM04.0	Cyanide	NA-TRND-SO03-01	mg/kg		0.55	41000	-		160	<u> </u>	
ILM04.0	Cyanide	NA-TRND-SO04-31	mg/kg	0.43	1.3	41000	4100	1600	160		
ILM04.0	Cyanide	NA-TRND-SO05-01	mg/kg		0.48			 	160		4
ILM04.0	Cyanide	NA-TRND-SO06-01	mg/kg		1.5				160		
ILM04.0	Cyanide	NA-TRND-SO07-01	mg/kg						160		1.
ILM04.0	Cyanide	NA-TRND-SO08-01	mg/kg			41000					
ILM04.0	Cyanide		mg/kg			41000					
	Cyanide		mg/kg								

											Means
											Comparison
											Conclusion
			1			Indu	strial	Resid	lential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILM04.0	Cyanide	NA-TRND-SO11-01	mg/kg	0.35	ND	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO12-01	mg/kg	0.46	1	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO13-01	mg/kg	0.46	1	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO14-01	mg/kg	0.41	0.91	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO15-01	mg/kg	0.43	0.58	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO16-01	mg/kg	0.35	1.5	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO17-01	mg/kg	0.3	0.34	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO18-01	mg/kg	0.36	0.41	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO19-01	mg/kg	0.41	1.2	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO20-01	mg/kg	0.39	0.92	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO21-01	mg/kg	0.34	0.39	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO22-01	mg/kg	0.36	0.73	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO23-01	mg/kg	0.47	ND	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO24-31	mg/kg	0.33	1.2	41000	4100	1600	160	1.08	
ILM04.0	Cyanide	NA-TRND-SO25-01	mg/kg	0.38	0.44	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO26-01	mg/kg	0.37	0.69	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO27-01	mg/kg	0.41	0.47	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO28-01	mg/kg	0.33	0.78	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO29-01	mg/kg	0.35	0.92	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO30-01	mg/kg	0.37	1.2	41000	4100	1600	160	1.08	S
ILM04.0	Cyanide	NA-TRND-SO31-01	mg/kg	0.41	1	41000	4100	1600	160	1.08	S
M04.0	Cyanide	NA-TRND-SO32-01	mg/kg	0.42	0.75	41000	4100	1600	160	1.08	S
04.0	Cyanide	NA-TRND-SO33-01	mg/kg	0.49	0.67	41000	4100	1600	160	1.08	S
ILMO4.0	Aluminum	NA-TRND-SO01-01	mg/kg	2.7	45900	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO02-01	mg/kg	2.9	87800	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO03-01	mg/kg	2.2	49300	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO04-31	mg/kg	2.8	47100	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO05-01	mg/kg	2.8	49500	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO06-01	mg/kg	2.4	52700	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO07-01	mg/kg	2.8	40800	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO08-01	mg/kg	3.3	62000	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO09-01	mg/kg	3	65700		200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO10-01	mg/kg	2.9	64300	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO11-01	mg/kg	2.2	49400	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO12-01	mg/kg	3.2	88100	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO13-01	mg/kg	2.9	67500	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO14-01	mg/kg	2.9	75600	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO15-01	mg/kg	2.8	68200	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO16-01	mg/kg	2.9	76100	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO17-01	mg/kg	2.3	55500	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO18-01	mg/kg	2.5	57000	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO19-01	mg/kg	2.7	87500	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO20-01	mg/kg	2.9	47400	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO21-01	mg/kg		66500	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO22-01	mg/kg	2.3			200000		7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO23-01	mg/kg				200000		7800	74000	
ILMO4.0	Aluminum	NA-TRND-SO24-31	mg/kg		67800	2E+06	200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO25-01	mg/kg		86200	2E+06	200000	78000	7800	74000	S
04.0	Aluminum	NA-TRND-SO26-01	mg/kg		54500	2E+06	200000	78000	7800	74000	S

											Means Compariso
											Conclusion
1					ļ	Indu	strial		lential	Reference	Reference vs
Method	Analyte	Sample ID	-	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Aluminum	NA-TRND-SO27-01	mg/kg	2.8	89900		200000	78000	7800		
ILMO4.0	Aluminum	NA-TRND-SO28-01	mg/kg	2.4			200000	78000	7800	L	
ILMO4.0	Aluminum	NA-TRND-SO29-01	mg/kg	2.6			200000	78000	7800	74000	
ILMO4.0	Aluminum	NA-TRND-SO30-01	mg/kg	2.6			200000	78000	7800	74000	
	Aluminum	NA-TRND-SO31-01	mg/kg	2.9	68100		200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO32-01	mg/kg	2.7	80300		200000	78000	7800	74000	S
ILMO4.0	Aluminum	NA-TRND-SO33-01	mg/kg	3.1	90700		200000	78000	7800	74000	S
ILMO4.0	Antimony	NA-TRND-SO01-01	mg/kg	0.67		820	82	31	3.1	2.4	NS
	Antimony	NA-TRND-SO02-01	mg/kg		3.7 J	820	82	31	3.1	2.4	NS
	Antimony	NA-TRND-SO03-01	mg/kg	0.56		820	82	31	3.1	2.4	NS
	Antimony	NA-TRND-SO04-31	mg/kg		57.6 L	820	82	31	3.1		NS
	Antimony	NA-TRND-SO05-01	mg/kg		5.7 L	820	82	31	3.1		NS
$\overline{}$	Antimony	NA-TRND-SO06-01	mg/kg	0.61		820	82	31	3.1		NS
	Antimony	NA-TRND-SO07-01	mg/kg	0.71		820	82	31	3.1		NS
	Antimony	NA-TRND-SO08-01	mg/kg		7.2 L	820	82	31	3.1		NS
	Antimony	NA-TRND-SO09-01	mg/kg	0.76		820	82	31	3.1	~~~	NS
	Antimony		mg/kg		4.3 L	820	82	31	3.1		NS
	Antimony	NA-TRND-SO11-01	mg/kg	0.54		820	82	31	3.1		NS
	Antimony		mg/kg	0.79		820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO13-01	mg/kg	0.71		820	82	31	3.1		NS
	Antimony	NA-TRND-SO14-01	mg/kg	0.74		820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO15-01	mg/kg	0.69		820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO16-01	mg/kg		ND UL	820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO17-01	mg/kg		ND UL	820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO18-01	mg/kg		ND UL	820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO19-01	mg/kg	0.67		820	82	31	3.1	2.4	77.14
\vdash		NA-TRND-SO20-01	mg/kg	0.72		820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO21-01	mg/kg	0.61		820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO22-01	mg/kg	0.59		820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO23-01	mg/kg	0.75		820	82	31	3.1	2.4	
	Antimony	NA-TRND-SO24-31	mg/kg	0.62		820	82	31	3.1	2.4	
	Antimony		mg/kg		ND UL	820	82	31	3.1	2.4	NS
			mg/kg	0.64		820	82	31	3.1	2.4	
+	Antimony		mg/kg		0.73 L	820	82	31	3.1		NS
· · · · · · · · · · · · · · · · · · ·			mg/kg		ND UL	820	82	31	3.1		NS
			mg/kg		ND UL	820	82	31	3.1		NS
			mg/kg	0.64		820	82	31	3.1		NS
			mg/kg	0.72	The state of the s	820	82	31	3.1	2.4	
	*		mg/kg	0.68		820	82	31	3.1	2.4	
			mg/kg	0.79		820	82	31	3.1	2.4	
	**************************************		mg/kg	0.89	3.7	3.8	3.8	0.43	0.43	6.64	
			mg/kg	0.97	4.1	3.8	3.8	0.43	0.43	6.64	
			mg/kg	0.75	3.3	3.8	3.8	0.43	0.43	6.64	
	· · · · · · · · · · · · · · · · · · ·		mg/kg	0.93	10.7	3.8	3.8	0.43	0.43	6.64	
		·	mg/kg	0.93	3.9	3.8	3.8	0.43	0.43	6.64	
			mg/kg	0.81	3.7	3.8	3.8	0.43	0.43	6.64	S
- +			mg/kg	0.95	4	3.8	3.8	0.43	0.43	6.64	
			mg/kg	1.1	6.7	3.8	3.8	0.43	0.43	6.64	
ILMO4.0	Arsenic	NA-TRND-SO09-01	mg/kg	1	4.9	3.8	3.8	0.43	0.43	6.64	

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Arsenic	NA-TRND-SO10-01	mg/kg		5.3	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO11-01	mg/kg		3.4	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO12-01	mg/kg	1.1	6	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO13-01	mg/kg	0.95	3.8	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO14-01	mg/kg		4.1	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO15-01	mg/kg	0.92	4	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO16-01	mg/kg	0.97	4.1	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO17-01	mg/kg	0.76	3	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO18-01	mg/kg		2.6	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO19-01	mg/kg	0.89	5.2	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO20-01	mg/kg	0.96	3.8	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO21-01	mg/kg		4.1	3.8	. 3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO22-01	mg/kg	0.78	4.3	3.8	3.8	0.43	0.43	6.64	s
ILMO4.0	Arsenic	NA-TRND-SO23-01	mg/kg		5.7	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO24-31	mg/kg	0.83	3.9	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO25-01	mg/kg	0.87	4.4	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO26-01	mg/kg	0.85	4	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO27-01	mg/kg		4.5	3.8	3.8	0.43	0.43	6.64	S
ILMO4.0	Arsenic	NA-TRND-SO28-01	mg/kg		14.7	3.8	3.8	0.43	0.43	6.64	s
ILMO4.0	Arsenic	NA-TRND-SQ29-01	mg/kg		3.4		3.8	0.43	0.43	6.64	
ILMO4.0	Arsenic	NA-TRND-SO30-01	mg/kg		4.2	3.8	3.8	0.43	0.43	1	
II. MO4.0	Arsenic	NA-TRND-SO31-01	mg/kg		4.7	3.8	3.8	0.43	0.43	6.64	
104.0	Arsenic	NA-TRND-SO32-01	mg/kg		5.2		3.8	0.43	0.43	6.64	
ILMO4.0	Arsenic	NA-TRND-SO33-01	mg/kg		4.6	3.8	3.8	0.43	0.43	6.64	
ILMO4.0	Barium	NA-TRND-SO01-01	mg/kg		93.9	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO02-01	mg/kg		80.1	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO03-01	mg/kg		85.1	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO04-31	mg/kg		1380	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO05-01	mg/kg		148	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO06-01	mg/kg		73.7	140000	14000	5500	550	130	NS
ILMQ4.0	Barium	NA-TRND-SO07-01	mg/kg		76	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO08-01	mg/kg		115	140000	14000	5500	550	130	NS
	Barium		mg/kg			140000		5500	550	130	NS
ILMO4.0	Barium		mg/kg			140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO11-01	mg/kg	_	69.4	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO12-01	mg/kg		68.2	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO13-01	mg/kg			140000		5500	550		NS
ILMO4.0	Barium	NA-TRND-SO14-01	mg/kg			140000		5500	550		NS
ILMO4.0	Barium	NA-TRND-SO15-01	mg/kg			140000		5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO16-01	mg/kg			140000		5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO17-01	mg/kg		56.7	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO18-01	mg/kg		72.9	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO19-01	mg/kg		66.3	140000	14000	5500	550		
ILMO4.0	Barium	NA-TRND-SO20-01	mg/kg		84.9	140000	14000	5500	550		NS
ILMO4.0	Barium	NA-TRND-SO21-01	mg/kg		72.9	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO22-01	mg/kg		115	140000	14000	5500	550	130	NS
ILMO4.0	Barium	NA-TRND-SO23-01	mg/kg			140000			550		NS
ILMO4.0	Barium	NA-TRND-SO24-31	mg/kg			140000			550		NS
O4.0	Barium	+	mg/kg			140000					NS

"											Means Compariso Conclusion
Method	Analyte	Sample ID	T1-24-	MATO	Damela	RBC	strial RBSL	RBC	lential	1	Reference vs.
	Barium	Sample ID NA-TRND-SO26-01	Units	0.21	Result				RBSL	UTL	Site
	Barium	NA-TRND-SO20-01	mg/kg		1	140000		5500	550	130	
	Barium	NA-TRND-SO27-01	mg/kg		1	140000		5500		130	
	Barium	NA-TRND-SO29-01	mg/kg mg/kg			140000 140000		5500	550 550	130	
	Barium	NA-TRND-SO30-01	mg/kg			140000	14000	5500	550	130	
	Barium	NA-TRND-SO31-01	mg/kg			140000	14000	5500 5500	550	130	
	Barium	NA-TRND-SO32-01	mg/kg			140000	14000	5500	550	130 130	
	Barium	NA-TRND-SO33-01	mg/kg		1	140000	14000	5500	550	130	
	Beryllium	NA-TRND-SO01-01	mg/kg		0.24	4100	410	160	16		
	Beryllium	NA-TRND-SO02-01	mg/kg				410	160	16	0.25	
	Beryllium	NA-TRND-SO03-01	mg/kg				410	160	16	0.25 0.25	
	Beryllium	NA-TRND-S004-31	mg/kg	0.13		4100	410	160	16	0.25	
	Beryllium .	NA-TRND-SO05-01	mg/kg			4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO06-01	mg/kg	0.2	0.25	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO07-01	mg/kg	0.24		4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO08-01	mg/kg	0.28		4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO09-01	mg/kg	0.25		4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO10-01	mg/kg	0.24		4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO11-01	mg/kg	0.18		4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO12-01	mg/kg	0.26	0.45	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO13-01	mg/kg	0.24	0.31	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO14-01	mg/kg	0.25	0.42	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO15-01	mg/kg	0.23	0.35	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO16-01	mg/kg	0.24		4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO17-01	mg/kg	0.19		4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO18-01	mg/kg	0.21	0.28	4100	410	160	16	0.25	
	Beryllium	779.0	mg/kg	0.22	0.49	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO20-01	mg/kg	0.24	0.3	4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-TRND-SO21-01	mg/kg	0.2	0.47	4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-TRND-SO22-01	mg/kg		ND	4100	410	160	16	0.25	
ILMO4.0	Beryllium		mg/kg	0.25		4100	410	160	16	0.25	
ILMO4.0	Beryllium		mg/kg	0.21	0.4	4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-TRND-SO25-01					410	160	16	0.25	<u>s</u>
			mg/kg		0.36	4100	410	160	16	0.25	S
ILMO4.0	Beryllium		mg/kg		0.56	4100	410	160	16	0.25	
ILMO4.0	Beryllium		mg/kg		0.28	4100	410	160	16	0.25	
ILMO4.0	Beryllium		mg/kg		0.27	4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-TRND-SO30-01	mg/kg	0.21	0.59	4100	410	160	16	0.25	
ILMO4.0	Beryllium	NA-TRND-SO31-01	mg/kg	0.24	ND	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO32-01	mg/kg	0.23	ND	4100	410	160	16	0.25	
	Beryllium	NA-TRND-SO33-01	mg/kg	0.26	ND	4100	410	160	16	0.25	
		NA-TRND-SO01-01	mg/kg	0.22	0.81 K	1000	100	39	3.9	1.26	
			mg/kg	0.24		1000	100	39	3.9	1.26	
			mg/kg	0.19	0.8 K	1000	100	39	3.9	1.26	
			mg/kg	0.23		1000	100	39	3.9	1.26	
	Cadmium		mg/kg		1.4 K	1000	100	39	3.9	1.26	
			mg/kg		2.9 K	1000	100	39	3.9	1.26	
	Cadmium		mg/kg		1.6 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium		mg/kg		1.9 K	1000	100	39	3.9	1.26	

			T		İ						Means
		-									Comparison
											Conclusion
						Indu	strial	Resid	ential	Reference	Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Cadmium	NA-TRND-SO09-01	mg/kg	0.25	1.8 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO10-01	mg/kg		2.1 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO11-01	mg/kg	0.18	0.71 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO12-01	mg/kg	0.26	1.6 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO13-01	mg/kg	0.24	1.4 K	1000	100	39	3.9	1.26	S .
ILMO4.0	Cadmium	NA-TRND-SO14-01	mg/kg	0.25	0.94 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO15-01	mg/kg	0.23	1.1 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO16-01	mg/kg	0.24	1.2 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO17-01	mg/kg	0.19	0.87 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO18-01	mg/kg	0.21	0.95 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO19-01	mg/kg	0.22	1.5 K	1000	100	39	3.9	1.26	
ILMO4.0	Cadmium	NA-TRND-SO20-01	mg/kg	0.24	2.2 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO21-01	mg/kg	0.2	1.3 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO22-01	mg/kg	0.2	3.8 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO23-01	mg/kg	0.25	1.8 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO24-31	mg/kg	0.21	1.5 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO25-01	mg/kg	0.22	1.2 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO26-01	mg/kg	0.21	1.2 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO27-01	mg/kg	0.24	1.1 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO28-01	mg/kg	0.2	0.74 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO29-01	mg/kg	0.21	0.96 K	1000	100	39	3.9	1.26	S
# MO4.0	Cadmium	NA-TRND-SO30-01	mg/kg	0.21	1.3 K	1000	100	39	3.9	1.26	S
104.0	Cadmium	NA-TRND-SO31-01	mg/kg	0.24	1.6 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO32-01	mg/kg	0.23	1.4 K	1000	100	39	3.9	1.26	S
ILMO4.0	Cadmium	NA-TRND-SO33-01	mg/kg	0.26	1.8 K	1000	100	39	3.9	1.26	Ś
ILMO4.0	Calcium	NA-TRND-SO01-01	mg/kg	5.8	9580					15400	NS
ILMO4.0	Calcium	NA-TRND-SO02-01	mg/kg	6.3	6650	,				15400	NS
ILMO4.0	Calcium	NA-TRND-SO03-01	mg/kg	4.9	9550	-				15400	NS
ILMO4.0	Calcium	NA-TRND-SO04-31	mg/kg	6.1	16500					15400	NS
ILMO4.0	Calcium	NA-TRND-SO05-01	mg/kg	6	10700				*	15400	NS
ILMO4.0	Calcium	NA-TRND-SO06-01	mg/kg	5.2	9340					15400	NS
ILMO4.0	Calcium	NA-TRND-SO07-01	mg/kg	6.2	6040				·	15400	
ILMO4.0	Calcium	NA-TRND-SO08-01	mg/kg	7.2	5900					15400	NS
ILMO4.0	Calcium		mg/kg		6200					15400	
ILMO4.0	Calcium		mg/kg		11800			•		15400	NS
ILMO4.0	Calcium	NA-TRND-SO11-01	mg/kg	4.7	11800		<u>. </u>			15400	NS
ILMO4.0	Calcium	NA-TRND-SO12-01	mg/kg	6.9	2710					15400	NS
ILMO4.0	Calcium	NA-TRND-SO13-01	mg/kg	6.2	7680					15400	NS
ILMO4.0	Calcium	NA-TRND-SO14-01	mg/kg	6.4	11400					15400	NS
ILMO4.0	Calcium	NA-TRND-SO15-01	mg/kg	6	10700					15400	
ILMO4.0	Calcium		mg/kg							15400	
ILMO4.0	Calcium		mg/kg	5						15400	
ILMO4.0	Calcium	 	mg/kg							15400	
ILMO4.0	Calcium		mg/kg		4970					15400	
ILMO4.0	Calcium		mg/kg	6.2	9040			<u>. </u>		15400	NS
ILMO4.0	Calcium		mg/kg	5.3	7730					15400	
ILMO4.0	Calcium		mg/kg	5.1						15400	NS
ILMO4.0	Calcium		mg/kg	6.5	3290					15400	NS
O4.0	Calcium	NA-TRND-SO24-31	mg/kg	5.4	9240					15400	NS

						Industrial Re					Means Compariso Conclusion
·									lential	Reference	Reference vs.
Method	Analyte	Sample ID		MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Calcium	NA-TRND-SO25-01	mg/kg	5.6	6850					15400	
	Calcium	NA-TRND-SO26-01	mg/kg		10800					15400	
	Calcium	NA-TRND-SO27-01	mg/kg		7750				-	15400	
	Calcium	NA-TRND-SO28-01	mg/kg	5.2	11200				-	15400	
	Calcium	NA-TRND-SO29-01	mg/kg	5.6	10000		•			15400	
	Calcium	NA-TRND-SO30-01	mg/kg	5.5	10600		•		-	15400	1
	Calcium	NA-TRND-SO31-01	mg/kg	6.3	7340			<u> </u>		15400	
	Calcium	NA-TRND-SO32-01	mg/kg	5.9	4450		-	<u> </u>	<u>- </u>	15400	
	Calcium	NA-TRND-SO33-01	mg/kg		4430			<u> </u>		15400	
ILMO4.0	Chromium	NA-TRND-SO01-01	mg/kg	0.22	24.6		1000	390	39		
	Chromium	NA-TRND-SO02-01	mg/kg	0.24	59.6		1000	390	39		
	Chromium	NA-TRND-SO03-01	mg/kg	0.19	33.1	10000	1000	390	39		
	Chromium	NA-TRND-SO04-31	mg/kg	0.23	95.9		1000	390	39		
	Chromium	NA-TRND-SO05-01	mg/kg	0.23	36.7		1000	390	39	39.9	
	Chromium	NA-TRND-SO06-01	mg/kg	0.2	30.8		1000	390	39	39.9	
	Chromium	NA-TRND-SO07-01	mg/kg	0.24	20.6		1000	390	39	39.9	
	Chromium	NA-TRND-SO08-01	mg/kg	0.28	48		1000	390	39	1	
	Chromium	NA-TRND-SO09-01	mg/kg	0.25	42.8		1000	390	39		
	Chromium	NA-TRND-SO10-01	mg/kg	0.24	43.5		1000	390	39		
	Chromium	NA-TRND-SO11-01	mg/kg	0.18	26.3	10000	1000	390	39	39.9	
	Chromium	NA-TRND-SO12-01	mg/kg	0.26	61	10000	1000	390	39	39.9	
	Chromium	NA-TRND-SO13-01	mg/kg	0.24	41	10000	1000	390	39	39.9	
	Chromium	NA-TRND-SO14-01	mg/kg	0.25	39.7	10000	1000	390	39	39.9	
	Chromium	NA-TRND-SO15-01	mg/kg	0.23	37.7	10000	1000	390	39		
	Chromium	NA-TRND-SO16-01	mg/kg		36.5 J	10000	1000	390	39		
	Chromium	NA-TRND-SO17-01	mg/kg		31.1 J	10000	1000	390	39		L
	Chromium	NA-TRND-SO18-01	mg/kg		30.1 J	10000	1000	390	39	39.9	
	Chromium	NA-TRND-SO19-01	mg/kg		56.8 J	10000	1000	390	39		
	Chromium	NA-TRND-SO20-01	mg/kg		31.4 J	10000	1000	390	39		
	Chromium	NA-TRND-SO21-01	mg/kg		40.4 J	10000	1000	390	39		
	Chromium	NA-TRND-SO22-01	mg/kg	0.2	44.5		1000	390	39		
	Chromium	NA-TRND-SO23-01	mg/kg	0.25	56.4		1000	390	39		
	Chromium		mg/kg		35.8 J	10000					
	Chromium	NA-TRND-SO25-01	mg/kg		54.3 J	10000					
	Chromium		mg/kg		34.3 J	10000			39		
	Chromium		mg/kg		57.2 J	10000			39		
	Chromium		mg/kg		22.9 J	10000			39		
	Chromium	· · · · · · · · · · · · · · · · · · ·	mg/kg		28 J	10000		390	39		
~	Chromium	• 	mg/kg		52.8 J	10000			39		
	Chromium	NA-TRND-SO31-01	mg/kg						39		
	Chromium	NA-TRND-SO32-01	mg/kg			10000			39		
	Chromium	NA-TRND-SO33-01	mg/kg			10000			39		
	Cobalt	NA-TRND-SO01-01	mg/kg	,		120000			470		
	Cobalt	NA-TRND-SO02-01	mg/kg			120000			470		
	Cobalt	NA-TRND-SO03-01	mg/kg			120000			470		
	Cobalt	NA-TRND-SO04-31	mg/kg			120000			470	28.9	NS
	Cobalt	NA-TRND-SO05-01	mg/kg	0.23		120000		4700	470	28.9	NS
	Cobalt	NA-TRND-SO06-01	mg/kg	0.2	20.8	120000	12000	4700	470	28.9	NS _
ILMO4.0	Cobalt	NA-TRND-SO07-01	mg/kg	0.24	18.4	120000	12000	4700	470	28.9	NS

							<u> </u>				Means Comparison Conclusion
			1				strial		lential		Reference vs.
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Cobalt	NA-TRND-SO08-01	mg/kg	0.28		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO09-01	mg/kg			120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO10-01	mg/kg	0.24		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO11-01	mg/kg	0.18		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt Cobalt	NA-TRND-SO12-01	mg/kg			120000	12000	4700	470	28.9	
ILMO4.0		NA-TRND-SO13-01	mg/kg			120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO14-01	mg/kg			120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO15-01	mg/kg			120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO16-01	mg/kg	0.24		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO17-01	mg/kg	0.19		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO18-01	mg/kg			120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO19-01	mg/kg	0.22		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO20-01	mg/kg	0.24		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO21-01	mg/kg	0.2		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO22-01	mg/kg	0.2		120000	12000	4700	470	28.9	
ILMO4.0	Cobait	NA-TRND-SO23-01	mg/kg	0.25		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO24-31	mg/kg	0.21		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO25-01	mg/kg	0.22		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO26-01	mg/kg	0.21		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO27-01	mg/kg	0.24		120000	12000	4700	470	28.9	
ILMO4.0	Cobalt	NA-TRND-SO28-01	mg/kg	0.2		120000	12000	4700	470	28.9	
MO4.0	Cobalt	NA-TRND-SO29-01	mg/kg	0.21		120000	12000	4700	470	28.9	
O4.0	Cobalt	NA-TRND-SO30-01	mg/kg	0.21		120000	12000	4700	470	28.9	
ı∟MO4.0	Cobalt	NA-TRND-SO31-01	mg/kg	0.24		120000	12000	4700	470	28.9	
	Cobalt	NA-TRND-SO32-01	mg/kg	0.23		120000	12000	4700	470	28.9	NS
	Cobalt	NA-TRND-SO33-01	mg/kg	0.26		120000	12000	4700	470	28.9	
ILMO4.0	Copper	NA-TRND-SO01-01	mg/kg	0.22	103	82000	8200	3100	310	134	
ILMO4.0	Copper		mg/kg	0.24	179	82000	8200	3100	310	134	
ILMO4.0	Copper		mg/kg	0.19	98.1	82000	8200	3100	310	134	
	Copper	NA-TRND-SO04-31	mg/kg	0.23	591	82000	8200	3100	310	134	
ILMO4.0	Copper	NA-TRND-SO05-01	mg/kg	0.23	159	82000	8200	3100	310	134	S
ILMO4.0	Copper	NA-TRND-SO06-01	mg/kg	0.2	181	82000	8200	3100	310	134	
	Copper	NA-TRND-SO07-01	mg/kg	0.24	101	82000	8200	3100	310	134	S
	Copper	NA-TRND-SO08-01	mg/kg	0.28	163	82000	8200	3100	310	134	S
	Copper	NA-TRND-SO09-01	mg/kg	0.25	163	82000	8200	3100	310	134	S
ILMO4.0	Copper	NA-TRND-SO10-01	mg/kg	0.24	172	82000	8200	3100	310	134	S
	Copper	NA-TRND-SO11-01	mg/kg	0.18	115	82000	8200	3100	310	134	S
ILMO4.0	Copper	NA-TRND-SO12-01	mg/kg	0.26	180	82000	8200	3100	310	134	S
ILMO4.0	Copper	NA-TRND-SO13-01	mg/kg	0.24	158	82000	8200	3100	310	134	S
ILMO4.0	Соррег	NA-TRND-SO14-01	mg/kg	0.25	144	82000	8200	3100	310	134	S
	Copper	NA-TRND-SO15-01	mg/kg	0.23	133	82000	8200	3100	310	134	S
	Copper	NA-TRND-SO16-01	mg/kg	0.24	116	82000	8200	3100	310	134	S
	Copper		mg/kg	0.19	112	82000	8200	3100	310	134	S
	Соррег	NA-TRND-SO18-01	mg/kg	0.21	117	82000	8200	3100	310	134	S
ILMO4.0	Copper		mg/kg	0.22	173	82000	8200	3100	310	134	
ILMO4.0	Copper		mg/kg		97.8	82000	8200	3100	310	134	
ILMO4.0	Соррег		mg/kg	0.2	129	82000	8200	3100	310	134	
	Соррег		mg/kg	0.2	114	82000	8200	3100	310	134	
	Copper	·	mg/kg	0.25	171	82000	8200	3100	310	134	

											Means Comparise Conclusion
							strial		lential	Reference	Reference vs
Method	Analyte	Sample ID	Units		Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Copper	NA-TRND-SO24-31	mg/kg	0.21	134		8200	3100			
	Copper	NA-TRND-SO25-01	mg/kg	0.22	165			3100			
	Copper	NA-TRND-SO26-01	mg/kg	0.21	116		8200	3100		134	
	Copper	NA-TRND-SO27-01	mg/kg	0.24	164		8200	3100		134	
	Copper	NA-TRND-SO28-01	mg/kg	0.2	95.3		8200	3100	d	134	
	Copper	NA-TRND-SO29-01	mg/kg	0.21	105	1	8200	3100		134	
	Copper	NA-TRND-SO30-01	mg/kg	0.21	164		8200	3100		134	1
	Copper	NA-TRND-SO31-01	mg/kg	0.24	140		8200	3100		134	
	Copper	NA-TRND-SO32-01	mg/kg	0.23	146		8200	3100		134	
	Copper	NA-TRND-SO33-01	mg/kg	0.26	199		8200	3100	310	134	S
	Iron	NA-TRND-SO01-01	mg/kg	3.1		610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO02-01	mg/kg	3.4		610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO03-01	mg/kg	2.6		610000	61000	23000	2300	60600	
	Iron	NA-TRND-SO04-31	mg/kg	3.3		610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO05-01	mg/kg	3.3	50100	610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO06-01	mg/kg	2.8	43400	610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO07-01	mg/kg	3.3		610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO08-01	mg/kg	3.9	54100	610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO09-01	mg/kg	3.5	-55000	610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO10-01	mg/kg	3.3	54600	610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO11-01	mg/kg	2.5	45600	610000	61000	23000	2300	60600	S
ILMO4.0	Iron	NA-TRND-SO12-01	mg/kg	3.7	75400	610000	61000	23000	2300	60600	S
ILMO4.0	Iron	NA-TRND-SO13-01	mg/kg	3.3	56100	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TRND-SO14-01	mg/kg	3.4	61300	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TRND-SO15-01	mg/kg	3.2	58200	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TRND-SO16-01	mg/kg	3.4	60800	610000	61000	23000	2300	60600	S
	Iron	NA-TRND-SO17-01	mg/kg	2.7	49900	610000	61000	23000	2300	60600	S
	Iron		mg/kg	3	48100	610000	61000	23000	2300	60600	S
ILMO4.0	Iron	NA-TRND-SO19-01	mg/kg	3.1	78500	610000	61000	23000	2300	60600	S
ILMO4.0	Iron	NA-TRND-SO20-01	mg/kg	3.4	40400	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TRND-SO21-01	mg/kg	2.9	57700	610000	61000	23000	2300	60600	
ILMQ4.0	Iron	NA-TRND-SO22-01	mg/kg	2.7	48200	610000	61000	23000	2300	60600	
ILMO4.0	Iron	NA-TRND-SO23-01	mg/kg	3.5	72000	610000		23000		60600	
ILMO4.0			mg/kg		57100					60600	
ILMO4.0	Iron		mg/kg	3		610000			2300	60600	
ILMO4.0	Iron		mg/kg	3		610000			2300	60600	
ILMO4.0	Iron	NA-TRND-SO27-01	mg/kg	3.3		610000		23000		60600	
ILMO4.0	Iron		mg/kg	2.8	40400			23000	2300	60600	
ILMO4.0	Iron		mg/kg	3		610000		23000	2300	60600	
ILMO4.0	Iron		mg/kg	3		610000		23000	2300	60600	
ILMO4.0			mg/kg	3.4		610000		23000	2300	60600	
			mg/kg	3.2		610000	61000	23000	2300	60600	
			mg/kg	3.7		610000	61000	23000	2300	60600	
			mg/kg	0.44	120		400	400	400	95.5	
			mg/kg	0.49	225	400	400	400	400	95.5	
	· · · · · · · · · · · · · · · · · · ·		mg/kg	0.37	43.6	400	400	400	400		
	7.44		mg/kg	0.37	1420	400				95.5	
			mg/kg	0.47	72.4	400	400	400	400	95.5	
			mg/kg	0.47	83.1	400	400 400	400 400	400 400	95.5 95.5	

				- "		Indu	strial	Resid	ential	Reference	
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	Lead	NA-TRND-SO07-01	mg/kg	0.47	42.4	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO08-01	mg/kg	0.56	100	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO09-01	mg/kg	0.5	94.7	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO10-01	mg/kg	0.48	137	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO11-01	mg/kg	0.36	28.4	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO12-01	mg/kg	0.53	63.6	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO13-01	mg/kg	0.48	117	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO14-01	mg/kg	0.49	17.2	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO15-01	mg/kg	0.46	48.3		400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO16-01	mg/kg	0.48	48.8	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO17-01	mg/kg	0.38	30.3	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO18-01	mg/kg	0.42	29.3	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO19-01	mg/kg	0.45	36.7	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO20-01	mg/kg	0.48	65.4	400	400	400	400	95.5	
ILMO4.0	Lead	NA-TRND-SO21-01	mg/kg	0.41	80.5	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO22-01	mg/kg	0.39	135	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO23-01	mg/kg	0.5	57.9	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO24-31	mg/kg	0.42	40.5	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO25-01	mg/kg	0.43	15.1	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO26-01	mg/kg	0.43	64.5	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO27-01	mg/kg	0.47	97.9	400	400	400	400		
IL MO4.0	Lead	NA-TRND-SO28-01	mg/kg		56	400	400	400	400		
IO4.0	Lead	NA-TRND-SO29-01	mg/kg	0.43	32.5	400	400	400	400		
ıı⊾MO4.0	Lead	NA-TRND-SO30-01	mg/kg	0.43	28	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO31-01	mg/kg	0.48	44	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO32-01	mg/kg	0.46	20.7	400	400	400	400	95.5	S
ILMO4.0	Lead	NA-TRND-SO33-01	mg/kg	0.52	42.8	400	400	400	400	95.5	S
ILMO4.0	Magnesium	NA-TRND-SO01-01	mg/kg	2	7380					12400	
ILMO4.0	Magnesium	NA-TRND-SO02-01	mg/kg	2.2	11400					12400	1
ILMO4.0	Magnesium	NA-TRND-SO03-01	mg/kg	1.7	7950				l	12400	
ILMO4.0	Magnesium	NA-TRND-SO04-31	mg/kg	2.1	7570					12400	
ILMO4.0	Magnesium	NA-TRND-SO05-01	mg/kg		9060					12400	
ILMO4.0	Magnesium	NA-TRND-SO06-01	mg/kg	1.8	8230	-			<u>. </u>	12400	
ILMO4.0	Magnesium	NA-TRND-SO07-01	mg/kg	2.1	7970	-				12400	
ILMO4.0	Magnesium	NA-TRND-SO08-01	mg/kg	2.5	8630					12400	
ILMO4.0	Magnesium	NA-TRND-SO09-01	mg/kg	2.3					·	12400	
ILMO4.0	Magnesium	NA-TRND-SO10-01	mg/kg					-		12400	
ILMO4.0	Magnesium	NA-TRND-SO11-01	mg/kg							12400	
ILMO4.0	Magnesium	NA-TRND-SO12-01	mg/kg		+		,	-	1.	12400	
ILMO4.0	Magnesium	NA-TRND-SO13-01	mg/kg	2.1				-		12400	
ILMO4.0	Magnesium	NA-TRND-SO14-01	mg/kg	2.2						12400	
ILMO4.0	Magnesium	NA-TRND-SO15-01	mg/kg					·		12400	
ILMO4.0	Magnesium	NA-TRND-SO16-01	mg/kg					-	-	12400	
ILMO4.0	Magnesium	NA-TRND-SO17-01	mg/kg						ļ	12400	
ILMO4.0	Magnesium	NA-TRND-SO18-01	mg/kg							12400	
ILMO4.0	Magnesium	NA-TRND-SO19-01	mg/kg	2				-		12400	
ILMO4.0	Magnesium	NA-TRND-SO20-01	mg/kg	2.2			ļ	-		12400	
ILMO4.0	Magnesium	NA-TRND-SO21-01	mg/kg	1.8			ļ	-		12400	
04.0	Magnesium	NA-TRND-SO22-01	mg/kg	1.8	9540]				12400	NS

						Inde	ıstrial	Resid	lential	Reference	Means Compariso Conclusion Reference v
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Magnesium	NA-TRND-SO23-01	mg/kg	2.3	7900	1.	l	1.		12400	
LMO4.0	Magnesium	NA-TRND-SO24-31	mg/kg	1.9	9590			<u> </u>	<u> </u>	12400	
ILMO4.0	Magnesium	NA-TRND-SO25-01	mg/kg		9780		<u> </u>	i	<u> </u>	12400	
LMO4.0	Magnesium	NA-TRND-SO26-01	mg/kg	1.9	8010			<u>. </u>	<u> </u>	12400	
LMO4.0	Magnesium	NA-TRND-SO27-01	mg/kg	2.1	12900					12400	
	Magnesium	NA-TRND-SO28-01	mg/kg	1.8	7900	1.			1.	12400	
	Magnesium	NA-TRND-SO29-01	mg/kg	1.9	8870		1.			12400	
	Magnesium	NA-TRND-SO30-01	mg/kg	1.9	11600					12400	
	Magnesium	NA-TRND-SO31-01	mg/kg	2.2	8630					12400	
LMO4.0	Magnesium	NA-TRND-SO32-01	mg/kg	2.1	11600			l		12400	
	Magnesium	NA-TRND-SO33-01	mg/kg	2.4	15600					12400	
LMO4.0	Manganese	NA-TRND-SO01-01	mg/kg	0.22	786	41000	4100	1600	160		
LMO4.0	Manganese	NA-TRND-SO02-01	mg/kg	0.24	1300	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO03-01	mg/kg	0.19	778	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO04-31	mg/kg	0.23	1200	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO05-01	mg/kg	0.23	830	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO06-01	mg/kg	0.2	809	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO07-01	mg/kg	0.24	733	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO08-01	mg/kg	0.28	1070	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO09-01	mg/kg	0.25	1060	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO10-01	mg/kg	0.24	1050	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO11-01	mg/kg	0.18	886	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO12-01	mg/kg	0.26	1250	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO13-01	mg/kg	0.24	1000	41000	4100	1600	160	1050	
LMO4.0	Manganese	NA-TRND-SO14-01	mg/kg	0.25	1120	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO15-01	mg/kg	0.23	1140	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO16-01	mg/kg	0.24	1090	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO17-01	mg/kg	0.19	893	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO18-01	mg/kg	0.21	863	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO19-01	mg/kg	0.22	1270	41000	4100	1600	160	1050	S
	Manganese	NA-TRND-SO20-01	mg/kg	0.24	757	41000	4100	1600	160	1050	S
	Manganese	NA-TRND-SO21-01	mg/kg	0.2	996	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO22-01	mg/kg	0.2	877	41000	4100	1600	160	1050	
	Manganese		mg/kg	0.25	1230	41000	4100	1600	160	1050	
	Manganese	NA-TRND-SO24-31	mg/kg	0.21	1040	41000	4100	1600	160	1050	
·	Manganese	NA-TRND-SO25-01	mg/kg	0.22	1260	41000	4100	1600	160	1050	s
	Manganese	NA-TRND-SO26-01	mg/kg	0.21	836	41000	4100	1600	160	1050	S
	Manganese	NA-TRND-SO27-01	mg/kg	0.24	1330	41000	4100	1600	160	1050	S
	Manganese		mg/kg	0.2	764	41000	4100	1600	160	1050	
	Manganese		mg/kg	0.21	815	41000	4100	1600	160	1050	
	Manganese		mg/kg	0.21	1210	41000	4100	1600	160	1050	
-	Manganese	NA-TRND-SO31-01	mg/kg	0.24	1050	41000	4100	1600	160	1050	
	Manganese		mg/kg	0.23	1130	41000	4100	1600	160	1050	
	Manganese		mg/kg	0.26	1380	41000	4100	1600	160	1050	
	Мегсигу	NA-TRND-SO01-01	mg/kg	0.03	0.12	200	20	7.8	0.78	0.228	
	Мегсигу	NA-TRND-SO02-01	mg/kg	0.03	0.09	200	20	7.8	0.78	0.228	
	Mercury		mg/kg	0.02	0.07	200	20	7.8	0.78	0.228	
	Мегсигу	NA-TRND-SO04-31	mg/kg	0.06	2.5	200	20	7.8	0.78	0.228	
.MO4.0	Mercury		mg/kg	0.03	0.17	200	20	7.8	0.78	0.228	

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
Mathad	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method ILMO4.0	Mercury	NA-TRND-SO06-01	mg/kg	0.03	0.33	200	20	7.8	0.78	0.228	NS
	Mercury	NA-TRND-SO07-01	mg/kg		0.15	200	20	7.8	0.78	0.228	
ILMO4.0	Mercury	NA-TRND-SO08-01	mg/kg		0.2	200	20	7.8	0.78	0.228	
	Mercury	NA-TRND-SO09-01	mg/kg	0.03	0.19	200	20	7.8	0.78	0.228	
	Mercury	NA-TRND-SO10-01	mg/kg	0.03	0.21	200	20	7.8	0.78	0.228	
	Mercury	NA-TRND-SO11-01	mg/kg		0.07	200	20	7.8	0.78	0.228	
	Mercury	NA-TRND-SO12-01	mg/kg		0.14	200	20	7.8	0.78	0.228	
	Mercury	NA-TRND-SO13-01	mg/kg		0.16	200	20	7.8	0.78	0.228	NS
ILMO4.0	Mercury	NA-TRND-SO14-01	mg/kg	0.03	0.05	200	20	7.8	0.78	0.228	NS
ILMO4.0	Mercury	NA-TRND-SO15-01	mg/kg		0.13	200	20	7.8	0.78	0.228	
ILMO4.0	Mercury	NA-TRND-SO16-01	mg/kg	0.03	0.18	200	20	7.8	0.78	0.228	
ILMO4.0	Mercury	NA-TRND-SO17-01	mg/kg	0.02	0.08	200	20	7.8	0.78	0.228	
	Mercury	NA-TRND-SO18-01	mg/kg	0.02	0.07	200	20	7.8	0.78	0.228	
	Mercury	NA-TRND-SO19-01	mg/kg		0.11	200	20	7.8	0.78		
ILMO4.0	Mercury	NA-TRND-SO20-01	mg/kg		0.16	200	20	7.8	0.78		NS
ILMO4.0	Mercury	NA-TRND-SO21-01	mg/kg		0.09	200	20	7.8	0.78		
ILMO4.0	Mercury	NA-TRND-SO22-01	mg/kg	_	0.08	200	20	7.8	0.78		
	Mercury	NA-TRND-SO23-01	mg/kg	_	0.16	200		7.8	0.78		
ILMO4.0	Mercury	NA-TRND-SO24-31	mg/kg		0.13	200		7.8	0.78		
ILMO4.0	Mercury	NA-TRND-SO25-01	mg/kg			200	20	7.8	0.78		
ILMO4.0	Mercury	NA-TRND-SO26-01	mg/kg		0.12	200		7.8	0.78		
MO4.0	Mercury	NA-TRND-SO27-01	mg/kg	·		200	20	7.8	0.78		
104.0	Mercury	NA-TRND-SO28-01	mg/kg		0.07	200		7.8	0.78		
1LMO4.0	Mercury	NA-TRND-SO29-01	mg/kg					7.8	0.78		
ILMO4.0	Mercury	NA-TRND-SO30-01	mg/kg					7.8	0.78		
ILMO4.0	Mercury	NA-TRND-SO31-01	mg/kg			200		7.8	0.78	0.228	NS
ILMO4.0	Mercury	NA-TRND-SO32-01	mg/kg			200		7.8	0.78	0.228	NS
ILMO4.0	Mercury	NA-TRND-SO33-01	mg/kg	·		200	20	7.8	0.78	0.228	NS
ILMO4.0	Nickel	NA-TRND-SO01-01	mg/kg		23	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO02-01	mg/kg		51.2	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO03-01	mg/kg		28.9	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO04-31	mg/kg		68.3	41000	4100	1600	160	39.5	S
	Nickel		mg/kg		34.6	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO06-01	mg/kg			41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO07-01	mg/kg	0.24	25.4	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO08-01	mg/kg		46.6	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO09-01	mg/kg		42.3	41000	4100	1600	160	39.5	S
ILMO4.0	Nickel	NA-TRND-SO10-01	mg/kg	_	38.3	41000	4100	1600	4		
ILMO4.0	Nickel	NA-TRND-SO11-01	mg/kg	_	26	41000	4100	1600	160		
ILMO4.0	Nickel	NA-TRND-SO12-01	mg/kg	0.53	55.7	41000	4100	1600		J	
ILMO4.0	Nickel	NA-TRND-SO13-01	mg/kg	0.48	36.9	41000					
ILMO4.0	Nickel	NA-TRND-SO14-01	mg/kg	0.49	33.8	41000	4100				
ILMO4.0	Nickel	NA-TRND-SO15-01	mg/kg	0.46	38.2	41000					
ILMO4.0	Nickel	NA-TRND-SO16-01	mg/kg	0.24	36.1 J	41000	4100				
ILMO4.0	Nickel	NA-TRND-SO17-01	mg/kg	0.19	29.9 J	41000	4100	1600	160		
ILMO4.0	Nickel	NA-TRND-SO18-01	mg/kg		30.1 J	41000	4100	1600	160		
ILMO4.0	Nickel	NA-TRND-SO19-01	mg/kg	0.22	49.2 J	41000	4100				
ILMO4.0	Nickel	NA-TRND-SO20-01			26.9 J	41000	4100	1600	160		
104.0	Nickel	NA-TRND-SO21-01			48.8 J	41000	4100	1600	160	39.5	i s

				_		Ī		T			Means 4
İ											Compariso
											Conclusion
Mothed	A 2 - 4 -		1	<u> </u>			ustrial		dential	Reference	Reference vs
ILMO4.0	Analyte Nickel	Sample ID			Result		RBSL			UTL	Site
ILMO4.0	Nickel	NA-TRND-SO22-01	mg/kg	0.2				<u> </u>	1		
ILMO4.0	Nickel	NA-TRND-SO23-01	mg/kg								
ILMO4.0	Nickel	NA-TRND-SO24-31	mg/kg		34 J	41000					<u> </u>
ILMO4.0	Nickel	NA-TRND-SO25-01 NA-TRND-SO26-01	mg/kg		46.1 J	41000					
ILMO4.0	Nickel		mg/kg		29.4 J	41000		1			
	Nickel	NA-TRND-SO27-01	mg/kg		49.8 J	41000		+			
	Nickel	NA-TRND-SO28-01 NA-TRND-SO29-01	mg/kg		23.3 J	41000					
ILMO4.0	Nickel	NA-TRND-SO30-01	mg/kg		27.9 J	41000				<u></u> _	
	Nickel	NA-TRND-SO31-01	mg/kg		44.4 J	41000					
	Nickel	NA-TRND-SO31-01	mg/kg	0.24	35.4	41000					
	Nickel	NA-TRND-SO32-01	mg/kg	0.23	40.5 51.3	41000			+		
	Potassium	NA-TRND-SO01-01	mg/kg mg/kg	1.3	606	41000	4100	1600	160	39.5	<u> </u>
	Potassium	NA-TRND-SO02-01	mg/kg	1.5	568	•	 	<u> </u>	-	643	
	Potassium	NA-TRND-S003-01	mg/kg	1.1	783		<u> </u>		-	643	
	Potassium	NA-TRND-SO04-31	mg/kg	1.4	1840	•	<u> </u>	•	<u> </u>	643	L <u>.</u> .
	Potassium	NA-TRND-SO05-01	mg/kg	1.4	1030		 	·	ļ	643	
	Potassium	NA-TRND-SO06-01	mg/kg	1.2	336		-	 	<u> -</u>	643	
	Potassium		mg/kg	1.4	324	•	·	·		643 643	
	Potassium	NA-TRND-SO08-01	mg/kg	1.7	653	·	ļ <i>•</i>	*	·	643	
ILMO4.0	Potassium		mg/kg	1.5	848	·	-	•	·	643	
ILMO4.0	Potassium	NA-TRND-SO10-01	mg/kg	1.4	1570		•	·	-	643	
ILMO4.0	Potassium		mg/kg	1.1	649		-	•		643	
ILMO4.0	Potassium		mg/kg	1.6	431	<u>. </u>		•	-	643	
ILMO4.0	Potassium		mg/kg	1.4	771		•	·	<i>'</i>	643	
ILMO4.0	Potassium		mg/kg	1.5	656				· ·	643	
ILMO4.0	Potassium	NA-TRND-SO15-01	mg/kg	1.4	595			<u></u>		643	
	Potassium	NA-TRND-SO16-01	mg/kg	1.5	1220					643	
-	Potassium	NA-TRND-SO17-01	mg/kg	1.1	461			`-		643	
	Potassium	NA-TRND-SO18-01	mg/kg	1.3	315	.				643	
	Potassium	NA-TRND-SO19-01	mg/kg	1.3	442	,				643	
		NA-TRND-SO20-01	mg/kg	1.4	643					643	
		NA-TRND-SO21-01	mg/kg	1.2	695					643	
			mg/kg	1.2	879				. 1	643	
		NA-TRND-SO23-01	mg/kg	1.5	550					643	
			mg/kg	1.2	611					643	
			mg/kg	1.3	395		-			643	
			mg/kg	1.3	586 .					643	
			mg/kg	1.4	583					643	
			mg/kg	1.2	508 .					643	S
			mg/kg	1.3	807 .		<u></u> _]			643	S
			mg/kg	1.3	626 .					643	S
			mg/kg	1.4	792 .		•	•		643	S
			mg/kg	1.4	698 .		1			643	S
			mg/kg	1.6	718 .					643	ş -
			mg/kg	0.44		10000	1000	390	39	0.794	
			mg/kg	0.49		10000	1000	390	39	0.794	
			mg/kg	0.37		10000	1000	390	39	0.794	S 🚄
LMO4.0 S	Selenium	NA-TRND-SO04-31	mg/kg	0.47	1.4 L	10000	1000	390	39	0.794	

						Indu	strial	Resid	ential	Reference	Means Comparison Conclusion Reference vs.
3.6.453	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Method ILMO4.0	Selenium Analyte	NA-TRND-SO05-01	mg/kg		ND UL	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO06-01	mg/kg		1.3 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO07-01	mg/kg		0.52 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO08-01	mg/kg		1.2 L	10000	1000	390	39	0.794	S
ILMO4.0	Selenium	NA-TRND-SO09-01	mg/kg		0.87 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO10-01	mg/kg		ND UL	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO11-01	mg/kg		ND UL	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO12-01	mg/kg			10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO13-01	mg/kg		1.3 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO14-01	mg/kg		1.5 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO15-01	mg/kg		1.3 L	10000	1000	390	39	0.794	S
ILMO4.0	Selenium	NA-TRND-SO16-01	mg/kg		1.2 L	10000	1000	390	39	0.794	S
ILMO4.0	Selenium	NA-TRND-SO17-01	mg/kg		1.2 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO18-01	mg/kg		1.2 L	10000	1000	390	39	0.794	
ILMO4.0	Selenium	NA-TRND-SO19-01	mg/kg		1.8 L	10000	1000	390	39		
ILMO4.0	Selenium	NA-TRND-SO20-01	mg/kg		1.3 L	10000		390	39		
ILMO4.0	Selenium	NA-TRND-SO21-01	mg/kg	 	1.1 L	10000			39		
ILMO4.0	Selenium	NA-TRND-SO22-01	mg/kg		ND UL	10000			39		
ILMO4.0	Selenium	NA-TRND-SO23-01	mg/kg		0.85 L	10000	1		39		
ILMO4.0	Selenium	NA-TRND-SO24-31	mg/kg		1.6 L	10000					
ILMO4.0	Selenium	NA-TRND-SO25-01	mg/kg		1.7 L	10000					
MO4.0	Selenium	NA-TRND-SO26-01	mg/kg			10000					
4O4.0	Selenium	NA-TRND-SO27-01	mg/kg		1.8 L	10000			1		
nLMO4.0	Selenium	NA-TRND-SO28-01	mg/kg		1.5 L	10000					
ILMO4.0	Selenium	NA-TRND-SO29-01	mg/kg		1.1 L	10000					
ILMO4.0	Selenium	NA-TRND-SO30-01	mg/kg		1.5 L	10000					
ILMO4.0	Selenium	NA-TRND-SO31-01	mg/kg		0.9 L	10000					
ILMO4.0	Selenium	NA-TRND-SO32-01	mg/kg		ND UL	10000					
ILMO4.0	Selenium	NA-TRND-SO33-01	mg/kg		ND UL	10000				1	
ILMO4.0	Silver	NA-TRND-SO01-01	mg/kg								
ILMO4.0	Silver	NA-TRND-SO02-01	mg/kg		· 1						
ILMO4.0	Silver	NA-TRND-SO03-01	mg/kg	-							
ILMO4.0	Silver	NA-TRND-SO04-31	mg/kg			10000					
ILMO4.0	Silver	NA-TRND-SO05-01	mg/kg		+						
ILMO4.0	Silver	NA-TRND-SO06-01	mg/kg		-	10000			39	0.61	NS
ILMO4.0	Silver	NA-TRND-SO07-01	mg/kg	\		10000			39	0.61	NS
ILMO4.0	Silver	NA-TRND-SO08-01	mg/kg						39	0.61	NS
ILMO4.0	Silver	NA-TRND-SO09-01	mg/kg		+	10000					NS
ILMO4.0	Silver	NA-TRND-SO10-01	mg/kg	4		10000			+		NS
ILMO4.0	Silver	NA-TRND-SO11-01							39	0.61	NS
ILMO4.0	Silver	NA-TRND-SO12-01				10000				0.61	NS
ILMO4.0	Silver	NA-TRND-SO13-01		·		10000		-			NS
ILMO4.0	Silver	NA-TRND-SO14-01			ND	10000	+				NS
ILMO4.0	Silver	NA-TRND-SO15-01		<u> </u>		10000			4		NS
ILMO4.0	Silver	NA-TRND-SO16-01	mg/kg		ND	10000					NS
ILMO4.0	Silver	NA-TRND-S017-01	mg/kg	4	ND	10000					NS
ILMO4.0	Silver	NA-TRND-SO18-01	mg/kg		ND	10000					NS
ILMO4.0	Silver	NA-TRND-SO19-01	mg/kg		ND	10000					NS
104.0	Silver	NA-TRND-SO20-01	mg/kg						+		NS

Method	Analyte	Samuel To					ıstrial		dential	Reference	
ILMO4.0	Silver	Sample ID NA-TRND-SO21-01		MDL				RBC	RBSL	UTL	Site
ILMO4.0	Silver	NA-TRND-SO21-01	mg/kg		ND	10000					
ILMO4.0	Silver	NA-TRND-SO22-01	mg/kg					390			
ILMO4.0	Silver		mg/kg					390			
ILMO4.0	Silver	NA-TRND-SO24-31	mg/kg			10000		390			
ILMO4.0	Silver	NA-TRND-SO25-01 NA-TRND-SO26-01	mg/kg	0.22		10000		390			
ILMO4.0	Silver	NA-TRND-SO20-01	mg/kg	0.21			I .	390	<u>}</u>		
	Silver	NA-TRND-SO27-01	mg/kg	0.24	1	10000		390	39		
	Silver	NA-TRND-SO29-01	mg/kg		ND	10000	1000	390	39		
	Silver	NA-TRND-SO29-01	mg/kg	0.21		10000	1000	390	39		
	Silver	NA-TRND-SO31-01	mg/kg	0.21	ND 0.45	10000	1000	390	39		
	Silver	NA-TRND-SO31-01	mg/kg	0.24	0.45	10000	1000	390	39		
	Silver	NA-TRND-S032-01	mg/kg	0.23	0.25	10000	1000	390	39		
	Sodium	NA-TRND-S033-01 NA-TRND-S001-01	mg/kg	0.26 22.2		10000	1000	390	39	0.61	L
	Sodium	NA-TRND-S001-01	mg/kg		1280	•	<u>-</u>	-	,	2430	
	Sodium	NA-TRND-S002-01	mg/kg	24.3 18.7	659		•			2430	
	Sodium	NA-TRND-S003-01	mg/kg	23.3	737 467			•		2430	
	Sodium	NA-TRND-S005-01	mg/kg mg/kg	23.3	358			•		2430	
	Sodium	NA-TRND-SO06-01	mg/kg	20.2	1630		•	•		2430	
	Sodium	NA-TRND-S007-01	mg/kg	23.7	698	•	•	<u>•</u>		2430	
	Sodium	NA-TRND-SO08-01	mg/kg	27.8	482	· .	•	•	·	2430	
	Sodium		mg/kg	25.2	513	•	·	<u> </u>	٠	2430	
	Sodium		mg/kg	23.8	462	·	•	·	<u> </u>	2430	
7	Sodium	NA-TRND-SO11-01	mg/kg	18.1	637	•	•	·	•	2430	
	Sodium	·	mg/kg	26.4	403	<u> </u>	•	<u>: </u>		2430	
			mg/kg	23.8	769	•		·	•	2430	
	Sodium		mg/kg	24.6	1020	•	-			2430	
			mg/kg	22.9	1330	•	•	<u>- </u>	•	2430	
	Sodium	NA-TRND-SO16-01	mg/kg		630 J	- -	-	•	· - 	2430	
ILMO4.0	Sodium		mg/kg		997 J		<u></u>		•	2430 2430	
			mg/kg		1410 J	- 	•	·	•	2430	
LMO4.0			mg/kg	22.3		•	•		• +	2430	
LMO4.0	Sodium	NA-TRND-SO20-01	mg/kg		1180 J		•	•		2430	
	:		mg/kg		805 J	-	-		· 	2430	
LMO4.0			mg/kg	19.6				-	-	2430	
ILMO4.0	Sodium		mg/kg	25.1	344		·	-	·	2430	
LMO4.0			mg/kg		1140 J				•	2430	
LMO4.0			mg/kg	21.7						2430	
			mg/kg		1390 J				-	2430	
LMO4.0			mg/kg	23.7			1		-	2430	
LMO4.0			mg/kg		1130 J	, 				2430	
			mg/kg		1270 J					2430	
			mg/kg	21.3		. †				2430	
			mg/kg	24.1	962					2430	
LMO4.0			mg/kg	22.8	350			 		2430	
LMO4.0			mg/kg	26.2	384	,				2430	
			mg/kg		ND UL	140	14	5.5	0.55	1.82	
LMO4.0			mg/kg		ND UL	140	14	5.5	0.55	1.82	
LMO4.0			mg/kg		ND UL	140	14	5.5	0.55	1.82	

Method Thailium N.A.TRIND-SOO8-31 mg/kg 0.93 3.1 1.1 1.4 1.4 5.5 0.55 1.82 NS						<u> </u>		*				Means
Name												Comparison
Method Thallium												Conclusion
Mode					,	ļ [Reference vs.
Limbol	Method	Analyte	Sample ID	Units		L		RBSL				
Limonary Tabilium	ILMO4.0	Thallium	NA-TRND-SO04-31	mg/kg								
LIMO40 Thallium	ILMO4.0	Thallium	NA-TRND-SO05-01	mg/kg								
This This	ILMO4.0	Thallium	NA-TRND-SO06-01	mg/kg								
IMO40 Thallium	ILMO4.0	Thallium	NA-TRND-SO07-01	mg/kg								
IMMO40 Thallium NA-TRND-S010-01 mg/kg 0.75 3.4 L 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S010-01 mg/kg 0.72 3.4 L 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S010-01 mg/kg 0.78 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S013-01 mg/kg 0.78 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S010-01 mg/kg 0.78 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S010-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S010-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S010-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S018-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S018-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S018-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S018-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.81 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.81 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.81 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.81 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS IMMO40 Thallium NA-TRND-S020-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS IMMO40	ILMO4.0	Thallium	NA-TRND-SO08-01	mg/kg								
IMO40	ILMO4.0	Thallium	NA-TRND-SO09-01	mg/kg	1	4.3 L						
ILMO40 Thallium NA-TRND-SO13-01 mg/kg 1.1 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO13-01 mg/kg 0.99 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO13-01 mg/kg 0.97 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.96 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.96 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.96 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40 Thallium NA-TRND-SO20-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS ILMO40	ILMO4.0	Thallium	NA-TRND-SO10-01	mg/kg								
IMMO-40 Thallium NA-TRND-SO13-01 mg/kg 0.95 ND UL 140 14 5.5 0.55 1.82 NS 1.80 NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS 1.80 NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO13-01 mg/kg 0.97 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO13-01 mg/kg 0.97 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO13-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.98 ND UL 140 14 5.5 0.55 1.82 NS NEW NA-TRND-SO23-01 mg/kg 0.9	ILMO4.0	Thallium	NA-TRND-SO11-01	mg/kg								
IMO4.0 Thallium	ILMO4.0	Thallium	NA-TRND-SO12-01	mg/kg								
ILMO4.0 Thallium	ILMO4.0	Thallium	NA-TRND-SO13-01	mg/kg								
IMO4.0 Thallium	ILMO4.0	Thallium	NA-TRND-SO14-01	mg/kg			140					
IMO4.0 Thallium NA-TRND-S018-01 mg/kg 0.76 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S018-01 mg/kg 0.89 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S018-01 mg/kg 0.89 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.89 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.89 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.81 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.78 2.2 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.78 2.2 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.83 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.83 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.87 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S020-01 mg/kg 0.86 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S030-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S030-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S030-01 mg/kg 0.97 2.6 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S030-01 mg/kg 0.91 3.3 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S030-01 mg/kg 0.91 3.3 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S030-01 mg/kg 0.91 3.3 140 14 5.5 0.55 1.82 NS ILMO4.0 Thallium NA-TRND-S030-01 mg/kg 0.24 322 14000 1400 550 55 268 S I	ILMO4.0	Thallium	NA-TRND-SO15-01	mg/kg	0.92	ND UL						
IMO-4.0 Thallium NA-TRND-S018-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S019-01 mg/kg 0.89 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S020-01 mg/kg 0.89 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S021-01 mg/kg 0.81 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S022-01 mg/kg 0.81 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S022-01 mg/kg 0.78 2.2 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S023-01 mg/kg 0.83 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S024-31 mg/kg 0.83 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S026-01 mg/kg 0.87 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S026-01 mg/kg 0.87 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S026-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S028-01 mg/kg 0.85 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S028-01 mg/kg 0.86 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S029-01 mg/kg 0.86 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S030-01 mg/kg 0.86 ND UL 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S030-01 mg/kg 0.97 2.6 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S030-01 mg/kg 0.91 3.3 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S030-01 mg/kg 0.91 3.3 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S000-01 mg/kg 0.91 3.3 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S000-01 mg/kg 0.91 3.3 140 14 5.5 0.55 1.82 NS ILMO-4.0 Thallium NA-TRND-S000-01 mg/kg 0.21 140 140 140 155	ILMO4.0	Thallium .	NA-TRND-SO16-01	mg/kg	0.97	ND UL						
ILMO4.0 Thallium		Thallium	NA-TRND-SO17-01	mg/kg	0.76	ND UL	140	14	5.5			
ILMO4.0 Thallium		Thallium	NA-TRND-SO18-01	mg/kg	0.85	ND UL	140	14	5.5	0.55		
ILMO4.0 Thallium		Thallium	NA-TRND-SO19-01	mg/kg	0.89	ND UL	140	14	5.5			
ILMO4.0 Thallium			NA-TRND-SO20-01	mg/kg	0.96	ND UL	140	14	5.5	0.55		
ILMO4.0 Thallium			NA-TRND-SO21-01	mg/kg	0.81	ND UL	140	14	5.5	0.55		
ILMO4.0 Thallium					0.78	2.2	140	14	5.5	0.55	1.82	NS
ILMO4.0 Thallium						3.7	140	14	5.5	0.55	1.82	NS
MO4.0 Thallium					•	ND UL	140	14	5.5	0.55	1.82	NS
TO4.0 Thallium			<u> </u>		•	ND UL	140	14	5.5	0.55	1.82	NS
ILMO4.0 Thallium						ND UL	140	14	5.5	0.55		
ILMO4.0 Thallium				+		ND UL	140	14	5.5	0.55		
ILMO4.0 Thallium			NA-TRND-SO28-01	mg/kg	0.8	ND UL	140	14	5.5	0.55		
ILMO4.0 Thallium		L	NA-TRND-SO29-01	mg/kg	0.86	ND UL	140	14	5.5	0.55	1.82	NS
ILMO4.0 Thallium					+	ND UL	140	14	5.5	0.55	1.82	NS
ILMO4.0 Thallium			NA-TRND-SO31-01			2.6	140	14	5.5	0.55		
ILMO4.0 Thallium			NA-TRND-SO32-01		+	3.3	140	14	5.5	0.55		
ILMO4.0						4.2	140	14	5.5	0.55	1.82	NS
ILMO4.0 Vanadium			· · · · · · · · · · · · · · · · · · ·			151	14000	1400	550	55	268	S
ILMO4.0 Vanadium			1			322	14000	1400	550	55	268	S
ILMO4.0 Vanadium						165	14000	1400	550	55	268	S
ILMO4.0 Vanadium					1		+					
ILMO4.0 Vanadium						_	14000	1400	550	55	268	S
ILMO4.0 Vanadium NA-TRND-SO07-01 mg/kg 0.24 141 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO08-01 mg/kg 0.28 235 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO09-01 mg/kg 0.25 238 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO10-01 mg/kg 0.24 209 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO11-01 mg/kg 0.18 189 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO12-01 mg/kg 0.26 351 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO13-01 mg/kg 0.24 232 14000 1400 550 55 268			 			+			550	55	268	S
ILMO4.0 Vanadium NA-TRND-SO08-01 mg/kg 0.28 235 14000 1400 550 55 268 S			1							55	268	S
ILMO4.0 Vanadium NA-TRND-SO09-01 mg/kg 0.25 238 14000 1400 550 55 268 S						<u> </u>						SS
ILMO4.0 Vanadium NA-TRND-SO10-01 mg/kg 0.24 209 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO11-01 mg/kg 0.18 189 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO12-01 mg/kg 0.26 351 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO13-01 mg/kg 0.24 232 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO14-01 mg/kg 0.25 260 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO15-01 mg/kg 0.23 245 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO16-01 mg/kg 0.24 235 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO16-01 mg/kg 0.19 199 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO17-01 mg/kg 0.19 199 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55					4			 -		55	268	S
ILMO4.0 Vanadium NA-TRND-SO11-01 mg/kg 0.18 189 14000 1400 550 55 268 S			<u> </u>	+		+						SS
ILMO4.0 Vanadium NA-TRND-SO12-01 mg/kg 0.26 351 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO13-01 mg/kg 0.24 232 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO14-01 mg/kg 0.25 260 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO15-01 mg/kg 0.23 245 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO16-01 mg/kg 0.24 235 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO16-01 mg/kg 0.19 199 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO17-01 mg/kg 0.19 199 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55		· · · · · · · · · · · · · · · · · · ·			4—							S
ILMO4.0 Vanadium NA-TRND-SO13-01 mg/kg 0.24 232 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO14-01 mg/kg 0.25 260 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO15-01 mg/kg 0.23 245 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO16-01 mg/kg 0.24 235 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO17-01 mg/kg 0.19 199 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268							_					
ILMO4.0 Vanadium NA-TRND-SO14-01 mg/kg 0.25 260 14000 1400 550 55 268 S					-					1	·	
ILMO4.0 Vanadium NA-TRND-SO15-01 mg/kg 0.23 245 14000 1400 550 55 268 S			ļ <u></u>						-			
ILMO4.0 Vanadium NA-TRND-SO16-01 mg/kg 0.24 235 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO17-01 mg/kg 0.19 199 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S ILMO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55							 			1		
ILMO4.0 Vanadium NA-TRND-SO17-01 mg/kg 0.19 199 14000 1400 550 55 268 S MO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S C C C C C C C C					4							
II_MO4.0 Vanadium NA-TRND-SO18-01 mg/kg 0.21 194 14000 1400 550 55 268 S					4		·					
7.00					4							
	IQ4.0	Vanadium	NA-TRND-SO19-01	mg/kg								

						Indi	strial	Recia	lential	Reference	Means Compariso Conclusion Reference vs
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	1
ILMO4.0	Vanadium	NA-TRND-SO20-01	mg/kg	0.24	160				<u> </u>		Site
ILMO4.0	Vanadium	NA-TRND-SO21-01	mg/kg	0.2	233	14000			55		
ILMO4.0	Vanadium	NA-TRND-SO22-01	mg/kg	0.2	196		1400	550			
ILMO4.0	Vanadium	NA-TRND-SO23-01	mg/kg	0.25	344	14000	1400				
ILMO4.0	Vanadium	NA-TRND-SO24-31	mg/kg	0.21	234	14000	1400			268	
ILMO4.0	Vanadium	NA-TRND-SO25-01	mg/kg	0.22	322	14000	1400		55		
ILMO4.0	Vanadium	NA-TRND-SO26-01	mg/kg	0.21	191	14000	1400	550	55	268	
ILMO4.0	Vanadium	NA-TRND-SO27-01	mg/kg	0.24	332	14000	1400	550	55	268	
ILMO4.0	Vanadium	NA-TRND-SO28-01	mg/kg	0.2	155	14000	1400	550	55	268	
ILMO4.0	Vanadium	NA-TRND-SO29-01	mg/kg	0.21	177	14000	1400	550		268	
ILMO4.0	Vanadium	NA-TRND-SO30-01	mg/kg	0.21	307	14000	1400	550	55	268	
ILMO4.0	Vanadium	NA-TRND-SO31-01	mg/kg	0.21	250	14000		550	55	268	
ILMO4.0	Vanadium	NA-TRND-SO32-01	mg/kg	0.23	270	14000	1400		55	268	
ILMO4.0	Vanadium	NA-TRND-SO33-01	mg/kg	0.26	333		1400	550	55	268	
ILMO4.0	Zinc	NA-TRND-S001-01		0.20		14000	1400	550	55	268	
ILMO4.0	Zinc	NA-TRND-SO02-01	mg/kg mg/kg	0.24		610000	61000	23000	2300	224	
ILMO4.0	Zinc	NA-TRND-SO03-01	+	0.19		610000	61000	23000	2300	224	
ILMO4.0	Zinc	NA-TRND-S004-31	mg/kg			610000	61000	23000	2300	224	
	Zinc	NA-TRND-S005-01	mg/kg	0.23		610000	61000	23000	2300	224	
ILMO4.0	Zinc	NA-TRND-S006-01	mg/kg	0.23		610000	61000	23000	2300	224	
	Zinc	NA-TRND-S007-01	mg/kg	0.24		610000 610000	61000	23000	2300	224	
	Zinc	NA-TRND-SO08-01	mg/kg	0.24		610000	61000	23000	2300	224	
	Zinc	NA-TRND-S009-01	mg/kg mg/kg	0.28			61000	23000	2300	224	
	Zinc	NA-TRND-SO10-01	mg/kg	0.23		610000	61000	23000	2300	224	
	Zinc		mg/kg	0.18		610000	61000	23000	2300	224	
	Zinc	NA-TRND-SO12-01	mg/kg	0.16		610000	61000	23000	2300	224	
	Zinc	NA-TRND-SO13-01				610000	61000	23000	2300	224	
	Zinc	NA-TRND-SO14-01	mg/kg	0.24		610000	61000	23000	2300	224	
	Zinc	NA-TRND-SO15-01	mg/kg	0.25		610000	61000	23000	2300	224	
	Zinc		mg/kg			510000	61000	23000	2300	224	
	Zinc	NA-TRND-SO10-01	mg/kg	0.24		610000	61000	23000	2300	224	
	Zinc		mg/kg	0.19		610000	61000	23000	2300	224	
	Zinc	NIA TERNITO COMO ON	mg/kg	0.21		510000	61000	23000	2300	224	
	Zinc		mg/kg	0.22		510000	61000		2300	224	
	Zinc		mg/kg	0.24		510000	61000	23000	2300	224	
	Zinc		mg/kg	0.2		510000	61000		2300	224	
			mg/kg	0.2		510000	61000	23000	2300	224	
			mg/kg	0.25		510000	61000		2300	224	
			mg/kg	0.21		10000	61000	23000	2300	224	
			mg/kg	0.22		10000	61000	23000	2300	224	
+			mg/kg	0.21		10000		23000	2300	224	3
		3.4.	mg/kg	0.24		10000	61000	23000	2300	224	
			mg/kg	0.2		10000		23000	2300	224	S
			mg/kg	0.21		10000		23000	2300	224	3
			mg/kg	0.21		10000		23000	2300	224	3
			mg/kg	0.24		10000	61000	23000	2300	224 5	3
			mg/kg	0.23		10000	61000	23000	2300	224 5	
			mg/kg	0.26		10000	61000	23000	2300	224 \$	
			mg/kg	1.75 N		00000	20000	7800	780	5.16	
300	Chloride	NA-TRND-SO12-01	mg/kg	2.02	4.7 2	00000	20000	7800	780	5.16 1	

												Means Comparison Conclusion	
							Indu	strial		ential	Reference	Reference vs.	
Method	A	nalyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site	
300	Chloride		NA-TRND-SO13-01	mg/kg	1.86	5	200000	20000	7800	780			
300	Chloride		NA-TRND-SO20-01	mg/kg	1.87	3.96	200000	20000	7800	780			
300	Chloride		NA-TRND-SO29-01	mg/kg	1.62	3.91	200000	20000	7800	780			
300	Fluoride		NA-TRND-SO01-01	mg/kg	1.75	3.53	120000	12000	4700	470	0.763	S	
	Fluoride		NA-TRND-SO12-01	mg/kg		2.24	120000	12000	4700	470	0.763	S	
	Fluoride		NA-TRND-SO13-01	mg/kg	1.86	2.67	120000	12000	4700	470	0.763	S	
	Fluoride		NA-TRND-SO20-01	mg/kg	1.87	ND	120000	12000	4700	470	0.763	S	
	Fluoride		NA-TRND-SO29-01	mg/kg		1.8	120000	12000	4700	470	0.763	S	
	Nitrate		NA-TRND-SO01-01	mg/kg	8.77	43.9	3E+06	330000	130000	13000	15.5	NS	
	Nitrate		NA-TRND-SO12-01	mg/kg	1.01	ND	3E+06	330000	130000	13000	15.5	NS	
353.2	Nitrate		NA-TRND-SO13-01	mg/kg		ND	3E+06	330000	130000	13000	15.5	NS	
353.2	Nitrate		NA-TRND-SO20-01	mg/kg		10.9	3E+06	330000	130000	13000	15.5	NS	
	Nitrate		NA-TRND-SO29-01	mg/kg	0.81	6.65	3E+06	330000	130000	13000	15.5	NS	
		tions: NC = Not o	alculated because refe			all non-	detected	results o	r were n	ot analy	zed.		
			vs. Site abbreviations:										
	NA = Not applicable. Data is associated with reference area.												
NC = Not calculated because reference data and/or site data were all non-detected results or were not analyzed.													
			data were not signficar										

S = Signficant. On average, site data were not significantly greater than reference data.

							Industrial	¥-4				Comparison Conclusion
Col. Col.				Units	MDL	Result		Industrial RBSL	Residential RBC	Residential RBSL	Reference	Reference vs. Site
SAMPS AL-DOC PARTING SOCIAL BARK 10.27 3.3 2.000 2000 700 700 NK NK NK NK NK NK NK					_						NC	NC
CAMPAIN Add P. C. Prop.	OLM03.2	4,4'-DDD										
GLM03 44-DDD					_		24000	24000	2700			NC NC
GAMBS 244-500												NC.
CAMPAIL 44-1000												NC NC
CAMPAIN A				ug/kg		ND						
GLM031												NC
DAMPS 44-DEE												
CAMPAIN_ACCORD			NA-TRND-SO01-02									
GLMB02 44-DDE												NS
GLARGIS 44-DDE				,								NS
OLMBID: 44-DOE												
CAMPAILS AL-JOSE NA-TEND-SCOLO SPAR 27 660 1700 1700 1900 1900 150 15 18 18 18 18 18 18 18				ug/kg	0.29	0.73						
OLMORIZ 44-DDE												NS
OLMO 2 44-DDE												
0.1460.12 44-502F NA.TRENS-5021-03 upfs. 0.25 0.86 17000 17000 1900 1900 1900 170 NS NS NS NS NS NS NS NS NS NS NS NS NS												
CAMMOD A-6-1007				ug/kg			17000	17000	1900	1900	5.8	NS
OLMAD 4.4-DDT												NS
OLMO 23 44-PDT	OLM03.2	4,4'-DDT										
OLMO 3.44-DDT			NA-TRND-S004-02	ug/kg	0,23	320	17000	17000				
OLM09.2 444-DDT NA_TRND-5021-02 sug/fs 2.7 300 1700 1900 1900 150 17 NA_TRND-5021-02 sug/fs 0.41 ND 17000 17000 1900 1500 1.7 NS OLM09.2 444-DDT NA_TRND-5025-02 sug/fs 0.42 ND 17000 17000 1900 1900 1.7 NS OLM09.2 444-DDT NA_TRND-5025-02 sug/fs 0.43 ND 17000 17000 1900 1900 1.7 NS OLM09.2 444-DDT NA_TRND-5025-02 sug/fs 0.35 ND 17000 17000 1900 1900 1.7 NS OLM09.2 444-DDT NA_TRND-5025-02 sug/fs 0.25 ND 17000 17000 1900 1900 1.7 NS OLM09.2 444-DDT NA_TRND-5025-02 sug/fs 0.25 ND 17000 17000 1900 1900 1.7 NS OLM09.2 444-DDT NA_TRND-5025-02 sug/fs 0.25 ND 340						29			1900	1900	1.7	NS
OLM032 447-DDT NA-TRND-5023-02 ug/dg 0.44 ND 17000 17000 1900 1900 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 171 NS 1800 1800 1800 171 NS 1800 1800 1800 171 NS 1800 1800 171 NS 1800 1800 1800 1800 171 NS 1800 1						300						
OLM03_2_laf-bDT NA-TRND-S022-02 uy/s_2 0.42 ND 17000 1900 1900 1.71 NS NA-TRND-S022-02 uy/s_2 0.32 ND 17000 17000 1900 1900 1.71 NS NA-TRND-S022-02 uy/s_2 0.32 ND 17000 17000 1900 1900 1.71 NS NA-TRND-S022-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.32 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 340 38 38 NC NC NC OLM03_2 Aldrin NA-TRND-S020-02 uy/s_2 0.42 ND 340 3												
OLMOS 2 Ad-POT							17000	17000				
DMM032 Aldrin												
OLM03.2 Aldrin												
OLM09.2 Aldrin	OLM03.2											
CLM03.2 Aldrin							340					
OLM03.2 Aldrin												
OLM03.2 Aldrin												
CLM09.2 Aldrin	OLM03.2	Aldrin										
OLM03.2 Adefin										38	NC	NC
DAMOS Address												
OLM03.2 Areclor-1016 NA-TRND-S001-02 ug/kg 0.25 ND 2900 2900 330 330 NC NC												
OLMOR 2												
CLM03.2 Arcelor-1016 NA-TRND-S004-02 wg/kg 0.23 ND 2900 2900 320 320 NC NC												
Columbs American Columbs American Columbs American Columbs American Columbs American Columbs American Columbs American Columbs American Columbs American Columbs American Columbs Colu												
OLM012_Accidented NA-TRIND-S015-02 up/kg 0.29 ND 2900 2900 320 320 NC NC	OLM03.2	Aroclor-1016										
DLM03.2 Areclor-1016 NA-TRND-S023-02 gg/kg 0.41 ND 2900 2900 330 320 NC NC									320			
OLM03.2 Arcelor:1016 NA-TRND-SO25-92 up/sg 0.42 ND 2500 2500 320 320 NC NC					-							
OLM03.2 Areclor-1016 NA-TRND-SO27-02 UP/Lg 0.3 ND 2000 2900 320 320 NC NC												
OLM03.2 Arcelor-121 NA-TRND-SO29-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC			NA-TRND-SO27-02									
CLM03.2 Aroclor-1221 NA-TRND-SO02-02 ug/kg 0.34 ND 2900 2900 320 320 NC NC									320	320		
OLIM03.2 Aroclor 1221 NA-TRND-S003-02 Ug/kg 0.27 ND 2900 2900 320 320 NC NC NC												
OLM03.2 Arcclor-1221 NA-TRND-SO10-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC	OLM03.2	Aroclor-1221										
OLM03.2 Aroclor-1221 NA-TRND-S010-02 ug/kg 0.29 ND 2900 2900 320 320 NC NC			NA-TRND-S004-02	ug/kg	0.23	ND	2900	2900	320			
OLM03.2 Arcelor-1221 NA-TRND-SC21-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1221 NA-TRND-SC23-02 ug/kg 0.41 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1221 NA-TRND-SC25-02 ug/kg 0.42 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1221 NA-TRND-SC27-02 ug/kg 0.3 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1221 NA-TRND-SC27-02 ug/kg 0.3 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1221 NA-TRND-SC29-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC01-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC02-02 ug/kg 0.34 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC01-02 ug/kg 0.37 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC01-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC01-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC01-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC01-02 ug/kg 0.29 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC11-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC11-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC21-02 ug/kg 0.29 ND 2900 2900 320 320 NC NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC21-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC21-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC21-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC NC OLM03.2 Arcelor-1232 NA-TRND-SC21-02 ug/kg 0.25 ND 29			NA-TRND-SO10-02							320	NC	NC
CLM03.2 Arcclor-1221 NA-TRND-SO23-02 ug/kg 0.41 ND 2900 2900 320 320 NC NC	OLM03.2											
OLM03.2 Aroclor-1221 NA-TRND-SO27-02 ug/kg 0.42 ND 2900 2900 320 320 NC NC NC	OLM03.2	Arocior-1221	NA-TRND-SO23-02	ug/kg	0.41	ND	2900					
OLIM03.2 Arcclor-1221 NA-TRND-SO29-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO01-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO02-Q2 tig/kg 0.34 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO03-Q2 tig/kg 0.27 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO03-Q2 tig/kg 0.27 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO03-Q2 tig/kg 0.23 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO03-Q2 tig/kg 0.23 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO15-Q2 tig/kg 0.23 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO15-Q2 tig/kg 0.27 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO21-Q2 tig/kg 0.27 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO23-Q2 tig/kg 0.41 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO23-Q2 tig/kg 0.41 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO27-Q2 tig/kg 0.41 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1232 NA-TRND-SO27-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1242 NA-TRND-SO27-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1242 NA-TRND-SO27-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1242 NA-TRND-SO27-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1242 NA-TRND-SO27-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1242 NA-TRND-SO27-Q2 tig/kg 0.25 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcclor-1242 NA-T								2900	320	320	NC	NC
OLM03.2 Arcclor-1232 NA-TRND-SO01-02 ug/kg 0.25 ND 2900 320 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO02-02 ug/kg 0.34 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO03-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO04-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO10-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO10-02 ug/kg 0.29 ND 2900 320 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO1-02 ug/kg 0.29 ND 2900 2900 320 320 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
OLIM03.2 Aroclor-1232 NA-TRND-S003-02 ug/kg 0.34 ND 2900 2900 320 320 NC NC	OLM03.2	Aroclor-1232	NA-TRND-SO01-02									
OLM03.2 Aroclor-1232 NA-TRND-S003-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC				ug/kg	0.34	ND	2900	2900				
OLIM03.2 Aroclor-1232 NA-TRND-S010-02 ug/kg 0.3 ND 2900 320 320 320 NC NC OLJM03.2 Aroclor-1232 NA-TRND-S015-02 ug/kg 0.29 ND 2900 2900 320 320 NC NC OLJM03.2 Aroclor-1232 NA-TRND-S021-02 ug/kg 0.27 ND 2900 3900 320 320 NC NC OLJM03.2 Aroclor-1232 NA-TRND-S023-02 ug/kg 0.41 ND 2900 3900 320 320 NC NC OLJM03.2 Aroclor-1232 NA-TRND-S025-02 ug/kg 0.42 ND 2900 320 320 NC NC OLJM03.2 Aroclor-1232 NA-TRND-S025-02 ug/kg 0.42 ND 2900 320 320 NC NC OLJM03.2 Aroclor-1232 NA-TRND-S025-02 ug/kg 0.3 ND 2900 320 320 NC NC <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>320</td><td>NC</td><td>NC</td></td<>										320	NC	NC
OLIM03.2 Arcolor-1232 NA-TRND-SO15-02 ug/kg 0.29 ND 2900 320 320 320 NC NC OLIM03.2 Arcolor-1232 NA-TRND-SO21-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC NC OLIM03.2 Arcolor-1232 NA-TRND-SO25-02 ug/kg 0.41 ND 2900 2900 320 320 NC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
OLM03.2 Aroclor-1232 NA-TRND-SO21-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO23-02 ug/kg 0.41 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO25-02 ug/kg 0.42 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO27-02 ug/kg 0.3 ND 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO27-02 ug/kg 0.25 ND 2900 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO21-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-SO20-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC	OLM03.2	Aroclor-1232										
OLM03.2 Aroclor-1232 NA-TRND-SO23-02 ug/kg 0.41 ND 2900 2900 320 320 NC NC NC				ug/kg		ND	2900	2900				
OLM03.2 Aroclor-1232 NA-TRND-SO27-02 ug/kg 0.3 ND 2900 320 320 320 NC NC OLM03.2 Aroclor-1232 NA-TRND-SO29-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-SO21-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-SO01-02 ug/kg 0.35 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-SO02-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-SO04-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-SO04-02 ug/kg 0.27 ND 2900 2900 320 320 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>320</td><td>NC</td><td>NC NC</td></t<>										320	NC	NC NC
OLM03.2 Aroclor-1232 NA-TRND-S029-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S001-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S002-02 ug/kg 0.34 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S003-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S004-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S004-02 ug/kg 0.23 ND 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S004-02 ug/kg 0.23 ND 2900 3900 320 320 NC <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
OLM03.2 Aroclor-1242 NA-TRND-S001-02 ug/kg 0.25 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S002-02 ug/kg 0.34 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S003-02 ug/kg 0.27 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S004-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC OLM03.2 Aroclor-1242 NA-TRND-S004-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC	OLM03.2	Aroclor-1232	NA-TRND-S029-02									
OLM03.2 Arcclor-1242 INA-TRND-SQ02-02 tig/fg 0.34 ND 2900 2900 320 320 NC NC OLM03.2 Argclor-1242 INA-TRND-SQ03-02 tig/fg 0.27 ND 2900 2900 320 320 NC NC OLM03.2 Argclor-1242 INA-TRND-SQ04-02 tig/fg 0.23 ND 2900 2900 320 320 NC NC OLM03.2 Argclor-1242 INA-TRND-SQ04-02 tig/fg 0.23 ND 2900 2900 320 320 NC NC				ug/kg	0.25	ND	2900	2900				
OLM03.2 Arccior-1242 NA-TRND-S004-02 ug/kg 0.23 ND 2900 2900 320 320 NC NC OLM03.2 Arccior-1242 NA-TRND-S004-02 ug/kg 0.23 ND 2900 320 NC NC									320	320	NC	NC
OLM03.2 Appelox 1242 NA TRAIT SOLO CO 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2												
					0.3	ND	2900	2900	320	320	NC NC	NC NC

											Comparison Conclusion
Method	Analyte	Sample ID	Units	MDL	Result	Industrial RBC	Industrial RBSL	Residential RBC	Residential RBSL	Reference UTL	Reference vs. Site
OLM03.2	Aroclor-1242	NA-TRND-SO15-02	ug/kg	0.29	ND	2900	2900	320	320	NC	NC.
	Aroclor-1242	NA-TRND-SO21-02	ug/kg	0.27	ND	2900	2900	320	320 320		NC NC
OLM03.2	Aroclor-1242	NA-TRND-SO23-02	ug/kg	0.41	ND ND	2900 2900	2900 2900	320 320	320		NC NC
OLM03.2 OLM03.2	Aroclor-1242 Aroclor-1242	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	0.42	ND	2900	2900	320	320		NC
OLM03.2	Aroclor-1242	NA-TRND-S029-02	ug/kg	0.25		2900	2900	320	320		NC
OLM03.2	Aroclor-1248	NA-TRND-SO01-02	ug/kg	0.25	ND	2900	2900	320	320		NC NC
OLM03.2	Aroclor-1248	NA-TRND-SO02-02	ug/kg	0.34		2900 2900	2900 2900	320 320	320 320		NC NC
OLM03.2	Aroclor-1248	NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg ug/kg	0.27	ND ND	2900		320	320		NC NC
OLM03.2 OLM03.2	Aroclor-1248 Aroclor-1248	NA-TRND-SO10-02	ug/kg	0.3		2900		320	320		NC
OLM03.2	Aroclor-1248	NA-TRND-SO15-02	ug/kg	0.29		2900		320	320		NC
OLM03.2	Aroclor-1248	NA-TRND-SO21-02	ug/kg	0.27	ND	2900		320 320	320 320		NC NC
OLM03.2	Aroclor-1248	NA-TRND-SO23-02	ug/kg	0.41	ND ND	2900 2900		320	320		NC NC
OLM03.2	Aroclor-1248	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	0.42		2900			320		NC
OLM03.2 OLM03.2	Aroclor-1248 Aroclor-1248	NA-TRND-SO29-02	ug/kg	0.25		2900			320		NC.
OLM03.2	Aroclor-1254	NA-TRND-SO01-02	ug/kg	0.25		2900			320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO02-02	ug/kg	0.34		2900			320		NC NC
OLM03.2	Aroclor-1254	NA-TRND-SO03-02	ug/kg	0.27		2900			320 320		NC NC
OLM03.2	Aroclor-1254	NA-TRND-5004-02	ug/kg	0.23		2900 2900			320		NC
OLM03.2 OLM03.2	Arocior-1254 Aroclor-1254	NA-TRND-SO10-02 NA-TRND-SO15-02	ug/kg ug/kg	0.3		2900			320		NC
OLM03.2	Aroclor-1254 Aroclor-1254	NA-TRND-SO21-02	ug/kg	0.27		2900	+		320	NC NC	NC
OLM03.2	Aroclor-1254	NA-TRND-SO23-02	ug/kg	0.41	ND	2900	2900		320		NC
OLM03.2	Aroclor-1254	NA-TRND-SO25-02	ug/kg	0.42		2900			320		NC NC
OLM03.2	Aroclor-1254	NA-TRND-S027-02	ug/kg	0.3		2900 2900			320		NC NC
OLM03.2	Aroclor-1254	NA-TRND-SO29-02 NA-TRND-SO01-02	ug/kg ug/kg	0.25		2900			320		NC
OLM03.2 OLM03.2	Aroclor-1260 Aroclor-1260	NA-TRND-SO02-02	ug/kg	0.34		2900			320		NC
OLM03.2	Aroclor-1260	NA-TRND-SO03-02	ug/kg	0.27	ND	2900			320		NC
OLM03.2	Aroclor-1260	NA-TRND-SO04-02	ug/kg	0.23		2900			320		
OLM03.2	Aroclor-1260	NA-TRND-SO10-02	ug/kg	0.3		2900 2900			320 320		
OLM03.2	Aroclor-1260	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg ug/kg	0.29		2900			320		
OLM03.2 OLM03.2	Aroclor-1260 Aroclor-1260	NA-TRND-SO23-02	ug/kg	0.41		2900			320		
OLM03.2	Aroclor-1260	NA-TRND-SO25-02	ug/kg	0.42		2900			320		
OLM03.2	Aroclar-1260	NA-TRND-SO27-02	ug/kg	0.3		2900					
OLM03.2	Aroclor-1260	NA-TRND-SO29-02	ug/kg	0.25		2900					
OLM03.2	Dieldrin	NA-TRND-S001-02	ug/kg	0.25		360 360					
OLM03.2 OLM03.2	Dieldrin Dieldrin	NA-TRND-SO02-02 NA-TRND-SO03-02	ug/kg ug/kg	0.34		360					
OLM03.2	Dieldrin	NA-TRND-S004-02	ug/kg	0.23		360					
OLM03.2	Dieldrin	NA-TRND-SO10-02	ug/kg	0.3		360					
OLM03.2	Dieldrin	NA-TRND-SO15-02	ug/kg	0.29		360					
OLM03.2	Dieldrin	NA-TRND-SO21-02	ug/kg	0.27		360 360					
OLM03.2 OLM03.2	Dieldrin Dieldrin	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	0.41		360					
OLM03.2	Dieldrin	NA-TRND-S027-02	ug/kg	0.3		360					
OLM03.2	Dieldrin	NA-TRND-SO29-02	ug/kg	0.25		360					
OLM03.2	Endosulfan I	NA-TRND-SO01-02	ug/kg	0.25		12000000					
OLM03.2	Endosulfan I	NA-TRND-SO02-02	ug/kg	0.34		12000000					
OLM03.2	Endosulfan I Endosulfan I	NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg ug/kg	0.27	-	1200000		 			
OLM03.2 OLM03.2	Endosulfan I	NA-TRND-SO10-02	ug/kg	0.3		12000000					
OLM03.2	Endosulfan I	NA-TRND-SO15-02	ug/kg	0.29		12000000	1200000	470000	4700) ŅC	NC.
OLM03.2	Endosulfan I	NA-TRND-SO21-02	ug/kg	0.27		12000000					
OLM03.2	Endosulfan I	NA-TRND-S023-02	ug/kg	0.41		12000000					
OLM03.2 OLM03.2	Endosulfan I Endosulfan I	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	0.42		12000000					
OLM03.2	Endosulfan I	NA-TRND-\$029-02	ug/kg	0.25		12000000					
OLM03.2	Endosulfan II	NA-TRND-SO01-02	ug/kg	0.25	5 ND	12000000					
OLM03.2	Endosulfan II	NA-TRND-S002-02	ug/kg	0.34		12000000					
OLM03.2	Endosulfan II	NA-TRND-S003-02	ug/kg	0.2		12000000					
OLM03.2	Endosulfan II	NA-TRND-S004-02 NA-TRND-S010-02	ug/kg ug/kg	0.23		12000000					
OLM03.2 OLM03.2	Endosulfan II Endosulfan II	NA-TRND-S015-02	ug/kg	0.29		12000000					
OLM03.2	Endosulfan II	NA-TRND-SO21-02	ug/kg	0.27	7 ND	12000000	1200000	470000	4700	0 NC	. NC
OLM03.2	Endosulfan II	NA-TRND-SO23-02	ug/kg	0.4		12000000					
OLM03.2	Endosulfan II	NA-TRND-S025-02	ug/kg	0.42		12000000					
OLM03.2	Endosulfan II	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg	0.2		1200000					
OLM03.2 OLM03.2	Endosulfan II Endosulfan sulfate	NA-TRND-S001-02	ug/kg ug/kg	0.2							
OLM03.2	Endosulfan sulfate	NA-TRND-S001-02	ug/kg	0.3		12000000				0 NC	NC.
OLM03.2	Endosulfan sulfate	NA-TRND-S003-02	ug/kg	0.2	7 ND	12000000	1200000	0 470000	4700	0 NC	NC.
OLM03.2	Endosulfan sulfate	NA-TRND-SO04-02	ug/kg	0.2							
OLM03.2	Endosulfan sulfate	NA-TRND-SO10-02	ug/kg	0.3							
OLM03.2	Endosulfan sulfate	NA-TRND-SO15-02	ug/kg	0.29							
OLM03.2	Endosulfan sulfate	NA-TRND-SO21-02 NA-TRND-SO23-02	ug/kg	0.2							
OLM03.2 OLM03.2	Endosulfan sulfate Endosulfan sulfate	NA-TRND-S025-02	ug/kg ug/kg	0.4							
OLM03.2	Endosulfan sulfate	NA-TRND-SO27-02	ug/kg	0.3							

							*					Comparison Conclusion
Changes		Analyte	Sample ID	Units	MDL	Result	Industrial RBC	Industrial RRSI.	Residential RRC	Residential	Reference	t .
Col. Col. Col. Col. Col. Col. Col. Col. Col. Col. Col. Col.							12000000	1200000				
DAMPS Debrie											NC.	NC
Digitary Digitary												NC.
DAMPS			NA-TRND-SO04-02	ug/kg	0.23	ND						
Change C										2300	NC	NC
O.M. Description												NC.
1.000000000000000000000000000000000000												
10.00032 Belefan skelderge NAT-PROS-5007-02 Sept. 10.55 10.57 10.0000 10.0000 20.000 20.000 10.00000 10.00000 10.00000 10.00000 10.00000												NC NC
Output												NC
O.M. Design believed NA TRIPS SOCIAL MyRX 0.34 ND 610000 61000 22000 2500 NC NC NC NC NC NC NC												
1.04861.3 Indefin abelyty		· · · · · · · · · · · · · · · · · · ·										
O_MM3_2 Benfen alsebryce												NC
Chango Benfers indebuyes												
OLM901_ Endrin ablatyse												
Champs Section Month Section												
OLM921 Entire terms N. TRINS 5070-02 styles 0.5 ND 610000 51000 52000 2200 NC NC NC CAMBOL Styles CAMBOL Styles CAMBOL										2300		
Quantity Change												NC
OLM9012 Redni between												
OLM901 Endein Extone			NA-TRND-SO01-02		0.25							
Col. Col. Col. Col. Col. Col. Col. Col. Col. Col. Col. Co		·							23000	2300	NC	
Dignormal Barlin Extense NA_TRND_SQL002 Jurky 0.3 ND 610700 61000 25000 2500 NC NC CM001 CM001 Extense NA_TRND_SQL102 Jurky 0.25 ND 610700 61000 22000 2500 NC NC CM001												NC.
OLMOS Bender Neuron Na. TRND 5015-02 laying 0.29 ND 610000 61000 25000 2500 NC NC					_							
U.M. December M.A. TRND-5021-02 ug/sg 0.42 ND 610000 610000 22000 2200 NC NC COLM002. Eleitin letence N.A. TRND-5025-02 ug/sg 0.42 ND 610000 610000 22000 2200 NC NC COLM002. Eleitin letence N.A. TRND-5025-02 ug/sg 0.42 ND 610000 610000 22000 2200 NC NC NC COLM002. Eleitin letence N.A. TRND-5025-02 ug/sg 0.42 ND 610000 610000 22000 22000 NC NC NC COLM002. Eleitin letence N.A. TRND-5025-02 ug/sg 0.32 ND 610000 610000 22000 22000 NC NC NC COLM002. Eleitin letence N.A. TRND-5025-02 ug/sg 0.32 ND 610000 610000 22000 22000 NC NC NC COLM002. Eleitin letence N.A. TRND-5025-02 ug/sg 0.32 ND 610000 610000 22000 22000 NC NC NC NC NC NC NC					0.29							
Col.Mon. 2										2300		
Commons Endrin Nations NATRIND SOZI 20 1987a 0.3 ND 61000 61000 22000 22000 No. No												
OLM032 Endmix Ectoce NA-TRND-SQ29-02 us/fs 0.25 ND 0.1000 1300 2000 2000 2000 NC NC NC NC NM032 Respecibler NA-TRND-SQ01-02 us/fs 0.25 ND 1300 1300 140 140 NC NC NC NC NC NC NM032 Respecibler NA-TRND-SQ02-02 us/fs 0.25 ND 1300 1300 140 140 NC NC NC NC NM032 Respecibler NA-TRND-SQ02-02 us/fs 0.25 ND 1300 1300 140 140 NC NC NC NC NC NC NM032 Respecibler NA-TRND-SQ04-02 us/fs 0.27 ND 1300 1300 140 140 NC NC NC NC NC NC NC N												
OLM992 Hepselabr NA-TRND-SO01-02 up/kg 0.34 ND 1300 1300 140 140 NC NC												
OLM932 Hepschler NA_TRND-SOUG Wekg 0.27 ND 1500 1500 140 140 NC NC												
CLM032 Hepsachlor												
OLM03.2 Heppachlor NA-TRND-S010-02 up/kg 0.3 ND 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S015-02 up/kg 0.27 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S012-02 up/kg 0.47 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S023-02 up/kg 0.47 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S023-02 up/kg 0.47 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S023-02 up/kg 0.42 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S023-02 up/kg 0.42 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S023-02 up/kg 0.35 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor NA-TRND-S023-02 up/kg 0.35 ND 1300 1300 1401 140 NC NC OLM03.2 Heppachlor S034 Heppachlor S034 Heppachlor S034 Heppachlor S034 Heppachlor S034 Heppachlor S034 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-TRND-S002-02 up/kg 0.35 ND S030 S030 T0 T0 NC NC NC OLM03.2 Heppachlor S034 NA-												
CLMM02, Hepstechtor NA-TRND-SO16-02 ug/rsg 0.79 ND 1300 1300 140 140 NC NC CLMM02, Hepstechtor NA-TRND-SO21-02 ug/rsg 0.41 ND 1300 1300 140 140 NC NC NC CLMM02, Hepstechtor NA-TRND-SO22-02 ug/rsg 0.41 ND 1300 1300 140 140 NC NC NC CLMM02, Hepstechtor NA-TRND-SO22-02 ug/rsg 0.42 ND 1300 1300 140 140 NC NC NC CLMM02, Hepstechtor NA-TRND-SO22-02 ug/rsg 0.31 ND 1300 1300 140 140 NC NC NC CLMM02, Hepstechtor NA-TRND-SO22-02 ug/rsg 0.31 ND 1300 1300 140 140 NC NC NC CLMM02, Hepstechtor NA-TRND-SO20-02 ug/rsg 0.34 ND 1300 1300 140 140 NC NC NC CLMM02, Hepstechtor Herston, NA-TRND-SO20-02 ug/rsg 0.34 ND 630 630 70 70 NC NC NC CLMM02, Hepstechtor Herston, NA-TRND-SO20-02 ug/rsg 0.35 ND 630 630 70 70 NC NC NC CLMM02, Hepstechtor Herston, NA-TRND-SO20-02 ug/rsg 0.37 ND 630 630 70 70 NC NC NC CLMM02, Hepstechtor Herston, NA-TRND-SO20-02 ug/rsg 0.37 ND 630 630 70 70 NC NC NC NC NC NC NC N												
CLM09.2 Hepsachlor									140			
CLM03.2 Hepstehlor												
OLM03.2 Hepsacher NA-TRNP-5027-02 ug/kg 0.3 ND 1300 1400 140 NC NC												
OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.25 ND 300 330 140 140 NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.35 ND 630 630 70 70 NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.34 ND 630 630 70 70 NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.37 ND 630 630 70 70 NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.35 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.38 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.38 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.29 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.29 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO01-02 up/kg 0.29 ND 630 630 70 70 NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.41 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.42 ND 630 630 70 70 NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.42 ND 630 630 70 70 NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.25 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.25 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.25 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.25 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.25 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.25 ND 630 630 70 70 NC NC NC OLM03.2 Hepachlor epoxide NA-TRND-SO02-02 up/kg 0.25 ND 630 630 70				ug/kg		ND						
CLIM03.2 Heptachlor epoxide N.ATRND-SO03-02 up/kg 0.24 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO03-02 up/kg 0.27 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO04-02 up/kg 0.28 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO04-02 up/kg 0.28 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO10-02 up/kg 0.28 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO10-02 up/kg 0.29 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO21-02 up/kg 0.27 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO21-02 up/kg 0.27 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO21-02 up/kg 0.41 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO21-02 up/kg 0.42 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO21-02 up/kg 0.42 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO22-02 up/kg 0.25 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO23-02 up/kg 0.25 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO23-02 up/kg 0.25 ND 630 630 70 70 NC NC NC CLIM03.2 Heptachlor epoxide N.ATRND-SO23-02 up/kg 0.25 ND 630 630 70 70 NC NC NC CLIM03.2 Methoxychlor N.ATRND-SO23-02 up/kg 0.25 ND 630 630 70 70 NC NC NC CLIM03.2 Methoxychlor N.ATRND-SO23-02 up/kg 0.25 ND 630 630 70 70 NC NC NC CLIM03.2 Methoxychlor N.ATRND-SO23-02 up/kg 0.25 ND 630 630 70 70 NC NC NC CLIM03.2 Methoxychlor N.ATRND-SO23-02 up/kg 0.25 ND 10000000 1000000 390000 3900											NC	
OLM03.2 Heptachlor epoxide												
OLM03.2 Heptechlor epoxide	OLM03.2	Heptachlor epoxide										
CLM09.2 Pelpachlor epoxide												
CLM03.2 Hepsachlor epoxide NA-TRND-SO21-02 Ug/Kg 0.27 NTD 630 630 70 70 NC NC											NC	
CLM03.2 Hepsachlor epoxide					_							
OLM03.2 Heptachlor epoxide NA_TRND_SO25-02 ug/kg 0.42 ND 630 630 70 70 NC NC	OLM03.2	Heptachlor epoxide										
OLAM03.2 Replachior epoxide NA-TRND-SO20-02 ug/kg 0.35 ND 630 630 70 70 NC NC												
OLM03.2 Methoxychlor NA-TRND-S001-02 ug/kg 0.25 ND 10000000 390000 390000 390000 NC NC												
OLM03.2 Methoxychlor NA-TRND-S003-02 Ug/kg 0.34 ND UJ 10000000 1000000 390000 390000 NC NC												
OLM03.2 Methoxychlor NA-TRND-SO04-02 ug/kg 0.27 ND U 10000000 1000000 390000 39000 NC NC			NA-TRND-SO02-02									
OLIM03.2 Methoxychlor NA-TRND-SO10-02 ug/kg 0.32 ND 10000000 1000000 390000 39000 NC NC									390000			
OLM03.2 Methoxychlor NA-TRND-SO15-02 ug/kg 0.29 ND 10000000 1000000 390000 39000 NC NC											NC	NC
OLM03.2 Methoxychlor NA-TRND-SO21-02 ug/kg 0.27 ND 10000000 390000 39000 NC NC OLM03.2 Methoxychlor NA-TRND-SO23-02 ug/kg 0.41 ND 10000000 390000 39000 NC NC OLM03.2 Methoxychlor NA-TRND-SO25-02 ug/kg 0.42 ND UJ 10000000 390000 39000 NC NC OLM03.2 Methoxychlor NA-TRND-SO27-02 ug/kg 0.3 ND UJ 10000000 390000 39000 NC NC OLM03.2 Methoxychlor NA-TRND-SO27-02 ug/kg 0.25 ND UJ 10000000 390000 39000 NC NC OLM03.2 Toxaphene NA-TRND-SO2-02 ug/kg 0.25 ND UJ 10000000 390000 39000 NC NC OLM03.2 Toxaphene NA-TRND-SO2-02 ug/kg 0.25 ND UJ 10000000 39000 39000 NC NC NC OLM	OLM03.2											NC NC
OLM03.2 Methoxychlor NA-TRND-SO23-02 ug/kg 0.41 ND 10000000 390000 390000 390000 NC NC			NA-TRND-\$021-02	ug/kg	0.27	ND	10000000	1000000				
OLM03.2 Methoxychlor NA-TRND-S027-02 ug/kg 0.25 ND UJ 10000000 1000000 390000 39000 NC NC								1000000	390000	39000	NC	NC
OLM03.2 Methoxychlor NA-TRND-SO29-02 ug/kg 0.25 ND UJ 10000000 39000 39000 NC NC OLM03.2 Toxaphene NA-TRND-SO1-02 ug/kg 0.25 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO2-02 ug/kg 0.25 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO2-02 ug/kg 0.27 ND 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO3-02 ug/kg 0.27 ND 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO3-02 ug/kg 0.27 ND 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO1-02 ug/kg 0.3 ND 5200 580 580 NC NC NC OLM03.2 Toxaphene												NC
CLM03.2 Toxaphene NA-TRND-SO01-02 ug/kg 0.25 ND 5200 5200 580 580 NC NC	OLM03.2	Methoxychlor										
OLM03.2 Toxaphene NA-TRND-S002-02 ug/kg 0.34 ND 5200 5200 580 580 NC NC				ug/kg	0.25	ND	5200	5200				
OLM03.2 Toxaphene NA-TRND-SO04-02 ug/kg 0.23 ND 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO10-02 ug/kg 0.3 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO15-02 ug/kg 0.29 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO21-02 ug/kg 0.29 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO21-02 ug/kg 0.27 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO23-02 ug/kg 0.41 ND 5200 580 580 NC NC NC OLM03.2 Toxaphene NA-TRND-SO23-02 ug/kg 0.42 ND 5200 580 580 NC NC NC <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>580</td><td>NC</td><td>NC.</td></t<>										580	NC	NC.
OLM03.2 Toxaphene NA-TRND-S010-02 ug/kg 0.3 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-S015-02 ug/kg 0.29 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-S021-02 ug/kg 0.27 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-S021-02 ug/kg 0.41 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-S023-02 ug/kg 0.41 ND 5200 5200 580 580 NC NC NC OLM03.2 Toxaphene NA-TRND-S022-02 ug/kg 0.42 ND 5200 5200 580 580 NC NC NC OLM03.2 Toxaphene NA-TRND-S022-02 ug/kg 0.3 ND 5200 5200 580	OLM03.2											
OLM03.2 Toxaphene NA-TRND-SO15-02 ug/kg 0.29 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO21-02 ug/kg 0.27 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO23-02 ug/kg 0.41 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO23-02 ug/kg 0.42 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO23-02 ug/kg 0.3 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO22-02 ug/kg 0.3 ND 5200 5200 580 580 NC NC OLM03.2 Japha-BHC NA-TRND-SO01-02 ug/kg 0.25 ND 5200 5300 580 580 NC <td< td=""><td>OLM03.2</td><td>Toxaphene</td><td>NA-TRND-SO10-02</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	OLM03.2	Toxaphene	NA-TRND-SO10-02									
OLM03.2 Toxaphene NA-TRND-SO21-02 ug/kg 0.27 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO2-02 ug/kg 0.41 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO25-02 ug/kg 0.42 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO27-02 ug/kg 0.3 ND 5200 5200 580 580 NC NC OLM03.2 Toxaphene NA-TRND-SO2-02 ug/kg 0.25 ND 5200 5200 580 580 NC NC OLM03.2 Japha-BHC NA-TRND-SO2-02 ug/kg 0.25 ND 5200 5300 580 580 NC NC OLM03.2 Japha-BHC NA-TRND-SO2-02 ug/kg 0.25 ND 910 910 100 NC NC <tr< td=""><td></td><td></td><td></td><td>ug/kg</td><td>0.29</td><td>ND</td><td>5200</td><td>5200</td><td></td><td></td><td></td><td></td></tr<>				ug/kg	0.29	ND	5200	5200				
OLM03.2 Toxaphene NA-TRND-S025-02 ug/kg 0.42 ND 5200 5200 580 580 NC NC									580	580	NC	NC
OLM03.2 Toxaphene NA-TRND-S027-02 ug/kg 0.3 ND 5200 5200 580 S80 NC NC OLM03.2 Toxaphene NA-TRND-S029-02 ug/kg 0.25 ND 5200 5200 580 580 NC NC OLM03.2 alpha-BHC NA-TRND-S001-02 ug/kg 0.25 ND 910 910 100 100 NC NC OLM03.2 alpha-BHC NA-TRND-S002-02 ug/kg 0.34 ND 910 910 100 100 NC NC OLM03.2 alpha-BHC NA-TRND-S003-02 ug/kg 0.27 ND 910 910 100 100 NC NC OLM03.2 alpha-BHC NA-TRND-S003-02 ug/kg 0.27 ND 910 910 100 100 NC NC												NC
OLM03.2 Toxaphene NA-TRND-SO29-02 ug/kg 0.25 ND 5200 5300 580 580 NC NC OLM03.2 alpha-BHC NA-TRND-SO01-02 ug/kg 0.25 ND 910 910 100 100 NC NC OLM03.2 alpha-BHC NA-TRND-SO02-02 ug/kg 0.34 ND 910 910 100 100 NC NC OLM03.2 alpha-BHC NA-TRND-SO03-02 ug/kg 0.27 ND 910 910 100 NC NC OLM03.2 alpha-BHC NA-TRND-SO03-02 ug/kg 0.27 ND 910 910 100 NC NC	OLM03.2	Toxaphene	NA-TRND-SO27-02									
OL.M03.2 alpha-BHC NA-TRND-SO01-02 ug/kg 0.25 ND 910 910 100 100 NC NC OL.M03.2 alpha-BHC NA-TRND-SO02-02 ug/kg 0.34 ND 910 910 100 100 NC NC OL.M03.2 alpha-BHC NA-TRND-SO03-02 ug/kg 0.27 ND 910 910 100 NC NC OL.M03.2 alpha-BHC NA-TRND-SO03-02 ug/kg 0.27 ND 910 910 100 NC NC			NA-TRND-S029-02	ug/kg	0.25	ND	5200	5200				
OLM03.2 alpha BHC NA-TRID-S002-02 lag/kg 0.27 ND 910 910 100 NC NC OLM03.2 alpha BHC NA-TRID-S003-02 lag/kg 0.27 ND 910 910 100 NC NC								910	100	100	NC	
OL MOS 2 State PLAC NO NO NO NO NO NO NO NO NO NO NO NO NO												NC
		· · · · · · · · · · · · · · · · · · ·				ND	910	910	100	100	NC NC	NC NC

		C	Haite	MDL	Result	Industrial RBC	Industrial RBSL	Residential RBC	Residential RBSL	Reference UTL	Comparison Conclusion Reference vs. Site
Method	Analyte	NA-TRND-SO10-02	Units ug/kg	0.3	ND	910	910	100	100	NC	NC
OLM03.2 OLM03.2	alpha-BHC alpha-BHC	NA-TRND-S015-02	ug/kg	0.29	ND	910	910	100	100	NC.	NC
	alpha-BHC	NA-TRND-SO21-02	ug/kg	0.27	ND	910	910	100	100	NC.	NC NC
OLM03.2	alpha-BHC	NA-TRND-\$023-02	ug/kg	0.41	ND	910	910	100	100	NC.	NC NC
OLM03.2	alpha-BHC	NA-TRND-SO25-02	ug/kg	0.42	ND	910	910	100	100	NC NC	NC NC
OLM03.2	alpha-BHC	NA-TRND-SO27-02	ug/kg	0.3	ND	910 910	910 910	100	100	NC NC	NC
OLM03.2	alpha-BHC	NA-TRND-S029-02	ug/kg	0.25	ND ND	16000	16000	1800	1800	NC	NC NC
OLM03.2	alpha-Chlordane	NA-TRND-SO01-02 NA-TRND-SO02-02	ug/kg ug/kg	0.23	ND	16000	16000	1800	1800	NÇ	NC
OLM03.2 OLM03.2	alpha-Chlordane alpha-Chlordane	NA-TRND-S002-02	ug/kg	0.27	ND	16000	16000	1800	1800	NC	NC
OLM03.2	alpha-Chlordane	NA-TRND-SO04-02	ug/kg	0.23	ND	16000	16000	1800	1800	NC.	NC
OLM03.2	alpha-Chlordane	NA-TRND-SO10-02	ug/kg	0.3	ND	16000	16000	1800	1800	NC	NC NC
OLM03.2	alpha-Chlordane	NA-TRND-SO15-02	ug/kg	0.29	ND	16000	16000	1800	1800	NC NC	NC NC
OLM03,2	alpha-Chlordane	NA-TRND-SO21-02	ug/kg	0.27	ND	16000		1800	1800	NC NC	NC NC
OLM03.2	alpha-Chlordane	NA-TRND-SQ23-02	ug/kg	0.41	ND	16000		1800	1800	NC NC	NC NC
OLM03.2	alpha-Chiordane	NA-TRND-S025-02	ug/kg	0.42	ND 7.6	16000 16000			1800	NC	NC
OLM03.2	alpha-Chlordane	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg ug/kg	0.25	ND	16000		1800	1800	NC	NC
OLM03.2 OLM03.2	alpha-Chlordane beta-BHC	NA-TRND-S001-02	ug/kg	0.25	ND	3200		350	350		NC
OLM03.2	beta-BHC	NA-TRND-SO02-02	ug/kg	0.34	ND	3200		350	3.50	NC	NÇ
OLM03.2	beta-BHC	NA-TRND-SO03-02	ug/kg	0.27	ND	3200		350	350		NC NC
OLM03.2	beta-BHC	NA-TRND-SO04-02	ug/kg	0.23	ND	3200		350	350		NC.
OLM03.2	beta-BHC	NA-TRND-SO10-02	ug/kg	0.3	ND	3200		350	350		NC NC
OLM03.2	beta-BHC	NA-TRND-SO15-02	ug/kg	0.29	ND	3200		350	350		NC NC
OLM03.2	beta-BHC	NA-TRND-SO21-02	ug/kg	0.27	ND	3200			350 350		NC NC
OLM03.2	beta-BHC	NA-TRND-S023-02	ug/kg	0.41	ND ND	3200 3200			350		NC NC
OLM03.2	beta-BHC	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	0.42	ND ND	3200			350		NC
OLM03.2	beta-BHC	NA-TRND-SO29-02	ug/kg	0.25	ND	3200		350	350		NC
OLM03.2 OLM03.2	betz-BHC delta-BHC	NA-TRND-SO01-02	ug/kg	0.25	ND	3200			350		NC
OLM03.2	delta-BHC	NA-TRND-SO02-02	ug/kg	0.34	ND	3200		350	350		NC
OLM03.2	delta-BHC	NA-TRND-SO03-02	ug/kg	0.27	ND	3200			350		NC
OLM03.2	delta-BHC	NA-TRND-\$004-02	ug/kg	0,23	ND	3200			350		NC
OLM03.2	delta-BHC	NA-TRND-SO10-02	ug/kg	0.3	ND	3200			350		NC.
OLM03.2	delta-BHC	NA-TRND-SO15-02	ug/kg	0.29	ND	3200			350		NC NC
OLM03.2	delta-BHC	NA-TRND-SO21-02	ug/kg	0.27	ND	3200			350 350		NC NC
OLM03.2	delta-BHC	NA-TRND-SO23-02	ug/kg	0.41	ND ND	3200 3200			350	,	NC NC
OLM03.2	delta-BHC	NA-TRND-S025-02	ug/kg	0.42	ND ND	3200			350		NC NC
OLM03.2	delta-BHC	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg ug/kg	0.25	ND	3200			350		
OLM03.2 OLM03.2	delta-BHC gamma-BHC(Lindane)	NA-TRND-S001-02	ug/kg	0.25	ND	4400			490		
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO02-02	ug/kg	0.34	ND	4400			490) NC	
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO03-02	ug/kg	0.27	ND	4400	4400	490	490		
OLM03.2	gamma-BHC(Lindane)	NA-TRND-S004-02	ug/kg	0.23	ND	4400			490		
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO10-02	ug/kg	0.3	ND	4400			490		
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO15-02	ug/kg	0.29		4400			490		
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO21-02	ug/kg	0.27	ND ND	4400			490		
OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO23-02	ug/kg ug/kg	0.41	ND	4400			490		
OLM03.2	gamma-BHC(Lindane) gamma-BHC(Lindane)	NA-TRND-\$025-02 NA-TRND-\$027-02	ug/kg	0.3	ND	4400			490		
OLM03.2 OLM03.2	gamma-BHC(Lindane)	NA-TRND-SO29-02	ug/kg	0.25	ND	4400		4	490) NC	NC
OLM03.2	gamma-Chlordane	NA-TRND-SQ01-02	ug/kg	0.25	ND	16000	16000		1800		
OLM03.2	gamma-Chlordane	NA-TRND-SO02-02	ug/kg	0.34		16000			1800		
QLM03.2	gamma-Chlordane	NA-TRND-SO03-02	ug/kg	0.27		16000			1800		
OLM03.2	gamma-Chlordane	NA-TRND-SO04-02	ug/kg	0.23		16000					
OLM03.2	gamma-Chlordane	NA-TRND-SO10-02	ug/kg	0.3		16000			1800		
OLM03.2	gamma-Chlordane	NA-TRND-SO15-02	ug/kg	0.29		16000					
OLM03.2	gamma-Chlordane	NA-TRND-SO21-02 NA-TRND-SO23-02	ug/kg ug/kg	0.27		16000					NC NC
OLM03.2 OLM03.2	gamma-Chlordane gamma-Chlordane	NA-TRND-S025-02	ug/kg	0.42							NC.
OLM03.2	gamma-Chlordane	NA-TRND-SO27-02	ug/kg	0.3		16000	1600	1800	1800) NC	NC NC
OLM03.2	gamma-Chlordane	NA-TRND-SO29-02	ug/kg	0.25		16000					
OLMO3.2		NA-TRND-SO01-02	ug/kg	49							
OLMO3.2	1,2,4-Trichlorobenzene	NA-TRND-SO02-02	ug/kg	67		2000000					
	1,2,4-Trichlorobenzene	NA-TRND-SO03-02	ug/kg	54							
OLMO3.2		NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg	46 60							
	1.2.4-Trichlorobenzene	NA-TRND-S010-02 NA-TRND-S015-02	ug/kg ug/kg	58							
	1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene	NA-TRND-S021-02	ug/kg	55							
	1,2,4-Trichlorobenzene	NA-TRND-S023-02	ug/kg	81							: NC
	1.2.4-Trichlorobenzene	NA-TRND-S025-02	ug/kg	83				780000	7800		NC NC
	1,2,4-Trichlorobenzene	NA-TRND-SO27-02	ug/kg	60	ND	2000000	0 200000	0 780000			
OLMO3.2		NA-TRND-SO29-02	ug/kg	51	ND						
OLMO3.2		NA-TRND-\$001-02	ug/kg	49							
OLMO3.2		NA-TRND-SO02-02	ug/kg	67							
OLMO3.2		NA-TRND-S003-02	ug/kg	54							
OLMO3.2		NA-TRND-SO04-02	ug/kg	46							
OLMO3.2		NA-TRND-SO10-02	ug/kg	60							
	1,2-Dichlorobenzene	NA-TRND-SO15-02	ug/kg	58 55							
OLMO3.2		NA-TRND-S021-02	ug/kg	81							
JULMU3.2	1,2-Dichlorobenzene	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	83							

Method						Industrial	Industrial	Residential	Residential	Reference	Comparison Conclusion Reference vs.
OLMO3,2	Analyte 1,2-Dichlorobenzene	NA-TRND-S027-02	Units	MDL	Result	RBC	RBSL.	RBC	RBSL	UTL	Site
OLMO3.2	1.2-Dichlorobenzene	NA-TRND-S029-02	ug/kg ug/kg	51	ND ND	180000000 180000000	18000000	7000000	700000	NC	NC
OLMO3.2	1,3-Dichlorobenzene	NA-TRND-S001-02	ug/kg	49	ND UJ	61000000	6100000	7000000 2300000	700000 230000	NC NC	NC
OLMO3.2		NA-TRND-S002-02	ug/kg	67	ND UI	61000000	6100000	2300000	230000	NC NC	NC NC
OLMO3.2 OLMO3.2		NA-TRND-S003-02	ug/kg	54	NDUJ	61000000	6100000	2300000	230000	NC	NC
OLMO3.2		NA-TRND-S004-02 NA-TRND-S010-02	ug/kg ug/kg	46 60	ND ND	61000000	6100000	2300000	230000	NC	NC
	1.3-Dichlorobenzene	NA-TRND-SO15-02	ug/kg	58	ND	61000000	6100000 6100000	2300000 2300000	230000	NC NC	NC NC
	1,3-Dichlorobenzene	NA-TRND-S021-02	ug/kg	55	ND	61000000	6100000	2300000	230000 230000	NC NC	NC NC
	1,3-Dichlorobenzene 1,3-Dichlorobenzene	NA-TRND-SO23-02	ug/kg	81	ND	61000000	6100000	2300000	230000	NC	NC NC
	1,3-Dichlorobenzene	NA-TRND-S025-02 NA-TRND-S027-02	ug/kg ug/kg	60 60	ND	61000000	6100000	2300000	230000	NC	NC
OLMO3.2	1,3-Dichlorobenzene	NA-TRND-S029-02	ug/kg	51	ND ND	61000000	6100000	2300000 2300000	230000	NC	NÇ
	1.4-Dichlorobenzene	NA-TRND-SO01-02	ug/kg	49	ND UJ	240000	240000	27000	230000 27000	NC NC	NC NC
OLMO3.2 OLMO3.2	1.4-Dichlorobenzene	NA-TRND-\$002-02	ug/kg	67	NDUI	240000	240000	27000	27000	NC NC	NC NC
OLMO3.2	1.4-Dichlorobenzene 1.4-Dichlorobenzene	NA-TRND-S003-02 NA-TRND-S004-02	ug/kg	54	ND UJ	240000	240000	27000	27000	NC	NC
	1.4-Dichlorobenzene	NA-TRND-S010-02	ug/kg ug/kg	46 60	ND ND	240000 240000	240000	27000	27000	NC	NC
OLMO3.2	1,4-Dichlorobenzene	NA-TRND-SO15-02	ug/kg	58	ND	240000	240000 240000	27000 27000	27000 27000	NC NC	NC
OLMO3.2	1.4-Dichlorobenzene	NA-TRND-SO21-02	ug/kg	55	ND	240000	240000	27000	27000	NC NC	NC NC
OLMO3.2 OLMO3.2	1.4 Dichlorobenzene	NA-TRND-S023-02	ug/kg	81	ND	240000	240000	27000	27000	NC NC	NC NC
OLMO3.2 OLMO3.2	1,4-Dichlorobenzene 1,4-Dichlorobenzene	NA-TRND-S025-02 NA-TRND-S027-02	ug/kg	83	ND	240000	240000	27000	27000	NC	NC
OLMO3.2	1.4-Dichlorobenzene	NA-TRND-S027-02 NA-TRND-S029-02	ug/kg ug/kg	60 51	ND ND	240000 240000	240000	27000	27000	NC	NC
OLMO3.2	2,2'-oxybis(1-chloropropane)	NA-TRND-S001-02	ug/kg	49	NDUJ	82000	240000 82000	27000 9100	27000 9100	NC NC	NC NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-S002-02	ug/kg	67	ND UJ	82000	82000	9100	9100	NC NC	NC NC
	2.2'-oxybis(1-chloropropane)	NA-TRND-S003-02	ug/kg	54	ND UJ	82000	82000	9100	9100	NC	NC NC
	2,2'-oxybis(1-chloropropane) 2,2'-oxybis(1-chloropropane)	NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg	46	ND	82000	82000	9100	9100	NÇ	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-S015-02	ug/kg ug/kg	60 58	ND ND	82000 82000	82000 82000	9100	9100	NC	NC
OLMO3.2	2.2'-oxybis(1-chloropropane)	NA-TRND-SO21-02	ug/kg	55	ND	82000	82000	9100	9100 9100	NC NC	NC NC
OLMO3.2	2.2'-oxybis(1-chloropropane)	NA-TRND-S023-02	ug/kg	81	ND	82000	82000	9100	9100	NC NC	NC NC
OLMO3.2	2,2'-oxybis(1-chloropropane) 2,2'-oxybis(1-chloropropane)	NA-TRND-S025-02	ug/kg	83	ND	82000	82000	9100	9100	NC	NC
	2,2'-oxybis(1-chloropropane)	NA-TRND-S027-02 NA-TRND-S029-02	ug/kg ug/kg	60 51	ND ND	82000	82000	9100	9100	NC	NC
	2,4,5-Trichlorophenol	NA-TRND-S001-02	ug/kg	49	ND UJ	82000 200000000	82000 20000000	9100	9100	NC	NC
OLMO3.2	2.4.5-Trichlorophenol	NA-TRND-SO02-02	ug/kg	67	ND UJ	20000000	2000000	7800000 7800000	780000 780000	NC NC	NC NC
	2,4,5-Trichlorophenol	NA-TRND-S003-02	ug/kg	54	ND UJ	20000000	20000000	7800000	780000	NC NC	NC NC
	2.4.5-Trichlorophenol 2.4.5-Trichlorophenol	NA-TRND-SO04-02	ug/kg	46	ND	200000000	20000000	7800000	780000	NC	NC
	2.4.5-Trichlorophenol	NA-TRND-S010-02 NA-TRND-S015-02	ug/kg ug/kg	60 58	ND	200000000	20000000	7800000	780000	NC	NC.
	2,4,5-Trichlorophenol	NA-TRND-S021-02	ug/kg	55	ND ND	200000000	20000000	7800000	780000	NC	NC
	2.4.5-Trichlorophenol	NA-TRND-SO23-02	ug/kg	81	ND	200000000	20000000	7800000 7800000	780000 780000	NC NC	NC NC
	2,4,5-Trichlorophenol	NA-TRND-SO25-02	ug/kg	83	ND	200000000	20000000	7800000	780000	NC NC	NC NC
	2.4.5-Trichlorophenol	NA-TRND-S027-02	ug/kg	60	ND	200000000	20000000	7800000	780000	NC	NC NC
	2.4.6-Trichlorophenol	NA-TRND-SO29-02 NA-TRND-SO01-02	ug/kg ug/kg	51 49	ND UJ	200000000	20000000	7800000	780000	NC	NC
OLMO3.2	2.4.6-Trichlorophenol	NA-TRND-S002-02	ug/kg		ND UJ	520000 520000	520000 520000	58000 58000	58000 58000	NC NC	NC
	2.4.6-Trichlorophenol	NA-TRND-SO03-02	ug/kg		ND UJ	520000	520000	58000	58000	NC NC	NC NC
	2.4.6-Trichlorophenol	NA-TRND-SO04-02	ug/kg	46	ND	520000	520000	58000	58000	NC	NC NC
	2.4.6-Trichlorophenol 2.4.6-Trichlorophenol	NA-TRND-SO10-02 NA-TRND-SO15-02	ug/kg	60	ND	520000	520000	58000	58000	NC	NC
	2.4.6-Trichlorophenol	NA-TRND-SO21-02	ug/kg ug/kg	58 55	ND ND	520000 520000	520000 520000	58000	58000	NC NC	NC
OLM03.2	2.4.6-Trichlorophenol	NA-TRND-SO23-02	ug/kg	81	ND	520000	520000	58000 58000	58000 58000	NC NC	NC
	2.4.6-Trichlorophenol	NA-TRND-SO25-02	ug/kg	83	ND	520000	520000	58000	58000	NC NC	NC NC
	2,4,6-Trichlorophenol 2,4,6-Trichlorophenol	NA-TRND-SO27-02	ug/kg	60	ND	520000	520000	58000	58000	NC	NC NC
	2.4-5-1 nchlorophenol 2.4-Dichlorophenol	NA-TRND-S029-02 NA-TRND-S001-02	ug/kg ug/kg	51 49	ND	520000	520000	58000	58000	NC	NC
OLMO3.2	2.4-Dichlorophenol	NA-TRND-S002-02	ug/kg ug/kg		ND UJ	6100000	610000 610000	230000	23000	NC	NC
OLMO3.2	2.4-Dichlorophenol	NA-TRND-S003-02	ug/kg		ND UJ	6100000	610000	230000	23000 23000	NC NC	NC NC
	2.4-Dichlorophenol	NA-TRND-SO04-02	ug/kg	46	ND	6100000	610000	230000	23000	NC NC	NC NC
OLMO32	2,4-Dichlorophenol 2,4-Dichlorophenol	NA-TRND-SO10-02	ug/kg	60	ND	6100000	610000	230000	23000	NC	NC
OLMO3.2	2.4-Dichlorophenol	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg ug/kg	58 55	ND ND	6100000	610000	230000	23000	NC	NC
OLMO3.2	2.4-Dichlorophenol	NA-TRND-SO23-02	ug/kg	81	ND	6100000	610000	230000 230000	23000 23000	NC NC	NC
OLMO3.2 2	2.4-Dichlorophenol	NA-TRND-SO25-02	ug/kg	83	ND	6100000	610000	230000	23000	NC NC	NC NC
	2,4-Dichlorophenol 2,4-Dichlorophenol	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg	60	ND	6100000	610000	230000	23000	NC NC	NC NC
	2.4-Dimethylphenol	NA-TRND-S001-02	ug/kg ug/kg	51 49	ND	6100000	610000	230000	23000	NC	NC
OLMO3.2 2	2,4-Dimethylphenol	NA-TRND-SO02-02	ug/kg		ND UJ	41000000	4100000 4100000	1600000	160000	NC	NC
OLMO3.2 2	2,4-Dimethylphenol	NA-TRND-SO03-02	ug/kg		ND UJ	41000000	4100000	1600000	160000 160000	_ NC	NC NC
OLMO3.2 2	2.4-Dimethylphenol	NA-TRND-S004-02	ug/kg	46	ND	41000000	4100000	1600000	160000	NC NC	NC NC
OLMO3.2 2 OLMO3.2 2	2,4-Dimethylphenol 2,4-Dimethylphenol	NA-TRND-SO10-02	ug/kg	60	ND	41000000	4100000	1600000	160000	NC	NC NC
	2.4-Dimethylphenol	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg	58	ND	41000000	4100000	1600000	160000	NC	NC
			ug/kg ug/kg	55 81	ND ND	41000000	4100000	1600000	160000	NC	NC
OLMO3.2 2	2,4-Dimethylphenol	NA-TRND-SO25-02	ug/kg	83	ND	41000000 41000000	4100000 4100000	1600000 1600000	160000	NC NC	NC
OLMO3.2 2	2.4-Dimethylphenol	NA-TRND-SO27-02	ug/kg	60	ND	41000000	4100000	1600000	160000	NC NC	NC NC
	2.4-Dimethylphenol	NA-TRND-SO29-02	ug/kg	51	ND	41000000	4100000	1600000	160000	NC NC	NC NC
	2.4-Dinitrophenol 2.4-Dinitrophenol		ug/kg		וטסוי	4100000	410000	160000	16000	NC	NC NC
			ug/kg ug/kg		AD (I)	4100000	410000 410000	160000 160000	16000	NC	NC
JEM (13,2 12									16000	NC	NC

				MDI	B	Industrial RBC	Industrial RBSL	Residential RBC	Residential RBSL	Reference UTL	Comparison Conclusion Reference vs. Site
Method	Analyte	NA-TRND-SO04-02	Units ug/kg	MDL 46	Result ND	4100000	410000	160000	16000		NC NC
	2.4-Dinitrophenol 2.4-Dinitrophenol	NA-TRND-SO10-02	ug/kg	60	ND	4100000	410000	160000	16000		NC
****	2.4-Dinitrophenol	NA-TRND-SO15-02	ug/kg	58	ND	4100000	410000	160000	16000		NC
OLMO3.2	2.4-Dinitrophenol	NA-TRND-SO21-02	ng/kg	55	ND	4100000	410000	160000	16000 16000		NC NC
	2,4-Dinitrophenol	NA-TRND-SO23-02	ug/kg	81 83	ND ND	4100000 4100000	410000 410000	160000 160000	16000		NC NC
	2,4-Dinitrophenol	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	60	ND	4100000	410000	160000	16000		NC NC
	2.4-Dinitrophenol 2.4-Dinitrophenol	NA-TRND-SO29-02	ug/kg	51	ND	4100000	410000	160000	16000	NĊ	NC.
	2,4-Dinitrotoluene	NA-TRND-SO01-02	ug/kg	49		4100000		160000	16000		NC
	2.4-Dinitrotoluene	NA-TRND-S002-02	ug/kg	67		4100000		160000 160000	16000		NC NC
	2,4-Dinitrotoluene	NA-TRND-SO03-02	ug/kg	54 46		4100000 4100000	410000 410000	160000	16000		NC.
	2.4-Dinitrotoluene 2.4-Dinitrotoluene	NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg ug/kg	60		4100000		160000	16000		NC
	2,4-Dinitrotoluene	NA-TRND-SO15-02	ug/kg	58	ND	4100000		160000	16000		NC
	2.4-Dinitrotoluene	NA-TRND-SO21-02	ug/kg	55	ND	4100000	410000	160000	16000		NC
	2,4-Dinitrotoluene	NA-TRND-SO23-02	ug/kg	81	ND	4100000 4100000	410000 410000	160000 160000	16000 16000		NC NC
	2.4-Dinitrotoluene	NA-TRND-SO25-02	ug/kg ug/kg	83 60	ND ND	4100000	410000	160000	16000		, NC
	2,4-Dinitrotoluene 2,4-Dinitrotoluene	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg	51	ND	4100000	410000	160000	16000		NC
	2,6-Dinitrotoluene	NA-TRND-SO01-02	ug/kg	49		2000000	200000	78000	7800		
	2,6-Dinitrotoluene	NA-TRND-SO02-02	ug/kg	67		2000000		78000	7800		
OLMO3.2	2.6-Dinitrotoluene	NA-TRND-SO03-02	ug/kg	54		2000000			7800 7800		
	2,6-Dinitrotoluene	NA-TRND-SO04-02	ug/kg	60		2000000 2000000			7800		
	2,6-Dinitrotoluene 2,6-Dinitrotoluene	NA-TRND-SO10-02 NA-TRND-SO15-02	ug/kg ug/kg	58		2000000			7800		
	2,6-Dinitrotoluene	NA-TRND-SO21-02	ug/kg	55		2000000		78000	7800	NC	NC
	2.6-Dinitrotoluene	NA-TRND-SO23-02	ug/kg	81	ND	2000000			7800		
OLMO3.2	2,6-Dinitrotoluene	NA-TRND-SO25-02	ug/kg	83		2000000			7800		
OLMO3.2	2,6-Dinitrotoluene	NA-TRND-SO27-02	ug/kg	60 51		2000000 2000000			7800 7800		
OLMO3.2 OLMO3.2	2.6-Dinitrotoluene 2-Chloronaphthalene	NA-TRND-SO29-02 NA-TRND-SO01-02	ug/kg ug/kg	49		160000000			630000		
	2-Chloronaphthalene	NA-TRND-S002-02	ug/kg	67		160000000			630000		
	2-Chloronaphthalene	NA-TRND-S003-02	ug/kg	54		160000000			630000		
	2-Chloronaphthalene	NA-TRND-SO04-02	ug/kg	46		160000000			630000		
OLMO3.2	2-Chloronaphthalene	NA-TRND-SO10-02	ug/kg	60		160000000 160000000			630000		
OLMO3.2	2-Chloronaphthalene	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg ug/kg	58 55		160000000			630000)	
	2-Chloronaphthalene	NA-TRND-S023-02	ug/kg	81		160000000			630000		
OLMO3.2	2-Chloronaphthalene	NA-TRND-SO25-02	ug/kg	83		160000000	16000000		630000		
OLMO3.2	2-Chloronaphthalene	NA-TRND-SO27-02	ug/kg	60		160000000			630000		
OLMO3.2	2-Chloronaphthalene	NA-TRND-SO29-02	ug/kg	51		160000000			630000		
	2-Chlorophenol	NA-TRND-SO01-02	ug/kg	49 67		10000000			39000		
OLMO3.2	2-Chlorophenol 2-Chlorophenol	NA-TRND-SO02-02 NA-TRND-SO03-02	ug/kg ug/kg	54		10000000			39000		
	·	NA-TRND-SO04-02	ug/kg	46		10000000			39000		
	2-Chlorophenol	NA-TRND-SO10-02	ug/kg	60		10000000			39000		
	2-Chlorophenol	NA-TRND-SO15-02	ug/kg	58		10000000			39000		
	2-Chlorophenol	NA-TRND-SO21-02	ug/kg	55		10000000			39000		
	2-Chlorophenol 2-Chlorophenol	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	81		10000000			39000		
	2-Chlorophenol	NA-TRND-SO27-02	ug/kg	60		10000000			39000		NC
	2-Chlorophenol	NA-TRND-SO29-02	ug/kg	51		10000000			39000		
	2-Methylnaphthalene	NA-TRND-S001-02	ug/kg	49		82000000	+		310000		
	2-Methylnaphthalene 2-Methylnaphthalene	NA-TRND-SO02-02 NA-TRND-SO03-02	ug/kg ug/kg	67 54		82000000 82000000					
	2-Methylnaphthalene	NA-TRND-S003-02	ug/kg	46		82000000					
OLMO3.2		NA-TRND-SO10-02	ug/kg	60) ND	82000000	8200000	3100000	310000) NC	NC NC
OLMO3.2	2-Methylnaphthalene	NA-TRND-SO15-02	ug/kg	58		82000000					
	2-Methylnaphthalene	NA-TRND-SO21-02	ug/kg	55		82000000					
	2-Methylnaphthalene 2-Methylnaphthalene	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	81		82000000 82000000					
	2-Methylnaphthalene	NA-TRND-SO27-02	ug/kg	60		8200000					NC.
	2-Methylnaphthalene	NA-TRND-SQ29-02	ug/kg	51	ND	82000000	8200000	3100000	31000	D NC	NC.
	2-Nitroaniline	NA-TRND-SO01-02	ug/kg	49		120000					
		NA-TRND-\$002-02	ug/kg	67		120000 120000					
		NA-TRND-S003-02 NA-TRND-S004-02	ug/kg ug/kg	54 46		120000					
		NA-TRND-SO10-02	ug/kg	60		120000					NC.
		NA-TRND-SO15-02	ug/kg	58		120000					
OLMO3.2	2-Nitroaniline	NA-TRND-S021-02	ug/kg	55		120000					
OLMO3.2		NA-TRND-SO23-02	ug/kg	81							
		NA-TRND-SO25-02	ug/kg	83		120000					
OLMO3.2	2-Nitroaniline 2-Nitroaniline	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg ug/kg	51							
		NA-TRND-SO01-02	ug/kg	49							: NC
OLMO3.2		NA-TRND-SO02-02	ug/kg	6	ND UJ	16000000	1600000	630000	6300	0 NC	. NC
OLMO3.2	2-Nitrophenol	NA-TRND-S003-02	ug/kg	54							. NC
OLMO3.2		NA-TRND-SO04-02	ug/kg	40							
		NA-TRND-SO10-02	ug/kg	55							
	2-Nitrophenol	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg ug/kg	55							
	2-Nitrophenol 2-Nitrophenol	NA-TRND-SO23-02	ug/kg	8							

Method	Analyte	Sample ID	Units	MDL	Result	Industrial RBC	Industrial RBSL	Residential	Residential	Reference	Comparison Conclusion Reference vs.
OLMO3.2	2-Nitrophenol	NA-TRND-SO25-02	ug/kg	83	ND	16000000	1600000	RBC 630000	RBSL 63000	UTL NC	Site
	2-Nitrophenol	NA-TRND-SO27-02	ug/kg	60	ND	16000000	1600000	630000	63000	NC NC	NC NC
	2-Nitrophenol 3.3'-Dichlorobenzidine	NA-TRND-SO29-02	ug/kg	51	ND	16000000	1600000	630000	63000	NC	NC
	3,3'-Dichlorobenzidine	NA-TRND-SO01-02 NA-TRND-SO02-02	ug/kg ug/kg	49 67	NDUJ	13000 13000	13000	1400	1400	NC	NC
OLMQ3.2	3,3'-Dichlorobenzidine	NA-TRND-S003-02	ug/kg	54	NDUJ	13000	13000 13000	1400	1400 1400	NC NC	NC NC
	3.3'-Dichlorobenzidine	NA-TRND-SO04-02	ug/kg	46	ND	13000	13000	1400	1400	NC NC	NC NC
	3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine	NA-TRND-SO10-02	ug/kg	60	ND	13000	13000	1400	1400	NC	NC
-	3.3-Dichlorobenzidine	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg ug/kg	58 55	ND ND	13000	13000	1400	1400	NC	NC
	3,3'-Dichlorobenzidine	NA-TRND-S023-02	ug/kg	81	ND	13000 13000	13000 13000	1400	1400	NC NC	NC
	3.3'-Dichlorobenzidine	NA-TRND-SO25-02	ug/kg	83	ND	13000	13000	1400	1400 1400	NC NC	NC NC
	3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine	NA-TRND-SO27-02	ug/kg	60	ND	13000	13000	1400	1400	NC	NC
	3-Nitroaniline	NA-TRND-SO29-02	ug/kg	51	ND	13000	13000	1400	1400	NC NC	NC
	3-Nitroaniline	NA-TRND-SO01-02 NA-TRND-SO02-02	ug/kg ug/kg	49 67	ND UJ	120000 120000	12000	4700	470	NC NC	NC
	3-Nitroaniline	NA-TRND-SO03-02	ug/kg	54	NDUJ	120000	12000	4700 4700	470 470	NC NC	NC NC
	3-Nitroaniline	NA-TRND-\$004-02	ug/kg	46	ND	120000	12000	4700	470	NC NC	NC NC
	3-Nitroaniline 3-Nitroaniline	NA-TRND-SO10-02	ug/kg	60	ND	120000	12000	4700	470	NC	NC NC
	3-Nitroaniline	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg	58 55	ND	120000	12000	4700	470	NC	NC
	3-Nitroaniline	NA-TRND-S023-02	ug/kg ug/kg	81	ND ND	120000 120000	12000	4700 4700	470	NC NC	NC
OLMO3.2	3-Nitroaniline	NA-TRND-SO25-02	ug/kg	83	ND	120000	12000	4700	470 470	NC NC	NC NC
	3-Nitroaniline	NA-TRND-SO27-02	ug/kg	60	ND	120000	12000	4700	470	NC NC	NC NC
	3-Nitroaniline	NA-TRND-SO29-02	ug/kg	51	ND	120000	12000	4700	470	NC	NC NC
	4.6-Dinitro-2-methylphenol 4.6-Dinitro-2-methylphenol	NA-TRND-S001-02 NA-TRND-S002-02	ug/kg	49 67	ND UJ	200000	20000	7800	780	NC	NC
	4,6-Dinitro-2-methylphenol	NA-TRND-S003-02	ug/kg ug/kg	54	ND UJ	200000	20000	7800	780	NC	NC
	4.6-Dinitro-2-methylphenol	NA-TRND-SO04-02	ug/kg	46	ND	200000	20000	7800 7800	780 780	NC NC	NC NC
	4.6-Dinitro-2-methylphenol	NA-TRND-SO10-02	ug/kg	60	ND	200000	20000	7800	780	NC	NC NC
	4.6-Dinitro-2-methylphenol	NA-TRND-SO15-02	ug/kg	58	ND	200000	20000	7800	780	NC	NC NC
	4.6-Dinitro-2-methylphenol 4.6-Dinitro-2-methylphenol	NA-TRND-SO21-02 NA-TRND-SO23-02	ug/kg	55	ND	200000	20000	7800	780	NC NC	NC
	4.6-Dinitro-2-methylphenol	NA-TRND-S025-02	ug/kg ug/kg	81	ND ND	200000	20000	7800 7800	780	NC NC	NC
	4.6-Dinitro-2-methylphenol	NA-TRND-S027-02	ug/kg	60	ND	200000	20000	7800	780 780	NC NC	NC NC
	4,6-Dinitro-2-methylphenol	NA-TRND-S029-02	ug/kg	51	ND	200000	20000	7800	780	NC	NC NC
	4-Bromophenyl-phenylether	NA-TRND-SO01-02	ug/kg	49	ND UJ	120000000	12000000	4500000	450000	NC	NC NC
	4-Bromophenyl-phenylether 4-Bromophenyl-phenylether	NA-TRND-SO02-02	ug/kg	67	NDUJ	120000000	12000000	4500000	450000	NC	NC
		NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg ug/kg	54 46	ND UJ	120000000	12000000	4500000	450000	NC	NC
OLMO3.2	4-Bromophenyl-phenylether	NA-TRND-SO10-02	ug/kg	60	ND	120000000	12000000	4500000 4500000	450000 450000	NC NC	NC NC
	4-Bromophenyl-phenylether	NA-TRND-SO15-02	ug/kg	58	ND	120000000	12000000	4500000	450000	NC NC	NC NC
	4-Bromophenyl-phenylether	NA-TRND-SO21-02	ug/kg	55	ND	120000000	12000000	4500000	450000	NC	NC
	4-Bromophenyl-phenylether 4-Bromophenyl-phenylether	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg	81	ND	120000000	12000000	4500000	450000	NC	NC
		NA-TRND-S027-02	ug/kg ug/kg	60	ND ND	120000000	12000000	4500000 4500000	450000	NC NC	NC
OLMO3.2 4	4-Bromophenyl-phenylether	NA-TRND-SO29-02	ug/kg	51	ND	120000000	12000000	4500000	450000 450000	NC NC	NC NC
	-Chloro-3-methylphenol	NA-TRND-SO01-02	ug/kg	49	ND UJ	41000000	4100000	1600000	160000	NC	NC NC
		NA-TRND-SO02-02	ug/kg	67	ND UJ	41000000	4100000	1600000	160000	NC	NC
		NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg	54 46	ND UJ	41000000	4100000	1600000	160000	NC	NC
	4-Chloro-3-methylphenol	NA-TRND-SO10-02	ug/kg ug/kg	60	ND ND	41000000 41000000	4100000	1600000	160000	NC	NC
OLMO3.2 4	I-Chloro-3-methylphenol	NA-TRND-SO15-02	ug/kg	58	ND	41000000	4100000	1600000	160000 160000	NC NC	NC NC
		NA-TRND-SO21-02	ug/kg	55	ND	41000000	4100000	1600000	160000	NC	NC
		NA-TRND-SO23-02	ug/kg	81	ND	41000000	4100000	1600000	160000	NC	NC
		NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	83 60	ND ND	41000000 41000000	4100000	1600000	160000	NC	NC
		NA-TRND-S029-02	ug/kg	51	ND	41000000	4100000 4100000	1600000 1600000	160000	NC NC	NC NC
OLMO3.2 4	-Chloroaniline	NA-TRND-S001-02	ug/kg	49	ND UJ	8200000	820000	310000	160000 31000	NC NC	NC NC
		NA-TRND-SO02-02	ug/kg		ND UJ	8200000	820000	310000	31000	NC	NC NC
		NA-TRND-S003-02 NA-TRND-S004-02	ug/kg		ND UJ	8200000	820000	310000	31000	NC	NC
		NA-TRND-S010-02	ug/kg ug/kg	46 60	ND ND	8200000 8200000	820000	310000	31000	NC	NC
OLMO3.2 4	-Chlorogniline	NA-TRND-S015-02	ug/kg	58	ND	8200000	820000 820000	310000 310000	31000 31000	NC NC	NC NC
	-Chloroaniline	NA-TRND-SO21-02	ug/kg	55	ND	8200000	820000	310000	31000	NC NC	NC NC
		NA-TRND-S023-02	ug/kg	81	ND	8200000	820000	310000	31000	NC	NC
		NA-TRND-\$025-02 NA-TRND-\$027-02	ug/kg	83	ND	8200000	820000	310000	31000	NC	NC
OLMO3.2 4	-Chloroaniline	NA-TRND-S029-02	ug/kg ug/kg	60 51	ND ND	8200000 8200000	820000 820000	310000 310000	31000	NC	NC NC
OLMO3.2 4	-Chlorophenyl-phenylether	NA-TRND-SO01-02	ug/kg		ND UJ	120000000	12000000	4500000	31000 450000	NC NC	NC.
OLMO3.2 4	-Chlorophenyl-phenylether	NA-TRND-S002-02	ug/kg	67	ND UJ	120000000	12000000	4500000	450000	NC NC	NC NC
OLMO3.2 4		NA-TRND-S003-02	ug/kg		ND UJ	120000000	12000000	4500000	450000	NC	NC
		NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg	46 60	ND	120000000	12000000	4500000	450000	NC	NC
		NA-TRND-S015-02	ug/kg ug/kg	_ 58	ND ND	120000000 120000000	12000000	4500000	450000	NC	NC
OLM03.2 4	-Chlorophenyl-phenylether	NA-TRND-SO21-02	ug/kg	55	ND	12000000	12000000	4500000 4500000	450000 450000	NC NC	NC NC
		NA-TRND-SO23-02	ug/kg	81	ND	120000000	12000000	4500000	450000	NC NC	NC NC
		NA-TRND-S025-02	ug/kg	83	ND	120000000	12000000	4500000	450000	NC NC	NC NC
		NA-TRND-SO27-02 NA-TRND-SO29-02	ng/kg	60	ND	120000000	12000000	4500000	450000	NC	NC
			ug/kg ug/kg	51 49	ND UJ	12000000	12000000	4500000	450000	NC	NC
			ug/kg		ND UJ	120000	12000	4700	470	NC NC	NC
								-/W/	470	NC NC	NC NC

						Industrial	Industrial	Residential	Residential	Reference	Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	RBC	RBSL	RBC	RBSL	UTL	Site
	4-Nitroanaline	NA-TRND-SO03-02	ug/kg	54	ND UJ	120000	12000	4700	470	NC	NC
		NA-TRND-SO04-02	ug/kg	46 60	ND	120000	12000 12000	4700 4700	470 470	NC NC	NC NC
		NA-TRND-SO10-02 NA-TRND-SO15-02	ug/kg ug/kg	58	ND ND	120000 120000	12000	4700	470	NC	NČ
	4-Nitroanaline	NA-TRND-SO21-02	ug/kg	55	ND	120000	12000	4700	470	NC	NC
	4-Nitroanaline	NA-TRND-SO23-02	ug/kg	81	ND	120000	12000	4700	470 470	NC NC	NC
	4-Nitroanaline 4-Nitroanaline	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	83 60	ND ND	120000 120000	12000 12000	4700 4700	470	NC NC	NC NC
	4-Nitroanaline	NA-TRND-SO29-02	ug/kg	51	ND	120000	12000	4700	470	NC	NC
OLMO3.2	4-Nitrophenol	NA-TRND-SO01-02	ug/kg	49		16000000	1600000	630000	63000	NC	NC.
	4-Nitrophenol	NA-TRND-SO02-02 NA-TRND-SO03-02	ug/kg ug/kg	67 54	ND UJ	16000000 16000000	1600000 1600000	630000 630000	63000	NC NC	NC NC
	4-Nitrophenol 4-Nitrophenol	NA-TRND-S003-02	ug/kg	46	ND	16000000	1600000	630000	63000	NC	NC.
	4-Nitrophenol	NA-TRND-SO10-02	ug/kg	60	ND	16000000	1600000	630000	63000	NC	NC
	4-Nitrophenol	NA-TRND-SO15-02	ug/kg	58	ND	16000000	1600000 1600000	630000 630000	63000 63000	NC NC	NC NC
	4-Nitrophenol 4-Nitrophenol	NA-TRND-SO21-02 NA-TRND-SO23-02	ug/kg ug/kg	55 81	ND ND	16000000 16000000	1600000	630000	63000		NC NC
	4-Nitrophenol	NA-TRND-S025-02	ug/kg	83	ND	16000000	1600000	630000	63000		NC
OLMO3.2	4-Nitrophenol	NA-TRND-S027-02	ug/kg	60	ND	16000000	1600000	630000	63000		NC
	4-Nitrophenol	NA-TRND-SO29-02	ug/kg	51	ND	16000000	1600000 12000000	630000 4700000	63000 470000	NC NC	NC NC
	Acenaphthene Acenaphthene	NA-TRND-SO01-02 NA-TRND-SO02-02	ug/kg ug/kg	49 67	ND UJ	120000000 120000000	12000000	4700000	470000	NC NC	NC NC
	Acenaphthene	NA-TRND-SO03-02	ug/kg	54	NDW	120000000	12000000	4700000	470000	NC	NC
OLMO3.2	Acenaphthene	NA-TRND-SO04-02	ug/kg	46	ND	120000000	12000000	4700000	470000	NC	NC NC
OLMO3.2	Acenaphthene	NA-TRND-SO10-02	ug/kg	60 58	ND ND	120000000 120000000	12000000 12000000	4700000 4700000	470000 470000	NC NC	NC NC
	Acenaphthene Acenaphthene	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg ug/kg	55	ND ND	12000000	12000000	4700000	470000	NC NC	NC NC
	Acenaphthene	NA-TRND-SO23-02	ug/kg	81	ND	120000000	12000000	4700000	470000	NC	NC
	Acenaphthene	NA-TRND-SO25-02	ug/kg	83	ND	120000000	12000000	4700000	470000		NC
	Acenaphthene	NA-TRND-SO27-02	ug/kg	60 51	ND ND	120000000 120000000	12000000 12000000	4700000 4700000	470000 470000		NC NC
	Acenaphthene Acenaphthylene	NA-TRND-SO29-02 NA-TRND-SO01-02	ug/kg ug/kg	49	NDUJ	12000000	12000000	4700000	470000		NC
	Acenaphthylene	NA-TRND-SO02-02	ug/kg	67	ND UJ	120000000	12000000	4700000	470000		NC
	Acenaphthylene	NA-TRND-SO03-02	ug/kg	54	NDUJ	120000000	12000000	4700000	470000		NC
	Acenaphthylene	NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg ug/kg	46 60	ND ND	120000000 120000000	12000000	4700000 4700000	470000 470000		NC NC
	Acenaphthylene Acenaphthylene	NA-TRND-SO15-02	ug/kg	58	ND	120000000	12000000	4700000	470000		NC
	Acenaphthylene	NA-TRND-SO21-02	ug/kg	55	ND	120000000		4700000	470000		NC
	Acenaphthylene	NA-TRND-SO23-02	ug/kg	81	ND	120000000		4700000	470000		NC
	Acenaphthylene Acenaphthylene	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	83 60	ND DX	120000000 120000000	12000000 12000000	4700000 4700000	470000 470000		NC NC
	Acenaphthylene	NA-TRND-SO29-02	ug/kg	51	ND	120000000	12000000	4700000	470000		NC
	Anthracene	NA-TRND-SO01-02	ug/kg	49		610000000		23000000	2300000		NC
	Anthracene	NA-TRND-S002-02	ug/kg	67	ND UJ	610000000	61000000	23000000	2300000		NC
	Anthracene Anthracene	NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg ug/kg	54 46	ND UJ	610000000 610000000	61000000 61000000	23000000 23000000	2300000 2300000		NC NC
OLMO3.2	Anthracene	NA-TRND-SO10-02	ug/kg	60		610000000		23000000	2300000		NC
OLMO3.2	Anthracene	NA-TRND-SO15-02	ug/kg	58	ND	610000000	61000000	23000000	2300000		NC.
OLMO3.2		NA-TRND-SO21-02	ug/kg	55 81		610000000 610000000	61000000 61000000	23000000 23000000	2300000 2300000		NC NC
OLMO3.2 OLMO3.2	Anthracene Anthracene	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	83	ND ND	610000000		2300000	2300000		NC NC
OLMO3.2	Anthracene	NA-TRND-SO27-02	ug/kg	60	74	610000000	61000000	23000000	2300000	NC	NC
OLMO3.2	Anthracene	NA-TRND-SO29-02	ug/kg	51		610000000		23000000	2300000		NC
	Benzo(a)anthracene	NA-TRND-SO01-02	ug/kg	49	ND UJ	7800 7800		870 870	870 870		NC NC
	Benzo(a)anthracene Benzo(a)anthracene	NA-TRND-SO02-02	ug/kg ug/kg		ND UJ	7800		870	870		NC NC
OLMO3.2	Benzo(a)anthracene	NA-TRND-SO04-02	ug/kg	46	110	7800	7800	870	870	NC	NC
	Benzo(a)anthracene	NA-TRND-SO10-02	ug/kg	60		7800		870	870		NC.
	Benzo(a)anthracene Benzo(a)anthracene	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg ug/kg	58 55		7800 7800		870 870	870 870		NC NC
	Benzo(a)anthracene	NA-TRND-SO23-02	ug/kg	81		7800		870	870		
	Benzo(a)anthracene	NA-TRND-SO25-02	ug/kg	83	ND	7800			870		
	Benzo(a)anthracene	NA-TRND-SO27-02	ug/kg	60		7800			870		
	Benzo(a)anthracene Benzo(a)pyrene	NA-TRND-SO29-02 NA-TRND-SO01-02	ug/kg ug/kg	13		7800 780			<u>870</u>		
	Benzo(a)pyrene	NA-TRND-SO02-02	ug/kg	18		780			87		NC
OLMO3.2	Benzo(a)pyrene	NA-TRND-SO03-02	ug/kg	14	ND UI	780	780	87	87	NC NC	NC
	Benzo(a)pyrene	NA-TRND-SO04-02	ug/kg	46		780 780			87 87		
	Benzo(a)pyrene Benzo(a)pyrene	NA-TRND-SO10-02 NA-TRND-SO15-02	ug/kg ug/kg	58		780			87		
	Benzo(a)pyrene	NA-TRND-SO21-02	ug/kg	55		780		87	87	NC NC	NC
OLMO3.2	Benzo(a)pyrene	NA-TRND-SO23-02	ug/kg	81	ND	780			87		NO
	Benzo(a)pyrene	NA-TRND-S025-02	ug/kg	83		780			87		
	Benzo(a)pyrene	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg ug/kg	60 51				87 87	87		
	Benzo(a)pyrene Benzo(b)fluoranthene	NA-TRND-S001-02	ug/kg	49		7800			870		
	Benzo(b)fluoranthene	NA-TRND-S002-02	ug/kg	67	ND UJ	7800	7800	870	870	NC NC	NC
	Benzo(b)fluoranthene	NA-TRND-SO03-02	ug/kg	54		7800		870	870		
	Benzo(b)fluoranthene	NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg	60		7800 7800					
	Benzo(b)fluoranthene Benzo(b)fluoranthene	NA-TRND-SQ15-02	ug/kg ug/kg	58		7800					
	Benzo(b)fluoranthene	NA-TRND-SO21-02	ug/kg	55		7800					

Methods												Means Comparison
	Method	Analyte	Samule ID	Ilmies	MDI	Parale						Conclusion Reference vs.
CAMOD Remote Prince Pr	OLMO3.2											Site
According Acco				ug/kg		ND						NC NC
ELACO Beneric A. Jurentees M. P. TRAD SOOI CO. 1975 46 (2000) 45 (2000) 50000 50												NC
ELANO Demonstrative Al-Pere Proceedings Proces												NC
CAMOS Research Appervises No.TRINS-SOUG wyks 46 179 6100000 6100000 520000												NC
0.4003 Beased_Alperyless No.TPRN 5001-00 sept. 46 100 5100000 520000 720000 720000 No.			NA-TRND-S003-02									NC NC
Col.								6100000				NC NC
GLAMO3_ Remod_Alperynem No.THNN-S021-02 upfs_ 41 NO. 61000000 500000 500000 No. CLAMO3_ Remod_Alperynem No.THNN-S021-02 upfs_ 41 NO. 61000000 6100000 5200000 520000 No. CLAMO3_ Remod_Alperynem No.THNN-S021-02 upfs_ 41 NO. 61000000 6100000 5200000 520000 No. CLAMO3_ Remod_Alperynem No.THNN-S021-02 upfs_ 41 NO. 61000000 6100000 5200000 520000 No. CLAMO3_ Remod_Alperynem No.THNN-S021-02 upfs_ 41 NO. 61000000 6100000 5200000 5200000 No. CLAMO3_ Remod_Alperynem No.THNN-S021-02 upfs_ 41 NO. 61000000 6100000 5200000 720000 No. CLAMO3_ Remod_Alperyneme No.THNN-S021-02 upfs_ 41 NO. 61000000 70000 70000 7000 No. CLAMO3_ Remod_Alperyneme No.THNN-S021-02 upfs_ 41 NO. 61000000 70000 7000												NC
Changon Research Albertynes No. Tribb. S073-02 mfs. 18 NO 6100000 5200000 520												NC
CALADIA Remorkal perylems NA TREPS-502-02 syrks El NN 61000000 2000000 3200000 NC												NC NC
0.00013 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 1860000 18600000 18600000 18600000 18600000 18600000 18600000 18600000 18600000 18600000 18600000 18600000 18600000 18600000 186000000 186000000 186000000000000000000000000000000000000												NC NC
Clastics Beautofolimentations NA TRID-S001-02 surfs 60 60 10 70000 70000 7000									2300000			NC NC
GLA002 Beans(Nithoursteiner NA FRED-S001-02 surfs 67 NP UI												NC
CLAMOS.2 Bernock/Denomathers NTRINS-5000-02 us/st 54 NO U 76000 7700 7700 7700 N. C. C. C. C. C. C. C. C. C. C. C. C. C.												NC
Cl.1405.2 Bestock/Honenathene NATRND-S004-00 upfs_4 66 67 70000 77000 7700 8700 NC												NC
CLAMO Benezit/Homenshees NA-TRNS-501-020 uylst S NO 70000 77000 7700 NC CLAMO												NC NC
Col.				ug/kg		ND						NC NC
Company									8700			NC
CLAMO 2 Berno (Unumenteer NA TRIVEN SOC) 4:00 subt											NC	NC
CLAMO3_Berno(d) Berno(d												NC
OLAHO32 Berton/Offerenthemen NA - TRND-SCOP-02 subts. S1 ND 76000 76000 7600 NC	OLMO3.2	Benzo(k)fluoranthene										NC
CLAHO2 Butythensylphidate NA.TRND-S001-02 upfs 49 ND U 41000000 4100000 1600000 1600000 NC		Benzo(k)fluoranthene	NA-TRND-SO29-02									NC NC
Commonstrate Comm				ug/kg	49	ND UJ	410000000					NC NC
Col.Mol. 2 Butythessyphishalate N.A. TRND-SOL-12 MyR. 2 60 NT 410000000 1000000 1000000 NC 10000000 NC 1000000 NC 100000000 NC 100000000 NC 1000000000 NC 100000000000 NC 100000000000000000000000000000000000										1600000		NC
CLMOS.2 Butybextyphthalate NA. TRND. S010-02 surfax 60 71 41000000 1000000 1000000 1000000 NC												NC
CLMOD.2 Buty/henoplythebalate NA_TRND-S012-02 up/kg \$5 ND 410000000 41000000 16000000 NC												NC
OLANO 2. Buty/benylphshalate NA TRND-S021-02 up/kg 55 ND 410000000 41000000 16000000 NC												NC NC
DLAND.2 Birtylenchylphthalize NA-TRND-S023-02 ug/rg 81 ND 41000000 16000000 16000000 NC												NC NC
Description Description								41000000				NC NC
DLM03.2 Ruythensyphthalate N.A.TRND-S029-02 upfle 49 ND U 200000 16000000 16000000 NC										1600000		NC
DLM032 Cartstacte												NC
CLM032 Carbazole NA-TRND-SO02-02 up/Rg 67 NO IJ 39000 3000 3000 3000 3000 NC												NC_NC
OLM032 Carbazole NA-TRND-S004-02 up/kg 54 ND U		Carbazole										NC NC
CLM032 Carbazole NA-TRND-SO04-02 ug/kg 60 ND 290000 290000 32000 32000 NC			NA-TRND-S003-02									NC NC
DLM03.2 Carbazole								290000				NC NC
DLM03.2 Carbazole NA_TRND-S021-02 UB/R 55 ND 250000 250000 32000 32000 NC												NC
DLM03.2 Carbazole NA_TRND-S023-02 ug/kg 81 ND 290000 290000 32000 32000 NC												NC.
CLM03.2 Carbazole		· · · · · · · · · · · · · · · · · · ·										NC NC
CLM03.2 Carbazole NA-TRND-S027-02 ug/kg 51 ND 290000 290000 32000 32000 NC		Carbazole										NC NC
CLM03.2 Chrysene NA-TRND-S001-02 ug/kg 51 ND 290000 290000 32000 NC												NC NC
DLM03.2 Chrysene NA-TRND-S002-02 ug/kg 57 ND UJ 780000 780000 87000 87000 NC												NC
DLM03.2 Chrysene											NC	NC
CLMO3.2 Chrysene NA-TRND-SO04-02 ug/kg 46 110 780000 780000 87000 87000 NC												NC
CLM03.2 Chrysene NA-TRND-S015-02 ug/kg 60 ND 780000 870000 870000 NC	OLMO3.2											NC
CLM03.2 Chrysene NA-TRND-S021-02 ug/kg 58 ND 780000 780000 87000 NC			NA-TRND-SO10-02		60	ND	780000					NC NC
OLMO3.2 Chrysene NA-TRND-SQ2-02 ug/kg 81 ND 780000 780000 87000 87000 NC							780000	780000				NC
DLM03.2 Chrysene NA-TRND-S025-02 ug/kg 83 ND 780000 780000 87000 87000 NC								7,40000		87000	NC	NC
OLMO3.2 Chrysene NA-TRND-SO27-02 ug/kg 50 500 780000 780000 87000 87000 NC		Chrysene								87000		NC
OLMO3.2 Chrysene	OLM03.2											NC
OLMO3.2 Dibenz(a,h)anthracene NA-TRND-SO01-02 ug/kg 49 ND UJ 780 780 87 87 NC			NA-TRND-SO29-02									NC NC
Dimension Dime				ug/kg	49	ND UJ	780	780				NC NC
Dimenzia_hambaracene NA-TRND-SO04-02 ug/kg 54 ND UT 780 780 87 87 NC									87			NC
DLM03.2 Dibenz(a,h)anthracene NA-TRND-S010-02 ug/kg 60 ND 780 780 87 87 NC										87	NC	NC
OLMO3.2 Dibenz(a,h)anthracene NA-TRND-SO15-02 ug/kg 58 ND 780 780 87 87 NC	OLMO3.2	Dibenz(a,h)anthracene										NC
OLMO3.2 Dibenz(a,h)anthracene NA-TRND-SO21-02 ug/kg 55 ND 780 780 87 87 NC	OLMO3.2	Dibenz(a,h)anthracene	NA-TRND-SO15-02									NC NC
Disenzia in minimacese NA-TRND-S023-02 ug/kg 81 ND 780 780 87 87 NC				ug/kg	55	ND	. 780					NC NC
Dibenza, hanthracene NA-TRND-SO27-02 ug/kg 83 ND 780 780 87 87 NC								780	87			NC
OLMO3.2 Dibenzofuran NA-TRND-SO29-02 ug/kg 51 ND 780 780 87 87 NC										87	NC	NC
OLM03.2 Dibenzofuran NA-TRND-SO01-02 ug/kg 49 ND UJ 8200000 310000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO02-02 ug/kg 67 ND UJ 8200000 310000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO03-02 ug/kg 54 ND UJ 8200000 310000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO04-02 ug/kg 46 ND 8200000 820000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO10-02 ug/kg 60 ND 8200000 820000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO15-02 ug/kg 58 ND 8200000 820000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO21-02 ug/kg 55 ND 8200000 820000 310000 31000 NC OLM03.2 Dibenzofuran NA-TRND-SO23-02 ug/kg 55 ND <td< td=""><td>OLMO3.2 I</td><td>Dibenz(a.h)anthracene</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NC</td></td<>	OLMO3.2 I	Dibenz(a.h)anthracene										NC
OLMO3.2 Dibenzofuran NA-TRND-SO2-02 ug/kg 67 ND UJ 8200000 820000 310000 310000 NC	OLMO3.2	Dibenzofuran										NC
OLMO3.2 Dibenzofuran NA-TRND-SO03-02 ug/kg 54 ND UJ 8200000 820000 310000 31000 NC					67	ND UJ						NC NC
OLMO3.2 Dibenzofuran NA-TRND-SO10-02 ug/kg 46 ND 8200000 820000 310000 31000 NC		t- 4-					8200000					NC NC
OLMO3.2 Dibenzofuran NA-TRND-SO10-02 ug/kg 60 ND 8200000 820000 310000 NC								820000				NC NC
OLM03.2 Dibenzofuran NA-TRND-SO21-02 ug/kg 55 ND 8200000 820000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO23-02 ug/kg 81 ND 8200000 820000 310000 NC OLM03.2 Dibenzofuran NA-TRND-SO23-02 ug/kg 81 ND 8200000 820000 310000 NC										31000	NÇ	NC
OLM03.2 Dibenzofuran NA-TRND-S023-02 ug/kg 81 ND 8200000 820000 310000 NC OLM03.2 Dibenzofuran NA-TRND-S023-02 ug/kg 81 ND 8200000 820000 310000 NC												NC
OLMO3 2 Diberzofuran NA TDATO SOOS 02 NA DE SOOS 03 NC	OLMO3.2 I	Dibenzofuran										NC
OLANO 3.2 DIDENZO 1023 NA - 1 RND - SO 25-02 102/kg 83 ND 8200000 2100000 2100000		Dibenzofuran	NA-TRND-SO25-02	ug/kg	83	ND	8200000					NC
OLMG3.2 Dibenzofuran NA-TRND-SO27-02 ug/kg 60 ND 8200000 820000 310000 NC				ug/kg	60	ND						NC NC
OLMO3.2 Districtoruran NA-TRND-S029-02 ug/kg 51 ND 8200000 820000 310000 31000 NC								820000	310000			NC NC
OLMO3.2 Diethylphthalate NA-TRND-SO01-02 ug/kg 49 ND UJ 1600000000 160000000 63000000 58	<u> </u>		MA-1KND-SO01-02	ug/kg	49	ND UJ	1600000000	160000000	63000000			NS NS

								Desidential	Davidantial	Poforovo	Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL	Result	Industrial RBC	Industrial RBSL	Residential RBC	Residential RBSL	Reference UTL	Site
	Diethylphthalate	NA-TRND-SO02-02	ug/kg	67	160 J	1600000000	160000000	63000000	6300000 6300000	58 58	
	Diethylphthalate	NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg ug/kg	54 46	ND UJ ND	1600000000	160000000	63000000 63000000	6300000		
	Diethylphthalate Diethylphthalate	NA-TRND-SO10-02	ug/kg	60	ND	1600000000	160000000	63000000	6300000		
	Diethylphthalate	NA-TRND-SO15-02	ug/kg	58	ND	1600000000	160000000	63000000	6300000		
	Diethylphthalate	NA-TRND-SO21-02	ug/kg	55 81	ND ND	1600000000	160000000	63000000 63000000	6300000 6300000		
	Diethylphthalate Diethylphthalate	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	83	ND	1600000000	160000000	63000000	6300000	58	NS
	Diethylphthalate	NA-TRND-SO27-02	ug/kg	60	ND	1600000000	160000000	63000000	6300000		
	Diethylphthalate	NA-TRND-SO29-02	ug/kg	51 49	ND UJ	1600000000 20000000000	160000000 2000000000	63000000 780000000			NS NC
	Dimethylphthalate Dimethylphthalate	NA-TRND-SO01-02 NA-TRND-SO02-02	ug/kg ug/kg	67	ND UJ	2000000000	2000000000	780000000	78000000		NC
	Dimethylphthalate	NA-TRND-SO03-02	ug/kg	54		20000000000	2000000000	780000000	78000000		NC
OLMO3.2	Dimethylphthalate	NA-TRND-SO04-02	ug/kg	46	ND	20000000000	2000000000	780000000	78000000 78000000		NC NC
	Dimethylphthalate	NA-TRND-SO10-02	ug/kg ug/kg	60 58	ND ND	20000000000	2000000000	780000000 780000000	7800000		NC NC
	Dimethylphthalate Dimethylphthalate	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg	55		20000000000	2000000000	780000000	78000000		NC
	Dimethylphthalate	NA-TRND-SO23-02	ug/kg	81	ND	20000000000	2000000000	780000000	78000000		NC
	Dimethylphthalate	NA-TRND-S025-02	ug/kg	83		20000000000	2000000000		78000000 78000000		NC NC
	Dimethylphthalate	NA-TRND-SO27-02	ug/kg	51		20000000000	2000000000	780000000 780000000	78000000		NC NC
	Dimethylphthalate Fluoranthene	NA-TRND-S029-02 NA-TRND-S001-02	ug/kg ug/kg	49		82000000	8200000		310000	NC.	NC.
	Fluoranthene	NA-TRND-SO02-02	ug/kg	67	ND UJ	82000000	8200000	3100000	310000		NC.
QLMQ3.2	Fluoranthene	NA-TRND-S003-02	ug/kg	54		82000000 82000000	8200000	3100000	310000 310000		NC NC
	Fluoranthene Fluoranthene	NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg ug/kg	46 60		82000000 82000000	\$200000 \$200000	3100000 3100000	310000		
OLMO3.2 OLMO3.2	Fluoranthene	NA-TRND-S015-02	ug/kg	58		82000000	8200000	3100000	310000	NC NC	NC
	Fluoranthene	NA-TRND-\$021-02	ug/kg	55	ND	82000000	8200000	3100000	310000		NC
	Fluoranthene	NA-TRND-SO23-02	ug/kg	81		82000000	8200000 8200000	3100000 3100000	310000 310000		
	Fluoranthene Fluoranthene	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	83 60		82000000 82000000	8200000	3100000	310000		
	Fluoranthene	NA-TRND-S029-02	ug/kg	51		82000000	8200000	3100000	310000) NC	NC
	Fluorene	NA-TRND-SO01-02	ug/kg	49		82000000	8200000	3100000	310000		
OLMO3.2	Fluorene	NA-TRND-SO02-02	ug/kg	67		82000000	8200000 8200000		310000 310000		
	Fluorene	NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg ug/kg	54 46		82000000 82000000	8200000		310000		
	Fluorene Fluorene	NA-TRND-SO10-02	ug/kg	60		82000000			310000		
OLMO3.2	Fluorene	NA-TRND-SO15-02	ug/kg	58		82000000			310000		
	Fluorene	NA-TRND-SO21-02	ug/kg	55		82000000	8200000		310000 310000		
	Fluorene	NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	81		82000000 82000000	8200000 8200000		310000		
	Fluorene	NA-TRND-S027-02	ug/kg	60		82000000			310000) NC	NC
OLMO3.2	Fluorene	NA-TRND-SO29-02	ug/kg	51		82000000			310000		
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO01-02	ug/kg	67		73000	73000 73000		8200 8200		
OLMO3.2 OLMO3.2	Hexachloro-1,3-butadiene Hexachloro-1,3-butadiene	NA-TRND-SO02-02 NA-TRND-SO03-02	ug/kg ug/kg	54		73000			8200		
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO04-02	ug/kg	46		73000	73000	8200	8200		
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO10-02	ug/kg	60		73000			8200		
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO15-02	ug/kg ug/kg	58 55		73000	73000 73000		8200 8200		
OLMO3.2	Hexachloro-1,3-butadiene Hexachloro-1,3-butadiene	NA-TRND-SO21-02 NA-TRND-SO23-02	ug/kg	81		73000			8200		
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO25-02	ug/kg	83	ND	73000			8200		
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO27-02	ug/kg	60		73000					
OLMO3.2	Hexachloro-1,3-butadiene	NA-TRND-SO29-02 NA-TRND-SO01-02	ug/kg	51 49		73000 3600					
	Hexachlorobenzene	NA-TRND-SO02-02	ug/kg ug/kg	67							
	Hexachlorobenzene	NA-TRND-SO03-02	ug/kg	54	ND UJ	3600					
	Hexachlorobenzene	NA-TRND-SO04-02	ug/kg	46		3600					
	Hexachlorobenzene Hexachlorobenzene	NA-TRND-S010-02 NA-TRND-S015-02	ug/kg ug/kg	58							
	Hexachlorobenzene	NA-TRND-SO21-02	ug/kg	55						0 NC	NC.
OLMO3.2	Hexachlorobenzene	NA-TRND-SO23-02	ug/kg	81	ND	3600					
	Hexachlorobenzene	NA-TRND-\$025-02	ug/kg	83							
OLMO3.2 OLMO3.2	Hexachlorobenzene Hexachlorobenzene	NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg ug/kg	51							
	Hexachlorocyclopentadiene	NA-TRND-SO01-02	ug/kg	49	NDUJ	14000000	140000	550000	5500	0 NC	NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO02-02	ug/kg	67							
	Hexachlorocyclopentadiene	NA-TRND-SO03-02	ug/kg	46							
	Hexachlorocyclopentadiene Hexachlorocyclopentadiene	NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg ug/kg	60							
	Hexachlorocyclopentadiene	NA-TRND-SO15-02	ug/kg	58	ND	14000000	140000	550000	5500	O NO	. NC
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO21-02	ug/kg	55							
OLMO3.2	Hexachlorocyclopentadiene	NA-TRND-SO23-02	ug/kg	81							
	Hexachlorocyclopentadiene Hexachlorocyclopentadiene	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	60							
	Hexachlorocyclopentatiene	NA-TRND-S029-02	ug/kg	51		14000000	140000	550000	5500	0 NO	NC.
OLMO3.2	Hexachloroethane	NA-TRND-SO01-02	ug/kg	49	NDUJ						
OLMO3.2	Hexachloroethane	NA-TRND-SO02-02	ug/kg	67							
OLMO3.2	Hexachloroethane Hexachloroethane	NA-TRND-SO03-02 NA-TRND-SO04-02	ug/kg ug/kg	46							
OLMO3.2 OLMO3.2	Hexachloroethane	NA-TRND-SO10-02	ug/kg	60							NC NC
	Hexachloroethane	NA-TRND-SO15-02	ug/kg	58							

					1						WEERS
						Industrial	Industrial	Residential	Residential	D-f	Comparison Conclusion
Method OLMO3.2	Analyte	Sample ID		MDL		RBC	RBSL	RBC	RBSL	Reference UTL	Reference vs. Site
OLMO3.2	Hexachloroethane Hexachloroethane	NA-TRND-SO21-02 NA-TRND-SO23-02	ug/kg ug/kg	55 81		410000				NC	NC
OLMO3.2	Hexachioroethane	NA-TRND-SO25-02	ug/kg	83		410000 410000				NC NC	NC NC
OLMO3.2	Hexachloroethane	NA-TRND-S027-02	ug/kg	60	ND	410000				NC NC	NC NC
OLMO3.2 OLMO3.2	Hexachloroethane Indeno(1,2,3-cd)pyrene	NA-TRND-S029-02 NA-TRND-S001-02	Ug/kg	51		410000			46000	NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-S002-02	ug/kg ug/kg	49 67		7800 7800			870	NC.	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-S003-02	ug/kg	54	ND UJ	7800			870 870	NC NC	NC NC
OLMO3.2 OLMO3.2	Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene	NA-TRND-S004-02	ug/kg	46		7800		870	870	NC	NC NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-SO10-02 NA-TRND-SO15-02	ug/kg ug/kg	60 58	ND ND	7800 7800		870	870	NC	NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-SO21-02	ug/kg	55	ND	7800	7800 7800	870 870	870 870	NC NC	NC NC
OLMO3.2	Indeno(1,2,3-cd)pyrene	NA-TRND-SO23-02	ug/kg	81	ND	7800	7800	870	870	NC NC	NC NC
	Indeno(1,2,3-cd)pyrene Indeno(1,2,3-cd)pyrene	NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg	83 60	ND	7800	7800	870	870	NC	NC.
	Indeno(1,2,3-cd)pyrene	NA-TRND-S029-02	ug/kg ug/kg	51	280 ND	7800 7800	7800 7800	870 870	870	NC NC	NÇ
	Isophorone	NA-TRND-S001-02	ug/kg	49	ND UJ	6000000	6000000	670000	870 670000	NC NC	NC NC
	Isophorone	NA-TRND-S002-02	ug/kg	67	NDUJ	6000000	6000000	670000	670000	NC NC	NC
	Isophorone Isophorone	NA-TRND-S003-02 NA-TRND-S004-02	ug/kg ug/kg	54 46	ND UJ	6000000	6000000	670000	670000	NC	NC
	Isophorone	NA-TRND-SO10-02	ug/kg	60	ND	6000000	6000000	670000 670000	670000 670000	NC NC	NC NC
	Isophorone	NA-TRND-SO15-02	ug/kg	58	ND	6000000	6000000	670000	670000	NC NC	NC NC
	Isophorone Isophorone	NA-TRND-S021-02	ug/kg	55	ND	6000000	6000000	670000	670000	NC	NC
	Isophorone	NA-TRND-S023-02 NA-TRND-S025-02	ug/kg ug/kg	81 83	ND ND	6000000	6000000	670000	670000	NC	NC
	Isophorone	NA-TRND-S027-02	ug/kg	60	ND	6000000	6000000	670000 670000	670000 670000	NC NC	NC
	Isophorone	NA-TRND-S029-02	ug/kg	51	ND	6000000	6000000	670000	670000	NC NC	NC NC
	N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine	NA-TRND-S001-02	ug/kg	49	ND UJ	820	820	91	91	NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TRND-S002-02 NA-TRND-S003-02	ug/kg ug/kg	67 54	ND UJ	\$20 820	820	91	91	NC	NC
OLMO3.2	N-Nitroso-di-n-propylamine	NA-TRND-SO04-02	ug/kg	46	ND	820	820 820	91 91	91 91	NC NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO10-02	ug/kg	60	ND	820	820	91	91	NC NC	NC NC
	N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine	NA-TRND-S015-02	ug/kg	58	ND	820	820	91	91	NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO21-02 NA-TRND-SO23-02	ug/kg ug/kg	55 81	ND ND	820 820	820 820	91	91	NC	NC
	N-Nitroso-di-n-propylamine	NA-TRND-S025-02	ug/kg	83	ND	820	820	91	91 91	NC NC	NC NC
	N-Nitroso-di-n-propylamine	NA-TRND-SO27-02	ug/kg	60	ND	820	820	91	91	NC NC	NC NC
	N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	NA-TRND-SO29-02	ug/kg	51	ND	820	820	91	91	NC	NC
	N-Nitrosodiphenylamine	NA-TRND-SO01-02 NA-TRND-SO02-02	ug/kg ug/kg	49 67	ND UJ	1200000	1200000	130000	130000	NC	NC
OLMO3.2	N-Nitrosodiphenylamine	NA-TRND-SO03-02	ug/kg	54	ND UJ	1200000	1200000	130000	130000	NC NC	NC NC
	N-Nitrosodiphenylamine	NA-TRND-S004-02	ug/kg	46	ND	1200000	1200000	130000	130000	NC NC	NC
	N-Nitrosodiphenylamine N-Nitrosodiphenylamine	NA-TRND-S010-02 NA-TRND-S015-02	ug/kg	60	ND ND	1200000	1200000	130000	130000	NC	NC
	N-Nitrosodiphenylamine	NA-TRND-S021-02	ug/kg ug/kg	58 55	ND ND	1200000 1200000	1200000	130000	130000 130000	NC NC	NC
	N-Nitrosodiphenylamine	NA-TRND-S023-02	ug/kg	81	ND	1200000	1200000	130000	130000	NC NC	NC NC
		NA-TRND-SO25-02	ug/kg	83	ND	1200000	1200000	130000	130000	NC	NC
		NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg ug/kg	60 51	ND ND	1200000 1200000	1200000	130000	130000	NC	NC
OLMO3.2	Naphthalene	NA-TRND-S001-02	ug/kg	49	ND UJ	82000000	1200000 8200000	130000 3100000	130000 310000	NC NC	NC
		NA-TRND-S002-02	ug/kg	67	ND UJ	82000000	8200000	3100000	310000	NC	NC NC
	Naphthalene Naphthalene	NA-TRND-S003-02 NA-TRND-S004-02	ug/kg	54	ND UJ	82000000	8200000	3100000	310000	NC	NC
OLMO3.2		NA-TRND-S010-02	ug/kg ug/kg	46 60	ND ND	82000000 82000000	8200000 8200000	3100000	310000	NC	NC
OLMO3.2	Naphthalene	NA-TRND-S015-02	ug/kg	58	ND	82000000	8200000	3100000	310000 310000	NC NC	NC NC
OLMO3.2 I		NA-TRND-SO21-02	ug/kg	55	ND	82000000	8200000	3100000	310000	NC	NC NC
		NA-TRND-SO23-02 NA-TRND-SO25-02	ug/kg ug/kg	81 83	ND ND	82000000	8200000	3100000	310000	NC	NC
OLMO3.2 1		NA-TRND-S027-02	ug/kg	60	ND	82000000 82000000	8200000 8200000	3100000 3100000	310000	NC NC	NC NC
	Naphthalene	NA-TRND-SO29-02	ug/kg	51	ND	82000000	8200000	3100000	310000 310000	NC NC	NC NC
		NA-TRND-S001-02 NA-TRND-S002-02	ug/kg	49	ND UI	1000000	100000	39000	3900	NC	NC
		NA-TRND-S002-02 NA-TRND-S003-02	ug/kg ug/kg	67 54	ND UJ	1000000	100000	39000	3900	NC	NC
	Nitrobenzene	NA-TRND-SO04-02	ug/kg	46	ND ND	1000000	100000	39000 39000	3900 3900	NC NC	NC NC
OLMO3.2 1		NA-TRND-SO10-02	ug/kg	60	ND	1000000	100000	39000	3900	NC NC	NC NC
		NA-TRND-SO15-02 NA-TRND-SO21-02	ng/kg ng/kg	58 55	ND ND	1000000	100000	39000	3900	NC	NC
OLMO3.2 1	Nitrobenzene	NA-TRND-SO23-02	ug/kg	81	ND	1000000	100000	39000 39000	3900 3900	NC NC	NC NC
		NA-TRND-SO25-02	ug/kg	83	ND	1000000	100000	39000	3900	NC	NC NC
		NA-TRND-SO27-02 NA-TRND-SO29-02	ug/kg	60	ND	1000000	100000	39000	3900	NC	NC
OLMO3.2 I	Pentachlorophenol	NA-TRND-S001-02	ug/kg ug/kg	51 49	ND UJ	1000000 48000	100000 48000	39000	3900	NC	NC
OLMO3.2 F	Pentachlorophenol	NA-TRND-SO02-02	ug/kg		ND UJ	48000	48000	5300 5300	5300 5300	NC NC	NC NC
		NA-TRND-S003-02	ug/kg	54	ND UJ	48000	48000	5300	5300	NC NC	NC NC
		NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg	60	ND	48000	48000	5300	5300	NC	NC
OLMO3.2 F	Pentachlorophenol	NA-TRND-S015-02	ug/kg ug/kg	58	ND ND	48000 48000	48000 48000	5300 5300	5300	NC NC	NC
	Pentachlorophenol	NA-TRND-SO21-02	ug/kg	55	ND	48000	48000	5300	5300 5300	NC NC	NC NC
			ug/kg	81	ND	48000	48000	5300	5300	NC	NC NC
		NA-TRND-SO25-02 NA-TRND-SO27-02	ug/kg ug/kg	83 60	ND ND	48000 48000	48000	5300	5300	NC	NC
			ug/kg	51	ND	48000	48000 48000	5300 5300	5300	NC NC	NC NC
	· · · · · · · · · · · · · · · · · · ·					- rouse	-0000/	3300	3,300	NC	NC.

Col. December Col. Col							Industrial	Industrial	Residential	Residential	Reference	Comparison Conclusion Reference vs.
GLOCOLO Presentence NA Propo-Section Web 10 10 10 10 10 10 10 1					-	Result	RBC	RBSL	RBC	RBSL	UTL	Site
Col. December Col. Process Col. Part Part Col. Part Part Col. Part												
2000032												
Section Processor Proces					46							
Control December Proceedings Process												
Section Sect												
SMACID_PRESENTATION SATENDA 503-60 SP\$4 SATENDA 507-60 SATENDA 507-60 SATENDA 507-60 SATENDA 507-60 SP\$4 SATENDA 507-60 SA												
Section Proceedings Proceedings Proc												
December Part Par					60							
Col. Col.												
Description Description												
Col.Mos. 2												
Glidolog 3 Peners NA PRIDS SOLDIO 1984												
Col.Mol. 32 Percel NA. PRIDS 5001-03 ug/84 58 ND 120000000 12000000 4700000 NC NC			NA-TRND-SO10-02									
OLMORGO Present No.TPRIS.SCI.02.02												
Dimonsor Prince No. Tribus S025-02 apt 2				,								
Col.Mos. 3												
OLIMOGI Pyrese										4700000	NC	
Dimography Pyrme		Phenol										
OLMO32 Pyrene												
DMMO32 Pyrene												
December Part Par												
OLMO32 Prince N. TRINS 5021-92 wg/kg 55 ND 6100000 6100000 2300000 2200000 NC NC OLMO32 Prince N. TRINS 5025-02 wg/kg 88 ND 61000000 6100000 2300000 2200000 NC NC NC OLMO32 Prince N. TRINS 5025-02 wg/kg 88 ND 61000000 61000000 2300000 2200000 NC NC NC OLMO32 Prince N. TRINS 5025-02 wg/kg 51 120 61000000 61000000 2300000 2200000 NC NC NC OLMO32 Wg/kg 51 120 61000000 61000000 2300000 2200000 NC NC NC OLMO32 Wg/kg 51 120 61000000 61000000 2300000 2200000 NC NC NC OLMO32 Wg/kg 51 ND 2300 5300 5300 5300 NC NC NC OLMO32 Wg/kg 51 ND 2300 5300 5300 5300 NC NC NC OLMO32 Wg/kg 51 ND 2300 5300 5300 5300 NC NC NC OLMO32 Wg/kg 51 ND 2300 5300 5300 5300 NC NC NC OLMO32 Wg/kg 51 ND 2300 5300 5300 5300 NC NC NC OLMO32 Wg/kg 51 ND 2300 5300 5300 S300 NC NC NC OLMO32 Wg/kg 51 ND 2300 5300 5300 S300 NC NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 5300 5300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 5300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 5300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 5300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 S300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 S300 S300 NC NC OLMO32 Wg/kg 53 ND 5300 S300 S300 NC NC OLMO32 Wg/kg S300 NC NC OLMO32 Wg/kg							61000000					
O.M.O.3. Pyrene N. TRND-5003-92, wg/kg 81 ND 6100000 2300000 220000 NC NC NC O.M.O.3. Pyrene N. TRND-5002-92 wg/kg 60 760 61000000 6100000 2200000 NC NC NC O.M.O.3. Pyrene N. TRND-5002-92 wg/kg 50 760 61000000 6100000 2200000 NC NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5002-92 wg/kg 51 120 61000000 6100000 2200000 NC NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 49 ND UJ 5200 5200 580 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 49 ND UJ 5200 5200 580 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 46 ND UJ 5200 5200 580 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 54 ND UJ 5200 5200 580 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 54 ND UJ 5200 5200 580 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 54 ND UJ 5200 5200 580 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 54 ND UJ 5200 5200 580 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 54 ND UJ 5200 5200 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 54 ND UJ 5200 5200 580 NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 58 ND UJ 5200 5200 580 ND NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 58 ND UJ 5200 5200 580 ND NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 58 ND UJ 5200 5200 580 ND NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 58 ND UJ 5200 5200 580 ND NC NC O.M.O.3. big2-Chlorenchoxy methane N. TRND-5000-92 wg/kg 58 ND UJ 5200 5200 580 ND NC NC O.M.O.3. big2-Chlorenchy-bytehete N. TRND-		Pyrene										
OLMO3.2 Pyrstee NA-TRND-SQ2-502 ug/bg 58 ND 6100000 6100000 2300000 230000 NC NC OLMO3.2 Pyrstee NA-TRND-SQ2-902 ug/bg 51 120 61000000 6100000 2300000 230000 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 51 120 61000000 6100000 2300000 230000 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 51 120 61000000 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 57 ND III 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 57 ND III 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 57 ND III 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND III 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND III 5200 5200 580 580 NC NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5500 580 S80 NC NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5500 580 S80 NC NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5200 580 580 NC NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5200 580 580 NC NC OLMO3.2 big2-Chitorethoxy/methane NA-TRND-SQ2-902 ug/bg 58 ND 5200 5200 580 580 NC NC OLMO3.2 bi						_						
O.M.O.3 Priese												
DMMO32 Pyrene NATRINS SQUARD 19/82 51 120 6100000 610000 230000 230000 NC NC NC DMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 69 ND UJ 3200 3200 580 580 NC NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 69 ND UJ 3200 3200 580 580 NC NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 64 ND UJ 3200 3200 580 580 NC NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 64 ND UJ 3200 3200 580 580 NC NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 64 ND UJ 3200 3200 380 NC NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 64 ND 3200 3200 380 NC NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 380 NC NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 380 NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 380 NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 380 NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 NC NC CMMO32 big2-Chiroredroxy mechane NATRINS SQUARD 19/82 58 ND 3200 3200 380 NC NC CMMO32 big2-Chiroredry/teher NATRINS SQUARD 19/82 48 ND 3200 3200 380 NC NC NC CMMO32 big2-Chiroredry/teher NATRINS SQUARD 19/82 48 ND 3200 3200 380 NC NC NC CMMO32 big2-Chiroredry/teher NATRINS SQUARD 19/82 48 ND 3200 3200 380 S80 NC NC NC CMMO32 big2-Chiroredry/teher NATRINS SQUARD 19/82 48 ND 3200 3200 380 S80 NC												
December December					51	120	61000000	6100000	2300000	230000		
O.M.032 bist2-Chloredebry/nethane NA-TRND-5004-02 spkg 54 ND 5200 5200 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5004-02 spkg 54 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5010-02 spkg 55 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5010-02 spkg 55 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5010-02 spkg 58 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5020-02 spkg 58 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5020-02 spkg 58 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5020-02 spkg 58 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5020-02 spkg 60 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5020-02 spkg 60 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nethane NA-TRND-5020-02 spkg 60 ND 5200 5200 580 580 NC NC NC O.M.032 bist2-Chloredebry/nether NA-TRND-5020-02 spkg 60 ND 5200 5200 580 580 NC NC O.M.032 bist2-Chloredebry/nether NA-TRND-5020-02 spkg 60 ND 5200 5200 580 580 NC NC O.M.032 bist2-Chloredebry/nether NA-TRND-5020-02 spkg 50 ND 5200 5200 580 580 NC NC O.M.032 bist2-Chloredebry/nether NA-TRND-5020-02 spkg 50 ND 5200 5200 580 580 NC NC O.M.032 bist2-Chloredebry/nether NA-TRND-5020-02 spkg 50 ND 5200 5200 580 580 NC NC O.M.032 bist2-Chloredebry/nether NA-TRND-5020-02 spkg 50 ND 5200 5200 580 580 NC NC O.M.032 bist2-Chloredebry/nether NA-TRND-5020-02 spkg 50 ND 5200 5200 580 580 NC NC O.M.032 bist2-Chloredebry/nether NA-												
OLMOR3 18472 Chlorenbry/nethane NA-TRND-500402 19582 64 ND 5200 5200 5800 580 NC NC												
Col.Mol. Col												
Diministry Display D												
CLMO32 sist2-Chlorechoxy/methane NA-TRND-S023-02 surfs 81 ND \$200 \$300 \$80 \$80 NC NC		· · · · · · · · · · · · · · · · · · ·										
CLMOS.2 bis/2-Chlorechoxy/methaw N.A.TRND-S0074-02 wg/kg 51 ND 5200 5200 580 580 NC NC			, , , , , , , , , , , , , , , , , , , 									
DAMPS DAMP												
OLMOS 1812 Chloroenby/pether NA-TRND-5030-02 ug/kg 40 ND U 5200 5200 580 S80 NC NC												
CLMO3.2 bist2-Chioroenty) ether NA-TRND-S003-02 up/kg 67 ND UJ 3200 5300 580 580 NC NC					_							NC
CLMO3.2 bis(2-Chloroethy)!ether NA-TRND-S003-02 ug/kg 54 ND UJ 5200 5200 580 580 NC NC	OLMO3.2	bis(2-Chloroethyl)ether	NA-TRND-SO01-02	ug/kg								
OLMOS.2 bis(2-Chloroethy) ether NA-TRND-SOI0-02 ug/kg 46 ND 5200 5200 580 580 NC NC												
DLMG3.2 bis(2-Chioroethy)bether NA-TRND-SOI-02 ug/kg 50 ND 5200 5200 580 580 NC NC												
OLMO3.2 bis(2-Chioroethy)ether NA-TRND-SO15-02 ug/kg S8 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Chioroethy)ether NA-TRND-SO21-02 ug/kg S8 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Chioroethy)ether NA-TRND-SO21-02 ug/kg S8 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Chioroethy)ether NA-TRND-SO21-02 ug/kg S8 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Chioroethy)ether NA-TRND-SO21-02 ug/kg S8 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Chioroethy)ether NA-TRND-SO21-02 ug/kg S8 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Chioroethy)ether NA-TRND-SO21-02 ug/kg S8 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S1 ND S200 S200 S80 S80 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S4 ND UJ 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S4 ND UJ 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S4 ND UJ 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S4 ND UJ 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S6 ND 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S6 ND 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S6 ND 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S6 ND 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S6 ND 410000 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)]phthalase NA-TRND-SO21-02 ug/kg S6 ND 410000 410000 46000												
OLMO3.2 bis(2-Chloroethyl)ether NA-TRND-S023-02 ug/kg 81 ND 5200 5200 580 580 NC NC												NC
OLMO3.2 bis(2-Chloroethy)ether NA-TRND-SO25-02 ug/kg 83 ND 5200 580 S80 NC NC OLMO3.2 bis(2-Chloroethy)Ether NA-TRND-SO27-02 ug/kg 60 ND 5200 580 580 NC NC OLMO3.2 bis(2-Chloroethy)Ether NA-TRND-SO27-02 ug/kg 51 ND 5200 580 580 NC NC OLMO3.2 bis(2-Ethythexy)phthalaite NA-TRND-SO20-02 ug/kg 49 ND UJ 410000 46000 46000 NC NC OLMO3.2 bis(2-Ethythexy)phthalaite NA-TRND-SO20-02 ug/kg 54 ND UJ 410000 446000 46000 NC NC OLMO3.2 bis(2-Ethythexy)phthalaite NA-TRND-SO30-02 ug/kg 46 ND 410000 410000 46000 A6000 NC NC OLMO3.2 bis(2-Ethythexy)phthalaite NA-TRND-SO20-02 ug/kg 83 88 410000 410000 46000 A6000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
OLMO3.2 bis(2-Chloroethyl)ether NA-TRND-SO27-02 ug/kg 60 ND 5200 5200 580 580 NC NC												
OLMO3.2 bis(2-Ethythexy)phthalate NA-TRND-S021-02 ug/kg 51 ND 5200 5200 580 580 NC NC												
DLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO01-02 ug/kg 49 ND UJ 410000 440000 46000 MC NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO02-02 ug/kg 54 ND UJ 410000 410000 46000 46000 NC NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO03-02 ug/kg 54 ND UJ 410000 410000 46000 46000 NC NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO04-02 ug/kg 46 ND 410000 410000 46000 46000 NC NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO04-02 ug/kg 58 88 41000 410000 46000 46000 MC NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO01-02 ug/kg 55 ND 410000 410000 46000 46000 NC NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO21-02 ug/kg 55 ND 410000 410000 46000 46000 NC NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO22-02 ug/kg 55 ND 410000 410000 46000 46000 NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO23-02 ug/kg 83 ND 410000 410000 46000 46000 NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO23-02 ug/kg 60 120 410000 410000 46000 46000 NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO23-02 ug/kg 60 120 410000 410000 46000 46000 NC NC OLM03.2 bist2-Etrythexy1)phthalate NA-TRND-SO23-02 ug/kg 51 ND 410000 410000 46000 46000 NC NC OLM03.2 di-n-Buty1phthalate NA-TRND-SO24-02 ug/kg 61 120 410000 410000 46000 46000 NC NC OLM03.2 di-n-Buty1phthalate NA-TRND-SO24-02 ug/kg 67 ND UJ 20000000 7800000 7800000 770 NS OLM03.2 di-n-Buty1phthalate NA-TRND-SO24-02 ug/kg 60 120 400000 7800000 7800000 7800000 770 NS OLM03.2 di-n-Buty1phthalate NA-TRND-SO24-02 ug/kg 60 250 200000000 7800000 7800000 7800000 770 NS OLM03.2 di-n-Buty1phthalate NA-TRND-SO24-02 ug/kg 60 250 200000000 7800000 7800000 7800000 7												
OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-S003-02 ug/kg 54 ND U						ND ÜJ	410000	410000				
OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO1-02 ug/kg 60 30.0 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO1-02 ug/kg 58 88 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO1-02 ug/kg 55 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO2-02 ug/kg 55 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO2-02 ug/kg 81 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO2-02 ug/kg 83 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO2-02 ug/kg 83 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO2-02 ug/kg 83 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO2-02 ug/kg 51 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 di-n-Butylphthalate NA-TRND-SO2-02 ug/kg 51 ND 410000 410000 46000 46000 NC NC NC OLMO3.2 di-n-Butylphthalate NA-TRND-SO0-02 ug/kg 49 1601 200000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO0-02 ug/kg 54 68 200000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO0-02 ug/kg 54 68 200000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO0-02 ug/kg 58 640 200000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO0-02 ug/kg 58 640 200000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO0-02 ug/kg 58 640 200000000 20000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO2-02 ug/kg 58 640 200000000 20000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalat												
DLM03.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO16-02 ug/kg 58 88 410000 410000 46000 46000 NC NC NC												
DLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO1-02 ug/kg 58 88 410000 410000 46000 46000 NC NC												
OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO23-02 ug/kg 81 ND 410000 410000 46000 46000 NC NC												NC
OLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO25-02 ug/kg 83 ND 410000 410000 46000 46000 NC NC												
DLMO3.2 bis(2-Ethylhexyl)phthalate NA-TRND-SO27-02 ug/kg 50 120 410000 410000 46000 46000 NC NC												
DLM03.2 di-n-Butylphthalate NA-TRND-S01-02 ug/kg 49 160 200000000 20000000 7800000 77 NS												
OLM03.2 di-n-Butylphthalate NA-TRND-SO01-02 ug/kg 49 160 J 20000000 20000000 780000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-SO02-02 ug/kg 67 ND UJ 200000000 7800000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-SO04-02 ug/kg 54 68 J 200000000 20000000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-SO04-02 ug/kg 60 250 200000000 20000000 780000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-SO10-02 ug/kg 60 250 200000000 20000000 780000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-SO21-02 ug/kg 55 620 200000000 780000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-SO21-02 ug/kg 55 620 200000000												
OLM03.2 di-n-Butylphthalate NA-TRND-S002-02 ug/kg 67 ND UJ 200000000 20000000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S003-02 ug/kg 54 68 J 200000000 7800000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S010-02 ug/kg 46 ND 200000000 20000000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S010-02 ug/kg 58 640 200000000 20000000 7800000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S021-02 ug/kg 55 620 200000000 20000000 7800000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S021-02 ug/kg 55 620 200000000 7800000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S021-02 ug/kg 81 ND 200000000 7800000								2000000	7800000	780000	77	NS
OLM03.2 di-n-Butylphthalate NA-TRND-S004-02 ug/kg 46 ND 200000000 7800000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S010-02 ug/kg 60 250 200000000 7800000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S010-02 ug/kg 58 640 200000000 20000000 7800000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S021-02 ug/kg 55 620 200000000 20000000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S023-02 ug/kg 81 ND 200000000 20000000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S023-02 ug/kg 83 92 200000000 7800000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S027-02 ug/kg 61 160 20000000 7800000 7800000	OLMO3.2	di-n-Butylphthalate		ug/kg								
OLMO3.2 di-n-Butylphthalate NA-TRND-SO10-02 ug/kg 60 250 200000000 20000000 7800000 780000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO21-02 ug/kg 58 640 200000000 20000000 7800000 7800000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO21-02 ug/kg 55 620 200000000 20000000 7800000 780000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO23-02 ug/kg 81 ND 200000000 20000000 7800000 780000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO25-02 ug/kg 83 92 200000000 20000000 7800000 780000 77 NS OLMO3.2 di-n-Butylphthalate NA-TRND-SO27-02 ug/kg 60 160 200000000 7800000 7800000 77 NS OLMO3.2 di-n-Octylphthalate NA-TRND-SO29-02 ug/kg 51												
OLM03.2 di-n-Butylphthalate NA-TRND-S015-02 ug/kg 58 640 200000000 20000000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S021-02 ug/kg 55 620 200000000 20000000 7800000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S021-02 ug/kg 81 ND 200000000 20000000 7800000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S027-02 ug/kg 83 92 200000000 20000000 7800000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S027-02 ug/kg 60 160 200000000 20000000 7800000 780000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-S027-02 ug/kg 51 ND 200000000 7800000 780000 77 NS OLM03.2 di-n-Octylphthalate NA-TRND-S001-02 ug/kg 49 ND UJ												
OLM03.2 di-n-Buty[phthalate NA-TRND-SQ21-02 ug/kg 55 620 200000000 20000000 780000 780000 77 NS OLM03.2 di-n-Buty[phthalate NA-TRND-SQ23-02 ug/kg 81 ND 200000000 7800000 7800000 77 NS OLM03.2 di-n-Buty[phthalate NA-TRND-SQ27-02 ug/kg 83 92 200000000 7800000 7800000 77 NS OLM03.2 di-n-Buty[phthalate NA-TRND-SQ27-02 ug/kg 60 160 200000000 20000000 7800000 77 NS OLM03.2 di-n-Duty[phthalate NA-TRND-SQ29-02 ug/kg 51 ND 200000000 20000000 7800000 780000 77 NS OLM03.2 di-n-Octy[phthalate NA-TRND-SQ1-02 ug/kg 49 ND UJ 41000000 4100000 1600000 NC NC OLM03.2 di-n-Octy[phthalate NA-TRND-SQ1-02 ug/kg 67 ND UJ 41000000 4100000												
OLMO3.2 di-n-Butylphthalate NA-TRND-SO23-02 ug/kg 81 ND 200000000 20000000 7800000 77 NS			NA-TRND-SO21-02									
OLM03.2 di-n-Butylphthalate NA-TRND-SQ27-02 ug/kg 60 160 200000000 20000000 7800000 77 NS OLM03.2 di-n-Butylphthalate NA-TRND-SQ39-02 ug/kg 51 ND 200000000 20000000 7800000 780000 77 NS OLM03.2 di-n-Octylphthalate NA-TRND-SO01-02 ug/kg 49 ND UJ 41000000 4100000 1600000 NC NC OLM03.2 di-n-Octylphthalate NA-TRND-SO03-02 ug/kg 51 ND UJ 41000000 4100000 1600000 NC NC OLM03.2 di-n-Octylphthalate NA-TRND-SO03-02 ug/kg 51 ND UJ 41000000 4100000 1600000 NC NC OLM03.2 di-n-Octylphthalate NA-TRND-SO04-02 ug/kg 46 ND 41000000 4100000 1600000 NC NC			NA-TRND-SO23-02	ug/kg	81	ND	20000000	20000000	7800000	780000	77	NS
OLMO3.2 di-n-Burylphthalate NA-TRND-SO29-02 ug/kg 51 ND 200000000 20000000 780000 780000 77 NS OLMO3.2 di-n-Octylphthalate NA-TRND-SO01-02 ug/kg 49 ND UJ 41000000 1600000 1600000 NC NC OLMO3.2 di-n-Octylphthalate NA-TRND-SO03-02 ug/kg 67 ND UJ 41000000 4100000 1600000 NC NC OLMO3.2 di-n-Octylphthalate NA-TRND-SO03-02 ug/kg 54 ND UJ 41000000 4100000 1600000 NC NC OLMO3.2 di-n-Octylphthalate NA-TRND-SO04-02 ug/kg 46 ND 41000000 4100000 1600000 NC NC												
OLMO3.2 di-n-Octylphthalate NA-TRND-SO01-02 ug/kg 49 ND UJ 4100000 4100000 160000 NC NC OLMO3.2 di-n-Octylphthalate NA-TRND-SO02-02 ug/kg 67 ND UJ 41000000 1600000 1600000 NC NC OLMO3.2 di-n-Octylphthalate NA-TRND-SO03-02 ug/kg 54 ND UJ 41000000 4100000 1600000 NC NC OLMO3.2 di-n-Octylphthalate NA-TRND-SO04-02 ug/kg 46 ND 41000000 4100000 1600000 NC NC												
OLMQ3.2 di-n-Octylphthalate NA-TRND-S002-02 ug/kg 67 ND UJ 4100000 4100000 1600000 NC NC OLMQ3.2 di-n-Octylphthalate NA-TRND-S003-02 ug/kg 54 ND UJ 41000000 4100000 1600000 NC NC OLMQ3.2 di-n-Octylphthalate NA-TRND-S004-02 ug/kg 46 ND 41000000 1600000 1600000 NC NC												
OLMO3.2 di-n-Octylphthalate NA-TRND-S003-02 ug/kg 54 ND UJ 41000000 4100000 1600000 NC NC OLMO3.2 di-n-Octylphthalate NA-TRND-S004-02 ug/kg 46 ND 41000000 1600000 1600000 NC NC												
OLMO3.2 di-n-Octylphthalate NA-TRND-S004-02 ug/kg 46 ND 41000000 1600000 1600000 NC NC		di-n-Octylphthalate	NA-TRND-SO03-02	ug/kg	54	ND UJ	41000000	4100000	1600000	160000	NC NC	NÇ
	OLMO3.2		NA-TRND-SO04-02 NA-TRND-SO10-02	ug/kg ug/kg	46 60		41000000 41000000					

						Industrial	Industrial	Residential	Residential	Reference	Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL		RBC	RBSL	RBC	RBSL	UTL	Site
OLMO3.2 OLMO3.2	di-n-Octylphthalate	NA-TRND-SO15-02 NA-TRND-SO21-02	ug/kg	58		41000000	4100000	1600000	160000		NC
OLMO3.2	di-n-Octylphthalate	NA-TRND-S023-02	ug/kg ug/kg	81		41000000 41000000		1600000 1600000	160000		NC
OLMO3.2	di-n-Octylphthalate	NA-TRND-S025-02	ug/kg	83		41000000		1600000	160000 160000	NC NC	NC NC
OLMO3.2	di-n-Octylphthalate	NA-TRND-SO27-02	ug/kg	60	ND	41000000	4100000	1600000	160000	NC NC	NC NC
OLMO3.2 OLMO3.2	di-n-Octylphthalate	NA-TRND-S029-02	ug/kg	51		41000000	4100000	1600000	160000	NC	NC
OLMO3.2	o-Cresol o-Cresol	NA-TRND-SO01-02 NA-TRND-SO02-02	ug/kg	49 67		100000000	10000000	3900000	390000	NC	NC
OLMO3.2	o-Cresol	NA-TRND-S003-02	ug/kg ug/kg	54		100000000		3900000 3900000	390000	NC NC	NC NC
	o-Cresol	NA-TRND-SO04-02	ug/kg	46		100000000	10000000	3900000	390000 390000	NC NC	NC NC
OLMO3.2		NA-TRND-SO10-02	ug/kg	. 60		100000000	10000000	3900000	390000	NC NC	NC NC
OLMO3.2	o-Cresol	NA-TRND-SO15-02	ug/kg	58	ND	100000000	10000000	3900000	390000	NC	NC
OLMO3.2 OLMO3.2	o-Cresol o-Cresol	NA-TRND-S021-02	ug/kg	55		100000000	10000000	3900000	390000	NC NC	NC.
OLMO3.2	o-Cresol	NA-TRND-S023-02 NA-TRND-S025-02	ug/kg ug/kg	81	ND ND	100000000	10000000	3900000	390000	NC NC	NC
	o-Cresol	NA-TRND-S027-02	ug/kg	60	ND	100000000	10000000	3900000 3900000	390000	NC NC	NC
	o-Cresol	NA-TRND-S029-02	ug/kg	51	ND	100000000	10000000	3900000	390000 390000	NC NC	NC NC
	p-Cresol	NA-TRND-SO01-02	ug/kg	49		10000000	1000000	390000	39000	NC NC	NC
	p-Cresol	NA-TRND-SO02-02	ug/kg	67		10000000	1000000	390000	39000	NC	NC
	p-Cresol p-Cresol	NA-TRND-SO03-02	ug/kg	54		10000000	1000000	390000	39000	NC	NC
	p-Cresoi	NA-TRND-S004-02 NA-TRND-S010-02	ug/kg ug/kg	46 60	ND ND	10000000	1000000	390000	39000	NC NC	NC
	p-Cresol	NA-TRND-S015-02	ug/kg	58	ND	1000000	1000000	390000 390000	39000 39000	NC NC	NC NC
OLMO3.2	p-Cresol	NA-TRND-SO21-02	ug/kg	55	ND	10000000	1000000	390000	39000	NC NC	NC NC
OLMO3.2		NA-TRND-S023-02	ug/kg	81	ND	10000000	1000000	390000	39000	NC	NC NC
	p-Cresol	NA-TRND-SO25-02	ug/kg	83	ND	10000000	1000000	390000	39000	NC	NC NC
OLMO3.2 OLMO3.2	p-Cresol p-Cresol	NA-TRND-SO27-02	ug/kg	60	ND	10000000	1000000	390000	39000	NC	NC
	1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO29-02 NA-TRND-SO01-02	ug/kg ng/kg	51 0.3	ND 95.3	10000000 38000	1000000	390000	39000	NC	NC
	1.2.3.4,6.7.8.9-OCDD	NA-TRND-SO02-02	ng/kg	0.3	253	38000	38000 38000	4300 4300	4300 4300	39.6 39.6	NS NS
	1,2,3,4,6,7,8,9-OCDD	NA-TRND-S003-02	ng/kg	0.5	799	38000	38000	4300	4300	39.6	NS NS
SW8290	1,2,3,4,6,7,8,9-OCDD	NA-TRND-S004-02	ng/kg	0.9	1 0085	38000	38000	4300	4300	39.6	NS NS
SW8290	1.2.3.4.6.7.8.9-OCDD	NA-TRND-SO10-02	ng/kg	0.6	1320	38000	38000	4300	4300	39.6	NS
	1,2,3,4,6,7,8,9-OCDD 1,2,3,4,6,7,8,9-OCDD	NA-TRND-SO15-02	ng/kg	0.6	158	38000	38000	4300	4300	39.6	NS
	1.2.3.4.6.7.8.9-OCDD	NA-TRND-SO21-02 NA-TRND-SO23-02	ng/kg ng/kg	2.3	29.1	38000 38000	38000 38000	4300	4300	39.6	NS
	1.2.3.4,6.7.8,9-OCDD	NA-TRND-SQ25-02	ng/kg	1.2	8.5 J	38000	38000	4300 4300	4300 4300	39.6 39.6	NS NS
	1.2.3,4,6,7,8,9-OCDD	NA-TRND-S027-02	ng/kg	5.2	3640	38000	38000	4300	4300	39.6	NS NS
	1.2.3.4.6.7.8.9-OCDD	NA-TRND-S029-02	ng/kg	2.2	42.4	38000	38000	4300	4300	39.6	NS
SW8290 SW8290	1.2.3.4.6.7.8.9-OCDF	NA-TRND-SO01-02	ng/kg	0.2	8.1 BJ	38000	38000	4300	4300	4.6	. NS
SW8290	1.2.3.4.6.7.8.9-OCDF 1.2.3.4.6.7.8.9-OCDF	NA-TRND-S002-02 NA-TRND-S003-02	ng/kg	0.3	27.5 70.4	38000	38000	4300	4300	4.6	NS
	1.2.3.4.6.7.8.9-OCDF	NA-TRND-S004-02	ng/kg ng/kg	0.4	334	38000 38000	38000 38000	4300 4300	4300	4.6	NS
	1.2.3.4.6.7.8.9-OCDF	NA-TRND-SO10-02	ng/kg	0.5	271	38000	38000	4300	4300 4300	4.6	NS NS
	1,23,4,6,7,8,9-OCDF	NA-TRND-S015-02	ng/kg	0.4	11.5	38000	38000	4300	4300	4.6	NS NS
	1.2.3.4.6.7.8.9-OCDF	NA-TRND-SO21-02	ng/kg	1.9	64.2	38000	38000	4300	4300	4.6	NS
	1.2.3,4,6.7.8,9-OCDF 1.2.3,4,6,7,8,9-OCDF	NA-TRND-S023-02	ng/kg	0.8	3.4 J	38000	38000	4300	4300	4.6	NS
	1,2,3,4,6,7,8,9-OCDF	NA-TRND-S025-02 NA-TRND-S027-02	ng/kg ng/kg	4.4	77.3	38000 38000	38000	4300	4300	4.6	NS NS
	1,2,3,4,6,7,8,9-OCDF	NA-TRND-S029-02	ng/kg	1.8	5.61	38000	38000	4300 4300	4300	4.6	NS
	1,2,3,4,6,7.8-HpCDD	NA-TRND-SO01-02	ng/kg	0.2	8.3	3800	3800	430	4300	4.6	NS S
	1,2,3,4,6,7,8-HpCDD	NA-TRND-S002-02	ng/kg	0.3	33.5	3800	3800	430	430	- 6	3
	1.2.3.4.6.7.8-HpCDD	NA-TRND-S003-02	ng/kg	0.3	92.9	3800	3800	430	430	6	<u> </u>
	1.2.3,4.6,7,8-HpCDD 1.2.3,4.6,7,8-HpCDD	NA-TRND-S004-02 NA-TRND-S010-02	ng/kg	0.7	997 228	3800	3800	430	430	6	Ş
	1.2.3.4.6.7.8-HpCDD	NA-TRND-S010-02	ng/kg ng/kg	0.4	16.5	3800 3800	3800 3800	430	430	6	<u>s</u>
SW8290	1,2,3,4,6,7,8-HpCDD		ng/kg	1.4	54.5	3800	3800	430 430	430 430	6	S
	1,2,3,4,6,7,8-HpCDD	NA-TRND-SO23-02	ng/kg	0.6	5.9	3800	3800	430	430	6	- S
	1,2,3,4,6,7,8-HpCDD		ng/kg	0.7	2.2 J	3800	3800	430	430	6	
	1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	NA-TRND-SO27-02 NA-TRND-SO29-02	ng/kg	2.6	144	3800	3800	430	430	6	S
	1,2,3,4,6,7,8-HpCDF	NA-TRND-S001-02	ng/kg ng/kg	0.2	6.9 B	3800	3800 3800	430	430	6	S
SW8290	1,2,3,4,6,7,8-HpCDF		ng/kg	0.2	26.6	3800	3800	430 430	430 430	5.1	NS NS
SW8290	1.2.3.4.6.7.8-HpCDF	NA-TRND-SO03-02	ng/kg	0.2	42	3800	3800	430	430	5.1 5.1	NS NS
	1,2,3,4,6,7,8-HpCDF	NA-TRND-S004-02	ng/kg	0.4	291	3800	3800	430	430	5.1	NS NS
			ng/kg	0.3	207	3800	3800	430	430	5.1	NS NS
	1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF		ng/kg	0.3	9.9	3800	3800	430	430	5.1	NS
	1.2.3.4,6,7,8-HpCDF		ng/kg ng/kg	0.9	49 4.4 J	3800	3800 3800	430	430	5.1	NS
SW8290			ng/kg	0.5	2.7	3800	3800	430 430	430 430	5.1	NS NS
SW8290	1,2,3,4,6,7,8-HpCDF	NA-TRND-S027-02	ng/kg	1.6	45.3	3800	3800	430	430	5.1	NS NS
		NA-TRND-S029-02	ng/kg	1	6.2	3800	3800	430	430	5.1	NS NS
			ng/kg	0.2	1.8 BJ	3800	3800	430	430	1	
			ng/kg	0.3	4.4 1	3800	3800	430	430	1	S
			ng/kg ng/kg	0.2	5.2 21.4	3800 3800	3800	430	430	1	\$
SW8290 I			ng/kg	0.4	48.2	3800	3800 3800	430	430		s
SW8290 1	1,2,3,4,7,8,9-HpCDF		ng/kg	0.4	0.9 J	3800	3800	430	430 430	1	<u>s</u>
	1.2.3.4.7,8.9-HpCDF	NA-TRND-S021-02	ng/kg	1.2	1.8 J	3800	3800	430	430		S
			ng/kg	0.6	0.63 J	3800	3800	430	430	1	S
			ng/kg	0.7	ND	3800	3800	430	430	1	S
	The state of the s	42-7-1 POINT 3021-02	ng/kg	2.1	4.1 J	3800	3800	430	430	1	S

\$2,000,000,000,000,000,000,000,000,000,0							Industrial	Industrial	Residential RBC	Residential RBSL	Reference UTL	Comparison Conclusion Reference vs. Site
STEPSON 13.4.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Method	Apalyte	Sample ID	Units	MDL	Result	RBC 3800	RBSL 3800			1	Site
\$13.43.14.000 \$3.40.14.000 \$3.					-						NC	NC
STATIST 13.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1												NC
SWIND 33.47.5 HECDD NATEND-SQUIPS 1984 14.1 39.0 39.0 4.0 C. N.C. N. SWIND 33.47.5 HECDD NATEND-SQUIPS 12.47.5 HECDD NATEND-SQUIPS												NC NC
SPENSON 33.47.5 HECTO												NC NC
SYMPO 13.4.5.HeCDD NATEN-SOCIED mpt 12 NO 390 40 40 NC NO NO NO NO NO NO NO												NC
SMYSIO 13.4.5.HIGDD NA TRIDS 5075-02 mg/s 3.11 3.00 3.00 3.00 4.00 NC No SWIGO 3.14.5.HIGDD NA TRIDS 5075-02 mg/s 1.11 3.00 3.00 3.00 4.00 4.00 5.00 NC No SWIGO 3.14.5.HIGDD NA TRIDS 5075-02 mg/s 1.17 NO SWIGO 3.14.5.HIGDD NA TRIDS 5075-02 mg/s 1.17 NO SWIGO 3.14.5.HIGDD NA TRIDS 5075-02 mg/s 3.00 4.00						ND						NC
STATES 13.14.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	SW8290											NC NC
SWISSON 23.5.7.8 HLOCP NATION SOCIETY SWISSON 24.5.7 NO 380 380 41 42.1 N NO SWISSON 23.5.7 SHLOCP NATION SOCIETY SWISSON 23.5.7 SHLOCP SWISSON 23.5												NC NC
SWISSON 13.1.5.1.HECTF NATIONS-SOURCE Mark 0.2 3.7 81 380 380 61 62 1.1 N. SWISSON 13.1.5.1.HECTF NATIONS-SOURCE Mark 0.2 13.1.3. 380 380 61 62 1.1 N. SWISSON 13.1.5.1.HECTF NATIONS-SOURCE Mark 0.2 13.1.3. 380 380 61 62 1.1 N. SWISSON 13.1.5.1.HECTF NATIONS-SOURCE Mark 0.2 13.1.3. 380 380 61 62 1.1 N. SWISSON 13.1.5. 13.1.1.HECTF NATIONS-SOURCE Mark 0.2 13.1.3. 380 380 61 62 1.1 N. SWISSON 13.1.5. 13.1.1.HECTF NATIONS-SOURCE Mark 0.2 14.1 380 380 61 62 1.1 N. SWISSON 13.1.5. 13.1.1.HECTF NATIONS-SOURCE Mark 0.2 14.1 380 380 61 62 1.1 N. SWISSON 13.1.5. 13.1.1.HECTF NATIONS-SOURCE Mark 0.2 14.1 380 380 61 62 1.1 N. SWISSON 13.1.5. 13.1.1.HECTF NATIONS-SOURCE Mark 0.2 14.1 380 380 61 62 1.1 N. SWISSON 13.1.5. 13.1.1.HECTF NATIONS-SOURCE Mark 0.2 14.1 380 380 61 62 1.1 N. SWISSON 13.1.5. 14.1.1.HECTF NATIONS-SOURCE Mark 1.1 13.1 380 380 61 62 1.1 N. SWISSON 13.1.5. 14.1.1.HECTF NATIONS-SOURCE Mark 1.1 13.1 380 380 61 62 1.1 N. SWISSON 13.1.5. 14.1.HECTF NATIONS-SOURCE Mark 1.1 13.1 380 380 61 62 63 1.1 N. SWISSON 13.1.5. 14.1.HECTF NATIONS-SOURCE Mark 1.1 13.1 13.1 380 380 61 62 63 1.1 N. SWISSON 13.1.5. 14.1.HECTF NATIONS-SOURCE Mark 1.1 13.												NC NC
\$\frac{\text{SYMP3}{2}\$ 23.47.84+\text{MCDF}\$ No.7PRO \$00042\$ \text{ park } 0.2 \text{ park } 0.2 \text{ 1.12} \text{ 380} \text{ 380} \text{ 380} \text{ 43} \text{ 4.12} \text{ 1.12} \text{ No.7PRO \$00042\$ \text{ park } 0.2 \text{ 1.12} \text{ 380} \text{ 380} \text{ 380} \text{ 4.3} \text{ 4.2} \text{ 1.12} \text{ No.7PRO \$00042\$ \text{ park } 0.2 \text{ 1.12} \text{ 380} \text{ 380} \text{ 380} \text{ 4.3} \text{ 4.3} \text{ 1.12} \text{ No.7PRO \$00042\$ \text{ park } 0.2 \text{ 1.12} \text{ 380} \text{ 380} \text{ 380} \text{ 4.3}												NS
\$\frac{9000}{2} \tag{2.4.7.8.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1} \tag{1.7.9.4.6.00P} \tag{1.2.1.4.4.6.00P} \tag{1.2.1.4.6.00P} 1.			NA-TRND-SO02-02									NS
SWESTON 22.547.8 HOLDP												
SWISSON 23.547.8-HoCDP												NS NS
SWYEDO 12,347,846CDF NA-TRIND-5021-02 19/84 07 44 380 380 43 43 44 45 45 45 45 45												NS NS
\$\frac{\text{SYM20}}{23.47.384CDF}\$ NA_TRNO-SQC1-02 \text{Psize} \text{1.57} \text{3.78} \text{3.78} \text{4.57} \text{4.57} \text{5.78} \text{4.57} \text{5.78} \text{5.78} \text{5.78} \					$\overline{}$							
\$\frac{\text{SWEQ}\$ (1.23.47).# HCDF NATRIND \$\frac{\text{SWEQ}\$ (2.3.47).# HCDF NATRIND \$\frac{\text{SWEQ}\$ (2.3.47).# HCDD NATRIND \$\frac{\text{SWEQ}\$ (NS
SWIEDD 12.34.73-HICDE					0.4							
SWEDO 1.2.5.6.7.8-HCDD					1 1							
SMYRD 1,23,67,8-HsCDD					1							
SWESON 12.56.73-HICDD NATRINS-000-02 apts 0.2 6.71 380 390 49 49 49 15 N												
SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.3 12.1 380 380 43 43 1.5 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.3 19.1 380 380 43 43 1.5 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.5 2.71 380 380 43 43 1.5 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.5 2.71 380 380 43 43 1.5 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.5 2.71 380 380 43 43 1.5 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.5 2.71 380 380 43 43 1.5 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 1.5 9.5 380 380 43 43 1.5 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 1.5 9.5 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 1.5 9.5 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.2 2.5 1 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.2 2.5 1 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.1 51 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.1 51 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.1 51 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.1 51 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.2 3.5 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.2 3.5 380 380 44 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.2 3.5 380 380 45 45 1.1 N. SWESON 12.5.67.8 HIGDD NA-TRID-SOI-002 mg/kg 0.2 3.5 380 380 45 45 1.1 N. SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SWESON 12.5.7 SW			NA-TRND-SO03-02	ng/kg	_							
\$\frac{\text{SWE20}\$ 12.3.6.7.8 HeCDD												
SWESON 12.5.67.8 HIGDD NATRID-SCI21.02 MPK 15 NATRID-SCI21.02 MPK 0.5 2.71 380 380 43 43 1.5 NATRID-SCI22.02 MPK 0.5 2.71 380 380 43 43 1.5 NATRID-SCI22.02 MPK 0.5 2.71 380 380 43 43 1.5 NATRID-SCI22.02 MPK 0.5 2.71 380 380 43 43 1.5 NATRID-SCI22.02 MPK 0.5 2.71 380 380 43 43 1.5 NATRID-SCI22.02 MPK 0.5 2.71 380 380 43 43 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 1.5 NATRID-SCI22.02 MPK 0.2 NATRID-SCI22.02 MPK 0.2 NATRID-SCI22.02 MPK 0.2 NATRID-SCI22.02 MPK 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 0.1 NATRID-SCI22.02 MPK 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 0.1 NATRID-SCI22.02 MPK 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 0.1 NATRID-SCI22.02 MPK 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 0.1 NATRID-SCI22.02 MPK 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 0.1 NATRID-SCI22.02 MPK 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 0.1 NATRID-SCI22.02 MPK 0.3 0.3 0.3 0.3 0.4 0.												
SWESON 1.2.5.67.3 HINCOD NATRON SOCI3-02 mg/kg 0.5 1.1 380 380 43 43 1.5 N												
SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 1.5 5 300 380 49 49 41 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 1.5 9.5 300 380 49 45 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 1.5 9.8 380 380 45 45 1.1 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.2 1.5 N. SWESON 1.23.67.8 HACDE NA.TRIND-SOCI-02 ng/st 0.3 0.												
SWESO 1.23.67.8*HCDF NATRIND SOUP NATRIND SOUR NATRIND SOUR NATRIND SOUR NATRIND SOUR NATRIND SOUR NATRIND SOUR NATRIND SOUR NATRIND SOUR NATRIND SOUR NATRIND S			NA-TRND-SO25-02	ng/kg								
SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.2 1.2 B) 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO02-02 mg/sg 0.1 5.1 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.1 5.1 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.3 2.27 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.2 3.45 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.2 3.45 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.2 3.45 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.2 3.45 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO01-02 mg/sg 0.6 2.11 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO02-02 mg/sg 0.4 0.53 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO02-02 mg/sg 0.4 0.53 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO02-02 mg/sg 0.3 2.1 380 380 43 43 1.1 N SWESPO 12.56.78-HECDF NA-TRND-SO02-02 mg/sg 0.3 2.1 380 380 43 43 1.1 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 2.1 380 380 43 43 1.1 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 9.4 380 380 43 43 1.1 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 9.4 380 380 43 43 5.3 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 9.4 380 380 43 43 5.3 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 9.4 380 380 43 43 5.3 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 9.4 380 380 43 43 5.3 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 9.4 380 380 43 43 5.3 N SWESPO 12.57.89-HECDD NA-TRND-SO02-02 mg/sg 0.3 9.4 380 380 43 43 5.3 N SWESPO 12.57.89												
SWESSO 12.56.78-HECDF NA-TRND-SO02-02 mg/kg 0.0 0.2 0.51 380 380 45 45 1.1 N												
SWESSO 12.56.78-HECDF NA-TENDS-000-02 mg/mg 0.1 5.1 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-000-02 mg/mg 0.2 34.5 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-000-02 mg/mg 0.2 34.5 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.2 34.5 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.2 18.1 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.6 2.11 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.6 2.11 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.4 0.531 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.4 0.531 380 380 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.3 0.3 0.3 0.3 45 45 1.1 N. SWESSO 12.56.78-HECDF NA-TENDS-001-02 mg/mg 0.3 0.2 1.3 380 380 45 45 1.1 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.3 9.4 380 380 45 45 1.1 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.3 9.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 9.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 9.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 78.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 78.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 78.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 78.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 78.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD NA-TENDS-001-02 mg/mg 0.5 78.4 380 380 45 45 5.3 N. SWESSO 12.57.89-HECDD N												
SW2500 12.3.67.8-H:ACDF NA-TRND-SO10-02 ng/kg 0.3 29.77 390 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO10-02 ng/kg 0.2 1.8.1 380 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO10-02 ng/kg 0.2 1.8.1 380 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO21-02 ng/kg 0.3 0.9.1 380 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO22-02 ng/kg 0.3 0.9.1 380 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO22-02 ng/kg 0.4 0.531 380 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO22-02 ng/kg 0.9 0.3.21 380 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO22-02 ng/kg 0.9 3.21 380 380 43 43 1.1 N SW2500 12.3.67.8-H:ACDF NA-TRND-SO20-02 ng/kg 0.9 3.21 380 380 43 43 1.1 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO20-02 ng/kg 0.2 3.21 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO20-02 ng/kg 0.2 3.21 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO20-02 ng/kg 0.2 7.9 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO20-02 ng/kg 0.3 7.9 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO20-02 ng/kg 0.3 28.11 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO20-02 ng/kg 0.3 28.11 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO21-02 ng/kg 0.3 28.11 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO21-02 ng/kg 0.3 48.1 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO21-02 ng/kg 0.3 48.1 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO21-02 ng/kg 0.3 48.1 380 380 43 43 5.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO21-02 ng/kg 0.3 0.9 380 380 43 43 3.3 3.3 N SW2500 12.3.78.9-H:ACDD NA-TRND-SO21-02 ng/k												
SW2500 12.5.67.8-HaCDF			NA-TRND-SO04-02	ng/kg								
SWE200 12.3.6.7.8+HCDF NA-TRND-S021-02 ng2k 0.6 2.11 380 380 43 43 1.11 N												
SW2500 12.3.6.7.8.HRCDF NA.TRND.S023-02 ng/hg 0.3 0.9 1 380 380 43 43 1.1 N SW2500 12.3.6.7.8.HRCDF NA.TRND.S023-02 ng/hg 0.4 0.531 380 380 43 43 1.1 N SW2500 12.3.6.7.8.HRCDF NA.TRND.S023-02 ng/hg 0.8 12.1 380 380 43 43 1.1 N SW2500 12.3.6.7.8.HRCDF NA.TRND.S023-02 ng/hg 0.8 12.1 380 380 44 43 1.1 N SW2500 12.3.6.7.8.HRCDD NA.TRND.S023-02 ng/hg 0.8 12.1 380 380 44 43 1.1 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S020-02 ng/hg 0.3 2.1 380 380 45 43 5.3 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S020-02 ng/hg 0.3 2.1 380 380 45 43 5.3 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S020-02 ng/hg 0.3 7.8 41 380 380 45 43 5.3 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S020-02 ng/hg 0.3 7.8 41 380 380 45 43 5.3 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S020-02 ng/hg 0.3 7.8 41 380 380 45 43 45 5.3 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S010-02 ng/hg 0.3 7.8 41 380 380 45 43 45 5.3 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S010-02 ng/hg 0.3 7.8 41 380 380 45 43 45 5.3 N SW2500 12.3.7.8.S.HRCDD NA.TRND.S010-02 ng/hg 0.5 1.5												
SWR250 12.3.6.7.8 H-NCDF NA-TRND-SQ25-02				,								
SW3200 1.2.3,6.7.8.H-RCDF NA-TRND-SO20-402 np/ks 0.8 1.21 380 380 43 43 43 5.5 N				ng/kg								
SWE200 12.37,8.9-HxCDD NA-TRND-SCO1-02 ng/kg 0.2 3.2.1 380 380 43 43 5.3 N					-							
SW8200 12.37.8.9-HCDD NA-TRND-SO02-02 ag/kg 0.2 7.9 380 380 45 45 5.3 N												
SW8290 12.3.7.8.9-HxCDD NA-TRND-S00402 pa/kg 0.5 78.4.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S00402 pa/kg 0.5 78.4.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S016-02 pa/kg 0.3 28.1.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S016-02 pa/kg 0.3 48.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S016-02 pa/kg 1 5.2.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S016-02 pa/kg 1 5.2.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S021-02 pa/kg 1 5.2.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S021-02 pa/kg 1 5.2.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S021-02 pa/kg 1 5.2.1 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S021-02 pa/kg 1 6.1 7.2 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDD NA-TRND-S021-02 pa/kg 1 6.1 7.2 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S021-02 pa/kg 1.4 4.5 380 380 43 43 5.3 N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S021-02 pa/kg 0.3 0.9.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S021-02 pa/kg 0.3 0.9.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S031-02 pa/kg 0.3 0.9.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S031-02 pa/kg 0.2 7.3.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S031-02 pa/kg 0.2 7.3.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S031-02 pa/kg 0.3 0.9.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S031-02 pa/kg 0.3 0.9.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S031-02 pa/kg 0.3 0.9.1 380 380 43 43 N. C N. SW8290 12.3.7.8.9-HxCDF NA-TRND-S031-02 pa/kg 0.3 0.9.												
SW8290 12.37.8.9+hCDD												
SW8290 12.37.8.9+RCDD NA-TRND-SO15-02 ng/kg 0.5 4.81 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDD NA-TRND-SO21-02 ng/kg 1 5.21 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDD NA-TRND-SO22-02 ng/kg 0.6 16.2 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDD NA-TRND-SO22-02 ng/kg 0.6 8.9 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDD NA-TRND-SO27-02 ng/kg 0.6 8.9 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDD NA-TRND-SO27-02 ng/kg 1.6 17.2 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDD NA-TRND-SO27-02 ng/kg 1.6 17.2 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDD NA-TRND-SO27-02 ng/kg 1.4 4.51 380 380 43 43 5.3 N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.2 0.51 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 0.91 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.2 0.51 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.2 0.51 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.2 0.51 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.2 1.11 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 ND1 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 ND1 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 ND1 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 ND1 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 ND1 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 ND1 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TRND-SO27-02 ng/kg 0.3 ND1 380 380 43 43 NC N SW8290 12.37.8.9+RCDF NA-TR			NA-TRND-SO04-02	ng/kg								
SW8290 12.37.8.9-HxCDD NA-TRND-SO21-02 ng/kg 0.6 16.2 380 380 43 43 5.3 N												
SW8290 12.37.8.9-HxCDD					_							
SW8290 12.37.8.9-HxCDD NA-TRND-S025-02 ng/kg 0.6 8.9 380 380 43 43 5.3 NSW8290 12.37.8.9-HxCDD NA-TRND-S029-02 ng/kg 1.6 17.2 380 380 43 43 5.3 NSW8290 12.37.8.9-HxCDD NA-TRND-S021-02 ng/kg 1.6 17.2 380 380 43 43 5.3 NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.2 0.5 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.3 0.9 1 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S031-02 ng/kg 0.3 0.9 1 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S031-02 ng/kg 0.3 0.9 1 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S031-02 ng/kg 0.4 3.4 1 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S031-02 ng/kg 0.4 3.4 1 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S031-02 ng/kg 0.7 3.1 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S010-02 ng/kg 0.3 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.3 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.3 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.3 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.5 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.5 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.5 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.5 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.5 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.5 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDF NA-TRND-S021-02 ng/kg 0.5 ND 380 380 43 43 NC NSW8290 12.37.8.9-HxCDD NA-TRND-S021-02 ng/kg 0.2 1.9 76 76 8.					_							
SW8290 1.2.3.7.8.9-HxCDF NA-TRND-SO21-02 ng/kg 1.4 4.5 J 380 380 43 43 5.3 NC NR												
SW8290 1,2,3,7,8,9+hxCDF NA-TRND-SO01-02 ng/kg 0,2 0,5 J 380 380 43 43 NC N SW8290 1,2,3,7,8,9+hxCDF NA-TRND-S003-02 ng/kg 0,3 0,9 J 380 380 43 43 NC N SW8290 1,2,3,7,8,9+hxCDF NA-TRND-S004-02 ng/kg 0,4 3,4 J 380 380 43 43 NC N SW8290 1,2,3,7,8,9+hxCDF NA-TRND-S016-02 ng/kg 0,2 7,3 J 380 380 43 43 NC N SW8290 1,2,3,7,8,9+hxCDF NA-TRND-S016-02 ng/kg 0,2 7,3 J 380 380 43 43 NC N SW8290 1,2,3,7,8,9+hxCDF NA-TRND-S012-02 ng/kg 0,8 ND 380 380 43 43 NC N SW8290 1,2,3,7,8,9-hxCDF NA-TRND-S012-02 ng/kg 0,5 ND 380 380 43 43												
SW8290 1,2,3,7,8,9+BxCDF NA-TRND-S002-02 ng/kg 0,3 0,9 J 380 380 43 43 NC NC NA-TRND-S003-02 ng/kg 0,2 1,1 J 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,4 3,4 J 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,4 3,4 J 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,2 7,3 J 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,2 7,3 J 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,3 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,3 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,3 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,5 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,5 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,5 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,5 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,5 ND 380 380 43 43 NC NC NA-TRND-S010-02 ng/kg 0,5 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 0,5 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 0,2 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 1,2 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 0,2 0,2 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 0,2 0,2 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 0,2 0,2 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 0,2 0,2 ND 380 380 43 43 NC NC NA-TRND-S020-02 ng/kg 0,2 0,2 ND 380 380 43 43 NC NC NC NA-TRND-S020-02 ng/kg 0,2 0,2 ND 380 380 43 43 NC NC NC NC NC NC NC N												
SW8290 1,2,37,8,9-HxCDF NA-TRND-SO04-02 ng/kg 0,2 1,11 380 380 43 43 NC N												
SW8290 12.37.8.9-HxCDF NA-TRND-SO10-02 ng/kg 0.2 7.3 380 380 43 43 NC N										43	NC	NC
SW8290 12.3.7.8.9 HxCDF NA-TRND-SO1-02 ng/kg 0.3 ND J 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO21-02 ng/kg 0.5 ND 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO23-02 ng/kg 0.5 ND 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO25-02 ng/kg 0.5 ND 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO27-02 ng/kg 1.2 6.9 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO27-02 ng/kg 1.2 6.9 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO29-02 ng/kg 1.2 ND 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO29-02 ng/kg 1.2 ND 380 380 43 43 NC NC NC SW8290 12.3.7.8.9 HxCDF NA-TRND-SO29-02 ng/kg 0.2 0.72 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO29-02 ng/kg 0.2 1.9 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO3-02 ng/kg 0.1 1.8 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO3-02 ng/kg 0.1 1.8 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO3-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO3-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO3-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO3-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO2-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO2-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO2-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 8.6 1.6 NC SW8290 12.3.7.8.9 HxCDD NA-TRND-SO3-02 ng/kg 0.1	SW8290											
SW8290 12.3.7.8.9-HxCDF NA-TRND-SO23-02 ng/kg 0.8 ND 380 380 43 43 NC NC												
SW8290 12.3.7.8.9 HxCDF NA-TRND-SO23-02 ng/kg 0.5 ND 380 380 43 43 NC N SW8290 1.2.3.7.8.9 HxCDF NA-TRND-SO25-02 ng/kg 0.5 ND 380 380 43 43 NC N SW8290 1.2.3.7.8.9 HxCDF NA-TRND-SO27-02 ng/kg 1.2 ND 380 380 43 43 NC N SW8290 1.2.3.7.8.9 HxCDF NA-TRND-SO29-02 ng/kg 1.2 ND 380 380 43 43 NC N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO01-02 ng/kg 0.2 0.72.J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO03-02 ng/kg 0.1 1.8.1 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO03-02 ng/kg 0.4 19.1 76 76 8.6 8.6 1.6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
SW8290 12.3.7.8.9-HxCDF NA-TRND-SO25-02 ng/kg 0.5 ND 380 380 43 43 NC NC												NC
SW8290 1,2,3,7,8,9-HxCDF NA-TRND-SO27-02 ng/kg 1,2 6.9 380 380 43 43 NC NC					0.5	ND	380	380	43	43	NC	NC
SW8290 1,2,3,7,8-PcDD NA-TRND-SO01-02 ng/kg 0.2 0.72 1 76 76 8.6 8.6 1.6 N	SW8290	1,2,3,7,8,9-HxCDF										
SW8290 12.3.7.8-PeCDD NA-TRND-SO02-02 ng/kg 0.2 19J 76 76 8.6 8.6 1.6 N SW8290 12.3.7.8-PeCDD NA-TRND-SO04-02 ng/kg 0.1 1.8J 76 76 8.6 8.6 1.6 N SW8290 12.3.7.8-PeCDD NA-TRND-SO10-02 ng/kg 0.4 19.1 76 76 8.6 8.6 1.6 N SW8290 12.3.7.8-PeCDD NA-TRND-SO10-02 ng/kg 0.3 1.2J 76 76 8.6 8.6 1.6 N SW8290 12.3.7.8-PeCDD NA-TRND-SO10-02 ng/kg 0.3 1.2J 76 76 8.6 8.6 1.6 N SW8290 12.3.7.8-PeCDD NA-TRND-SO21-02 ng/kg 0.7 1.2J 76 76 8.6 8.6 1.6 N SW8290 12.3.7.8-PeCDD NA-TRND-SO22-02 ng/kg 0.4 2.3J 76 76 8.6 8.6 1.6												
SW8290 12.3.7.8-PeCDD NA-TRND-SO03-02 ng/kg 0.1 1.8 J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO10-02 ng/kg 0.4 19.1 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO10-02 ng/kg 0.2 7.7 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO15-02 ng/kg 0.3 1.2 J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO21-02 ng/kg 0.7 1.2 J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO21-02 ng/kg 0.4 2.3 J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO25-02 ng/kg 1.6 J 76 76 8.6 8.6 1.6												
SW8290 12.3.7.8-PcCDD NA-TRND-SO04-02 ng/kg 0.4 19.1 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO10-02 ng/kg 0.2 7.7 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO10-02 ng/kg 0.3 1.2 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO21-02 ng/kg 0.7 1.2 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO21-02 ng/kg 0.7 1.2 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO22-02 ng/kg 0.5 1.61 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PcCDD NA-TRND-SO27-02 ng/kg 1.5 4.3 76 76 8.6 8.6 8.6												
SW8290 1,2,3,7,8-PeCDD NA-TRND-SO10-02 ng/kg 0,2 7,7 76 76 8,6 8,6 1,6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO10-02 ng/kg 0,3 1,2 J 76 76 8,6 8,6 1,6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO21-02 ng/kg 0,7 1,2 J 76 76 8,6 8,6 1,6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO23-02 ng/kg 0,5 1,6 J 76 76 8,6 8,6 1,6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO25-02 ng/kg 0,5 1,6 J 76 76 8,6 8,6 1,6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO27-02 ng/kg 1,5 4,3 J 76 76 8,6 8,6 1,6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO29-02 ng/kg 1,1 1,3 J 76 76 8,6 8,6 <t< td=""><td></td><td></td><td></td><td></td><td>0.4</td><td>19.1</td><td>76</td><td>76</td><td>8.6</td><td>8.6</td><td>1.6</td><td>S NS</td></t<>					0.4	19.1	76	76	8.6	8.6	1.6	S NS
SW8290 1,2,3,7,8-PeCDD NA-TRND-SO21-02 ng/kg 0.7 1,2 J 76 76 8.6 8.6 1.6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO23-02 ng/kg 0.4 2,3 J 76 76 8.6 8.6 1.6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO25-02 ng/kg 0.5 1.6 J 76 8.6 8.6 1.6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO27-02 ng/kg 1.5 4,3 J 76 76 8.6 8.6 1.6 N SW8290 1,2,3,7,8-PeCDD NA-TRND-SO29-02 ng/kg 1.1 1.3 J 76 76 8.6 8.6 1.6 N SW8290 1,2,3,7,8-PeCDF NA-TRND-SO01-02 ng/kg 0.2 1.5 J 760 760 86 86 0.8 N SW8290 1,2,3,7,8-PeCDF NA-TRND-SO02-02 ng/kg 0.2 1.6 J 760 760 86 86 0.8	SW8290	1,2,3,7,8-PeCDD		ng/kg								
SW8290 1.2.3.7.8-PeCDD NA-TRND-SO23-02 ng/kg 0.4 2.31 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO25-02 ng/kg 0.5 1.61 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO27-02 ng/kg 1.5 4.31 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO20-02 ng/kg 1.1 1.31 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO01-02 ng/kg 0.2 1.51 760 760 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO02-02 ng/kg 0.2 1.61 760 760 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO03-02 ng/kg 0.1 2.61 760 760 86 86 0.8												
SW8290 12.3.7.8-PeCDD NA-TRND-SO25-02 ng/kg 0.5 1.6J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO27-02 ng/kg 1.5 4.3J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-SO29-02 ng/kg 1.1 1.3J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO01-02 ng/kg 0.2 1.6J 760 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO02-02 ng/kg 0.2 1.6J 760 760 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO03-02 ng/kg 0.1 2.6J 760 760 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO03-02 ng/kg 0.1 2.6J 760 760 86 86 0.8 N <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
SW8290 1.2.3.7.8-PeCDD NA-TRND-S027-02 ng/kg 1.5 4.3 J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDD NA-TRND-S029-02 ng/kg 1.1 1.3 J 76 76 8.6 8.6 1.6 N SW8290 1.2.3.7.8-PeCDF NA-TRND-S001-02 ng/kg 0.2 1.5 J 760 760 86 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-S002-02 ng/kg 0.2 1.6 J 760 760 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-S003-02 ng/kg 0.1 2.6 J 760 760 86 86 0.8 N												
SW8290 1,2,3,7,8-PeCDF NA-TRND-S029-02 ng/kg 1.1 1.3 J 76 76 8.6 8.6 1.6 N SW8290 1,2,3,7,8-PeCDF NA-TRND-S001-02 ng/kg 0.2 1,5 J 760 760 86 86 0.8 N SW8290 1,2,3,7,8-PeCDF NA-TRND-S002-02 ng/kg 0.2 1.6 J 760 760 86 86 0.8 N SW8290 1,2,3,7,8-PeCDF NA-TRND-S003-02 ng/kg 0.1 2,6 J 760 760 86 86 0.8 N							76	76	8.6	8.6	1.0	S/NS
SW8290 1.2.3.7.8-PeCDF NA-TRND-SO02-02 ng/kg 0.2 1.6.J 760 760 86 86 0.8 N SW8290 1.2.3.7.8-PeCDF NA-TRND-SO03-02 ng/kg 0.1 2.6.J 760 760 86 86 0.8 N	SW8290	1,2,3,7,8-PeCDD	NA-TRND-SO29-02	ng/kg	1.1	1.3 J						
SW8290 11.2.5.7.8-PeCDF NA-TRND-SC03-02 ng/kg 0.1 2.61 760 760 86 86 0.8 N												
	SW8290 SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO03-02	ng/kg								

Method	Analyte	Sample ID	Units	MDL	Result	Industrial RBC	Industrial RBSL	Residential RBC	Residential RBSL	Reference UTL	Comparison Conclusion Reference vs. Site
SW8290 SW8290	1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF	NA-TRND-SO10-02	ng/kg	0.2	26.9	760	760	86	86		
SW8290	1,2,3,7,8-PeCDF	NA-TRND-SO15-02	ng/kg	0.2	1.4 J	760	760	86	86	0.8	
SW8290	1,23,7,8-PeCDF	NA-TRND-SO21-02 NA-TRND-SO23-02	ng/kg	0.5	17	760	760	86	86	0.8	
SW8290	1,2,3,7,8-PeCDF	NA-TRND-S025-02	ng/kg ng/kg	0.3	ND	760	760	86	86	0.8	NS
SW8290	1.2.3.7,8-PeCDF	NA-TRND-S027-02	ng/kg	0.4	3.9 J	760	760	86	86		NS
SW8290	1,2,3,7,8-PeCDF	NA-TRND-S029-02	ng/kg	0.8	0.95 1	760 760	760	86	86		NS
SW8290	2.3,4.6,7,8-HxCDF	NA-TRND-SO01-02	ng/kg	0.2	2,43	380		86			NS NS
SW8290	2.3,4,6,7,8-HxCDF	NA-TRND-S002-02	ng/kg	0.3	8.9	380	380	43	43	2.2	NS
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-S003-02	ng/kg	0.2	9.6	380	380	43	43 43	2.2	NS
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-S004-02	ng/kg	0.4	48	380	380	43	43	2.2 2.2	NS NS
SW8290	2,3,4.6,7,8-HxCDF	NA-TRND-SO10-02	ng/kg	0.2	56.7	380	380	43	43	2.2	NS NS
SW8290	2,3,4,6,7,8-HxCDF	NA-TRND-S015-02	ng/kg	0.3	2.5]	380	380	43	43	2.2	NS
SW8290 SW8290	2.3.4.6.7.8-HxCDF	NA-TRND-SO21-02	ng/kg	0.7	3.2 J	380	380	43	43	2,2	NS
SW8290	2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	NA-TRND-SO23-02	ng/kg	0.4	2 J	380	380	43	43	2.2	NS
SW8290	2.3.4.6.7.8-HxCDF	NA-TRND-S025-02	ng/kg	0.4	0.97 J	380	380	43	43	2.2	NS
SW8290	2.3.4.6.7.8-HxCDF	NA-TRND-SO27-02	ng/kg	1.1	10.3	380	380	43	43	2.2	NS
SW8290	2.3.4.7.8-PeCDF	NA-TRND-S029-02 NA-TRND-S001-02	ng/kg	0.2	2 J	380	380	43	43	2.2	NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S002-02	ng/kg	0.2	1,4 J	76	76	8.6	8.6	1.2	NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S003-02	ng/kg	0.2	2.6 J	76 76	76	8.6	8.6	1.2	NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S004-02	ng/kg	0.3	36.4	76	76 76	8.6	8.6	1.2	NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S010-02	ng/kg	0.2	27.4	76	76	8,6 8.6	8.6	1.2	NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-SO15-02	ng/kg	0.2	2.2.1	76	76	8.6	8.6	1.2	NS NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S021-02	ng/kg	0.5	1.5]	76	76	8.6	8.6 8.6	1.2	NS NC
SW8290	2.3.4.7.8-PeCDF	NA-TRND-SO23-02	ng/kg	0.3	0.72 J	76	76	8.6	8.6	1.2	NS NS
SW8290	2,3,4,7,8-PeCDF	NA-TRND-S025-02	ng/kg	0.4	ND	76	76	8.6	8.6	1.2	NS NS
SW8290	2.3.4.7.8-PeCDF	NA-TRND-S027-02	ng/kg	0.9	3.8 J	76	76	8.6	8.6	1.2	NS NS
	2,3,4,7,8-PeCDF 2,3,7,8-TCDD	NA-TRND-S029-02	ng/kg	0.8	1.4 J	76	76	8.6	8.6	1.2	NS
	2.3.7.8-TCDD	NA-TRND-S001-02	ng/kg	0.2	ND J	38	38	4.3	4.3	NC	NC
	2.3.7.8-TCDD	NA-TRND-SO02-02 NA-TRND-SO03-02	ng/kg	0.2	0.34 J	38	38	4.3	4.3	NC	NC
	2.3.7.8-TCDD	NA-TRND-S004-02	ng/kg ng/kg	0.1	0.36 J	38	38	4.3	4.3	NC	NC
	2.3.7.8-TCDD	NA-TRND-SO10-02	ng/kg	0.2	1.4	38	38	4.3	4.3	NC NC	NC.
	2,3,7,8-TCDD	NA-TRND-S015-02	ng/kg	0.2	0.2 J	38	38	4.3	4.3	NC NC	NC NC
	2,3,7,8-TCDD	NA-TRND-SO21-02	ng/kg	0.3	ND	38	38	4.3	4.3	NC NC	NC NC
	2,3,7,8-TCDD	NA-TRND-S023-02	ng/kg	0.3	ND	38	38	4.3	4.3	NC NC	NC NC
	2,3,7,8-TCDD	NA-TRND-S025-02	ng/kg	0.3	ND	38	38	4.3	4.3	NC	NC NC
	2.3.7.8-TCDD	NA-TRND-S027-02	ng/kg	0.6	0.95 J	38	38	4.3	4.3	NC	NC NC
	23.7.8-TCDD	NA-TRND-SO29-02	ng/kg	0.6	ND	38	38	4.3	4.3	NC	NC NC
	2,3,7,8-TCDF	NA-TRND-SO01-02	ng/kg	0.8	1.3	380	380	43	43	0.99	NS
	2,3,7,8-TCDF 2,3,7,8-TCDF	NA-TRND-SO02-02	ng/kg	0.7	1.1	380	380	43	43	0.99	NS
	2,3,7,8-TCDF	NA-TRND-S003-02 NA-TRND-S004-02	ng/kg	0.7	1.5	380	380	43	43	0.99	NS
	2.3.7.8-TCDF	NA-TRND-S010-02	ng/kg ng/kg	0.3 2.8	25.5	380	380	43	43	0.99	NS
	2,3,7,8-TCDF	NA-TRND-SO15-02	ng/kg	0.3	19.8	380	380	43	43	0.99	NS
	2,3.7,8-TCDF	NA-TRND-S021-02	ng/kg	0.8	ND	380	380	43	43	0.99	NS
	2,3,7,8-TCDF	NA-TRND-\$023-02	ng/kg	0.2	0.84 J	380	380	43	43	0.99	NS
	2,3,7.8-TCDF	NA-TRND-S025-02	ng/kg	0.2	0.56 J	380	380	43	43	0.99	NS NS
	2.3.7,8-TCDF	NA-TRND-S027-02	ng/kg	0.7	2.6	380	380	43	43	0.99	NS NS
	2.3.7.8-TCDF	NA-TRND-S029-02	ng/kg	0.4	1.1	380	380	43	43	0.99	NS
	Total HpCDD	NA-TRND-SO01-02	ng/kg	0.2	16.7				· · · · · · · · · · · · · · · · · · ·	13.1	<u>.,,</u>
	Total HpCDD Total HpCDD	NA-TRND-S002-02	ng/kg	0.3	62.9					13.1	š
	Total HpCDD	NA-TRND-S003-02 NA-TRND-S004-02	ng/kg	0.3	170					13.1	S
	Total HpCDD		ng/kg ng/kg	0.7	2050 431					13.1	S
W8290	Total HpCDD	NA-TRND-S015-02	ng/kg	0.4	34.4	·				13.1	S
W8290	Total HpCDD	NA-TRND-S021-02	ng/kg	1.4	103	+				13.1	S S
W8290	Total HpCDD		ng/kg	0.6	12.1		 			13.1	s
	Total HpCDD	NA-TRND-SO25-02	ng/kg	0.7	3.9					13.1	_ <u>s</u>
	Total HpCDD	NA-TRND-S027-02	ng/kg	2,6	277					13.1	S
	Total HpCDD	NA-TRND-SO29-02	ng/kg	1.6	14.4			·		13.1	S
	Total HpCDF		ng/kg	0.2	12.7				-	10	NS NS
		NA-TRND-SO02-02	ng/kg	0.2	56.2		-			10	NS
			ng/kg	0.2	95.5					10	NS
			ng/kg	0.5	696					10	NS
			ng/kg ng/kg	0.3	378 16.9					10	NS
			ng/kg ng/kg	V.4	96.8					10	NS
W8290	Total HpCDF		ng/kg	0.5	7.9					10	NS
W8290			ng/kg	0.6	2		+			10	NS
			ng/kg	1.8	94.2	 				10	NS.
		NA-TRND-SO29-02	ng/kg	1.2	11.2					10	NS NS
		NA-TRND-SO01-02	ng/kg	0.2	16.1		 	·		19.1	NS
		NA-TRND-SO02-02	ng/kg	0.3	42.4					19.1	5
			ng/kg	0.2	54.4			:		19.1	S
			ng/kg	0.5	697					19.1	S
			ng/kg	0.3	276					19.1	S
			ng/kg	0.3	25.9					19.1	<u>S</u>
			ng/kg	1.1	31.7	-				19.1	_ S
			ng/kg ng/kg	0.6	48.5 20.1	:	<u> </u>			19.1	S
W8290 7					211 II		t t	1		19.1	S

Method	Analyte	Sample ID	Units	MDL	Result	Industrial RBC	Industrial RBSL	Residential RBC	Residential RBSL	Reference UTL	Comparison Conclusion Reference vs. Site
	Total HxCDD	NA-TRND-SO27-02	ng/kg	1.7	102	100				19.1	S
SW8290	Total HxCDD	NA-TRND-SO29-02	ng/kg	1,4	20					19.1	S
SW8290	Total HxCDF	NA-TRND-SO01-02	ng/kg	0.2	15.4				<u>.</u>	11.5	
SW8290	Total HxCDF	NA-TRND-SO02-02	ng/kg	0.2	54.8					11.5	
SW8290	Total HxCDF	NA-TRND-S003-02	ng/kg	0.2	75.1 488				· ·	11.5	
SW8290	Total HxCDF	NA-TRND-SO04-02 NA-TRND-SO10-02	ng/kg ng/kg	0.2	382			-		11.5	
SW8290 SW8290	Total HxCDF Total HxCDF	NA-TRND-S015-02	ng/kg	0.2	20					11.5	
SW8290	Total HxCDF	NA-TRND-SO21-02	ng/kg	0.7	48.9					11.5	
SW8290	Total HxCDF	NA-TRND-SO23-02	ng/kg	0.4	8.8					11.5	NS
SW8290	Total HxCDF	NA-TRND-SO25-02	ng/kg	0.4	3.6					11.5	
SW8290	Total HxCDF	NA-TRND-SO27-02	ng/kg	1	55.5					11.5	
SW8290	Total HxCDF	NA-TRND-SO29-02	ng/kg	1	8.7		<u> </u>	•		11.5	
SW8290	Total PeCDD	NA-TRND-SO01-02	ng/kg	0.2	5.9 12.2		·			4.9	
SW8290	Total PeCDD	NA-TRND-SO02-02 NA-TRND-SO03-02	ng/kg ng/kg	0.1	23	·	-			4.9	
SW8290 SW8290	Total PeCDD Total PeCDD	NA-TRND-S004-02	ng/kg	0.4	253	· · ·	:			4.9	
SW8290	Total PeCDD	NA-TRND-SO10-02	ng/kg	0.2	90.7					4.9	NS
SW8290	Total PeCDD	NA-TRND-SQ15-02	ng/kg	0.3	5.6		,			4.9	
SW8290	Total PeCDD	NA-TRND-SO21-02	ng/kg	0.7	1.2					4.9	
SW8290	Total PeCDD	NA-TRND-SO23-02	ng/kg	0.4	5		<u> </u>			4.9	
SW8290	Total PeCDD	NA-TRND-S025-02	ng/kg	0.5	3.1			 		4.9	
SW8290	Total PeCDD	NA-TRND-SO27-02	ng/kg	1.5	3.3			·		4.9	
SW8290 SW8290	Total PeCDD Total PeCDF	NA-TRND-SO29-02 NA-TRND-SO01-02	ng/kg ng/kg	0.2	14.8		•	·	· · · · · ·	12.1	
SW8290	Total PeCDF	NA-TRND-S002-02	ng/kg	0.2	30.9	<u> </u>	- :	:		12,1	
SW8290	Total PeCDF	NA-TRND-SO03-02	ng/kg	0.1	50.2					12.1	
SW8290	Total PeCDF	NA-TRND-S004-02	ng/kg	0.3	461					12.1	
SW8290	Total PeCDF	NA-TRND-SO10-02	ng/kg	0.2	313					12.1	
SW8290	Total PeCDF	NA-TRND-SO15-02	ng/kg	0.2	24.7	-	·			12.1	
SW8290	Total PeCDF	NA-TRND-SO21-02	ng/kg	0.5						12.1 12.1	
SW8290	Total PeCDF	NA-TRND-SO23-02 NA-TRND-SO25-02	ng/kg	0.3			·		-	12.1	
SW8290 SW8290	Total PeCDF Total PeCDF	NA-TRND-S023-02	ng/kg ng/kg	0.9				·		12.1	
SW8290	Total PeCDF	NA-TRND-S029-02	ng/kg	0.8			-		-	12.1	1
SW8290	Total TCDD	NA-TRND-SO01-02	ng/kg	0.2	7.3					2.3	
SW8290	Total TCDD	NA-TRND-SO02-02	ng/kg	0.2	8.7			,		2.3	
SW8290	Total TCDD	NA-TRND-S003-02	ng/kg	0.1	19.3			<u> </u>		2.3	
SW8290	Total TCDD	NA-TRND-SO04-02	ng/kg	0.3					·	2.3	
SW8290	Total TCDD	NA-TRND-SO10-02	ng/kg	0.2	110			<u>-</u>	•	2.3	
SW8290	Total TCDD	NA-TRND-S015-02	ng/kg	0.2	7.9		<u> </u>			2.3	
SW8290 SW8290	Total TCDD Total TCDD	NA-TRND-SO21-02 NA-TRND-SO23-02	ng/kg ng/kg	0.3	1	· · · · · · · · · · · · · · · · · · ·				2.3	
SW8290	Total TCDD	NA-TRND-S025-02	ng/kg	0.3						2.3	
\$W8290	Total TCDD	NA-TRND-SQ27-02	ng/kg	0.6				<u> </u>		2.3	
SW8290	Total TCDD	NA-TRND-SO29-02	ng/kg	0.6						2.3	NS
SW8290	Total TCDF	NA-TRND-SO01-02	ng/kg	0.1						13.3	
SW8290	Total TCDF	NA-TRND-SO02-02	ng/kg	0.1	17	<u> </u>				13.3	
SW8290	Total TCDF	NA-TRND-SO03-02	ng/kg	0.07	36.9		-		,	13.3	
SW8290	Total TCDF	NA-TRND-SO04-02 NA-TRND-SO10-02	ng/kg ng/kg	0.2			· · · · · · · · · · · · · · · · · · ·		,	13.3	
SW8290 SW8290	Total TCDF Total TCDF	NA-TRND-S015-02	ng/kg	0.1		<u>.</u>	<u> </u>			13.3	
SW8290	Total TCDF	NA-TRND-SO21-02	ng/kg	0.2						13.3	
SW8290	Total TCDF	NA-TRND-SO23-02	ng/kg	0.2	2					13,3	NS NS
SW8290	Total TCDF	NA-TRND-SO25-02	ng/kg	0.2						13.3	
SW8290	Total TCDF	NA-TRND-SO27-02	ng/kg	0.4				ļ		13.3	
SW8290	Total TCDF	NA-TRND-SO29-02	ng/kg	0.4			4100	1200	160	0.39	
ILM04.0 ILM04.0	Cyanide	NA-TRND-SO01-02 NA-TRND-SO02-02	mg/kg mg/kg	0.34		41000 41000					
ILM04.0	Cyanide Cyanide	NA-TRND-S002-02 NA-TRND-S003-02	mg/kg mg/kg	0.44		41000					
ILM04.0	Cyanide	NA-TRND-SO04-02	mg/kg	0.33		41000					
IL.M04.0	Cyanide	NA-TRND-SO10-02	mg/kg	0.4		41000			160	0.39	NS
ILM04.0	Cyanide	NA-TRND-SO15-02	mg/kg	0.37	0.51	41000					
ILM04.0	Cyanide	NA-TRND-SO21-02	mg/kg	0.41		41000					
ILM04.0	Cyanide	NA-TRND-SO23-02	mg/kg	0.58		41000					
ILM04.0	Cyanide	NA-TRND-SO25-02	mg/kg	0.62							
ILM04.0	Cyanide	NA-TRND-SO27-02	mg/kg	0.38		41000 41000					
ILM04.0 ILM04.0	Cyanide Aluminum	NA-TRND-SO29-02 NA-TRND-SO01-02	mg/kg mg/kg	2,4							
ILMO4.0	Aluminum	NA-TRND-S001-02	mg/kg	3.2							
ILMO4.0	Aluminum	NA-TRND-S003-02	mg/kg	2.6							NS NS
ILMO4.0	Aluminum	NA-TRND-S004-02	mg/kg	2.2	41900	2000000	200000	78000	7800		NS NS
ILMO4.0	Aluminum	NA-TRND-SO10-02	mg/kg	2.8							
ILMO4.0	Aluminum	NA-TRND-SO15-02	mg/kg	2.7							
ILMO4.0	Aluminum	NA-TRND-SO21-02	mg/kg	2.6							
ILMO4.0	Aluminum	NA-TRND-SO23-02	mg/kg	3.9							
ILMO4.0	Aluminum Aluminum	NA-TRND-S025-02 NA-TRND-S027-02	mg/kg mg/kg	2.8							
ILMO4.0	Aluminum	NA-TRND-S029-02	mg/kg	2.3							
ILMO4.0	Antimony	NA-TRND-SO01-02	mg/kg	0.59		820		+			
ILMO4.0	Antimony	NA-TRND-SO02-02	mg/kg	0.8	1.5 J	820	82	31	3.1	1.:	NS NS
HAVE VIO					ND UL	820	82	31	3.1	1.3	NS NS

Method	Analyte	Sanda ID				Industrial	Industrial	Residential	Residential	Reference	Comparison Conclusion Reference vs.
ILMO4.0	Antimony	NA-TRND-S004-02	Units mg/kg	0.55		RBC	RBSL	RBC	RBSL	UTL	Site
ILMO4.0	Antimony	NA-TRND-SO10-02	mg/kg	0.7	3.2 J	820 820	82 82	31	3.1	1.5	NS
ILMO4.0	Antimony	NA-TRND-SO15-02	mg/kg	0.68		820	82	31	3.1	1.5	NS NS
ILMO4.0	Antimony	NA-TRND-SO21-02	mg/kg	0.66		820	82	31	3.1	1.5	NS NS
ILMO4.0	Antimony	NA-TRND-SO23-02	mg/kg	0.97	1.1 L	820	82	31	3.1	1.5	NS NS
ILMO4.0	Antimony	NA-TRND-S025-02	mg/kg	0.99	1.1 L	820	82	31	3.1	1.5	NS.
ILMO4.0 ILMO4.0	Antimony	NA-TRND-S027-02	mg/kg	0.71	1.2 L	820	82	31	3.1	1.5	NS
ILMO4.0	Arsenic	NA-TRND-SO29-02 NA-TRND-SO01-02	mg/kg	0.59		820	82	31	3.1	1.5	NS
ILMO4.0	Arsenic	NA-TRND-S002-02	mg/kg mg/kg	0.78	1.7	3.8	3.8	0.43	0.43	2.6	NS
ILMO4.0	Arsenic	NA-TRND-S003-02	mg/kg	0.85	2.8	3,8 3,8	3.8 3.8	0.43	0.43	2.6	NS NS
ILMO4.0	Arsenic	NA-TRND-SO04-02	mg/kg	0.73	8.9	3.8	3.8	0.43	0.43	2.6 2.6	NS NS
ILMO4.0	Arsenic	NA-TRND-SO10-02	mg/kg	0.94	4.1	3.8	3.8	0.43	0.43	2.6	NS NS
ILMO4.0	Arsenic	NA-TRND-SO15-02	mg/kg	0.91	2.5	3.8	3.8	0.43	0.43	2.6	NS
ILMO4.0 ILMO4.0	Arsenic	NA-TRND-SO21-02	mg/kg	0.88	5.5	3.8	3.8	0.43	0.43	2.6	NS.
ILMO4.0	Arsenic Arsenic	NA-TRND-SO23-02	mg/kg	1.3	4.4	3.8	3.8	0.43	0.43	2.6	NS
	Arsenic	NA-TRND-SO25-02	mg/kg	1.3	4.8	3.8	3.8	0.43	0.43	2.6	NS
	Arsenic	NA-TRND-SO27-02 NA-TRND-SO29-02	mg/kg	0.94	4.2	3.8	3.8	0.43	0.43	2.6	NS
	Barium	NA-TRND-S001-02	mg/kg	0.78	2.1	3.8	3.8	0.43	0.43	2.6	NS
	Barium	NA-TRND-S002-02	mg/kg mg/kg	0.27	71.2	140000	14000	5500	550	72.3	NS
	Barium	NA-TRND-S003-02	mg/kg	0.27	99.1	140000	14000	5500 5500	550	72.3	NS
ILMO4.0	Barium	NA-TRND-S004-02	mg/kg	0.18	606	140000	14000	5500	550	72.3	NS NS
	Barium	NA-TRND-SO10-02	mg/kg	0.23	104	140000	14000	5500	550 550	72.3	NS NE
	Barium	NA-TRND-S015-02	mg/kg	0.23	79.6	140000	14000	5500	550	72.3 72.3	NS NS
	Barium	NA-TRND-SQ21-02	mg/kg	0.22	78.5	140000	14000	5500	550	72.3	NS NS
	Barium	NA-TRND-SO23-02	mg/kg	0.32	55	140000	14000	5500	550	72.3	NS NS
	Barium	NA-TRND-S025-02	mg/kg	0.33	64.2	140000	14000	5500	550	72.3	NS
	Barium Barium	NA-TRND-SO27-02	mg/kg	0.24	101	140000	14000	5500	550	72.3	NS
	Beryllium	NA-TRND-SO29-02 NA-TRND-SO01-02	mg/kg	0.2	78.1	140000	14000	5500	550	72.3	NS
	Beryllium	NA-TRND-S002-02	mg/kg mg/kg	0.2	ND 0.33	4100	410	160	16	NC	NC
	Beryllium	NA-TRND-SQ03-02	mg/kg	0,21	0.33	4100	410	160	16	NC	NC
	Beryllium	NA-TRND-S004-02	mg/kg	0.18	ND	4100	410 410	160 160	16	NC	NC NC
ILMO4.0	Beryllium	NA-TRND-SO10-02	mg/kg	0.23	ND	4100	410	160	16 16	NC NC	NC NC
	Beryllium	NA-TRND-SO15-02	mg/kg	0.23	0.36	4100	410	160	16	NC NC	NC NC
	Beryllium	NA-TRND-SO21-02	mg/kg	0.22	ND	4100	410	160	16	NC NC	NC NC
	Beryllium	NA-TRND-SO23-02	mg/kg	0.32	0.92	4100	410	160	16	NC	NC NC
	Beryllium	NA-TRND-S025-02	mg/kg	0.33	0.71	4100	410	160	16	NC	NC NC
	Beryllium	NA-TRND-S027-02	mg/kg	0.24	0.6	4100	410	160	16	NC	NC NC
	Beryllium	NA-TRND-SO29-02	mg/kg	0.2	0.28	4100	410	160	16	NC	NC
	Cadmium Cadmium	NA-TRND-S001-02	mg/kg	0.2	0.35 K	1000	100	39	3.9	0.53	S
	Cadmium	NA-TRND-SO02-02 NA-TRND-SO03-02	mg/kg	0.27	0.63 K	1000	100	39	3.9	0.53	S
	Cadmium	NA-TRND-S004-02	mg/kg mg/kg	0.21	0.89 K	1000	100	39	3.9	0.53	S
	Cadmium	NA-TRND-SO10-02	mg/kg	0.23	1.4 K	1000	100	39	3.9	0.53	
	Cadmium	NA-TRND-SO15-02	mg/kg	0.23	0.68 K	1000	100	39	3.9	0.53	<u>s</u>
	Cadmium	NA-TRND-SO21-02	mg/kg	0.22	1.5 K	1000	100	39	3.9	0.53	S
	Cadmium	NA-TRND-SO23-02	mg/kg	0.32	1 K	1000	100	39	3.9	0.53	
	Cadmium	NA-TRND-S025-02	mg/kg	0.33	0.99 K	1000	100	39	3.9	0.53	S S
	Cadmium Cadmium	NA-TRND-SO27-02	mg/kg	0.24	1.2 K	1000	100	39	3.9	0.53	S
	Calcium	NA-TRND-SO29-02	mg/kg	0.2	0.67 K	1000	100	39	3.9	0.53	S
	Calcium	NA-TRND-S001-02 NA-TRND-S002-02	mg/kg mg/kg	5,1 6.9	9450					11600	N\$
	Calcium	NA-TRND-S003-02	mg/kg	5.5	12600					11600	NS
LMO4.0 C	Calcium	NA-TRND-SO04-02	mg/kg	4.7	13900					11600	NS NS
	Calcium	NA-TRND-SO10-02	mg/kg	6.1	10200					11600	NS NS
	Calcium	NA-TRND-SO15-02	mg/kg	5.9	8650				·	11600	NS NS
	Calcium	NA-TRND-SO21-02	mg/kg	5.7	7260	-				11600	NS NS
	Calcium	NA-TRND-SO23-02	mg/kg	8.4	3090					11600	NS
	Calcium	NA-TRND-S025-02	mg/kg	8.6	3410					11600	NS
		NA-TRND-S027-02	mg/kg	6.1	9570					11600	NS NS
			mg/kg	5.1	11200					11600	NS
		NA-TRND-\$001-02 NA-TRND-\$002-02	mg/kg mg/kg	0.27	20.6 36.4	10000	1000	390	39	30.8	NS
			mg/kg	0.21	41	10000	1000	390	39	30.8	NS
LMO4.0			mg/kg	0.18	57.7	10000	1000	390	39	30.8	NS
LMO4.0 C			mg/kg	0.23	42.6	10000	1000	390	39	30.8	NS
	Chromium		mg/kg	0.23	39.5 3	10000	1000	390	39	30.8	NS NS
		NA-TRND-SQ21-02	mg/kg	0.22	55.3	10000	1000	390	39	30.8	NS NS
		NA-TRND-SO23-02	mg/kg	0.32	76.5 J	10000	1000	390	39	30.8	NS NS
		NA-TRND-SO25-02	mg/kg	0.33	77.5 J	10000	1000	390	39	30.8	NS NS
			mg/kg	0.24	56.2 J	10000	1000	390	39	30.8	NS NS
			mg/kg	0.2	25.3 J	10000	1000	390	39	30.8	NS NS
			mg/kg	0.2	18.8	120000	12000	4700	470	25	NS NS
			mg/kg	0.27	27.4	120000	12000	4700	470	25	NS
			mg/kg	0.21	27.7	120000	12000	4700	470	25	NS
			mg/kg mg/kg	0.18	19.8 25.6	120000	12000	4700	470	25	NS
.MO4.0 C	Cobalt	NV-TKND-zenimis i									
						120000	12000	4700	470	25	NS
.MO4.0 C	Cobalt	NA-TRND-SO15-02	mg/kg mg/kg	0.23	27.4 34.2	120000 120000	12000	4700 4700 4700	470 470 470	25 25 25	NS NS NS

						Industrial	Industrial	Residential	Residential	Reference	Comparison Conclusion Reference vs.
Method	Analyte	Sample ID	Units	MDL 0.33	Result 41.7	RBC 120000	RBSL 12000	RBC 4700	RBSL 470	UTL 25	Site NS
	Cobalt Cobalt	NA-TRND-SO25-02 NA-TRND-SO27-02	mg/kg mg/kg	0.33	32.7	120000	12000	4700	470	25	
	Cobalt	NA-TRND-S029-02	mg/kg	0.2	20.9	120000	12000	4700	470	25	
	Copper	NA-TRND-SO01-02	mg/kg	0.2	103	82000	8200	3100	310	116	
	Copper	NA-TRND-S002-02	mg/kg	0.27	143	82000	8200	3100	310	116	
	Соррег	NA-TRND-SO03-02	mg/kg	0.21	145	82000	8200	3100	310	116	
ILMO4.0	Copper	NA-TRND-SO04-02	mg/kg	0.18	1290	82000	8200		310	116	
	Copper	NA-TRND-SO10-02	mg/kg	0.23	151	82000	8200	3100 3100	310 310	116 116	
	Copper	NA-TRND-S015-02	mg/kg	0.23	138 171	82000 82000	8200 8200	3100	310	116	
	Copper	NA-TRND-SO21-02 NA-TRND-SO23-02	mg/kg mg/kg	0.32	207	82000	8200	3100	310	116	
	Copper Copper	NA-TRND-S025-02	mg/kg	0.33	208	82000	8200	3100	310		
	Copper	NA-TRND-S027-02	mg/kg	0.24	166	82000	8200	3100	310		
	Copper	NA-TRND-SO29-02	mg/kg	0.2	105	82000	8200	3100	310		
	Iron	NA-TRND-SO01-02	mg/kg	2.7	40300	610000	61000	23000	2300		
ILMO4.0	Iron	NA-TRND-SO02-02	mg/kg	3.7	63500	610000	61000	23000	2300		
	Iron	NA-TRND-SO03-02	mg/kg	3	62200	610000	61000	23000	2300	51800	
	Iron	NA-TRND-SO04-02	mg/kg	2.6	45800	610000 610000	61000 61000	23000 23000	2300 2300	51800 51800	
	Iron	NA-TRND-SO10-02 NA-TRND-SO15-02	mg/kg	3.3	55700 61400	610000	61000	23000	2300	51800	
	Iron Iron	NA-TRND-SO21-02	mg/kg mg/kg	3.1	75200	610000	61000	23000	2300		
	Iron	NA-TRND-SO23-02	mg/kg	4.5	97100	610000	61000		2300		NS
	Iron	NA-TRND-SO25-02	mg/kg	4.6	95200	610000	61000	23000	2300		NS
	Iron	NA-TRND-SO27-02	mg/kg	3.3	74600	610000	61000		2300		
ILMO4.0	Iron	NA-TRND-SO29-02	mg/kg	2.7	44900	610000	61000		2300		
	Lead	NA-TRND-SO01-02	mg/kg	0.39	9.8	400	400		400	8.7	
ILMO4.0	Lead	NA-TRND-S002-02	mg/kg	0.53	51.5	400	400 400		400	8.7 8.7	
II.MO4.0	Lead	NA-TRND-SO03-02 NA-TRND-SO04-02	mg/kg mg/kg	0.43	28.2 869	400	400		400	8.7	
ILMO4.0 ILMO4.0	Lead Lead	NA-TRND-SO10-02	mg/kg	0.47	89.9	400	400	400	400		
ILMO4.0	Lead	NA-TRND-SO15-02	mg/kg	0.45	8.7	400	400		400		
ILMO4.0	Lead	NA-TRND-SO21-02	mg/kg	0.44	42.8	400	400	400	400	8.7	S
ILMO4.0	Lead	NA-TRND-SO23-02	mg/kg	0.65	6.7	400	400		400		
ILMO4.0	Lead	NA-TRND-SO25-02	mg/kg	0.66	5.5	400	400		400		
	Lead	NA-TRND-SO27-02	mg/kg	0.47	157	400	400		400		
ILMO4.0	Lead	NA-TRND-SO29-02	mg/kg	0.39	11.1	400	400	. 400	400	8.7 12200	
ILMO4.0	Magnesium	NA-TRND-\$001-02	mg/kg mg/kg	1.8	8290 9800	· · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	12200	
ILMO4.0 ILMO4.0	Magnesium Magnesium	NA-TRND-S002-02 NA-TRND-S003-02	mg/kg	1.9	11200	*	<u> </u>			12200	
ILMO4.0	Magnesium	NA-TRND-S004-02	mg/kg	1.6	10900					12200	
ILMO4.0	Magnesium	NA-TRND-SO10-02	mg/kg	2.1	8400					12200	
ILMO4.0	Magnesium	NA-TRND-SO15-02	mg/kg	2	8260					12200	
ILMO4.0	Magnesium	NA-TRND-SO21-02	mg/kg	2			·			12200	
	Magnesium	NA-TRND-SO23-02	mg/kg	2.9	9640	· · · ·	<u> </u>			12200	
	Magnesium	NA-TRND-S025-02	mg/kg	3		•				12200 12200	
ILMO4.0 ILMO4.0	Magnesium	NA-TRND-S027-02 NA-TRND-S029-02	mg/kg mg/kg	1.8	10000				·	12200	
ILMO4.0	Magnesium Manganese	NA-TRND-SO01-02	mg/kg	0.2	771	41000	4100	1600	160		
ILMO4.0	Manganese	NA-TRND-SO02-02	mg/kg	0.27	1100	41000	4100		160	890	
ILMO4.0	Manganese	NA-TRND-S003-02	mg/kg	0.21	1240	41000	4100	1600	160		
ILMO4.0	Manganese	NA-TRND-SO04-02	mg/kg	0.18	1150	41000	4100		160		
ILMO4.0	Manganese	NA-TRND-SO10-02	mg/kg	0.23	1020	41000	4100		160		
ILMO4.0	Manganese	NA-TRND-SO15-02	mg/kg	0.23	1100	41000	4100		160		
	Manganese	NA-TRND-S021-02	mg/kg	0.22	1280	41000	4100 4100				
	Manganese Manganese	NA-TRND-SO23-02 NA-TRND-SO25-02	mg/kg mg/kg	0.32		41000 41000					
ILMO4.0 ILMO4.0	Manganese	NA-TRND-S023-02	mg/kg	0.24		41000	4100				
ILMO4.0	Manganese	NA-TRND-SO29-02	mg/kg	0.2					160	890) <u> </u>
ILMO4.0	Mercury	NA-TRND-SO01-02	mg/kg	0.02	0.07	200	20				s s
ILMQ4.0	Mercury	NA-TRND-SO02-02	mg/kg	0.03		200	20		0.78		
ILMO4.0	Метситу	NA-TRND-SO03-02	mg/kg	0.02		200	20				
ILMO4.0	Mercury	NA-TRND-SO04-02	mg/kg	0.05		200 200					
ILMO4.0	Mercury	NA-TRND-SO10-02 NA-TRND-SO15-02	mg/kg	0.03							
ILMO4.0 ILMO4.0	Mercury	NA-TRND-SO21-02	mg/kg mg/kg	0.03							
ILMO4.0	Mercury	NA-TRND-SO23-02	mg/kg	0.04							S
ILMQ4.0	Mercury	NA-TRND-S025-02	mg/kg	0.04		200					s S
ILMO4.0	Mercury	NA-TRND-SO27-02	mg/kg	0.03							
ILMO4.0	Mercury	NA-TRND-SO29-02	mg/kg	0.02							
ILMO4.0	Nickel	NA-TRND-SO01-02	mg/kg	0.39							
ILMO4.0	Nickel	NA-TRND-SO02-02	mg/kg	0.53							
ILMO4.0	Nickel	NA-TRND-SO03-02	mg/kg	0.43							
ILMO4.0	Nickel	NA-TRND-SO04-02	mg/kg	0.18							
ILMO4.0 ILMO4.0	Nickel Nickel	NA-TRND-SO10-02 NA-TRND-SO15-02	mg/kg mg/kg	0.23		41000					
ILMO4.0	Nickel	NA-TRND-SO21-02	mg/kg	0.23							
ILMO4.0	Nickel	NA-TRND-SO23-02	mg/kg	0.32		41000					
	Nickel	NA-TRND-SO25-02	mg/kg	0.33		41000				32.9) NS
ILMO4.0				$\overline{}$							
ILMO4.0	Nickel	NA-TRND-SO27-02	mg/kg	0,24		41000					
	Nickel Nickel Potassium	NA-TRND-SO27-02 NA-TRND-SO29-02 NA-TRND-SO01-02	mg/kg mg/kg	0.2	27.8 J	41000) NS

LMO4.0 LMO4.0 LMO4.0 LMO4.0 LMO4.0 LMO4.0 LMO4.0 LMO4.0 LMO4.0	Potassium Potassium Potassium Potassium Potassium	Sample ID NA-TRND-SO03-02		MDL	Result	Industrial RBC	Industrial RBSL	Residential	Residential	Reference	Conclusion Reference v
MO4.0 MO4.0 MO4.0 MO4.0 MO4.0 MO4.0	Potassium	211	Units mg/kg	1.3		RBC	KBSL	RBC	RBSL	UTL 285	Site
MO4.0 MO4.0 MO4.0 MO4.0 MO4.0		NA-TRND-SO04-02	mg/kg	1.1						285	N
MO4.0 .MO4.0 .MO4.0 .MO4.0	Potassium	NA-TRND-S010-02	mg/kg	1.4						285	<u> </u>
MO4.0 MO4.0 MO4.0	Potassium	NA-TRND-S015-02	mg/kg	1.4						285	N
.MO4.0 .MO4.0	Potassium	NA-TRND-SO21-02 NA-TRND-SO23-02	mg/kg	1.3	619					285	N
MO4.0	Potassium	NA-TRND-S025-02	mg/kg mg/kg	1.9			<u> </u>		<u>.</u>	285	1
.MO4.0	Potassium	NA-TRND-S027-02	mg/kg	1.4				· · · · · ·	<u> </u>	285	
	Potassium	NA-TRND-S029-02	mg/kg	1.2			· · · · ·		 :	285]
MO4.0	Selenium	NA-TRND-SO01-02	mg/kg	0.39		10000	1000	390	39	285 0.6	1
MQ4.0	Selenium	NA-TRND-S002-02	mg/kg	0.53	1.5 L	10000	1000	390	39	0.6	
_MO4.0	Selenium	NA-TRND-5003-02	mg/kg	0.43	0.85 L	10000	1000	390	39	0.6	· ·
_MO4.0	Scienium	NA-TRND-S004-02	mg/kg	0.37	NDUL	10000	1000	390	39	0.6	1
MO4.0 MO4.0	Selenium Selenium	NA-TRND-SO10-02	mg/kg	0.47	NDUL	10000	1000	390	39	0.6	
MO4.0	Selenium	NA-TRND-SO15-02 NA-TRND-SO21-02	mg/kg	0.45	1.9 L	10000	1000	390	39	0.6	I
MO4.0	Selenium	NA-TRND-S023-02	mg/kg mg/kg	0.44	ND UL 3 L	10000	1000	390	39	0.6	1
MQ4.0	Selenium	NA-TRND-S025-02	mg/kg	0.66	2.6 L	10000	1000	390	39	0.6	
MO4.0	Selenium	NA-TRND-SO27-02	mg/kg	0.47	1.1 L	10000	1000	390 390	39	0.6	1
MO4.0	Selenium	NA-TRND-S029-02	mg/kg	0.39	1.2 L	10000	1000	390		0,6	
MO4.0	Silver	NA-TRND-S001-02	mg/kg	0.2	ND	10000	1000	390	39	0.6 NC	N
	Silver	NA-TRND-SO02-02	mg/kg	0.27	ND	10000	1000	390		NC NC	<u>N</u>
MO4.0	Silver	NA-TRND-S003-02	mg/kg	0.21	0.33	10000	1000	390	39	NC NC	· · · · · · · · · · · · · · · · · · ·
	Silver	NA-TRND-S004-02	mg/kg	0.18	53.3	10000	1000	390	39	NC NC	
MO4.0	Silver	NA-TRND-SO10-02	mg/kg	0.23	0.45	10000	1000	390	39	NC	
	Silver	NA-TRND-SO15-02	mg/kg	0.23	ND	10000	1000	390	39	NC	N
	Silver	NA-TRND-SO21-02	mg/kg	0.22	0.38	10000	1000	390	39	NC	
	Silver Silver	NA-TRND-S023-02	mg/kg	0.32	ND	10000	1000	390	39	NC	N
	Silver	NA-TRND-S025-02 NA-TRND-S027-02	mg/kg	0.33	ND	10000	1000	390	39	NC	1
_	Silver	NA-TRND-S029-02	mg/kg mg/kg	0.24	ND ND	10000	1000	390	39	NC	
	Sodium	NA-TRND-S001-02	mg/kg	19.6	1520	10000	1000	390	39	NC NC	
	Sodium	NA-TRND-S002-02	mg/kg	26.6	1270	:+			· · · · · ·	2030	
MO4.0	Sodium	NA-TRND-S003-02	mg/kg	21.3	1160			·		2030	<u>N</u>
MO4.0	Sodium	NA-TRND-SO04-02	mg/kg	18.3	473					2030 2030	P
	Sodium	NA-TRND-SO10-02	mg/kg	23.5	341					2030	<u>r</u>
	Sodium	NA-TRND-SO15-02	mg/kg	22.7	1400 J				 - :+	2030	
	Sodium	NA-TRND-S021-02	mg/kg	21.9	897					2030	N
	Sodium	NA-TRND-SO23-02	mg/kg	32.4	137 J					2030	N
	Sodium	NA-TRND-S025-02	mg/kg	33	116 J					2030	N
	Sodium Sodium	NA-TRND-S027-02	mg/kg	23.5	716 J					2030	N
	Thallium	NA-TRND-SO29-02	mg/kg	19.5	1700 J					2030	N
	Thallium	NA-TRND-S001-02 NA-TRND-S002-02	mg/kg	0.78	ND UL	140	14	5.5	0.55	1.7	N
	Thallium	NA-TRND-S003-02	mg/kg mg/kg		ND UL	140	14	5.5	0.55	1.7	N
	Thallium	NA-TRND-S004-02	mg/kg	0.73	3.3 L	140	14	5.5	0.55	1.7	N
	Thallium	NA-TRND-SO10-02	mg/kg	0.94	3.5 L	140	14	5.5	0.55	1.7	N
MO4.0	Thallium	NA-TRND-SQ15-02	mg/kg	0.91	NDUL	140	14	5.5 5.5	0.55	1.7	
	Thallium	NA-TRND-SO21-02	mg/kg	0.88	5.2	140	14	5.5	0.55	1.7	<u>N</u>
	Thailium	NA-TRND-S023-02	mg/kg	1.3	ND UL	140	14	5.5	0.55	1.7	<u>N</u>
	Thallium	NA-TRND-S025-02	mg/kg	1.3	NDUL	140	14	5.5	0.55	1.7	
	Thallium	NA-TRND-S027-02	mg/kg		ND UL	140	14	5.5	0.55	1.7	N
	Thallium Vonntium	NA-TRND-S029-02	mg/kg		ND UL	140	14	5.5	0.55	1.7	<u> </u>
	Vanadium Vanadium	NA-TRND-SO01-02	mg/kg	0.2	152	14000	1400	550	55	219	
	Vanadium	NA-TRND-S002-02	mg/kg	0.27	288	14000	1400	550	55	219	N
	Vanadium	NA-TRND-S003-02 NA-TRND-S004-02	mg/kg	0.21	254 143	14000	1400	550	55	219	
	Vanadium	NA-TRND-S010-02	mg/kg mg/kg	0.18	232	14000	1400	550	55	219	<u> </u>
	Vanadium	NA-TRND-S015-02	mg/kg	0.23	264	14000	1400	550	55	219	N
/iO4.0	Vanadium	NA-TRND-SO21-02	mg/kg	0.22	301	14000	1400	550 550	55	219	
4O4.0	Vanadium	NA-TRND-SO23-02	mg/kg	0.32	474	14000	1400	550	55	219	
	Vanadium	NA-TRND-S025-02	mg/kg	0.33	484	14000	1400	550	55 55	219	
	Vanadium	NA-TRND-S027-02	mg/kg	0.24	321	14000	1400	550	55	219	
	Vanadium	NA-TRND-S029-02	mg/kg	0.2	171	14000	1400	550	55	219	N
	Zinc	NA-TRND-S001-02	mg/kg	0.2	50.8	610000	61000	23000	2300	48.6	
	Zinc	NA-TRND-SO02-02	mg/kg	0.27	65.7	610000	61000	23000	2300	48.6	
	Zinc Zinc	NA-TRND-S003-02	mg/kg	0.21	97.7	610000	61000	23000	2300	48.6	
	Zinc Zinc	NA-TRND-SO04-02	mg/kg	0.18	1710	610000	61000	23000	2300	48.6	
	Zinc	NA-TRND-SO10-02 NA-TRND-SO15-02	mg/kg	0.23	203	610000	61000	23000	2300	48.6	
	Zinc	NA-TRND-SQ21-02	mg/kg	0.23	56	610000	61000	23000	2300	48.6	
	Zinc	NA-TRND-S021-02	mg/kg	0.22	117	610000	61000	23000	2300	48.6	
	Zinc	NA-TRND-S025-02	mg/kg mg/kg	0.32	61.6	610000	61000	23000	2300	48.6	
	Zinc	NA-TRND-S023-02	mg/kg	0.33	55.6 253	610000	61000	23000	2300	48.6	
	Zinc	NA-TRND-SO29-02	mg/kg	0.24	50.2	610000	61000	23000	2300	48.6	
C	Chloride	NA-TRND-SO29-02	mg/kg	1.52	7.68	200000	20000	23000	2300	48.6	
F	Fluoride	NA-TRND-SO29-02	mg/kg	1.52	ND	120000	12000	7800 4700	780	9.64	N
.2 N	Nitrate	NA-TRND-S029-02	me/ke	1.52	8.38	3200000	220000	130000	470 13000	NC 674	N
crence UT	IL abbreviations: NC = Not cal	lculated because reference di	ata were all	non-de	tected resu	ilts or were not a	nalyzed.	10000	13000	6.74	N
rus Combi	varison Conclusion Reference vs t applicable. Data is associated	s. Site abbreviations:					_ ,				

Method	Analyte	Sample ID	Units	MDL	Result	Industrial RBC	Industrial RBSL	Residential RBC	Residential RBSL	Reference UTL	Comparison Conclusion Reference vs. Site
	t signficant. On average, site data vi ficant. On average, site data were s				data.						

•				
				_

APPENDIX G

Trend Analysis Plots

•

NAF Atsugi Trend Plots

The following plots are trend plots of chemical concentrations determined during the March 1998 soil sampling at NAF Atsugi. The location of the Jinkanpo Incineration Complex is indicated by a square and labeled "Incinerator" as a point of reference on all figures. All sampling locations are indicated by a "+" symbol. On these trend plots, low concentrations are shown as light gray shading to black as the concentrations increase (or yellow to red as concentrations increase on the color plots). The darkest shade on each graph indicates the highest concentrations. On some plots, areas with no shading are seen inside the boundaries of the sampling locations. This indicates that interpolated values were too small to be plotted. All plots are oriented with north to the top of the page. The coverage for the surface soil plots approximates the shape of NAF Atsugi. The coverage for the subsurface plots does not include the northern portion of the base (i.e., there were no subsurface soil samples collected in the northern part of the base).

The color scale for each analyte is the same for subsurface and surface plots, however the scale changes for each analyte. Thus, the scale for zinc goes from 0 to 2500 mg/kg, while the scale for thallium ranges from 0 to 5 mg/kg. The scale for each plot is shown in the legend in the upper left-hand corner of the plot.

The RBSL is shown on each legend, and areas where concentrations exceed the RBSL are indicated on the plots by a contour labeled with the RBSL value. If no RBSL value was available for an analyte, the text 'no rbsl' is written at the bottom of the legend. If all the concentrations for an analyte exceed the RBSL, the contour is drawn around the entire area. If all concentrations for an analyte are lower than the RBSL, then no contour is drawn on the plot, but the RBSL value is still labeled on the legend.

APPENDIX H

Analytical Results

APPENDIX H

Table of Contents

Table 1	Results of Organic Analyses for Round 1 Soil Samples, Atsugi NAF, Japan
Table 2	Results of Inorganic Analyses for Round 1 Soil Samples, Atsugi NAF, Japan
Table 3	Field Observations for Soil Samples, Atsugi NAF, Japan
Table 4	Results of Organic Analyses for Round 1 Equipment Blank Samples, Atsugi NAF, Japan
Table 5	Results of Inorganic Analyses for Round 1 Equipment Blank Samples, Atsugi NAF, Japan

Footnote Definitions

Atsugi NAF, Round 1 Soil Samples (March 1998)

- B Analyte is present at a concentration similar to the blank.
- J The analyte was positively identified; however, the associated numerical value is the approximate concentration of the analyte in the sample.
- K Result is potentially biased high.
- L Result is potentially biased low.
- NA Sample not analyzed for indicated parameter.
- ND Not detected.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual level of quantitation necessary to accurately and precisely measure the analyte in the sample.
- UL The analyte was not detected, however a low bias indicates that the result may be a false negative.
- () For methods OLMO3.2, ILMO4.0, E300.0, and E353.2 concentration of the lowest standard used to generate calibration curve.
 - For SW8290 sample-specific detection limit (SSDL) calculated from the method detection limit determined using 40CFR and sample preparation and analytical factors.

Table 1

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	P	-					
					Sample 1d	p						
					Log Date	a a						
				Beg	Beg. Depth - End Depth (in.)	pth (in.)						
		DVCT			DVCT			DVCT			DVCT	
		DVCT-SO01			DVCT-S001			DVCT-S002			DVCT-SO02	
		NA-DVCT-S001-31	1:31		NA-DVCT-S001-02	-07		NA-DVCT-S002-01	-01	NA-D	NA-DVCT-SO02-11 Dup of	np of
		00.MAD-08			09-MAR-98			09-MAR-98		-	NA-DVCI-SOUZ-UL 09-MAR-98	5
Parameter		0-3			3-12			0-3			0-3	
OLM03.2 - Pesticides and PCBs (ug/kg)	1g/kg)											
4,4'-DDD	QN	(0.210)[1]	Q	0.260)[1]	QN	0.180) [1]	Ð	0.180) <u>[</u>
4,4'-DDE	2.00	(0.210	(1)	2.20	0.260	(1]	34.0	0.180	(1)	25.0	(0.180) <u>[</u>
4,4'-DDT	2.20	0.210)[1]	2.50	0.260	[1]	51.0	0.180	(1)	40.0	0.180	EI (
Aldrin	QN	(0.210	([]	QN	0.260)[1]	ND	(0.180	(E)	ND	0.180	Ξ
Aroclor-1016	QN	(0210	[1](ND	0.260)[1]	ND	0.180)[1]	Q.	0.180	Ξ
Aroclor-1221	N _O	(0210)[1]	Ð	0.260)[<u>i</u>]	QN	0.180)[1]	QN QN	(0.180	<u>=</u>
Aroclor-1232	ND	(0.210	Ξ(QN	0.260)[1]	ND	0.180	(1)	QN ON	0.180	<u>=</u>
Aroctor-1242	QN	0.210	Ξ	N Q	0.260	(1)	Q	0.180	[1]	ND QN	0.180) <u>[i]</u>
Aroclor-1248	ND	0.210	[1](ND	0.260	<u>[1]</u> (Q	0.180)[<u>1</u>]	ND QN	0.180	Ξ
Aroclor-1254	QX	(0210	(11)	ΝĐ	0.260)[1]	QN ON	0.180	[<u>i]</u> (Q.	0.180	<u>=</u>
Aroclor-1260	Ð	(0210	[1](QN ON	0.260)[1]	QN Q	0.180)[1]	ND	(0.180	[]
Dieldrin	QN.	0.210	[1](N Q	0.260)[i]	QN	0.180	Ξ	S	0.180	<u>=</u>
Endosulfan I	Q.	(0.210)[1]	QN	0.260)[1]	QN	0.180) <u>[1]</u>	Q	0.180	Ξ.
Endosulfan II	ΔÑ	(0.210	[E] (Q.	0.260)[1]	ΩN	0.180	<u>[i]</u> (Q	0.180	Ξ.
Endosulfan sulfate	Q	(0.210	(1)	QN	0.260	[H]	QN ON	0.180	<u>=</u>	Q.	0.180	[<u>[</u>]
Endrin	QN	(0210)[1]	QN	0.260	(<u>i</u>	QN	0.180	<u>=</u>	Q.	0.180	(11)
Endrin aldehyde	ON	(0.210) [<u>1</u>]	QN QN	0.260	<u>[i]</u> (QN	0.180	<u>(E</u>	Q.	0.180	<u>=</u>
Endrin ketone	ND	0.210	(1)	QN	0.260	([]	QN	(0.180	<u>=</u>	Q.	0.180	Ξ
Heptachlor	QN	(0.210	(1)	QN QN	0.260)[<u>1</u>	QN	(0.180	<u>[1]</u>	Q.	0.180	Ξ
Heptachlor epoxide	ON	(0.210)[1]	Q	0.260	(1)	ND	0.180	<u>(</u>	Q	0.180	Ξ
Methoxychlor	ON	(0.210)[i]	QN	0.260	(E)	QN	0.180	<u>(E</u>	QN	0.180	<u>(</u>
Toxaphene	QN	(0.210	[][ND	0.260)[1]	QN	0.180)[1]	Q Q	(0.180	<u>=</u>
alpha-BHC	QN	0.210	(11)	QN	0.260)[1]	QN	(0.180)[1]	QN QN	0.180	Ξ
•												

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	. P						
					Sample Id	PI	•					
					Log Date	ate						
				Beg	8eg. Depth - End Depth (in.)	epth (in.)						
	M	DVCT			DVCT			DVCT			DACT	
	DAC	DVCT-SO01			DVCT-S001	_		DVCT-SO02	21		DVCT-S002	•
	NA-DVC	NA-DVCT-S001-31	_		NA-DVCT-SO01-02	1-02		NA-DVCT-S002-01	12-01	NA-	NA-DVCT-SO02-11 Dup of	Dup of
	W-60	09-MAR-98			09-MAR-98			09-MAR-98	_		09-MAR-98	1
Parameter	ф	0-3			3-12			0-3			0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)											
alpha-Chlordane	ND (0.	0.210	[1]	Ð	0.260	(E)	0.970	(0.180)[[]	0.850	0.180) III
beta-BHC	<u> </u>	0.210	[1]	N Q	0.260	<u>(</u>	QN.	0.180	<u> </u>	Q.	0.180	
delta-BHC	~	0.210	[:](ΩN	0.260	[1] (Q.	0.180	Ξ	QN	0.180	ΞΞ
gamma-BHC(Lindane)	<u> </u>	0.210	[1]	ND	0.260	[1](S	0.180	(1)	QN QN	(0.180	ΞΞ
gamma-Chlordane	70) QN	0.210	[1]	<u>Q</u>	0.260) [I]	1.10	0.180	(11)	0.970	0.180	(ii)
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	pounds (ug/kg)											
1,2,4-Trichlorobenzene	<u> </u>	41.0	(11)	ND ON	(53.0	[1]	S	(37.0)[1]	QN QN	0.36.0	m
1,2-Dichlorobenzene	ND (41.0	0,	[]	N Q	(53.0	(11)	N QN	(37.0	(E) (N QN	(36.0	E (
1,3-Dichlorobenzene)	0:	[1]	g	(53.0)[1]	Q	(37.0	Ξ(QN	(36.0	ΞΞ
1,4-Dichlorobenzene	_	Q	<u>E</u>	S S	(53.0	(1)	ΩN	(37.0	(E)	ND	(36.0	ΞΞ
2,2'-oxybis(1-chloropropane))	O;	<u>[]</u>	Q.	(53.0)[<u>[</u>]	QN	(37.0	<u>(II)</u>	QN Q	(36.0	Ξ
2,4,5-Trichlorophenol	<u> </u>	Q.	Ξ:	Ð	(53.0	<u>[i]</u> (ND Q	(37.0	<u>(E)</u>	Q.	0.98	Ξ
2,4,6-Trichlorophenol	<u> </u>		Ξ:		(53.0	[1]	QN	(37.0	(1]	ND Q	(36.0) [E]
2,4-Dichlorophenol	<u> </u>		Ξ.	Q Z	(53.0	Ξ(2	(37.0)[1]	Q	(36.0	[](
2,4-Dimemyiphenol	<u> </u>		Ξ.	2	53.0	Ξ	ΩN	(37.0	[E](ND	0.96.0	<u>(</u>
2,4-Dinirophenoi	-		Ξ	Q.	(53.0)[1]	Q.	(37.0	[1]	Q.	036.0	[i](
2,4-Dinitrotoluene	<u> </u>		<u>=</u>	ð	(53.0	<u>[I]</u>	ΩN	(37.0	(11)	ND	(36.0	Ξ(
2,6-Dinitrotoluene	<u> </u>) [1]	Š	(53.0	(E)	QN.	(37.0	(11)	NO	(36.0	<u>(11</u>
2-Chloronaphthalene	<u> </u>		E](Đ.	(53.0	(E)	QN	(37.0)[1]	ND	0.36.0	Ξ(
2-Chlorophenol	<u> </u>		Ξ	Q	(53.0	<u>(</u>	Q	(37.0	[1]	QN	0.96.)	
2-Methylnaphthalene	U		[]	8	(53.0	[1]	Ŋ	(37.0)[1]	QN	(36.0	<u> </u>
2-Nitroaniline	ND (41.0	Q	Ξ	QN	(53.0	[1]	Q.	(37.0	(11)	ND	(36.0	Ξ

() = Detection Limit [] = Dilution Factor |

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					ĉ							
					Site 1d							
					Location Id	P						
					Sample Id	70						
					Log Date	fe						
				Beg	Beg. Depth - End Depth (in.)	pth (in.)						
		TJAU			DVCT			DVCT			DVCT	
		DVCT-S001			DVCT-SO01			DVCT-SO02		2	DVCT-S002	<u>.</u> ا
		NA-DVCT-S001-31	-31		NA-DVCT-S001-02	-03		NA-DVCI-SOUZ-UI	10.	J-AN	NA-DVCT-SO02-01	- G
		09-MAR-98			09-MAR-98			09-MAR-98			09-MAR-98	
Parameter		0-3			3-12			0.3			0-3	
OI MO3 2 - Semi-Volatile Oreanic Compounds, cont. (ug/kg)	ompounds, cor	ıt. (ug/kg)										
2-Nitrophenol	Q.	(41.0	(E)	ON ON	(53.0	(1)	ND	(37.0)[1]	QN	(36.0	<u>=</u>
3.3'-Dichlorobenzidine	QN QN	(41.0)[1]	ΩN	(53.0)[1]	Q	(37.0)[<u>i</u>]	Q.	(36.0	Ξ
3-Nitroaniline	QN	(41.0	(11)	ND	(53.0)[1]	QN	(37.0	(1)	QN Q	(36.0	<u>=</u>
4.6-Dinitro-2-methylphenol	Q	(41.0	[1](QN	(53.0	(11)	QN	(37.0	[1]	ΩN	0'98')	<u>(</u>
4. Bromonbenvt-nhenvlether	QX	(41.0)[1]	QN QN	(53.0)[1]	QN	(37.0)[1]	Q.	(36.0) <u>[1]</u>
4-Chloro-3-methylphenol	2	(41.0	Ξ	QN	(53.0)[1]	ND QN	(37.0	[](ND	(36.0	Ξ
4-Chloroaniline	N QN	(41.0	(11)	ΩN	(53.0)[1]	ΩN	(37.0)[1]	Ð	(36.0) []]
4-C'htoronhenvl-nhenvlether	QX	(41.0)[1]	ND	(53.0)[1]	QN	(37.0)[1]	S S	(36.0	(Ξ)
4-Nitroanaline	Q.	(41.0	Ξ	ND	(53.0)[1]	ND	(37.0	[1]	Q Q	(36.0	<u>(</u>
4-Nitrophenol	QN	(41.0	(1)	ND	(53.0)[1]	NO	(37.0) [1]	QN	(36.0	Ξ.
Acenaphthene	Q	(41.0	(1)	NO	(53.0	(1)	ND	(37.0	<u>[i]</u>	Ð	(36.0	Ξ:
Acenaphthylene	QN	(41.0)[i]	QN	(53.0)[1]	Q	(37.0)[1]	QN Q	36.0	Ξ.
Anthracene	QN	(41.0)[1]	Q.	(53.0	[1]	ND	(37.0	[1](Q	(36.0	E
Benzo(a)anthracene	ΩN	(41.0	[1]	QN	(53.0)[1]	Q	(37.0) <u>[</u>	Q.	(36.0	Ξ :
Benzo(a)pvrene	Q.	(41.0)[1]	QN	(53.0)[1]	QN.	(37.0	(13	NO DA	(36.0	[1]
Renzo(h)fluoranthene	N QN	(41.0	(1)	ND	(53.0)[1]	QN	(37.0)[1]	Q Q	(36.0	Ξ
Benzo(g.h.i)nervlene	QX	(41.0)[1]	ND	(53.0)[1]	S	(37.0)[1]	Q.	36.0	Ξ
Benzo(k)fluoranthene	N QN	(41.0)[1]	ON	(53.0)[1]	QN	(37.0)[1]	ΩN	(36.0	Ξ
Rutvibenzylphthalate	N ON	(41.0)[1]	QN	(53.0)[1]	QN	(37.0) [<u>E</u>]	Ð	(36.0) [E]
Carbazole	QX	(41.0	[1]	ND	(53.0	<u>[I]</u> (S	(37.0)[1]	QN	0'96')	<u>=</u>
Chrysene	QX	(41.0)[1]	N QN	(53.0)[1]	Q	(37.0)[1]	Ð	(36.0) <u>[i]</u>
Dibenz/a.hlanthracene	N Q	(41.0)[1]	ND QN	(53.0)[1]	Q.	(37.0) [H]	Ω	(36.0	<u>(</u>
Dibenzofuran	QN QN	(41.0	[1]	QN	(53.0)[1]	Ð	(37.0	(E)	2	(36.0	E

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id Location Id	<u>.</u>								
							Sample Id	. To . 45								
						Beg. De	Beg. Depth - End Depth (in.)	opth (in.)								
			DVCT				DVCT				DVCT				DVCT	
		DV(NA-DV(DVCT-S001 NA-DVCT-S001-31			NA.	DVCT-SO01 NA-DVCT-SO01-02	-03		Ä	DVCT-SO02 NA-DVCT-SO02-01	2-01	2	A-DVCT	DVCT-SO02 NA-DVCT-SO02-11 Dup of NA-DVCT-SO02-01	J o e
Parameter		ī-60	09-MAR-98 0-3			_	09-MAR-98 3-12				09-MAR-98 0-3			8	09-MAR-98 0-3	ŧ
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ric Compounds, c	ont. (ug/)	9													
Diethylphthalate	QN	Ò	41.0	(11)	QN		(53.0	E](Q		37.0)[]	Q	_	36.0	III
Dimethylphthalate	ND	Ċ	41.0)[1]	QN		(53.0	(E)	Q		(37.0	ΞΞ	QX		36.0	E
Fluoranthene	QN QN	٤	41.0	[1]	QN QN		(53.0	(II)	QN QN		(37.0	Ξ(QN	, <u> </u>	36.0	ΞΞ
Fluorene	æ	Č	41.0	<u>[i]</u> (Ð		(53.0)[1]	S		37.0	[I](Q		36.0	E (
Hexachloro-1,3-butadiene	Q Q	Č	41.0	<u>[i]</u> (Ð		(53.0)[1]	QN QN		37.0	(11)	S		36.0	111
Hexachlorobenzene	S	V	41.0	(1)	S		(53.0)[1]	2		(37.0	(11)	S	, <u> </u>	36.0	Ξ
Hexachlorocyclopentadiene	Q.) B	41.0)[1]	S	5	(53.0) [I]	ON	5	37.0	(1)	Q.	5	36.0	Ξ(
Hexachloroethane	Ą	Č	41.0	<u>[]</u>	Ð		(53.0	<u>[1]</u> (Q		0'12'))[I]	Ð	_	36.0	ΞŒ
Indeno(1,2,3-cd)pyrene	QN	Č	41.0	<u>[I]</u>	Ð		(53.0	(13	Ø		(37.0	[1]	Q	_	36.0	Ξ(
Isophorone	QN Q	Č	41.0	<u>(E)</u>	S		(53.0	[1]	Ð		(37.0	(E)	Ð	_	36.0	[1]
N-Nitroso-di-n-propylamine	Q	Č	41.0)[1]	Q.		(53.0)[1]	QN QN		(37.0)[1]	S	_	36.0	(E) (
N-Nitrosodiphenylamine	Ş	Č	41.0)[1]	S		(53.0)[1]	Ð		(37.0	(1)	S	<u> </u>	36.0) (E)
Naphthalene	QN QN	Č	41.0	(E)	Q		(53.0	(1)	Q		0'22')	(1)	Ą	_	36.0)[1]
Nitrobenzene	Q.	Č	41.0)EI	S		(53.0	(1)	QN		(37.0)[1]	Ð	_	36.0	<u>(</u>
Pentachlorophenol	æ	Č	41.0	[1]	2		(53.0	Ξ(Q		0.75)	<u>[i]</u> (2	_	36.0) E
Phenanthrene	QN QN	Č	41.0)[<u>1</u>]	2		(53.0	<u>(</u>	æ		0.76	(11)	Ð)	36.0	(E)
Phenoi	QN O	Ç	41.0)[1]	Ð		(53.0	[1]	N		072))[1]	Ð	_	36.0	(E) (
Pyrene	Q	Č	41.0	<u>=</u>	2		(53.0	(E)	Q.		(37.0	[1](S	· •	36.0	[1]
bis(2-Chloroethoxy)methane	Q	Ž	41.0)[<u>[</u>]	2		(53.0	<u>=</u>	S		07.0	E](Q	_	36.0	(1)
bis(2-Chloroethyl)ether	Q	Ž	41.0	<u>(E)</u>	Q		(53.0	(E)	Ð		(37.0	[1]	Ð	_	36.0	Ξ
bis(2-Ethylhexyl)phthalate	160	Ž	41.0	<u>[1]</u> (250		(53.0	(13)	왔		(37.0	(E)	790	_	36.0	Ξ(
di-n-Butylphthalate	47.0	,	41.0	<u>E</u>	<u>8</u>		(53.0	Ξ(93.0		(37.0	(13)	81.0	_	36.0	<u> </u>
di-n-Octylphthalate	QN Q	7	41.0)[1]	Q		(53.0	[1]	Q		(37.0)EI	Q	_	36.0)[1]

() = Detection Limit [] = Dilution Factor

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						J 2	Site Id								•
						Ľ	Location Id								
						S	Sample Id								
							Log Date								
					12	Beg. Depth - End Depth (in.)	End Dept	h (in.)							
			DVCT			DV	DVCT				DVCT			DVCT	
			DVCT-SO01			DAC	DVCT-SO01			Д	DVCT-SO02			DVCT-S002	
		×	NA-DVCT-S001-31	31		NA-DVC	NA-DVCT-SO01-02	7		NA-L	NA-DVCT-S002-01	<u>~</u>	NA-D	NA-DVCT-SO02-11 Dup of	np of
														NA-DVCT-S002-01	-01
			09-MAR-98			7W-60	09-MAR-98			0	09-MAR-98			09-MAR-98	
Parameter			6-3			3-12	2				0-3			Ф-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds,	cont. ((ug/kg)												
o-Cresol	QN		(41.0)[1]	QN	(53	53.0)[1]	S		(37.0	(13	ΩŽ	(36.0	<u>(</u>
p-Cresol	ND		(41.0	(11)	QN QN	35)	53.0)[1]	Q.		(37.0)[1]	S	(36.0	(1)
SW8290 - Dioxins (ppt)															
1,2,3,4,6,7,8,9-OCDD	295		0060))[I]	268	(1.	1.50)[1]	326		0.400) <u>[</u> []	273	009:0)[1]
1,2,3,4,6,7,8,9-OCDF	33.8		0.700)[1]	49.5	(1.	1.20)[1]	75.1		(0.300)[1]	77.5	0.500)[1]
1,2,3,4,6,7,8-HpCDD	42.6		0.800	(11)	28.8	(1.	1.30) <u>[1]</u>	80.7		0.400) <u>[1]</u>	0.70	0.500	[1]
1,2,3,4,6,7,8-HpCDF	30.2		009:0	[1]	20.1	0)	0.900	[1](86.7		0300)[1]	8.06	0.400	<u>E</u>
1,2,3,4,7,8,9-HpCDF	2.50	_	002.0)[I]	2.30	J (1;	1.20	[1]	16.1		0300) <u>[1]</u>		0.500	Ξ
1,2,3,4,7,8-HxCDD	1.90	_	002.0)[I]	Ð	(1.	1.30	<u>[</u> :](4.70	-	0.400) [<u>1</u>]	4.10 J	0.600) <u>[]</u>
1,2,3,4,7,8-HxCDF	8.11		009.0)[1]	99'9	0)	0.900)[1]	44.3		00:00)[1]	39.5	0.400	Œ
1,2,3,6,7,8-HxCDD	2.80	-	009:0)[1]	2.50	J (1.	1.00)[I]	7.80		0300	(E)	7.00	0.400	Ξ
1,2,3,6,7,8-HxCDF	5.40		003:0	(11)	2.80	J (0.	0.800)[1]	17.6		0300)[1]	17.4	00000	(=)
1,2,3,7,8,9-HxCDD	5.00		0.600	<u>(E</u>	5.50	(1.	1.00) [<u>1</u>]	11.5		00400	[1]	9.80	0.500	<u>=</u>
1,2,3,7,8,9-HxCDF	Q.		00200)[1]	QN	· ·	1.10	<u>(E)</u>	1.80	-	0.400	<u>[1]</u>		<u> </u>	Ξ
1,2,3,7,8-PeCDD	1.80	-	00900)	(1)	1.80) 1	0.900)[1]	3.60	-	00:300	<u>[I]</u>	3.60 J	_	Ξ
1,2,3,7,8-PeCDF	3.00	-	0.400)[1]	2.50	J (0)	0.700)[1]	6.50		0.200	<u>[I]</u>	6.10	0.300	<u>=</u>
2,3,4,6,7,8-HxCDF	12.8		0.600)[1]	4.40	J (1.	1.00)[1]	39.7		0300	<u>E</u>	30.6	0.400	(11)
2,3,4,7,8-PeCDF	2:00		0.400)[1]	3.40	J (0	0.700)[i]	15.4		0700	<u>=</u>		<u> </u>	<u>[</u>]
2,3,7,8-TCDD	Q		0.300	[1](ND	0	0.500)[1]	0.550	_	0.200	[1]	0.450 J	<u> </u>	Ξ
2,3,7,8-TCDF	3.30		0.300	(11)	4.20	(1	1.00)(11)	4.50		(1.00)[<u>H</u>]	4.10	0.800)[1]
Total HpCDD	78.9		0.800	[1]	54.4	(1	1.30)[1]	127		0.400	Ξ(138	0.500)[1]
Total HpCDF	26.8		0.600	<u>(I</u>	48.5		1.00)[1]	176		00:00	(E)	183	(0.400	(1)

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	d n Id e Id Date Depth (in.)						
		DVCT DVCT-SO01 NA-DVCT-SO01-31	H N-31		DVCT DVCT-SO01 NA-DVCT-SO01-02	01 01-02		DVCT DVCT-SO02 NA-DVCT-SO02-01	2 2-01	NA-	DVCT DVCT-SO02 NA-DVCT-SO02-11 Dup of	2 Dup of
Parameter		09-MAR-98 0-3	•		09-MAR-98 3-12	ç e		09-MAR-98 0-3			NA-DVCT-SO02-01 09-MAR-98 0-3	2-01
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	38.8	00900	(1)	32.6	01.10)[1]	112	0.400) (III	ω,	005 ()	E
Total HxCDF	66.2	0090)	(E)	31.1	00600	(E) (211	00:00	ΞΞ	201	0.000	ΞΞ
Total PeCDD	19.4	009'0)	. [1] (6.10	00600)	Ξ	73.4	00:00	ΞΞ	× 7	940	E 5
Total PeCDF	64.8	0.400	(E)	38.9	0.700	(1)	194	(0.200	E (£ 2	0000	ΞΞ
Total TCDD	13.8	0.300	<u>E</u> (8.20	0.500	<u> </u>	33.8	0.200		31.5	0000	ΞΞ
Total TCDF	58.5	0000))[1]	18.4	(0.400	(1)	104	(0.100	ΞΞ	93.6	0200	ΞΞ

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				ă	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ate epth (in.)					,	
Parameter		DVCT DVCT-SO03 NA-DVCT-SO03-01 09-MAR-98 0-3	-01		DVCT DVCT-SO03 NA-DVCT-SO03-02 09-MAR-98	3-02		DVCT DVCT-SO04 NA-DVCT-SO04-01 09-MAR-98 0-3	. 1		DVCT DVCT-SO05 NA-DVCT-SO05-01 09-MAR-98 0-3	10
OLM03.2 - Pesticides and PCBs (ug/kg)	8											
4,4'-DDD	QN S	0.180	(11)	Q.	(0.180	[1](Q.	0.190	[1]	Ð	(0.210	[1]
4,4'-DDE	QN	0.180	(11)	Q.	0.180	(11)	ND	0.190) [E]	32.0	(0.210	Ξ
4,4'-DDT	QN	0.180	([]	QN	0.180)[1]	QN	0.190	<u>[1]</u> (18.0	(0.210	(E) (
Aldrin	Ð	0.180)[]]	Ð	0.180	[1](Q.	0.190)[1]	QN QN	(0.210)[1]
Aroclor-1016	Q	0.180	(E)	QN	0.180	[1]	NO	0.190	<u>[I]</u> (Q.	(0.210	[1]
Aroclor-1221	Q	0.180	<u>(II</u>	N Q	0.180	[1]	N	0.190	<u>[i]</u>	QN QN	0.210	<u>[1]</u> (
Aroclor-1232	QN	0.180	<u>(II)</u>	Q	0.180	[1](ND	0.190	<u>(E</u>)	ND	0.210	(1)
Aroclor-1242	Q	0.180	<u>(E)</u>	Ð	0.180	<u>[1]</u>	ND	0.190	(E]	QN	(0.210) [E]
Aroclor-1248	Q.	0.180	<u>(II)</u>	Ð	0.180	[1](ND	0.190) [<u>1</u>]	QN	0.210)[<u>H</u>]
Aroclor-1254	Q	0.180	<u>[I]</u>	Q	0.180	(11)	QN	0.190)[<u>i</u>]	Q	0.210)E
Aroclor-1260	9	0.180	(11)	Q	0.180	(11)	QN	0.190	[[]	QN	(0.210)[1]
Dieldrin	2	0.180	(11)	Ð	0.180	[1]	QN	0.190	<u>[i]</u> (2.30	(0.210	[E](
Endosulfan I	<u>R</u>	0.180	<u>(II)</u>	Ð	0.180	[1](QN O	0.190	<u>[I]</u>	Q	(0.210)[1]
Endosulfan II	8	0.180	Ξ(Ð	0.180) <u>[1]</u>	QN Q	0.190)[<u>[</u>]	Q	(0.210)[1]
Endosulfan sulfate	æ	0.180)[1]	Q	0.180)[1]	Q	0.190	<u>(E</u>	Q	(0.210	(1)
Endrin	Q	(0.180	(1)	ND ND	0.180)[1]	QN Q	0.190	[1]	Q	(0.210)[]]
Endrin aldehyde	Ð	(0.180	<u>(</u>	N Q	0.180)[1]	QN O	0.190)[II]	QN	0210	(11)
Endrin ketone	Q.	(0.180	<u>(II)</u>	ND ND	0.180)[1]	ND	0.190) EE	QN	0.210	(Ξ)
Heptachlor	2	0.180	<u>(II)</u>	Q.	0.180)[1]	ND	0.190)[<u>[</u>]	QN	0.210)[1]
Heptachlor epoxide	Q	0.180	<u>(II)</u>	QN O	0.180	[1](Q.	0.190) [i]	QN	(0.210)[1]
Methoxychlor	QN	0.180	(H)	N Q	0.180	[1](QN	0.190)[1]	QN	0.210)[1]
Toxaphene	Q.	0.180	(11)	QN	(0.180)[1]	ND	0.190) [E]	QN	0.210)[1]
alpha-BHC	Q.	0.180	(11)	Q.	0.180)[1]	Q	0.190	[1]	QN	0210)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	<u> </u>						
					Sample Id	E						
					Log Date	ite						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		DVCT			DVCT			DVCT			DVCT	
	Z	DVCT-SO03 NA-DVCT-SO03-01 09-MAR-98			DVCT-SO03 NA-DVCT-SO03-02 09-MAR-98	3-02		DVCT-SO04 NA-DVCT-SO04-01 09-MAR-98	_ _ _ _		DVCT-SO05 NA-DVCT-SO05-01 09-MAR-98	-
Parameter		0-3			3-12			0. 3			0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ng/kg)											
alpha-Chlordane	ND	(0.180) [I]	N Q	0.180)[1]	QN	0.190	(E)	0.810	(0210	(1)
beta-BHC	Z	(0.180) [H]	N Q	(0.180)[1]	QN	(0.190	(II)	Q	0.210	(11)
delta-BHC	Š	0.180)[1]	Q	0.180)[1]	QN	0.190	(11)	QN Q	0210	(1)
gamma-BHC(Lindane)	Ð	0.180	(1]	S	(0.180)[<u>1</u>]	NO	0.190	(E]	QN	0.210	(1)
gamma-Chiordane	Ð	0.180	[1]	Q	0.180	[1]	Q	0.190)[<u>1</u>]	ND	(0210	[1]
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	//8n) spunodu	<u> </u>										
1,2,4-Trichlorobenzene	- QN	(35.0)[1]	N Q	(36.0)[1]	ND	(38.0	<u>(II)</u>	ND	(42.0)[1]
1,2-Dichlorobenzene	N	(35.0	[1]	Q	0'96')	[<u>[</u>]	Q.	(38.0)[II]	Q	(42.0	(1)
1,3-Dichlorobenzene	N Q	(35.0	(1)	Q	96.0)[1]	QN	(38.0	[<u>I</u>](Q	(42.0	(1)
1,4-Dichlorobenzene	Q.	(35.0	(11)	Q	0'96')	[1]	NO	(38.0	<u>[i]</u> (Q	(42.0	(E)
2,2'-oxybis(1-chloropropane)	ND Q	(35.0)[1]	QN	0.96.))[1]	ΩN	(38.0	Ξ(QN	(42.0	<u>(E</u>
2,4,5-Trichlorophenol	ND Q	(35.0)[1]	QN	(36.0)[1]	ND	(38.0	Ξ(Q.	(42.0	(E) (
2,4,6-Trichlorophenol	£	(35.0	(1)	Q	96.0	(1]	Q.	0'38'0	<u>[i]</u>	<u>R</u>	(42.0	(1)
2,4-Dichlorophenol	ND Q	(35.0)[1]	QN	(36.0)[1]	QN	(38.0	(E)	Q	(42.0	Œ.
2,4-Dimethylphenol	ΩN	(35.0	(1)	ND	(36.0)[1]	ND	(38.0	<u>[i]</u> (ND	(42.0	Ξ(
2,4-Dinitrophenol	Q.	(35.0) [E]	QN	(36.0)[1]	QN	(38.0	(13)	QN	(42.0	(11)
2,4-Dinitrotoluene	Q	(35.0	<u>(II)</u>	QN QN	(36.0)[1]	Ω	(38.0	(12)	Ω	(42.0	Ξ(
2,6-Dinitrotoluene	Q	(35.0) [E]	ΩN	(36.0)[1]	QN	(38.0	(11)	QN ON	(42.0	<u>(I</u>
2-Chloronaphthalene	Q	(35.0)[1]	QN	(36.0)[1]	QN	(38.0	(1)	QN Q	(42.0)[1]
2-Chlorophenol	R	(35.0	[[]	ND	(36.0	[<u>[</u>]	Ω	0'88')	(11)	QN	(42.0	([]
2-Methylnaphthalene	Q	(35.0)[1]	QN	(36.0)[1]	Ω	(38.0	<u>(II)</u>	ΩN	(42.0	<u>(II)</u>
2-Nitroaniline	NO	(35.0	(E)	Q.	(36.0)(E]	Q	(38.0) (E)	Ð	(42.0)(11)

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	<u> </u>						
					Sample Id	īđ						
					Log Date	te						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		DVCT			DVCT			DVCT			DVCT	
		DVCT-S003			DVCT-SO03			DVCT-S004			DVCT-S065	
		NA-DVCT-S003-01	10-1		NA-DVCT-S003-02	3-02		NA-DVCT-S004-01	-01	_	NA-DVCT-S005-01	5
		09-MAR-98			09-MAR-98			09-MAR-98			09-MAR-98	
Parameter		0-3			3-12			0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	mpounds, con	it. (ug/kg)										
2-Nitrophenol	QN	(35.0)[1]	Q.	0.96.))[1]	S	38.0	<u>[</u>	Q N	(42.0	Ξ.
3,3'-Dichlorobenzidine	Q	(35.0)[1]	Q	(36.0)[1]	æ	(38.0)[1]	Q	(42.0	[]
3-Nitroaniline	R	(35.0)[1]	ND	(36.0)[1]	Q	0'38'0	<u>(</u>	Q :	(42.0	Ξ
4,6-Dinitro-2-methylphenol	QN	(35.0)[1]	ND	(36.0)[1]	Ω	38.0)[1]	QN Q	(42.0	Ξ
4-Bromophenyl-phenylether	ND	(35.0	[1](QN Q	(36.0	(E)	QN QN	(38.0) [I]	QN Q	(42.0	Ξ(
4-Chloro-3-methylphenol	QN QN	(35.0)[1]	Q.	(36.0)[1]	QN	0'86'))[1]	Ð	(42.0	Ξ:
4-Chloroaniline	Q.	(35.0)[1]	Q.	(36.0)[1]	ND QN	(38.0) <u>[1]</u>	Q	(42.0	E) (
4-Chlorophenyl-phenylether	QN QN	(35.0)[1]	QN	(36.0)[1]	Q	(38.0)[<u>1</u>]	Q.	(42.0	Ξ
4-Nitroanaline	QN	(35.0)[1]	QN Q	(36.0) [1]	QN ON	(38.0)[1]	QN	(42.0)[1]
4-Nitrophenol	QN	(35.0)[1]	QN QN	(36.0)[1]	ON	(38.0) [I]	ΩN	(42.0	<u>=</u>
Acenaphthene	Q.	(35.0)[1]	QN Q	(36.0)[1]	ND	0'88')	[1]	ND	(42.0	<u>(</u>
Acenaphthylene	Q.	(35.0)[i]	ΩŽ	(36.0)[1]	QN	(38.0	[[]	Q.	(42.0)[[]
Anthracene	Q.	(35.0)[1]	QN	(36.0)[1]	Q	(38.0	[1]	QN	(42.0	Ξ
Benzo(a)anthracene	ΝΩ	(35.0)[1]	QN	(36.0)[1]	<u>R</u>	(38.0) <u>[</u>	Q Q	(42.0	Ξ
Вепхо(а)ругете	QN QN	(35.0)[1]	ND	(36.0	(1)	QN	(38.0)[<u>i</u>]	æ	(42.0	Ξ(
Benzo(b)fluoranthene	æ	(35.0)[1]	QN	0.96.0)[1]	ΩŽ	(38.0)[1]	Q	(42.0	Ξ
Benzo(g,h,i)perylene	QN	(35.0)[1]	Q.	0.96.))[1]	Q Q	(38.0)[1]	Q.	(42.0	<u>=</u>
Benzo(k)fluoranthene	N Q	(35.0)[1]	ND	(36.0) <u>[1]</u>	QN QN	(38.0)[1]	ΩN	(42.0	<u>=</u>
Butylbenzylphthalate	R	(35.0)[1]	QN QN	0.96.))[1]	ΩN	(38.0)[1]	ΩN	(42.0	Œ
Carbazole	ON	(35.0	(1)	Q	(36.0)[1]	QN	(38.0)[1]	Q Q	(42.0) <u>[</u>
Chrysene	QN	(35.0) [¥]	ND	(36.0)[1]	Ω	(38.0)[1]	N Q	(42.0	Ξ
Dibenz(a,h)anthracene	S	(35.0)[1]	QN QN	(36.0)[1]	QN	(38.0)(II)	Q	(42.0	(E)
Dibenzofuran	QN	(35.0	(1)	QN QN	(36.0)[1]	Q	(38.0)[1]	Q.	(42.0	Ξ

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id Location Id									
						Beg. Dept	Sample Id Log Date Beg. Depth - End Depth (in.)	e oth (in.)								
		O M	DVCT			Ē	DVCT				DVCT				DVCT	
		NA-DV(DVCT-SO03-01 09-MAR-98	10		NA-D	DVCI-SO03 NA-DVCT-SO03-02 09-MAR-98	20		V	DVCT-SO04 NA-DVCT-SO04-01	-		NA-I	DVCT-S005 NA-DVCT-S005-01	Ę
Parameter		-	0-3			•	3-12				0-3			•	7-MAK-98 0-3	
Ol MO3 1. Sami Voletile October Comment.			1													
Diethylphthalate	ON ND		35.0	[1]	Q.	_	36.0	[I]	Q		(38.0	100	Ş		90	5
Dimethylphthalate	8	E.	35.0)(1)	QN		36.0	<u> </u>	9		(38.0	E (2		(42.0	ΞΞ
Fluoranthene	R	Ü	35.0)[1]	Q	_	36.0)(11)	Ð		(38.0	[H]	8		(42.0	ΞΞ
Fluorene	2	Ü	35.0	(1)	Q)	36.0	<u>(II)</u>	QN		(38.0	<u>[I]</u>	ND		(42.0	Ξ(
Hexachloro-1,3-butadiene	Q	Ũ	35.0	[1]	2	_	36.0	<u>(</u>	2		(38.0)[1]	Q		(42.0	Ξ
Hexachlorobenzene	2	Ų	35.0)[I]	S)	36.0) [I]	Q		0'8£)	(1)	S		(42.0	ΞΞ
Hexachlorocyclopentadiene	2) B	35.0	<u>[</u>	Ω	n	36.0)[1]	N	3	0'86'))[]]	Q	₽	(42.0	Ξ
Hexachloroethane	2 !	<u> </u>	35.0	Ξ	ND	~	36.0	[I]	Q		(38.0)[1]	ON		(42.0	<u>(</u>
Indeno(1,2,3-cd)pyrene	2 9	. ·	35.0	Ξ;	2	_	36.0	Ξ(Q		(38.0	(11)	Q.		(42.0	(H)
Lisophorone 3:	2 9		35.0		€ !		36.0	<u> </u>	Q		(38.0	(E)	S		(42.0	Ξ
N-Mirosodishemilemine	2 5		35.0	ΞŞ	ê i	<u> </u>	36.0	Ξ,	2 !		38.0	Ξ	2		(42.0) <u>[</u>
Naphthalene	2 2		35.0		2 5		36.0	Ξ.	2 9		38.0	三三	2 9		42.0	Ξ.
Nitrobenzene	2		35.0	ΞΞ	2		36.0	Ξ(2 2		38.0		2 2		42.0	ΞΞ
Pentachlorophenol	S	(3	35.0)[1]	Q	_	36.0)[1]	N O		(38.0	ΞΞ	2		42.0	
Phenanthrene	QN	0	35.0)[1]	Q.)	36.0	(11)	S		(38.0) [I]	Q	Ī	42.0	ΞΞ
Phenoi	g	(3	35.0	EI (Q	~	36.0) [1]	Ð		(38.0	<u>(E)</u>	Q.	Ī	42.0	Ξ
Pyrene	Ð	(3	35.0	Ξ	g	<u> </u>	36.0	[1](æ		(38.0	<u>(E)</u>	Ð	Ĭ	42.0	Ξ
bis(2-Chloroethoxy)methane	Ð	(3	35.0	(1)	Q.	`	36.0	[<u>I</u>](Ð		(38.0)[1]	S	Ī	42.0	Ξ
bis(2-Chloroethyl)ether	Ê	(3	35.0)[1]		•	36.0	(E)	9		(38.0)(1]	S	Ī	42.0	Ξ
bis(2-Ethylhexyl)phthalate	0.08	e :	35.0	Ξ	8 4.0	_	36.0	(11)	9		(38.0	[1](220	_	42.0	Ξ
di-n-Butylphthalate	2	e O	35.0	Ξ	Ð)	36.0	Ξ(Q		(38.0	<u>(II)</u>	Ð	Ĭ	45.0	Ξ
di-n-Octylphthalate	Q	е Э	35.0	Ξ	8	_	36.0	<u>(</u>	Q		(38.0)[1]	Q.	Ĭ	42.0	[1]

Not Detected NA = Not Applicable 0 = Detection Limit [] = Dilution Factor []

						Site Id									
						Sample Id									
						Log Date									
				-	eg. Depth	Beg. Depth - End Depth (in.)	h (in.)								
		DVCT				DVCT	٠		Ā	DVCT				DVCT	
		DVCT-SO03	5 2		70	DVCT-S003			DVC	DVCT-S004	_		DA.	DVCT-S005 NA-DVCT-S005-04	_
		NA-DVCT-SO03-01 09-MAR-98	33-01 }		NA-DY	NA-DVCT-S003-02 09-MAR-98			NA-DVC	09-MAR-98	_		8	09-MAR-98	•
Parameter		6-3			••	3-12			_	0-3				0-3	
														:	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, cor	ot. (ug/kg)				,		;	,	ç	5	Ş	`	004 /	1111
o-Cresol	Q	(35.0	(11)	QX	_	36.0)[1]	a i		38.0	(r) (Ş ;	<i>-</i> \	0.24	3
p-Cresol	N O N	(35.0	[1](QN	_	36.0)[1]	Q N	Ü	38.0	II)	Q.	_	47.0	111
SW8290 - Dioxins (ppt)														,	;
1.2.3.4.6.7.8.9-OCDD	75.2	0060)[1]	18.5	~	0.400	<u>[]</u>	10.5	J	1.10	<u>=</u>	212	_	01.10	<u>=</u>
1.2.3,4.6,7,8,9-OCDF	103	00200	[1](17.4	J	0.300)[1]	QN	J	1.00	[1]	50.8		97	Ξ :
1.2,3,4,6,7,8-HpCDD	27.4	0.800	(1)	5.10	_	0.400) <u>[1]</u>	130) r	0.800	Ξ	93.0		0.800	Ξ
1,2,3,4,6,7,8-HpCDF	59.2	009:0	(1)	11.2)	0.300)[1]	1.30	ì	0.500	<u>(</u>	34.5		0.500	Ξ.
1,2,3,4,7,8,9-HpCDF	19.2	00800)[ii]	4.00	·	0.400)[1]	<u>Q</u>	Ĵ	0.700	Ξ	6.10	_ ·	0.700	ΞΞ
1,2,3,4,7,8-HxCDD	1.80	J (1.00	[1](QN	_	0.400)[<u>H</u>]	g	<u> </u>	0.600	<u>=</u>		- -	0.000	Ξ
1,2,3,4,7,8-HxCDF	33.3	009'0)	(1)	08'9		0.300)[1]	0.770	_ _	0.400	Ξ.	16.6	•	000	Ξ
1,2,3,6,7,8-HxCDD	3.00	J (0.800)[1]	0.560	·	0.300	<u>(I)</u>	₽!	Ĵ.	0.600	Ξ	38.9 38.9		0.000	
1,2,3,6,7,8-HxCDF	10.8	0.500	<u>=</u>](2.40	, ,	0.200	Ξ;	2 9	ک ت	0.400	E 5	0.50		0.400	ΞΞ
1,2,3,7,8,9-HxCDD) (0.800	(E)	0.880	- ·	0.400	Ξ,	2 5	<i>-</i> ر	0.000	ΞΞ	9.00	-	0.50	3 5
1,2,3,7,8,9-HxCDF	3.60	J (0.700	Ξ.	0.700	_ ;	0.400	Ξ,	2 9	<u>۔</u>	0000		¥.7		0.700	E E
1,2,3,7,8-PeCDD	1.70) (0.700	ΕÇ	ON !	3,	0.300		2 9		997.0	E 5	8 6	, -	0.00	ΞΞ
1,2,3,7,8-PeCDF	15.9	0.400		2.20	, ,	00700	Ξ,	2 9	- \	0.400	Ŧ.	17.0	•	0000	ΞΞ
2,3,4,6,7,8-HxCDF	9.01	00900	(E)	2:30	- ,	0.300		Q.	<i>-</i> ١	900	E 5	2 2		0000	ΞΞ
2,3,4,7,8-PeCDF	8.20	0.500)[1]	1.30	<u> </u>	0.200	Ξ.	2 !	- \	0.400	Ξ,	0F.0		0300	ΞΞ
2,3,7,8-TCDD	_	J (0.300)[1]	ON N	•	0.200	E)	ON SEC	~ ·	0.400	Ξ.	0.420	•		3 5
2,3,7,8-TCDF	10.3	0200)[1]	1.50	•	00.700	Ξ	08.0 88.0	_ ·	0.300	E :	707		0.700	ΞΞ
Total HpCDD	48.6	00800	(E)	10.4	_	0.400) <u>[</u> []	3.00	_	0.800	[1]	7 <u>9</u>		0.000	Ξ,
Total HpCDF	115	00.700)[1]	21.9	_	0.300)[<u>i]</u>	1.30	~	0.600	Œ	78.1		0.500	111

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	DVCT DVCT-S005 4-01 NA-DVCT-S005-01 09-MAR-98 0-3	
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	DVCT DVCT DVCT-S003 DVCT-S004 NA-DVCT-S004-01 09-MAR-98 09-MAR-98 3-12 0-3	
	DVCT	
	Parameter	

(0.600 (0.400 (0.400 (0.300
71.8 104 20.6 88.9 22.3
(0.400 (0.400 (0.500 (0.400 (0.300
OZ 1.00 0.700 0.700 0.90
(0.400 (0.300 (0.200 (0.200 (0.200
9.00 22.7 5.90 16.2 4.50 10.8
(0.500 (0.500 (0.500 (0.300 (0.300
62.2 103 45.0 86.3 24.3
SW8290 - Dioxins, cont. (ppt) Total HxCDF Total PeCDD Total PCDF Total TCDF Total TCDF

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	DVCT DVCT-S007 NA-DVCT-S007-02 09-MAR-98 3-12
	DVCT
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	DVCT DVCT-SO06 NA-DVCT-SO06-01 09-MAR-98 0-3
	DVCT DVCT-S005 NA-DVCT-S005-02 09-MAR-98 3-12
	Parameter

OLM03.2 - Pesticides and PCBs (ug/kg)	(ug/kg)												
4,4'-DDD	ND	0.270	[1](0		ND	0.280	<u>[i]</u>	ON	0.180)[1]	Q.	(0210)[<u>[</u>]
4,4'-DDE	6.80	0.270	70)[I]		14.0	0.280	<u>(i)</u>	0.630	0.180	[<u>i</u>](190	(2.10	(10]
4,4'-DDT	5.60	0.270	70)[1]		8.10 J	(0.280	(1)	1.70	0.180	[i]	110	(2.10)[10]
Aldrin	ND	0.270	70)[1]		ND	(0.280	<u>[I]</u> (Q	(0.180	<u>[I]</u> (ND	(0.210	(1)
Aroclor-1016	N QN	(0270	70)[1]		ND	0.280	[[](Q.	0.180	<u>[i]</u> (Q	0.210	(1)
Aroclor-1221	QN	(0.270	70)[1]		ND QN	0.280	[1]	QN	0.180	<u>(II)</u>	Q.	(0210	(1)
Aroclor-1232	QN	0.270	70)[1]	_	NO ON	0.280)[1]	Q.	0.180	[1](N Q	0.210	(II)
Aroclor-1242	Ð	0.270	11 0	_	ND	0.280	<u>(E)</u>	QN	0.180	<u>=</u>	ND	(0.210	[:](
Aroclor-1248	Q	(0.270	70)[[]	_	ND Q	0.280	Ξ(QN ON	0.180)[<u>i</u>]	ND	(0.210)[1]
Aroclor-1254	QN	(0.270	70)[1]	_	ND	0.280) [I]	QN	(0.180	(E)	S	(0.210	<u>(</u>
Aroclor-1260	ON	0.270	70)[1]	_	ND	0.280	(11)	QN	0.180	<u>[I]</u>	QN	0.210	<u>[i]</u> (
Dieldrin	QN QN	0.220		_	NO	0.280	(11)	QN	0.180	(11	QN	(0.210	<u>[I]</u>
Endosulfan I	QN	0.220	(T) (D)	_	ND	0.280	[1](QN	0.180	[1]	Q	0.210	<u>[E]</u> (
Endosulfan II	QN ON	(0.2			N Q	0.280	[1](QN	0.180	(11)	QN	0.210	<u>(E</u>
Endosulfan sulfate	Ð	(0.270		_	ND	0.280)[1]	QN	0.180)[i]	QN	0.210	(11)
Endrin	QN	(0.270		_	ND QX	(0.280	<u>(II)</u>	QN	(0.180) [1]	ΩN	0.210)[i]
Endrin afdehyde	Q.	(0.270		_	S	(0.280	(1)	QN	0.180	[1](QN	0.210	[1]
Endrin ketone	ND	(0.270	70)[1]	_	<u>R</u>	0.280	(1)	QN	0.180)[1]	QN	0.210	[][
Heptachlor	QN	0.270	[1](0/	_	ND QN	0.280	<u>(</u>	QN	0.180)[1]	QN QN	0.210	<u>[]</u>
Heptachlor epoxide	ND	0.270	[1](0/	_	Q.	0.280	[](QN	0.180	[1]	QN	0.210)[1]
Methoxychlor	ND	0.220	70)[1]	_	ND	0.280	<u>=</u>	Q.	0.180	[1]	QN	(0.210)[]
Toxaphene	QN	(0270	(1)(0/		ND	(0.280	<u>(</u>	QN	(0.180	[1]	NO	(0.210) []]
alpha-BHC	Q.	0.270		_	S	0.280)[1]	QN	(0.180	<u>[i]</u>	Q	(0.210	(E)

Results of Organic Analyses For Round 1 Soll Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	P						
					Sample Id	T						
					Log Date	9						
				Beg.	Beg. Depth - End Depth (in.)	pth (in.)						
		DVCT			DVCT			DVCT			DVCT	
	Q	DVCT-S005			DVCT-SO06			DVCT-SO07			DVCT-SO07	
	NA-D	NA-DVCT-SO05-02	2	Z.	NA-DVCT-SO06-01	-01		NA-DVCT-SO07-01	10-		NA-DVCT-SO07-02	-02
Parameter	S	09-MAK-95 3-12			09-MAK-98 0-3			09-MAR-98 0-3			09-MAR-98 3-12	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	ug/kg)											
alpha-Chlordane	ND ON	0.270)[1]	0.900	0.280)[1]	Ð	0.180)[I]	QN QN	(0.210)[1]
beta-BHC	ND QN	0.270)[1]	Ä	0.280)[1]	æ	0.180	Ξ(£	0210	ΞΞ
delta-BHC	ND	0.270)[1]	Ð	0.280)[1]	Ω.	0.180)[1]	QX	0210	Ξ(
gamma-BHC(Lindane)	ND ON	0.270	(11)	Q.	0.280)[1]	Q.	0.180)[I]	QX	0210	[1]
gamma-Chlordane	ND	0.270)[1]	0.850	0.280)[1]	Q	0.180)[I]	N Q	0210	(E)
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	pounds (ug/kg)											
1,2,4-Trichlorobenzene	ND ON	55.0	(11)	ND	(56.0	(11)	ND	0'96')	(11)	QN QN	(43.0)[1]
1,2-Dichlorobenzene) QN	55.0)[1]	ND	(56.0	111	Q	(36.0	(1)	QN QN	(43.0	E)(
1,3-Dichlorobenzene	ON ON	55.0)[1]	Q.	(56.0)[1]	S	(36.0	(1)	NO ON	(43.0	(1)
1,4-Dichlorobenzene	QN QN	55.0	[1]	ND	(56.0	(1)	Ð	0.96.)	[1]	NO QN	(43.0	[1](
2,2'-oxybis(1-chloropropane)) QN	55.0	[]]	QN O	(56.0)[1]	Q.	0.96.)	(H)	QN	(43.0)[1]
2,4,5-Trichlorophenol	QZ QZ	55.0	(1)	ND Q	(56.0)[1]	Ð	0'96')	(E)	Q	(43.0	[1]
2,4,6-Trichlorophenol	Q.	55.0	(1)	Q.	(56.0	(1)	Ð	0.96.)	<u>(II)</u>	Q	(43.0	[1](
2,4-Dichlorophenol	ND QN	22.0	(E)	Ð	(56.0)[1]	Š	0.96.)	[1]	Q.	(43.0)[1]
2,4-Dimethylphenol	Q _N	55.0	(E) (QN QN	(56.0)[1]	Ω	(36.0	[1](QN	(43.0	[1](
2,4-Dinitrophenol	ON ON	55.0	<u>[I]</u>	ND Q	(56.0)[1]	ΩN	0.96.0	(H)	QN	(43.0)[1]
2,4-Dinitrotoluene) ON	55.0	<u>[E]</u> (QN	(56.0) <u>[i]</u>	QN	0.96.)) [E]	N QN	(43.0)[1]
2,6-Dinitrotoluene) QN	55.0	Ξ(ON	(56.0)[1]	QN	0'98')	(E)	Đ.	(43.0)[1]
2-Chloronaphthalene) QN	55.0	<u>(E</u>	Q	0.98))[1]	QZ Q	(36.0)[1]	Q.	(43.0)[1]
2-Chlorophenol) QN	55.0	[1]	ND	(56.0)[1]	Q.	(36.0	(1)	QN QN	(43.0)[1]
2-Methylnaphthalene	ON ON	55.0	[1]	ND	(56.0)[1]	QN Q	(36.0	(1)	S Q	(43.0)[1]
2-Nitroaniline	ON ON	55.0	[1]	2	(56.0	[1](Q.	0'96')	(11)	QN	(43.0)[1]

Not Detected NA = Not Applicable

0 = Detection Limit [] = Dilution Factor 1

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	3						
					Sample Id	<u> </u>						
				Beg	Log Date Beg. Depth - End Depth (in.)	ıte epth (in.)						
		DVCT			DVCT	·		DVCT			DVCT	
		DVCT-S005	10		DVCT-SO06	5		DVCT-SO07	ā	-	DVCT-SO07	٤
		NA-DVCT-S005-02 09-MAR-98	S-02		NA-DVCT-SO66-01 09-MAR-98	F-01		NA-DVCI-SOU/ 09-MAR-98	1	.	09-MAR-98	3
Parameter		3-12			0-3			0-3			3-12	
-											,	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	t. (ug/kg)					!	,		•	•	Ę
2-Nitrophenol	QN QN	(55.0)[1]	QN QN	(56.0)[1]	ON THE	36.0	Ξ.	2	(43.0	
3,3'-Dichlorobenzidine	QN	(55.0) [H]	ND	(56.0)[1]	ĝ	(36.0	<u>E</u>	Q	(43.0	[7] (
3-Nitroaniline	QN	(55.0)[1]	ND	(56.0)[1]	QN	0.96.)	E)(Q :	(43.0	Ξ
4,6-Dinitro-2-methylphenol	QN	(55.0	[1](Q.	(56.0)[<u>1</u>]	Q.	0'98'))[1]	Q.	(43.0	Ξį
4-Bromophenyl-phenylether	Q.	(55.0	(1)	Ð	(56.0)[1]	Q.	(36.0	<u>(E</u>	Q	(43.0	Ē
4-Chloro-3-methylphenol	QN QN	(55.0)[1]	Q	0.95))[1]	ΩN	(36.0) [<u>1</u>]	QV	(43.0	Ξ
4-Chloroaniline	QN QN	(55.0	[1](QN	(56.0)[1]	QN	(36.0)[1]	S	(43.0	<u>=</u>
4-Chlorophenyi-phenylether	QN	(55.0)[1]	QN	(56.0	(1)	ND	(36.0)[1]	Q	(43.0	Ξ
4-Nitroanaline	QN	(55.0)[1]	QN	(56.0)[1]	ΩN	(36.0)[1]	Q.	(43.0	Ξ
4-Nitrophenol	ND	(55.0	(11)	QN QN	(56.0)[1]	QN	0.96.))[1]	Q.	(43.0	Ξ
Acenaphthene	Q.	(55.0	[1](Q	(56.0)[1]	QN	(36.0	<u>[1]</u> (QN	(43.0	Ξ
Acenaphthylene	QN ON	(55.0	[1](ON	(56.0	(11)	ND	(36.0)[]]	QN Q	(43.0	Ξ
Anthracene	ΝΩ	(55.0)[1]	QN	(56.0)[1]	8	(36.0	<u>(1</u>	Q !	(43.0	Ξ
Benzo(a)anthracene	QN.	(55.0	<u>[i]</u> (Q	(56.0)[1]	OZ.	(36.0	E :	Q !	. (43.0	
Benzo(a)pyrene	QN QN	(55.0	(1)	ND Q	(56.0)[1]	Q	(36.0	<u>[</u>	Q :	(45.U	Ξ
Benzo(b)fluoranthene	QN	0.55.))[1]	QN QN	(56.0)[1]	QN	(36.0)[1]	Q I	(43.0	Ξ.
Benzo(g,h,i)perylene	S	(55.0	(11)	S	(56.0)[1]	QN Q	(36.0)[<u>1</u>]	QN	(43.0	Ξ
Benzo(k)fluoranthene	QN	(55.0)[1]	ON	(56.0)[1]	Q.	0.96.0)[1]	R	(43.0	Ξ
Butylbenzylphthalate	QN	(55.0	<u>E</u>](130	(56.0	(11)	S Q	(36.0)(11	QN	(43.0	Ξ.
Carbazole	QN	(55.0)[1]	Q	(56.0)[1]	S Q	0'96'))[1]	Q.	(43.0	Ξ
Chrysene	ND	(55.0	(1)	ND QN	(56.0)[1]	Q.	(36.0)[1]	Q.	(43.0	Ξ :
Dibenz(a,h)anthracene	ND	(55.0)[i]	QN	(56.0)[1]	Q.	(36.0)[1]	Q.	(43.0	Ξ
Dibenzofuran	QN	(55.0	(1)(R	(56.0	(1)	Q.	0'96')	(1)	Q	(43.0	Ξ

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

						Site Id	p						
						Location Id	ı Id						
						Sample Id	pi a						
						Log Date	Jate						
					ď	Beg. Depth - End Depth (in.)	Depth (in.)						
		_	DVCT			DVCT			DVCT				
		DV	DVCT-S005			DVCT-SO06	99		DVCT-SO07	_		DVCT.	
		NA-DV	NA-DVCT-SO05-02	-0 2		NA-DVCT-SO06-01	06-01		NA-DVCT-SO07-01	7-01		NA-DVCT-SO07-02	7-02
Parameter		5 63	3-12			09-MAK-98 0-3	•		09-MAR-98			09-MAR-98	
									3			71-5	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Sompounds, c	ont. (ug/	96										
Diethylphthalate	S	· •	55.0)[1]	Ð	(56.0)[1]	QX	0.36.0	III	Š	7	5
Dimethylphthalate	QN	~	55.0	[I]	<u>R</u>	(56.0	Ξ	Q.	36.0	ΞΞ	2 5	(43.0	Ξ
Fluoranthene	Ð	Ų	55.0)[1]	Ð.	(56.0	Ξ	Q.	(36.0	ΞΞ	2 5	0.54	Ξ
Fluorene	£	J	55.0	[1](Q N	(56.0	E](QN	(36.0	ΞΞ	Ž	43.0	Ξ
Hexachloro-1,3-butadiene	Q	Ú	55.0	[1]	QN	(56.0	(11)	QN QN	(36.0	ΞΞ	9 5	(43.0	ΞΞ
Hexachlorobenzene	2	Ų	55.0)[1]	ND	0'99')	[H]	QN	(36.0	ΞΞ	2	(430	ΞΞ
Hexachlorocyclopentadiene	Q) B	55.0	(13)	N Q	0'95))[II]	QN	36.0	Ξ	e e	0.54	ΞΞ
Hexachloroethane	S	Ü	55.0	[]	QN	(56.0	(1)	ND	(36.0	ΞΞ	2	(43.0	E
Indeno(1,2,3-cd)pyrene	2	Ü	55.0)[1]	QN Q	(56.0)[1]	QN	(36.0	Ξ	Q	(430	E
Isophorone	2	Ü	55.0)[1]	Q.	(56.0	[1](QN	(36.0	Ξ	2	(430	
N-Nitroso-di-n-propylamine	2 !	Ü	55.0	[1]	S D	(56.0	(11	Q.	(36.0	<u>(I)</u>	Q	(43.0	Ē
N-INITOSOdiphenylamine	2 9	Ü	55.0	Ξ,	Q !	(56.0	(11)	QN	0'98))[1]	ND	(43.0	ΞΞ
Nitrobenzene	<u> </u>	Ü	33.0	ΞĘ	2 9	56.0	Ξ;	2	(36.0	[1]	ND	(43.0	(E) (
Pentachlorophenol	2	ن ن	550	E (2 2	0.00.	<u>=</u> =	<u> </u>	(36.0	Ξ	Q	(43.0)[1]
Phenanthrene	Ð		55.0	E (9 5	0.000		9 9	36.0	Ξ,	Q :	(43.0) <u>[</u>
Phenoi	Ð		55.0	E =	2	360	ΞΞ	2 5	30.0	Ξ,	Q !	(43.0	(E)
Pyrene	Ð	Ü	55.0	ΞΞ	2	200	Ξ.	2 5	36.0	ΞΞ	2 5	(43.0	(E)
bis(2-Chloroethoxy)methane	Ð	Ü	55.0	Ξ(QN	(56.0	Ξ.	9 9	0.000	ΞΞ	2 9	(43.0	Ξ.
bis(2-Chloroethyl)ether	Ð	Ü	55.0)[I]	QN QN	(56.0	ΞΞ) <u> </u>	0.000)	ΞΞ	€ €	43.0	Ξ
bis(2-Ethylhexyl)phthalate	S	Ü	55.0)[I]	300	(56.0	<u> </u>	02.1	3,40	ΞΞ	, ,	45.0	Ξ,
di-n-Butylphthalate	Q	Ü	55.0)[1]	ND	(56.0	<u> </u>	Q	36.0	E 5	2	45.0	
di-n-Octylphthalate	QN	5	55.0	(1)	QN	(56.0	ΞΞ	g R	(36.0	ΞŒ	9 9	(430	Ξ
									•		<u>!</u>	200	<u>-1</u>

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Location Id									
							Sample Id									
							Log Date	a)								
					Ã	eg. Dept	Beg. Depth - End Depth (in.)	th (in.)								
			DVCT				DVCT				DVCT				DVCT	
		I NA-I	DVCT-S005 NA-DVCT-S005-02	23		D'NA-D'	DVCT-SO06 NA-DVCT-SO06-01	10		NA-	DVCT-S007 NA-DVCT-S007-01	#		D NA-D	DVCT-SO07 NA-DVCT-SO07-02	7
Parameter		.	09-MAR-98 3-12			\$	09-MAR-98 0-3			_	09-MAR-98 0-3	·		2	09-MAR-98 3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	mpounds, c	ont. (u	g/kg)													
o-Cresol	Q.		(55.0)[1]	ΩN)	0.95)	[1](ND		(36.0	(1)	QN	_	43.0)[1]
p-Cresol	S		(55.0)[1]	QN)	(56.0)[1]	QN		(36.0	[1]	QN	_	43.0	[1]
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	202		0971)	(1)	346	`	002:0)[1]	7.72		(1.30)[1]	7.66		1.00	(E)
1,2,3,4,6,7,8,9-OCDF	7.90	_	(1.40)[1]	21.7)	0.600)[1]	1.80	_	(1.10)[1]	6.20	_	0.900	<u>(E)</u>
1,2,3,4,6,7,8-HpCDD	15.6		(120)[1]	35.7)	0.500	(1)	2.70	-	006:0)[1]	10.8	_	0.700)[1]
1,2,3,4,6,7,8-HpCDF	6.30		00800	Ξ	21.9	_	0300	[1](2.20	,	009'0)	(1)	06'9	_	0.400)(II)
1,2,3,4,7,8,9-HpCDF	Q.		(1.10	(E)	3.70	·	0.500)[I]	ND		0.800)(1	0.750	_	0.600)[1]
1,2,3,4,7,8-HxCDD	Ð		(1.00)[1]	1.10) (0.400	(1)	ΩN		009:0)	<u>(</u>	ND	_	0.500)[1]
1,2,3,4,7,8-HxCDF	2.50	- ,	009'0))[1]	8.90	J	0.300)[1]	0.970	_	0.500) [I]	2.80	_	0.400)[1]
1,2,3,6,7,8-HxCDD	2.40	_	00'1))[1]	3.10) f	0.400	[1]	Q.		00900)	(11)	1.10	_	0.500)[1]
1,2,3,6,7,8-HxCDF	1.30	- ,	009:0	[1]	4.10	·	0.300	[1]	QN		0.400)[1]	1.30	_	0.400)[I]
1,2,3,7,8,9-HxCDD	8.20		(1.00)[1]	4.20	ſ	0.400	[1]	QN		009:0	(11)	3.30	_	0.500)[I]
1,2,3,7,8,9-HxCDF	Ð		0.800	<u>[]</u>	092'0	, ,	0.400	<u>[i]</u>	ΩN		00900	[1]	Q		0.500	<u>(II)</u>
1,2,3,7,8-PeCDD	2.00	_	002:0) <u>[1]</u>	1.00	·	0.300	<u>[I]</u>	Q		0.400	[1]	1.20	_	0.800	. [1](
1,2,3,7,8-PeCDF	1.20	_	0.500	(11)	1.90	·	0.300	[1]	NO		0.400)[1]	0.870	_	0300)[1]
2,3,4,6,7,8-HxCDF	1.58	-	00200	(11)	9.40	_	0.400	<u>[E]</u>	0.880	_	0.500	[1]	2.20	_	0.400) [I]
2,3,4,7,8-PeCDF	1.40	_	0.500	(11)	3.10	· ·	0.300)[1]	QN		0.400)[1]	1.40	_	0.400	(11)
2,3,7,8-TCDD	Q		00500	[1]	ΩN	Ŭ	0.300	<u>[I]</u>	NON		0.400	[1]	ΩN	_	0300)[1]
2,3,7,8-TCDF	1.30		009:0)	[1]	1.80	`	0.700	<u>E</u>	0.690	_	0.300)[1]	1.20	_	0200)[1]
Total HpCDD	33.4		(120	[1]	72.6	~	0.500)[<u>1</u>]	6.10		(0.900	[1]	24.0	Ŭ	002:0)[1]
Total HpCDF	12.0		0.900	(E) (45.9	~	0.400)[1]	2.20		0.700)[1]	11.4	•	0.500	[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	PI						
					Sample	PI.						
					Log Date	ate						
				æ	Beg. Depth - End Depth (in.)	epth (in.)						
		DVCT			DVCT			DVCT			DVCT	
		DVCT-SO05	Ñ		DVCT-SO06	\		DVCT-S007			DVCT-SO07	
		NA-DVCT-SO05-02 09-MAR-98	15-02 i		NA-DVCT-SO06-01 09-MAR-98	6-0 1		NA-DVCT-SO07-01 09-MAR-98	<u></u>		NA-DVCT-SO07-02 09-MAR-98	4
Parameter		3-12			0-3			6.3			3-12	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	33.6	(1.00	(E] (34.4	0.400)[1]	2.00	009'0)	[1](16.7	0.500)[E]
Total HxCDF	13.4	00.700	(E)	56.1	0.300	(1)	3.40	(0.500	(11)	12.1	0.400	Ξ(
Total PeCDD	4.70	00.700	· [<u>E]</u> (11.8	0.300)[:]	0.830	0.400	[I](5.60	0.800) [E]
Total PeCDF	9.80	0.500	(E)	44.1	0300)[]]	0.850	0.400	(11)	13.0	0.400	E)(
Total TCDD	3.40	0.500	[1](16.1	0300	(1)	0.810	0.400	(1)	4.50	0.300	<u>=</u>
Total TCDF	23.5	0.400	[1]	41.3	0.200	(1)	0.690	0.300	(1)	17.6	0000))[1]
TOC (mg/kg)												
Total Organic Carbon	NA			12800	868))[1]	NA			NA		

					Site Id				ı			
					Location Id	_						
					Sample Id	_						
					Log Date	a)						
				Beg.	Beg. Depth - End Depth (in.)	oth (in.)						
		DVCT			ELEM			ELEM			ELEM ET EM-SOR?	
	L	DVCT-SO08 NA-DVCT-SO08-01 09-MAR-98	10	<i>E</i> 4	ELEM-SO01 NA-ELEM-SO01-01 08-MAR-98	10		ELEM-SO01 NA-ELEM-SO01-02 08-MAR-98	2 2	6	NA-ELEM-SO02-01 08-MAR-98	10
Parameter		0-3			0-3		Ē	3-12			5	
OLM03.2 - Pesticides and PCBs (ug/kg)	g/kg)					;	!	400		C X	00100	1111
4,4'-DDD	QN	0.220	[1]	Q	0.170	E ?	o i	0.180		2 5	0.190	E (
4,4'-DDE	12.0	0.220)[1]	Q	0.170	(11)	2 4	0.190	ΞΞ	2 5	00100	
4,4'-DDT	17.0	(0.220)[1]	QN	0.170	E :	Q :	0.180		9 9	0110	
Aldrin	ΩN	0.220)[1]	2	0.170)[1]	<u>Q</u> !	0.180		2 5	00100	ΞΞ
Aroclor-1016	QN	0.220)[1]	QN QN	0.170)[<u>[]</u>	Q	0.180	<u> </u>	9 9	0.150	3 5
Aroclor-1221	QN	0.220	[<u>i]</u> (QN	0.170)[1]	Ω	0.180	[1]	Q į	0.190	ΞΞ
Aroclor-1232	QX	0.220)[1]	Q.	0.170)[1]	Q	0.180	[1]	2 9	0.010	ΞΞ
Aroclor-1242	QN	(0.220)[1]	QN	0.170)[1]	Q	0.180	[1]	Q ;	0.190	ΞΞ
Aroclor-1248	QN	0.220)[I]	ND	(0.170	Ξ	Q !	0.180	Ξ,	2 5	0.190	3 5
Aroclor-1254	QN QN	0.220	(1)	ND QN	0.170	Ξ	<u>Q</u> !	0.180	Ξ.	2 2	06.19 01.19	E (
Aroclor-1260	QN	0.220)[1]	Q.	0.170	Ξ;	Q (0.180		9 5	0610	Ξ
Dieldrin	ΩN	0.220	<u> </u>	Q	0.170	Ξ,	2 9	0.160	ΞΞ	e e	(0.190	E (
Endosulfan I	QN QN	0.220	= :	<u>Q</u> :	0.170	Ξ,	2 5	0.100	7E)	Q Q	(0.190	Ξ
Endosulfan II	ΩN	0.220	E :	2 1	0.170	E)	S S	0.180	E (2	(0.190	Ξ
Endosulfan sulfate	Q	0.220	[1]	S N	0.170		} {	0810		9	(0.190) <u>(</u>
Endrin	QX	0.220	EI (0.170	(E)	2	0.180		S	0.190)E
Endrin aldehyde	ON ON	0220	(E)	Q.	0.170	Ξ,	9 9	00100	E	Z	(0.190) [I]
Endrin ketone	QN	0.220)[1]	QN Q	0.170	[1]	Q !	0.190	ΞΞ	9 5	0610	
Heptachlor	Q	0.220)[1]	QN	(0.170	(1)	2 :	0.180		9 5	0110	E (
Heptachlor epoxide	QN QN	0.220	(11)	Q.	0.170	[1]	2 !	0.180	Ξ	9 5	0010	Ξ
Methoxychlor	QN	0.220) [1] [1]	Q.	0.170	E) (2 !	0.180	ΞΞ	2 5	0.190	Ξ
Toxaphene	Ð	0.220) [I]	Q.	0.170	E1 (Q !	0.180	Ξ,	2 5	0610	ΞŹ
alpha-BHC	QN	0.220	[1]	g	0.170)[<u>i</u>]	Q N	0.130	fr1 (į		,

	ELEM ELEM-S002 NA-ELEM-S002-01 08-MAR-98 0-3
	ELEM ELEM-SO01 NA-ELEM-SO01-02 08-MAR-98 3-12
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ELEM.SO01 NA-ELEM.SO01-01 08-MAR-98 0-3
	DVCT DVCT-S008 NA-DVCT-S008-01 09-MAR-98 0-3
	Parameter

OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)											
alpha-Chlordane	QN QN	0.220) [1]	QN	(0.170	111	Č	0 100	3			
beta-BHC	ND QN	0.220)[1]	QN	(0.170	ΞΞ	2 2	0.180	Ξ:	Q	0.190	(E)
delta-BHC	QN QN	0.220	Ξ	Q	(0.170	ΞΞ	2 5	0.180	Ξ.	Q	0.190	<u>[i]</u>
gamma-BHC(Lindane)	QN QN	0220	(1)	N Q	(0.170	E =	2 5	0.180	(E) (Q !	0.190	<u>(E)</u>
gamma-Chlordane	8	0.220	(1)	Q	0.170	E (2 2	0.180	<u> </u>	8 8	0.190	E (
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	apounds (ug/kg)											(F) (
1,2,4-Trichlorobenzene	QN	0.44	[1]	QN	(350	1111	Ę		į			
1,2-Dichlorobenzene	QN	(44.0	[H]	QX	350	107	9 9	0.70	Ξ;	Q.	(37.0	Ξ
1,3-Dichlorobenzene	ND	0.44	Ξ(Q	(350	E E	<u> </u>	37.0	Ξ;	2	(37.0) [1]
1,4-Dichlorobenzene	ND	(44.0	E	2	(350	ΞΞ	2 £	37.0	Ξ.	QN Q	(37.0	(1)
2,2'-oxybis(1-chloropropane)	QN QN	0.44.0	Ξ(2	(350	E 5	3 6	37.0	Ξ.	Q.	(37.0	<u>(</u>
2,4,5-Trichlorophenol	QN QN	(44.0	ΞΞ	Q	350	ΞΞ	2 2	(37.0	Ξ;	S	(37.0	<u>(</u>
2,4,6-Trichlorophenol	NO NO	(44.0	Ξ	Q.	(350	E	2 5	37.0	<u>=</u> :	Q :	(37.0)[1]
2,4-Dichlorophenol	ND QN	0.44	(1)	Q2	(350	ΞΞ	2 5	(37.0	Ξ,	Q :	(37.0) [II]
2,4-Dimethylphenol	N Q	(44.0	Ξ(QN	(350	E 5	9 €	0.75	<u> </u>	2 !	0.75	(1)
2,4-Dinitrophenol	QN Q	(44.0	<u>(1)</u>	Q.	(35.0	£ [2	37.0	Ξ	Q !	(37.0	<u>(</u>
2,4-Dinitrotoluene	ND ON	(44.0)[1]	QZ QZ	(35.0		9 5	37.0	Ξ,	Q !	(37.0	<u>=</u>
2,6-Dinitrotoluene	S	(44.0)[1]	Q.	(35.0		9 8	0.75	Ξ,	Q !	(37.0	(E)
2-Chloronaphthalene	ND	0.44) [E]	Q	(350	E	9 9	0.76	Ξ.	Q	(37.0	Ξ
2-Chlorophenol	ND ON	0.44.0	ΞΞ	2	(350	E	2 9	0.75	ΞΞ.	Q.	0.75	Ξ(
2-Methylnaphthalene	QN	0.44.0	Ξ	2	(35.0		9 5	37.0	Ξ,	Q :	37.0) <u>[</u>
2-Nitroaniline	QN Q	(44.0	(1)	ND Q	(35.0	Ξ(<u>8</u>	0.75)	<u> </u>	<u> </u>	(37.0	ΞX
											?	(-1)

20

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id Location Id Sample Id	Id id						
				Beg.	Beg. Depth • End Depth (in.)	epth (in.)						
		DVCT			ELEM			БІЕМ			BLEM	
		DVCT-SO08 NA-DVCT-SO08-01	8 8-01		ELEM-SO01 NA-ELEM-SO01-01	1 1-01		ELEM-SO01 NA-ELEM-SO01-02	-05	_	ELEM-SO02 NA-ELEM-SO02-01	1 9
Parameter		09-MAR-98 0-3			08-MAR-98 0-3			08-MAK-98 3-12			08-MAK-98	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, con	at. (ug/kg)							!	!		Ş
2-Nitrophenol	Ñ	0.44.0	[1]	QN	(35.0	<u>=</u>	<u>Q</u> :	(37.0	<u>[1]</u>	2 :	370	Ξ.
3,3'-Dichlorobenzidine	e E	44 .0	<u>(</u>	Q	(35.0	Ξ	Q N	(37.0)[<u>1</u>]		0.75	Ξ.
3-Nitroaniline	QN	0.44.0)[1]	S Q	(35.0) [H]	Q.	(37.0)[1]	Q	(37.0	Ξ
4,6-Dinitro-2-methylphenol	Q.	(44.0)[1]	Q.	(35.0) <u>[1]</u>	QN	. (37.0)[i]	Q.	37.0	Ξ
4-Bromophenyi-phenylether	QN	0.44))[1]	QN	(35.0)[1]	ΩŽ	(37.0)[<u>1</u>]	N N	(37.0	Ξ
4-Chloro-3-methylphenol	ND QN	0.44.0) [1]	ND	(35.0	111	Q.	0.75)[1]	N O	(37.0	Ξ
4-Chloroaniline	QN	0.44.0)[1]	Q	(35.0)[1]	Q	(37.0)[1]	Q.	(37.0	Ξ
4-Chlorophenyl-phenylether	ND	(44.0)[1]	QN	(35.0) [1]	QN	(37.0) [E]	S S	(37.0	Ξ
4-Nitroanaline	QN	(44.0)[1]	QN	(35.0)[1]	ΩN	0.75) <u>[1]</u>	Ê	(37.0	Œ
4-Nitrophenol	N Q	0.44))[1]	ΩN	(35.0)[1]	Q	0.75)[1]	ND	(37.0	<u>=</u>
Acenaphthene	ND	(44.0)[1]	ND	(35.0	(1)	S	(37.0	<u>[1]</u>	QN Q	(37.0	Ξ
Acenaphthylene	N Q	(44.0)[1]	ND	(35.0	Œ	Q.	(37.0) [E]	Q	37.0	Ξ
Anthracene	ΩN	0.44.0)[1]	ΩN	(35.0)[1]	Q.	(37.0)[1]	Q I	(37.0	E :
Benzo(a)anthracene	ON	(44.0	(13)	N Q	(35.0)[1]	R	(37.0	Ξ	Q !	(37.0	Ξ
Benzo(a)pyrene	Q.	(44.0)[1]	<u>R</u>	(35.0	[1]	Q Q	(37.0)[1]	2	0'22')	Ξ.
Benzo(b)fluoranthene	Q	(44.0)[1]	ND	(35.0)[1]	Q Q	(37.0)[1]	Q Q	(37.0	<u>(</u>
Benzo(g,h,i)perylene	ON	(44.0)[1]	Q	(35.0)[1]	Q.	(37.0) [I]	N Q	0.75	Ξ
Benzo(k)fluoranthene	Q.	0.44)[1]	Ð	(35.0)[1]	Q.	(37.0) [I]	Q.	0.75	Ξ
Butylbenzylphthalate	QN	0.44.0	(11)	N Q	(35.0)[1]	Q.	(37.0)[1]	QN QN	(37.0	<u>=</u>
Carbazole	Q.	(44.0)[1]	ND	(35.0	(11)	QN	(37.0)[1]	Q Q	(37.0	Ξ
Chrysene	Q.	(44.0)[1]	ON	(35.0	[1](Ø	(37.0)[1]	Q.	(37.0	Ξ
Dibenz(a,h)anthracene	ND	(44.0	[1]	N Q	(35.0)[1]	Q.	0.75)[1]	Q.	(37.0	Ξ
Dibenzofuran	Ð	(44.0)[1]	Q.	(35.0	E](<u>R</u>	(37.0	<u>(E)</u>	Q	(37.0) [E]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id							
					Location Id	12						
					Sample Id	PI						
				ğ	Log Date Rec Dorth Find Donth (m.)	ate bowth (fm.)						
				S	e: Depui - Laud D	veptu (un.)						
		DVCT			ELEM			ELEM			ELEM	
		DVCT-SO08 NA-DVCT-SO08-01	8 8-01		ELEM-SO01 NA-ELEM-SO01-01	11 11-01		ELEM-SO01 NA-ELEM-SO01-02	1 1-02		ELEM-SO02 NA-ELEM-SO02-01	12-01
Parameter		09-MAR-98 0-3	_		08-MAR-98 0-3	_		08-MAR-98 3-12			08-MAR-98 0-3	
OI.MO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	: Cempounds, cen	at. (ug/kg)										
Diethylphthalate	QN	(44.0	(E)	47.0	(35.0	(1)	QN	(37.0)[1]	Ē	041	1111
Dimethylphthalate	QN	(44.0	[1](Q.	(35.0	(1)	ND	(37.0	E (2	(37.0	ΞΞ
Fluoranthene	Q.	(44.0	[1](NO	(35.0	(E] (QN	(37.0	Ξ	QN QN	(37.0	
Fluorene	QN Q	(44.0	(1)	NO	(35.0	[E](QN	(37.0	<u> </u>	Q	(37.0	ΞΞ
Hexachloro-1,3-butadiene	S	(44.0	[1]	QN	(35.0	[I](QN	(37.0	Ξ(S	(37.0	ΞΞ
Hexachlorobenzene	Q Q	(44.0	(E]	QN	(35.0	(11)	QN Q	(37.0	Ξ(ND	(37.0	ΞΞ
Hexachiorocyclopentadiene	Q :	4 .0) [1]	Ω Q	(35.0	(E)	Ä	(37.0	(11)	QN	(37.0	ΞΞ
Hexachloroethane	2	(44.0	Ξ.	Q.	(35.0	[<u>:]</u>	QN Q	(37.0	(1)	ND	(37.0	Ξ
Indeno(1,2,3-cd)pyrene	윤	(44.0	<u>[]</u>	Q	(35.0	[1]	QN	(37.0	<u>(1</u>	N QN	37.0	E (
Isophorone	ND	(44.0	<u>[]</u>	QN	(35.0	<u>(II</u>	ΩN	(37.0	<u>[</u>](ND	(37.0	E (
N-Nitroso-di-n-propylamine	Q	(44.0	[1]	Q.	(35.0	(11)	Q.	(37.0	<u>[i]</u> (ND	(37.0	ΞΞ
N-Nitrosodiphenylamine	€ 9	(44.0	<u>(1</u>	QN Q	(35.0	(H)	QN QN	(37.0	(1)	ND	(37.0	Ξ
Nitotono	2 9	0.44.0	Ξ ;	Q ;	(35.0	<u>(</u>	Q Q	(37.0	(1)	QN Q	(37.0	(E)
Nitropenzene Dantochlomorkoo	2 9	24. 3	Ξ.	Q !	(35.0	Ξ	ND	(37.0	<u>[i]</u> (N	(37.0	Ξ(
renaciiophenoi	2 9	0.44)	Ξ.	Q.	(35.0	<u>(E)</u>	Q.	(37.0)[1]	Q	(37.0)[<u>1</u>]
richantirene	Q !	0.4	E ·	Q	(35.0	Ξ	Q.	(37.0	[1]	Q	(37.0	(II)
rhenor	Q :) 0. 4	<u>(E)</u>	Q.	(35.0)[1]	Q.	0.75)[1]	Q.	0.72	(II)
Pyrene	Q) 44.0)[1]	S	(35.0	Ξ	Q.	0.75)[1]	QN	(37.0	Ξ
bis(2-Chloroethoxy)methane	Q	(44.0) <u>[1]</u>	Q.	(35.0)[1]	Q	(37.0)[1]	N	(37.0	
bis(2-Chloroethyl)ether	g	, 44.0)[1]	ND	(35.0	(1)	QN	(37.0	(E)	S	(37.0	Ξ
bis(2-Ethylhexyl)phthalate	460	4.0	(<u>i</u>	210	(35.0)[1]	65.0	(37.0)[1]	240	(37.0	Ξ
di-n-Butylphthalate	200	0.44.0)[1]	ND	(35.0	<u>[1]</u> (QN	(37.0	Ξ(Q	37.0	ΞΞ
di-n-Octylphthalate	54.0	(44.0	(1)	ND	(35.0	(11)	QN QN	(37.0	ΞΞ	£	(37.0	
											!	

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					ELEM	ELEM-S002	NA-ELEM-SO02-01	08-MAR-98	0-3
					BLEM	ELEM-SO01	NA-ELEM-SO01-02	08-MAR-98	3-12
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	ELEM	ELEM-SO01	NA-ELEM-SO01-01	08-MAR-98	0-3
					DVCT	DVCT-SO08	NA-DVCT-SO08-01	09-MAR-98	0-3
						,			Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	t. (ug/kg)		Ş	!		4	5	!			į	!			;
o-Cresol	Q N) 44.0	ð.	[1]	QN O		33.0)[]]	QZ		(37.0	Ξ	S		(37.0) <u>[1]</u>
p-Cresol	Q.	(44.0	Ġ)[1]	Ð		(35.0)[1]	QN Q		(37.0	(1)	<u>N</u>		(37.0	(11)
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-0CDD	713	(2.30	æ	(1)	16.4	B	0.500)[1]	57.1	-	0.000)[1]	26.1	_	0.400	(11)
1,2,3,4,6,7,8,9-OCDF	81.7	(2.00	99	(1)	5.90	-	0.400)[1]	66.4		0.500	<u>[1]</u> (2.50	ŗ	0300)[1]
1,2,3,4,6,7,8-HpCDD	117) 1,	1.40)[]]	3.20	B	0.400)[1]	18.8	_	0.500	[1]	3.70	B	0300	[1](
1,2,3,4,6,7,8-HpCDF	86.4	°0 >	0.800)[1]	6.10		00:00))[1]	43.4		0300	(1)	3.30	BJ	0.200)[1]
1,2,3,4,7,8,9-HpCDF	12.8	71 >	1.20)[1]	1.20	-	0.500)[1]	12.7		0.500)[1]	8		0.300	<u>[i]</u> (
1,2,3,4,7,8-HxCDD	4.50 J);)	1.00	([]	S	5	00:00)[1]	£	5	(1.10)[1]	QN		0.300	<u>[i]</u> (
1,2,3,4,7,8-HxCDF	35.8))	0.600) <u>[1]</u>	2.80	-	0000)	[1]	21.7		0.400)[I]	0.970	-	0.200	[1]
1,2,3,6,7,8-HxCDD	12.9); `	1.00	(11)	0.440	-	0.300	[1]	2.60	_	0.400	(1)	Ð		0.200	<u>(</u>
1,2,3,6,7,8-HxCDF	16.2	ŏ `	0.600	(1)	130	B	00300	[1]	7.90		0.300)[1]	0.490	-	0.200	[1]
1,2,3,7,8,9-HxCDD	14.9);)	1.00	[1]	0.500	_	00300	[1]	2.90	-	0.400)[1]	Ð		0.200	[1]
1,2,3,7,8,9-HxCDF	2.20 J))	0.900)[1]	QN QN		0.400	<u>(II)</u>	2.10	-	0.500	(11)	QN		0.300	<u>(</u>
1,2,3,7,8-PeCDD	5.50	.i.	0.700)[1]	Q.		0.400	<u>(1</u>	1.10	_	0.500	(1)	Q		0.200	(Ξ)
1,2,3,7,8-PeCDF	6.30	;;)	0.500)[1]	0.810	_	0.400	<u>(E)</u>	7.20		0.400)[1]	Q.		0.300)[I]
2,3,4,6,7,8-HxCDF	36.1) (0.800)[1]	2.60	B	0.300	Ξ(8.01		0.400)[1]	1.10	B	0.200	(E)
2,3,4,7,8-PeCDF	13.3	;;)	0.500	[1]	0.950	_	0.400	<u>(</u>	2:00	-	0.400)[1]	0.370	-	0.300	(E)
2,3,7,8-TCDD	QN	ŏ `	0.400)[1]	2		0.400	<u>[]</u>	QN		0.400)[1]	QN		0.300	<u>[I]</u>
2,3,7,8-TCDF	4.20	0.0900	909	[1]	0.540	_	0.200) <u>[</u>	4.90		0.400	(1)	0.170	-	0.0700	(11)
Total HpCDD	229	01.40	8	[1]	09'9		0.400) [E]	36.1		0.500)[1]	8.90		0300	(1)
Total HpCDF	166	(1.00	8)[1]	9.40		0.400	(E)	78.5		0.400	<u>(E)</u>	5.60		0300)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Parameter		E NA-I	DVCT DVCT-SO08 NA-DVCT-SO08-01 09-MAR-98 0-3	10	ш.	Site Id Location Id Sample Id Log Date Log Date ELEM ELEM-SO01 NA-ELEM-SO01-01 08-MAR-98 0-3	Id Id ate epth (in.) 1 1-01		ELEM ELEM-SO01 NA-ELEM-SO01-02 08-MAR-98 3-12	29- 1		ELEM ELEM-SO02 NA-ELEM-SO02-01 08-MAR-98 6-3	2-01
SW8296 - Dioxins, cont. (ppt) Total HxCDD Total HxCDF Total PeCDD Total PeCDF Total TCDD Total TCDF Total TCDF	161 215 633 216 3330 J 284 NA	.	(1.00 (0.700 (0.500 (0.400 (0.300		4.70 13.0 0.680 9.70 1.90 3.50	(0.300 (0.400 (0.400 (0.400 (0.300		25.2 78.4 10.7 57.5 12.6 32.6	(0.400 (0.400 (0.400 (0.400		2.80 3.80 0.610 3.20 0.480 1.10	(0.200 (0.200 (0.200 (0.300 (0.300 (0.300	

					55	Site Id								
					Loca	Location Id								
					San	Sample Id								
					Z	Log Date								
				Beg	Beg. Depth - End Depth (in.)	nd Depth (î	n.)							
		ELEM			ELEM	×			E	ELEM			ELEM	
		ELEM-SO02	•		ELEM-SO03	SO03			BLE	ELEM-SO03			ELEM-SO04	
	NA-ELI	NA-ELEM-SO02-11 Dup of NA-ELEM-SO02-01	up of 01		NA-ELEM-SO03-01	SO03-01			NA-ELE	NA-ELEM-SO03-02		Z	NA-ELEM-SO04-01	=
		08-MAR-98			08-MAR-98	R-98			W-80	08-MAR-98			08-MAR-98	
Parameter		0-3			0-3				3-12	23			0-3	
OLMU3.2 - Pesticides and PCBS (ug/kg)	S S	(0.190)1111	120	(2.20		[10]	140	0	0.460	[2]	QN	0.210	(11)
4.4-DDE	Q.	0.190	E (39.0	0.220		.,	29.0	0	0.460	[2]	2.50	(0210)[1]
4.4'-DDT	QN QN	(0.190	Ξ	47.0	(0.220			64.0	0)	0.460	[2]	3.10	0.210	[1]
Aldrin	Q.Z	0.190	(E)	Q.	0220	(1)(0)	1]	Q	0)	0.460	[2]	Q.	0.210)[1]
Aroclor-1016	N QN	0.190)[1]	NO	(0.220	20)[1]	=	N	0)	0.460	[2]	QN	(0.210) [E]
Aroclor-1221	ND	0.190)[1]	N Q	0.220		1]	QN Q	0	0.460	[2]	ND	(0210	(11)
Aroclor-1232	ND	0.190)[<u>i</u>]	Q.	0.220		1]	Q	0	0.460	[2]	QN Q	(0.210	<u>(</u>
Aroclor-1242	ND	0.190	<u>[1]</u>	Q	(0.220	(11) 02	1]	S	0	0.460	[2]	QN QN	0.210	<u>(</u>
Aroclor-1248	QN	0.190	<u>[]</u>	S	0.220	20)[1]	1]	S	0	0.460	[2]	Q.	(0.210	Œ
Araclor-1254	ND	0.190	(11)	N QN	0.220	20)[1]	1]	N Q	0)	0.460	[2]	42.0	(0210) [[1]
Aroclor-1260	ND	0.190	(1)	Q.	(0.220	20)[1]	1]	N N	0	0.460	[2]	Q	(0210) [<u>ii</u>]
Dieldrin	ND	0.190	[1]	QN	(0.220	(1)(07	1]	Q.	0	0.460	[2]	Q Q	0.210	Ξ(
Endosulfan I	ND	0.190	[1]	QN	0.220		(11)	Q	0	0.460	(2]	Q.	0210	Ξ
Endosulfan II	ND	0.190	[1]	QN ON	0.220		[1]	Q.	0	0.460	[2]	S S	0.210)[]]
Endosulfan sulfate	ND	0.190)[1]	NO ON	(0.220		[1]	Q	<u></u>	0.460	[2]	Q.	(0.210	<u>=</u>
Endrin	ND	0.190	<u>[E]</u> (QN	(0.220		[1]	Ð	0	0.460	[2]	Q	0.210	Ξ
Bndrin aldehyde	Q.	0.190	<u>E</u>](QN	0.220		[1]	ND	0	0.460) [2]	ND	0.210) []
Endrin ketone	ND	0.190)[<u>[</u>]	QN QN	0220	, ,	[1]	R	0	0.460	[2]	ΩN	(0.210)[1]
Heptachlor	ND	0.190	(1)	11.0	J (0.220		· [H]	41.0	0	0.460	[2]	ND	0.210) [<u>1</u>]
Heptachlor epoxide	NO ON	0.190)[1]	ON	0.220		[1]	QN.	0	0.460	[2]	QN	0.210	Ξ
Methoxychlor	QN	0.190)[1]	ΩN	0.220		[1]	QN	<u> </u>	0.460	[2]	Q	0.210) <u>[</u>
Toxanhene	NON	0.190	[<u>[</u>](QN	0.220		[1]	QN)	0.460	<u>[2]</u>	ΩN	0.210) <u>[</u> []
alpha-BHC	ON ON	(0.190	(1)	ND	(0.220		[1]	Q.)	0.460)[2]	N Q	(0.210)[i]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id							
					Location Id	Id						
					Sample Id	2						
					Log Date	ite						
				Beg	Beg. Depth - End Depth (in.)	epéh (in.)						
		ELEM			BLEM			ELEM			ELEM	
		ELEM-SO02			ELEM-SO03	•		ELEM-SO03			ELEM-SO04	
	NA-EI	NA-ELEM-SO02-11 Dup of NA-FLEM-SO02-01	up of 101		NA-ELEM-S003-01	3-01		NA-ELEM-SO03-02	3-02	~	NA-ELEM-S004-01	5
	•	08-MAR-98	;		08-MAR-98			08-MAR-98			08-M A D.09	
Parameter		0-3			0-3			3-12			0-3	
OLM03.2 - Pesticides and PCBs, cont.	(ug/kg)											
alpha-Chlordane	Q.	0.190	[i](220	(2.20)[10]	370	(4.60	[20]	S	(0210)111
beta-BHC	Q.	0.190)[1]	QN	(0.220)[1]	ND	0.460	[2]	Q	(0.210	
delta-BHC	Ð	0.190	[II]	ND QN	(0.220)[1]	N QN	0.460	<u> </u>	QN QN	(0.210	E (
gamma-BHC(Lindane)	Ð	0.190)(11]	Q.	(0.220)[1]	ON O	0.460	[2]	Q	(0.210	ΞΞ
gamma-Chlordane	S	0.190)[1]	220	(220	[10]	420	(4.60) [20]	Q.	(0.210	Ξ
JLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	H/gu) spunodu	9										
1,2,4-Trichlorobenzene	QN Q	0.75)[1]	N ON	(45.0	(1)	QN QN	(46.0	(1)	ND	(43.0)[[]
1,2-Dichlorobenzene	Ð	(37.0)[1]	N Q	(45.0)[1]	QN QN	(46.0	(11)	S	(43.0	ΞΞ
1,3-Dichlorobenzene	ΔN	(37.0)[1]	QN O	(45.0)[1]	N QN	(46.0)[1]	QN	(43.0	Ξ
1,4-Dichlorobenzene	Ω	(37.0) <u>(</u>	N Q	(45.0	Ξ(Q	(46.0)[1]	Q	(43.0	(E)
2,2'-oxybis(1-chloropropane)	£	(37.0	(11)	Q.	(45.0	[1]	2	(46.0)[1]	ND	(43.0	Ξ(
2,4,5-Trichlorophenol	Q Q	(37.0	[][Q.	(45.0	[I]	Q	(46.0)[1]	N Q	(43.0	(E)
2,4,6-Trichlorophenol	2	(37.0	<u>=</u>	S	(45.0	<u>(II)</u>	Q.	(46.0)[1]	N Q	(43.0)[1]
2,4-Dichlorophenol	Q !	(37.0	<u>(E)</u>	QN QN	(45.0	(11)	B	(46.0) [1]	Q	(430)[1]
2,4-Dimethylphenol	S S	(37.0	Ξ	ND	(45.0	[E]	ND O	(46.0)[1]	Ð	(43.0) [E]
2,4-Dinitrophenol	Q.	(37.0	<u>E</u>	Š	(45.0	<u>(I</u>	N Q	(46.0)[1]	Q.	(43.0)[1]
2,4-Dinitrotoluene	Š	(37.0	Ξ	Q.	(45.0	Ξ	S C	(46.0)[1]	QN	(43.0) E
2,6-Dinitrotoluene	NO ON	(37.0	<u>[1]</u>	N Q	(45.0	[1] (S	(46.0	(11)	QN QN	(43.0)[1]
2-Chloronaphthalene	S Q	(37.0	(1)	Q	(45.0	[]	N Q	(46.0	<u>[1]</u> (ND QN	(43.0	<u>(</u>
2-Chlorophenol	N Q	0.75)[1]	R	(45.0	(1)	N Q	(46.0)[I]	QN QN	(43.0)[1]
2-Methyinaphthalene	Š	(37.0	(E)	ND	(45.0	(1)	75.0	(46.0)[1]	QN QN	(43.0	EI (
2-Nitroaniline	Š	0.76)	<u>[]</u>	ND	(45.0	[1](Q.	(46.0)[1]	QN	(43.0)EI

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Beg	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ute epth (în.)						
	NA-	ELEM ELEM-SO02 NA-ELEM-SO02-11 Dup of	2 Dup of		ELEM ELEM-SO03 NA-ELEM-SO03-01	3 3-01		ELEM ELEM-SO03 NA-ELEM-SO03-02	3-02		ELEM ELEM-SO04 NA-ELEM-SO04-01	_ 10
Parameter		NA-ELEM-SO02-01 08-MAR-98 0-3	2-01		08-MAR-98 0-3			08-MAR-98 3-12			08-MAR-98 0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, co	nt. (ue/ke)										
2-Nitrophenol	Q.	0.76	(1)	QN	(45.0 ·)[1]	QN	(46.0)[1]	QN	(43.0)[1]
3,3'-Dichlorobenzidine	S O	(37.0)[1]	ND	(45.0	[1]	QN O	(46.0	(1)	ΝΩ	(43.0)[1]
3-Nitroaniline	Ð	(37.0	(1)	Q	(45.0	[1]	Q.	(46.0	(11)	QN	(43.0	(1)
4,6-Dinitro-2-methylphenol	ND	(37.0)[1]	ND	(45.0	(1]	Q.	(46.0) [1]	QN QN	(43.0)[1]
4-Bromophenyl-phenylether	N Q	(37.0	(11)	QN	(45.0	(1)	ND	(46.0	[1](ND	(43.0)[1]
4-Chloro-3-methylphenol	Q.	0.76))[1]	QN	(45.0	(13)	QN	(46.0	[1](ΝΩ	(43.0)[1]
4-Chloroaniline	Q.	(37.0)[1]	QN Q	(45.0	<u>(E)</u>	Q.	(46.0) [1]	ND	(43.0)[<u>1</u>]
4-Chlorophenyl-phenylether	QN O	(37.0)[1]	Q Q	(45.0	[[]	Q.	(46.0)[1]	ΩN	(43.0)[1]
4-Nitroanaline	S	(37.0)[1]	QN Q	(45.0)[H]	Q.	(46.0)[1]	ND	(43.0)[1]
4-Nitrophenol	ND	(37.0	(1)	Ð	(45.0	<u>(E</u>	QX	(46.0	<u>(1</u>	ΝD	(43.0)[1]
Acenaphthene	QN !	(37.0	<u>(</u>	R	(45.0)[1]	QN	(46.0	(1)	QN	(43.0	[1]
Acenaphthylene	<u>8</u> !	(37.0	<u>(</u>	Q :	(45.0	<u>=</u>	49.0	(46.0	(11)	S	(43.0	<u>[1]</u>
Anthracene	2 :	(37.0	[1]	QN QN	(45.0	Ξ	Q.	(46.0)[1]	NO ON	(43.0)[<u>i</u>]
Benzo(a)anthracene Danzo(a)anthracene	2 2	(37.0	Ξ	2 9	(45.0	Ξ.	250	(46.0	Ξ,	9 9	(43.0	Ξ
Design (4)	2 4	0.15		3 9	(45.0		0/0	0.46.0	m:	Q	(43.0)[<u>1</u>]
Benzo(b)iluoranthene	2 9	37.0		2 :	(45.0	Ξ	080	(46.0	(1)	Q Q	(43.0)[1]
benzo(g,n,l)peryiene	Q :	0.78	<u> </u>	Q !	(45.0	[1]	080	(46.0	(E)	£	(43.0	Ξ
Benzo(k)fluoranthene	Q :	37.0	[E] (Q Q	(45.0) <u>[1</u>]	220	(46.0)[1]	S S	(43.0) <u>[1]</u>
Butylbenzylphthalate	Q	(37.0	[1]	Q	(45.0	<u>(</u>	Q	(46.0)[1]	S S	(43.0	<u>(</u>
Carbazole	ΩN	(37.0)[1]	Q Q	(45.0	<u>=</u>	Ð	(46.0)[1]	Š	(43.0	(E)
Chrysene	ND	(37.0)[1]	Q.	(45.0)[1]	270	(46.0)[1]	ΩN	(43.0	<u>[I]</u>
Dibenz(a,h)anthracene	S	(37.0	<u>E</u>](N Q	(45.0) [<u>1</u>]	290	(46.0)[1]	N Q	(43.0	Ξ
Dibenzofuran	8	(37.0	[1]	Q.	(45.0)[1]	N O	(46.0)[1]	N Q	(43.0	[1](

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	PI								
					Commit Id	B 10								
					Sample to Log Date	ampie ia Log Date								
				ă	Beg. Depth - End Depth (in.)	Depth (in.)								
		ELEM			ELEM				ELEM			ELEM	Z	
		ELEM-SO02	-1		ELEM-SO03	203		EI	ELEM-SO03			ELEM-SO04	SO04	
	NA-EL	NA-ELEM-SO02-11 Dup of NA-ELEM-SO02-01	Dup of 2-01		NA-ELEM-SO03-01	003-01		NA-EI	NA-ELEM-SO03-02	2 9		NA-ELEM-SO04-01	SO04-01	
		08-MAR-98	!		08-MAR-98	86		8	08-MAR-98			08-MAR-98	R-98	
Parameter		6-3			6-3				3-12			0.3		
OLMO3.2 - Semi-Velatile Organic Compounds, cont. (ug/kg)	ompounds, cont.	(ug/kg)												
Diethylphthalate	Q.	(37.0	(II)	Ð	(45.0)[1]	QN	J	46.0)[I]	QN	(43.0		(i)
Dimethylphthalate	QN QN	37.0	(1)	ND	(45.0	[E] (QN	J	46.0) [E]	N Q	(43.0		[1]
Fluoranthene	ND	(37.0	(1)	Ą	(45.0	[I] (450	J	46.0)[I]	QN	(43.0		Ξ
Fluorene	ND QN	0.78	EE) (N Q	(45.0)[1]	QN	_	46.0	[1]	QN	(43.0		Ξ
Hexachloro-1,3-butadiene	ND QN	37.0	(E)	QN	(45.0	(1)	QN	Ŭ	46.0)[I]	ND	(430)		[1]
Hexachlorobenzene	S S	(37.0	[E] (Q	(45.0	(1]	QN	~	46.0	(1)	ND	(430		Ξ(
Hexachlorocyclopentadiene	Q.	(37.0)[1]	Ð	UI (45.0	(11	QN) E	46.0	E)(UI (43.0		Ξ
Hexachloroethane	QN	(37.0	[1]	ΩN	(45.0	[1](2	Ŭ	46.0	(E)	Q.	(43.0		E)(
Indeno(1,2,3-cd)pyrene	ND QX	(37.0)[1]	QN QN	(45.0	[1](910	Ŭ	46.0	(1)	ΔN	(43.0		Ξ
Isophorone	Q	(37.0)[1]	QN	(45.0	(1)	QN QN	_	46.0	Ξ(QN QN	(43.0		Ξ
N-Nitroso-di-n-propylamine	ND	(37.0)[I]	QN	(45.0	([]	S	Ŷ	46.0) [E]	ΩN	(43.0		[1]
N-Nitrosodiphenylamine	QN	(37.0)[1]	QN	(45.0) [E]	QN	J	46.0	<u>(II)</u>	QN Q	(43.0		Ξ
Naphthalene	QN	(37.0	(1)	ND	(45.0	Ξ(ND ND	_	46.0	[][ΩN	(43.0		Ξ
Nitrobenzene	NO	(37.0	(1)	ΩN	(45.0	(E)	QN QN	_	46.0	<u>[]</u>	Q.	(43.0		Ξ
Pentachlorophenoi	QN	(37.0)[1]	ΩN	(45.0) [1]	ΩN	Ŭ	46.0)[1]	Q Q	(43.0		<u>(E</u>
Phenanthrene	N Q	(37.0	(1]	QN QN	(45.0	<u>(E)</u>	019	J	46.0	[][ND	(43.0		Ξ(
Phenol	QN	0.75)[1]	QN Q	(45.0)(11)	QN	J	46.0	[]	QN Q	(43.0		Ξ(
Pyrene	ND	(37.0)[1]	Q.	(45.0	[1]	260	J	46.0	[:](Q.	(43.0		<u>[I]</u>
bis(2-Chloroethoxy)methane	Ą	(37.0)(1]	QN	(45.0)[1]	QN	J	46.0	<u>::</u>	Q	(43.0		[1]
bis(2-Chloroethyl)ether	ND	0.75)[1]	ND	(45.0)[1]	ND	Ŭ	46.0	<u>[I]</u> (Q.	(43.0		[=](
bis(2-Ethylhexyl)phthalate	260	(37.0	(E)	400	(45.0)[1]	061	Ŭ	46.0	Œ	290	(43.0		Ξ
di-n-Butylphthalate	N Q	0'22'))[1]	330	(45.0)[1]	470	<u> </u>	46.0	Ξ	350	(430		<u>=</u>
di-n-Octylphthalate	2	(37.0)[1]	QN	(45.0)[1]	8	_	46.0) [1]	Q.	(43.0	•	[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id					:				
							Location Id	₽								
							Sample Id	75								
							Log Date	<u> </u>								
						eg. D	Beg. Depth - End Depth (in.)	pth (in.)								
			ELEM				ELEM				ELEM				ELEM	
			ELEM-SO02	~			ELEM-SO03				ELEM-SO03				ELEM-SO04	
		IA-ELE NA	NA-ELEM-SO02-11 Dup of NA-ELEM-SO02-01	Dup of 2-01		Z	NA-ELEM-SO03-01	10-		Ż	NA-ELEM-SO03-02	3-05		N Y	NA-ELEM-SO04-01	-01
			08-MAR-98				08-MAR-98				08-MAR-98				08-MAR-98	
Parameter			63				0-3				3-12				0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	anic Compounds,	cont.	(ug/kg)													
o-Cresol	QN.		(37.0)[1]	ΩN		(45.0)[1]	Q		(.46.0	(E)	R		(43.0	(11)
p-Cresol	QN		(37.0)[1]	Ø.		(45.0)[1]	Q.		(46.0	[1]	N		(43.0)[1]
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-0CDD	11.2	В	008:0)[1]	2370		07.1)[1]	5540	-	008'0)	(11)	335		0.500)[1]
1,2,3,4,6,7,8,9-OCDF	1.50	-	00970)[1]	117	ī	00.1)[1]	270		00200)	(11)	36.6	-	0.400)[1]
1,2,3,4,6,7,8-HpCDD	2.00	B	00500)[1]	133	-	002:0	(1)	296		0.400	(1]	41.2		00:300	(11
1,2,3,4,6,7,8-HpCDF	2.40	B	0.400)[1]	52.9		0.500	(11)	2.99		0.200)[1]	37.7		0.200	(11)
1,2,3,4,7,8,9-HpCDF	QN		0.500)[1]	5.90		002:0	[1]	3.50	-	0300	[1](9009		0.300	(1)
1,2,3,4,7,8-HxCDD	Q.		0.300)[1]	1.90	-	0.500	(13	1.70	-	0.300	[1](2.10	-	0.200	(11)
1,2,3,4,7,8-HxCDF	1.10	-	0300)[1]	16.0		0.400	([]	4.90	_	0.200)[<u>i</u>]	15.2	-	0.100	[<u>I</u>](
1,2,3,6,7,8-HxCDD	QN		00300	(11)	7.50	_	0.400	[1]	11.1		0.200)[1]	4.20	-	0.100	<u>(I</u>
1,2,3,6,7,8-HxCDF	0.530	æ	0.200	[1]	6.90		0.400	[1]	2.20	B	0.200)[1]	0.70		0.100)[1]
1,2,3,7,8,9-HxCDD	0.320	ī	00:300	[1]	4.60	_	0.500)[<u>[</u>]	8.80	-	0.200) [<u>1</u>]	2:00	_	0.100) <u>[</u>
1,2,3,7,8,9-HxCDF	ON		0.300	[<u>i]</u> (3.30	-	0.600)[3]	0.330	-	0.200)(E)	0.560	-	0.100	<u>=</u>
1,2,3,7,8-PeCDD	S S		0.300	[](1.80	~	0.500	(1)	2.40	-	0200)[1]	1.70	-	0.100)[1]
1,2,3,7,8-PeCDF	Q		0.300	<u>[i]</u> (28.4		0.400)[1]	0.820	_	0.200	(1)	2.40	-	0.100)E
2,3,4,6,7,8-HxCDF	1.00	B	0.300	[1](15.1	-	0.500	(1)	4.70	_	0.200	<u>(</u>	16.6	-	0.100)[1]
2,3,4,7,8-PeCDF	0.600	-	0.300	[1](19.7		0.400)[1]	1.50	_	0.200	<u>[i]</u>	5.10		0.100	<u>=</u>
2,3,7,8-TCDD	QN		0300	(11)	Q		0.400	[1]	0.510	_	0.200)[1]	0.280	-	0.100	<u>[i]</u>
2,3,7,8-TCDF	0.260	_	0.100	[1]	22.5		006000)	[1]	0.960	_	0.100	<u>[1]</u> (1.40		0.100	<u>[E]</u>
Total HpCDD	4.40		0.500	[1]	232		00.200	(E)	536		0.400)[1]	83.5		0300	<u>E</u>
Total HpCDF	4.30		0.400	[[](153		00900	[E] (247		0.300)[1]	71.4		0.200	[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan Table 1

					Site Id							
					Location Id	12						
					Sample Id	P						
					Log Date	ıte						
				-	Beg. Depth - End Depth (in.)	epth (in.)						
		ELEM			ELEM			ELEM			ELEM	
		ELEM-SO02	7		ELEM-SO03	•		ELEM-SO03			ELEM-SO04	4
		NA-ELEM-SO02-11 Dup of NA-ELEM-SO02-01	Dup of 2-01		NA-ELEM-SO03-01	3-01		NA-ELEM-SO03-02	-02		NA-ELEM-SO04-91	4-01
		08-MAR-98			08-MAR-98			08-MAR-98			08-MAR-98	
Parameter		0-3			0-3			3-12			6-3	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	1.80	0.300	(1)	40.5	0.500)[1]	63.8	0.300)[1]	48.8	00100)[1]
Total HxCDF	3.30	0.300	(11)	123	0.500	[1]	73.0	0.200	(1)	84.0	(0.100	E (
Total PeCDD	0.780	00:00) [1] [1]	9:90	00300	. [1](9.00	0.200	(1)	17.2	0.100)[1]
Total PeCDF	2.80	0300	(11)	173	0.400	<u>(E</u>	18.4	0.200)[1]	8.99	00100)[1]
Total TCDD	0.780	0300)[<u>1</u>]	13.8	0.400	E)(9:30	0.200	<u>(H</u>	16.6	0.100)[1]
Total TCDF	2.70	0.200) [1]	168	0300)[1]	17.1	0.100)[1]	48.4	006000	<u>(E)</u>
TOC (mg/kg)												
Total Organic Carbon	NA			NA			NA			11700	(637),[[]
											•	

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Beg	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ste epth (in.)							
P. C. C. C. C. C. C. C. C. C. C. C. C. C.		ELEM ELEM-SO05 NA-ELEM-SO05-01 08-MAR-98	5-01		ELEM ELEM-SO05 NA-ELEM-SO05-02 08-MAR-98	5-02		ELEM ELEM-SO06 NA-ELEM-SO06-01 08-MAR-98	10-		EJ ELE NA-ELE 08-M	ELEM ELEM-SO07 NA-ELEM-SO07-01 08-MAR-98	
Farameter OLM03.2 - Pesticides and PCBs (ug/kg)	(S)	3			3-12			e.				6.3	
4,4'-DDD	QN	0.180	(1)	QN	(0.180)[1]	Q.	0.180)[1]	QN QN	0	0.330	[1]
4,4'-DDE	QN	0.180	(11)	QN	0.180)[1]	Q.	0.180)[1]	23.0	0	0.330	Ξ
4,4'-DDT	QN	0.180	(11)	QN	0.180)[1]	NO	0.180)[1]	21.0) ()	0.330	Ξ
Aldrin	g	0.180)[1]	Q Z	0.180)[1]	Q	(0.180	<u>(</u>	ND	0	0.330	Ξ
Aroctor-1016	Ð	0.180)[1]	Q.	0.180)E3	æ	0.180	(13)	Q.	0	0.330	Ξ
Aroclor-1221	S	0.180)[1]	ΩN	0.180)[1]	ND	0.180	(11)	ΩN	0	0.330	Ξ
Aroclor-1232	Ð	0.180)[1]	Q Z	0.180)[1]	Q.	0.180	(1)	QN	0)	0.330	Ξ(
Aroclor-1242	Q	0.180)[1]	Q.	0.180)[1]	QN	(0.180	<u>[I]</u>	QN	0		Ξ
Arocior-1248	g	0.180)[1]	Q.	0.180	(13	QN O	0.180	[1]	QN	0	•	Ξ
Aroclor-1254	S	0.180)[1]	QN QN	0.180)[1]	Q.	0.180)[1]	QN	0	•	Ξ
Aroclor-1260	Ð	0.180) [1]	Ω	0.180)[1]	Q.	(0.180)[1]	QN	0	•	Ξ
Dieldrin	2	0.180	<u> </u>	QN	0.180	Ξ(Q.	0.180)[1]	QN	0		Ξ
Endosulfan I	2	0.180)[1]	Q	0.180)[1]	N Q	0.180) <u>(</u>	ΩŽ	0		Ξ
Endosulfan II	2 !	0.180	Ξ;	Q !	(0.180	EI (Q	(0.180	(11)	Q	0		Ξ
Endosulian sulfate	Q !	0.180	[1](Q N	0.180	[]	Q	0.180	<u> </u>	QN	0		Ξ
Endrin	2	0.180	[1]	Q Z	0.180)[1]	Q	(0.180	<u>=</u>	QN	0		Ξ
Endrin aldehyde	2	0.180)[1]	Q.	0.180)[1]	R	0.180	(1)	Q.	<u> </u>		Ξ
Endrin ketone	2	(0.180){[1]	Q.	0.180)[1]	Q	0.180)[1]	ND	0	0.330	Ξ
Heptachlor	2	0.180) [±]	Q.	0.180)[1]	QN	0.180	[1]	ΩN	0	0.330	[]]
Heptachlor epoxide	æ	0.180)[1]	Q.	0.180)[1]	QN	0.180	(11)	QN	0	0.330	[1]
Methoxychlor	g	0.180)[1]	Q.	0.180)[1]	QN	0.180	<u>(1</u>	QN	0	0.330	Ξ
Toxaphene	Ð	0.180)[1]	S	0.180	(13	QN	(0.180)[]]	QN	0	0.330	Ξ
alpha-BHC	Q.	0.180	(11)	Q.	0.180	(1)	QN	0.180)[1]	Q Q	0	0.330	[](

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id							
					Location Id	Id						
					Sample Id	2						
				Be	Log Date Beg. Depth - End Depth (in.)	ste epth (in.)						
					•							
		ELEM ELEM-SOOS			ELEM-SOIS	v		ELEM-SOM			ELEM-SO07	
	Z	NA-ELEM-SO05-01 08-MAR-98	S-01		NA-ELEM-SO05-02 08-MAR-98	S-02		NA-ELEM-SO66-01 08-MAR-98	<u>.</u> 01	Ļ	NA-ELEM-SO07-01 08-MAR-98	두
Parameter		0-3			3-12			0-3			0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)											
alpha-Chlordane	QN	0.180	(11)	N Q	0.180)[1]	Q	0.180	[1]	2.90	0.330	<u>=</u>
beta-BHC	Q	0.180)[1]	N Q	(0.180	(11)	Q.	0.180	<u>(II</u>	Q.	0330) <u>[</u>
delta-BHC	Q	0.180)[1]	ND	0.180)[1]	Q.	0.180	<u>(I</u>	Ð	(0.330	<u>=</u>
gamma-BHC(Lindane)	QN	0.180)[1]	ND	0.180)[1]	QN	0.180	Ξ	QN	0.330	<u>(</u>
gamma-Chlordane	Q	0.180	[1]	ND	(0.180)[1]	Ð	0.180	[1]	QN	0.330)[1]
OI MO3 2 - Sami-Voletile Orcenie Communds (netke)	nnonnde (nø/ke	5										
1 2 4. Trichlorohenzene	GN	35.0)[[]	Q	(37.0)[1]	QN	(37.0	(1)	ND	0.79)	(11)
1.2-Dichlorobenzene	QX	(35.0	ΞΞ	Q	(37.0	Ξ	ND	(37.0	Ξ	QX	0.79))[1]
1,3-Dichlorobenzere	Q	(35.0	<u>(E)</u> (Q	(37.0	(E)	QN	(37.0	(E]	QN	0'29))[1]
1,4-Dichlorobenzene	ND	(35.0)[1]	ND	(37.0)[1]	QN QN	(37.0	[<u>F]</u> (ND	0.79)	<u>[i]</u>
2,2'-oxybis(1-chloropropane)	ND	(35.0	[1]	S	(37.0	[1](QN	(37.0	<u>[E]</u> (Q.	0.79) [E]
2,4,5-Trichlorophenol	æ	(35.0	[1]	Q	(37.0	(1]	g	(37.0)[1]	A A	0'29)	[1]
2,4,6-Trichlorophenol	N Q	(35.0)[1]	ND	(37.0	(1)	Q	0.75	(1)	Q.	0'.09))[<u>1</u>]
2,4-Dichlorophenol	QN	(35.0)[1]	ND	(37.0)[1]	Q.	0.75	<u>(II)</u>	Ş	0.79)	<u>(E</u>
2,4-Dimethylphenol	NO O	(35.0	[1]	Q	(37.0	[1]	ΩN	(37.0	<u>(E)</u>	Q.	0'19)) [1]
2,4-Dinitrophenol	ND QN	(35.0)[1]	Q.	(37.0)[1]	QN	0.75	Ξ	QN	0'29)	<u>=</u>
2,4-Dinitrotoluene	ND	(35.0	(E) (N QN	(37.0	<u>(i)</u>	ND	(37.0	(E)	Q.	0'29)	(E)
2,6-Dinitrotoluene	QN	(35.0	(11)	Q.	(37.0)[1]	QN	(37.0) [E]	Q	0'29)	<u>(</u>
2-Chloronaphthalene	QX	(35.0) [i]	Q.	(37.0)[1]	S	(37.0)[1]	Q.	0'29)	Ξ
2-Chlorophenol	ND QX	(35.0	(E)	NO	(37.0	(1]	ΩN	(37.0	(11)	Q	0.79	(E)
2-Methylnaphthalene	Q	(35.0)[1]	ΩN	(37.0	0.[1]	Q.	(37.0)[1]	Ð	0.79	Œ
2-Nitroaniline	ND ON	(35.0)[1]	Q	(37.0)[1]	Q	(37.0	Ξ	Q.	0'29)	Ξ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					ELEM	ELEM-SO07	NA-ELEM-SO07-01	08-MAR-98	0-3
					ELEM	ELEM-SO06	NA-ELEM-SO06-01	08-MAR-98	0-3
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	ELEM	ELEM-SO05	NA-ELEM-SO05-02	08-MAR-98	3-12
					ELEM	ELEM-SO05	NA-ELEM-SO05-01	08-MAR-98	0-3
									Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	mpounds, cont.	(ug/kg)										
2-Nitrophenol	QN CN	(35.0)[1]	ND	0.75)[1]	ND	(37.0)[1]	QN Q	0.79))[1]
3,3'-Dichlorobenzidine	ND QN	(35.0	[1]	ND	0.78)[1]	QN QN	(37.0)[1]	QN	0'19))[1]
3-Nitroaniline	ΩN	(35.0	[1]	ND	(37.0)[1]	ND	(37.0)[1]	ND QN	0.79)	[1](
4,6-Dinitro-2-methylphenol	Q.	(35.0)[1]	S S	(37.0)[1]	QN QN	(37.0)[1]	QN	0'.29))[1]
4-Bromophenyl-phenylether	QN	0380)[1]	QN QN	(37.0	(1)	ND DN	(37.0)[1]	ND	0.79))[1]
4-Chloro-3-methylphenol	QN QN	35.0)[1]	ND QN	(37.0)[1]	ND	(37.0)[1]	ND	0.79))[1]
4-Chloroaniline	ND QN	(35.0	(11)	ND	(37.0	[1]	ND	0.75)[1]	ND	0.79	<u>(</u>
4-Chlorophenyl-phenylether	ND	(35.0	[1](ND	(37.0)[1]	ND QN	0.75))[1]	ND QN	0.79))[1]
4-Nitroanaline	QN	(35.0)[1]	QN	(37.0)[1]	ND	0'22())[1]	ND	0.79))[1]
4-Nitrophenol	S S	(35.0)[1]	NO ON	(37.0)[1]	ND	(37.0)[1]	N Q	0.79))[1]
Acenaphthene	ND	(35.0)[1]	QN QN	(37.0)[1]	QN	(37.0)[1]	ND QN	0'.29)) [<u>11</u>]
Acenaphthylene	Q.	(35.0)[1]	N Q	(37.0	(11)	N Q	0.75))[1]	ND Q	0.79)	[1]
Anthracene	ND	(35.0	(11)	QN QN	(37.0)[1]	ND	(37.0)[1]	ND	0.79))[<u>1</u>]
Benzo(a)anthracene	ND	(35.0	(11)	ND Qu	0.75))[1]	S	0.75)[1]	ND	0.79)) [<u>H</u>]
Benzo(a)pyrene	QN	(35.0)[1]	QN	37.0)[1]	QN QN	(37.0)[1]	ND	0'19))[1]
Benzo(b)fiuoranthene	ND	(35.0) [1]	QN QN	(37.0)[1]	N Q	(37.0)[1]	N Q	0.79))[1]
Benzo(g,h,i)perylene	NO OX	(35.0)[1]	Q.	37.0)[1]	ND	(37.0	[1]	Ð	0.79))[1]
Benzo(k)fluoranthene	Q.	(35.0)[1]	ΩN	(37.0)[1]	ΩN	(37.0)[1]	ND	0'.29))[1]
Butylbenzylphthalate	NO ON	(35.0)[1]	QN QN	(37.0)[1]	NO ON	(37.0)[1]	0.96	0.79))[<u>H</u>]
Carbazole	Q.	(35.0	[1]	NO ON	(37.0)[1]	ND	(37.0)[1]	ND	0'19))[<u>H</u>
Chrysene	ND	(35.0)[1]	QN QN	(37.0	(11)	ND	(37.0)[1]	73.0	0'19))[1]
Dibenz(a,h)anthracene	N O	(35.0)[1]	N Q	(37.0)[1]	ND	0.76))[1]	ND	0.79))[<u>:</u>]
Dibenzofuran	N O	(35.0	[1](ND	0.75	[1]	ND	(37.0)[1]	QN	0'19)	<u>(II</u>

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id Location Id	_ 2						
					Sample Id Log Date	Id ate						
				Be	Beg. Depth - End Depth (in.)	epth (in.)						
		ELEM	·		ELEM			ELEM			ELEM	
		ELEM-SO05 NA-ELEM-SO05-01	5 5-01		ELEM-SO05 NA-ELEM-SO05-02	5 15-02		ELEM-SO06 NA-ELEM-SO06-01	6 6-01		ELEM-SO07 NA-ELEM-SO07-01	7-01
Parameter		08-MAR-98 0-3			08-MAR-98 3-12			08-MAR-98 0-3			08-MAR-98 0-3	<u> </u>
OI MO3 2 . Semi-Volettle Organic Community cont (nather)	Commonade	to College										
Diethylphthalate	QN	(35.0	[E] (QN.	(37.0	[1]	S	(37.0)[[]	S	019)	H
Dimethylphthalate	Q	(35.0	[1](QN	(37.0	(E)	S	(37.0	ΞΞ	Q.	0'29)	EI(
Fluoranthene	QN QN	(35.0)[1]	QN	(37.0	(11)	Q	(37.0	[<u>1</u>](Q.	0.79	(E) (
Fluorene	Q.	(35.0)[1]	ND	(37.0	<u>[1]</u> (N	0.75	[11]	S	0.79)E
Hexachloro-1,3-butadiene	Q.	(35.0	111	QN	(37.0	(1)	ND	0.76)	[1](Q.	0.69)	Ξ(
Hexachlorobenzene	Q	(35.0)[1]	QN	(37.0	[](N Q	0.75	[1](QN	0'29)) [E]
Hexachlorocyclopentadiene	Q	(35.0) <u>[1]</u>	ND QN	(37.0	(1)	Q.	(37.0	(II)	Q.	0.79))[1]
Hexachloroethane	ΩN	35.0)[1]	ΔN	(37.0	<u>[i]</u> (ON ON	(37.0)[II]	NO ON	0.79))[1]
Indeno(1,2,3-cd)pyrene	Q.	(35.0)[I]	ND QN	(37.0	<u>[1]</u> (Q	(37.0	(E)	S Q	0.69))[1]
Isophorone	Q	(35.0)[1]	QN QN	(37.0)[1]	ND	(37.0	[1]	Q	0'29)	<u>(H</u>
N-Nitroso-di-n-propylamine	QN QN	(35.0	. [1] (S O	37.0	<u>E</u>)(Q.	(37.0	[1](ND	0.79)	(1)
N-Nitrosodiphenylamine	QN N	(35.0	<u>=</u>	S	(37.0	<u>(E)</u>	QN QN	(37.0	[1](QN	0.79)	Ξ(
Naphthalene	Q	(35.0)[]]	Q	(37.0	[1]	ΩN	(37.0	[1]	QN Q	0.69)	Ξ
Nitrobenzene	g	(35.0)[1]	Q	(37.0	E)(Q.	0.75	(E)	Q.	0'19)	(II)
Pentachlorophenoi	Q	(35.0)[]	NO NO	(37.0	<u>(</u>	ND	(37.0	(1)	Q	0.67.0) [I]
Phenanthrene	Q	(35.0) [<u>1</u>]	Q.	(37.0	Ξ	N Q	(37.0	(H)	S O	0.79)	(11)
Phenol	Q.	(35.0)[1]	S	(37.0	<u>(E</u>	QN	(37.0)[1]	Q.	0.70)[1]
Pyrene	æ	(35.0)[I]	Q.	(37.0)[1]	QN	(37.0)[1]	ΩN	0'29)	[<u>[</u>]
bis(2-Chloroethoxy)methane	ND	(35.0)[1]	Ñ	(37.0	[1]	QN	(37.0	(1)	N	0'29))[1]
bis(2-Chloroethyl)ether	ΩN	(35.0	111	Q	(37.0	(E)	Q.	(37.0	(1)	ND	0.79	Ξ
bis(2-Ethylhexyl)phthalate	140	(35.0)[1]	Q.	(37.0	[i](700	(37.0	<u> </u>	086	0.79)	<u> </u>
di-n-Butylphthalate	Q	(35.0)[1]	Q	(37.0	[1]	ΝΩ	(37.0	(1)	0.68	0.79	Ξ
di-n-Octylphthalate	Ð	(35.0	(1)	Q	0.76	[1]	N Q	(37.0	(1)	QN	0'19)	(1)

Not Detected NA = Not Applicable

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Si	Site Id								
						San	Sample Id								
						7	Log Date								
					В	Beg. Depth - End Depth (in.)	nd Depth	(in.)							
			ELEM	٠		ELEM	W.				ELEM			ELEM	
		EI NA-EI	ELEM-SO05 NA-ELEM-SO05-01	10		ELEM-S005 NA-ELEM-S005-02	-SO05 -SO05-02 D-08			ELF NA-ELI 08-1	ELEM-SO06 NA-ELEM-SO06-01 08-MAR-98	_	_	ELEM-SOU7 NA-ELEM-SO07-01 08-MAR-98	7 7-01
Parameter		s S	08-MAK-98 0-3			3-12	8				0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, co	ont. (ug	3/kg)		:	i c		Ξ	Ş	_	0.25.0	1111	QX	0.67.0)[1]
o-Cresol	Ð	_	(35.0) [E] (Q.	U./E)			2 !		9 5		9	0.67.0	Ξ
p-Cresol	ON	_	(35.0)[1]	Q	(37.0		[1]	Ž	_	0.76	141	È	2	Ξ
SW8290 - Dioxins (ppt)										•	4	Ş	313	0000	E
12346789-OCDD	27.3	_	(1.50	(E)	12.1	0060)		<u>(E)</u>	19.4	_	J.⊛	111	0177	0.900	3
1,2,3,4,0,7,0,7,0,7 1,3,3,4,6,7,8,0,0,0DB		-	130	111	QN.	0.800		[1]	3.50) 	1.10	[<u>E]</u> (339	0.700	E1 :
1,2,3,4,0,7,0,9-0CDT		,	145		1.30	J (0.9	0.900	(I)	200	~	1.40	(11)	365	0.800	Ξ
1,2,3,4,0,7,0-mpCDD	7.20	•) (1.30		1.20	J (0.7	0.700	[1]	4.80	J (1.00)[1]	344	009'0	(E)
1,2,3,4,6,7,8-HPCDF	G K	_	(1.70	E (Ð	(0.9		E) (Q	Ŭ	1.30	[1]	68.1	00.700	Ξ.
1,2,3,4,7,6,7-IIPCDI 1,2,3,4,7,8,HvCDD	2	_	(130	E (Q	(10	1.00	[1]	S	~	1.60	[1]	20.2	0.10	Ξ
1,2,3,4,7,6-11ACDF	2.70	_	0.700	Ξ	QN	90)	0.600	[E]	2.50	'n	1.10	[1]	134	009:0	Ξ
1.2.3.6.7.8-HxCDD	Ð		(1.00	(11)	QN	30)	0.800	(1)	S	•	1.30	Ξ,	32.0	0.800	Ξ Ξ
1,2,3,6,7,8-HxCDF	1.50	-	009'0)	(1)	QN.))	0.600	[1]	1.00	·	99.	Ξ,	563	0080	
1,2,3,7,8,9-HxCDD	QN QN		(1.00	[1]	Q ·	~~ ``	0.800	E)(2	~ ~	J.30	ΞΞ	7.10	0090	E (
1,2,3,7,8,9-HxCDF	QN		00800	Ξ.	2 9	∌ }	0.700	<u> </u>	2 5		S	E	12.9	00900	<u>(</u>
1,2,3,7,8-PeCDD	Q.	3	0.10	Ξ.	⊋ 9	Ö	0.000		2 5	<i>,</i>	0.00	E (21.3	(0.400	[1]
1,2,3,7,8-PeCDF	Ð		00.1	Ξ	2 !	5	200	<u> </u>	ָב ב	-	1.20	E (158	009:0	Ξ
2,3,4,6,7,8-HxCDF	2.90	_	0.800	Ξ	2 !		00/:0	Ξ 5	77.7	, -	0000		46.8	0.400	Ξ
2,3,4,7,8-PeCDF	1.40	-	0.300	Ξ:	Q ;	ئ ک	0.000	(H)	F. 1	•	0.800	E	<u> </u>	(0.400	Ξ(
2,3,7,8-TCDD	Ð		0.000	E](2 !	<u>ن</u> د	005.0		9 9		0.800	E	14.6	0.700	<u> </u>
2,3,7,8-TCDF	0.520	-	0700)[1]	a E))	000		ב ב	<i>-</i> \	140		2002	00800	Ξ
Total HpCDD	5.70		1.♣0) [1]	1.50	i i	0.500) []	3 5	-	2 .	E 5) 	0090) III
Total HpCDF	09.6		(1.50	(1)	1.20	·0 ·	0.800	[1]	000	_	1.20	f:1/	§	2000	3

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	207 207-01 98	
	ELEM ELEM-SO07 NA-ELEM-SO07-01 08-MAR-98 0-3	(0.800 (0.600 (0.400 (0.400 (0.300
		487 767 160 614 163
	06 06-01 8	
	ELEM ELEM-SO06 NA-ELEM-SO06-01 08-MAR-98 0-3	(1.40 (1.10 (1.10 (0.900 (0.800
		1.50 5.40 2.90 5.20 1.80 2.00
d 1 Id 1 Id ate 9epth (in.)	55-02	
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ELEM-SO05 NA-ELEM-SO05-02 08-MAR-98 3-12	008.0) 009.0) 009.0) 009.0)
		A A A A A A A A
	55-01	
	ELEM ELEM-SO05 NA-ELEM-SO05-01 08-MAR-98 0-3	(1.10 (0.700 (1.00 (1.00 (0.600
		4.60 14.2 2.80 5.90 5.40 12.8
	·	cont. (ppt)
	Parameter	SW8290 - Dioxins, cont. (ppt) Total HxCDF Total PcCDF Total PcCDF Total TCDF Total TCDF

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				r P	Site Id Location Id Sample Id		`							
			Ø	Log Date Beg. Depth - End Depth (in.)	Log Date End Deptl	, (in.)								
ELEM ELEM-SO07 NA-ELEM-SO07-02 08-MAR-98	ELEM-SO07-ELEM-SO07-ELEM-SO07-08-MAR-98	- 02		ELEN NA-ELEN 08-M	ELEM ELEM-SO08 NA-ELEM-SO08-01 08-MAR-98	-		RU NA-RU 07	REF1 REF1-SO01 NA-REF1-SO01-31 07-MAR-98			REF1 REF1-SO02 NA-REF1-SO02-01 07-MAR-98	1 SO02 SO02-01 R-98	
3-12				•	0-3				0-3			0-3	_	
											!			Ş
003	0.340	(1)	QN Q	0)	0.260)[1]	£	_	070	(E)	Q ;	0.240		ΞΞ
0.340	€)[1]	9.40	~	0.260	[1]	5.30	- '	0.260	Ξ.	17.0	ب ت		ΞΞ
0.340	\$	<u>=</u>	2.80	0)	0.260	(1)	7.50	'n	0.260	Ξ,	611 617	70	, -	ΞΞ
0.340	0	(1)	2	0	0.260	[1]	2 9	- '	0.260	<u> </u>	2 9	70 0		3 5
0.340	0	[1]	2	0	0.260	E :	2 !	- '	007.0	Ξ.	2 9	70 7		3 5
0.340	0	<u>[i]</u>	2 !	0 (0.260	E :	2 9	- '	0.200		2 5	70)		3 5
0.340		Ξ	2 5	- C	0.260		2 2	_	0.260	ΞΞ	9 9	00		ΞΞ
03 4 0		E E	2	, 0	0.260	Ξ(9		0500) <u>[</u>	ND	0.0	0.240	[1]
0340	. ~	E (2		0.260	E (Q		0500	(11)	QN	70)		[1](
(0.340	0	(11)	QN.	0)	0.260)[1]	S		0.260)[i]	QN))		Ξ ;
(0.340	2)[1]	Q	9 >	0.260)[1]	S		0.260	[1]	2	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		Ξ,
0.340	9)[1]	Ð)	0.260)[1]	g		0500	<u> </u>	2			ΞΞ
(03	0.340	(1)	QN)	0.260	(11)	Ð		0.260	Ξ.	2 9			ΞΞ
(0.3	0.340)[1]	R)	0.260)[i]	2		0500)	(II)	2 !	3 3	,	ΞΞ
(0.3	0.340)[1]	S	<u>`</u>	0.260	<u>(E)</u>	Ð		0.260	(E)	2	o 3		ΞΞ
0.340	8)[1]	Q	<u> </u>	0.260) <u>[]</u>	Q		0.260	Ξ	Q	.		ΞΞ
0.340	8)[1]	8	<u> </u>	0.260) <u>[]</u>	Ð		0.260	Ξ	2	o ·	` `	ΞΞ
(0.340	₹)[1]	Q	J	0.260)[1]	N		0.260	Ξ(<u> </u>	o (•	ΞΞ
0.3	0.340)[1]	QN	J	0.260)[1]	8		0.260	[<u>=</u>]	2	Ö .		Ξ Ξ
003	0.340	[][QN	J	0.260)[1]	Q		0.260	<u>[</u>]	2 !	ာ (ΞΞ
0)	0.340	[1](Ð	J	0.260	(11)	Q		0.260	<u>(II)</u>	<u>e</u> !	<u>ن</u> د		Ξ :
0	0.340	[1]	Ñ	Ĭ.	0.260	[i]	Q		(0.260	(<u>H</u>	Q N	-	0.240	Ξ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

					City Id	_						
					T	. :						
					Location 1d	ָּדְּק						
					Sample Id	PI						
				ı	Log Date	ate						
				.	Beg. Depth - End Depth (in.)	epth (in.)						
	~	ELEM-SO07 NA-FIEM-SO07-02	7.7-02		ELEM ELEM-SO08	90 9		REF1			REF1 REF1-SO02	
Parameter	1	08-MAR-98 3-12	!		08-MAR-98 0-3			NA-REF1-SO01-31 07-MAR-98 0-3	.		NA-REF1-SO02-01 07-MAR-98 0-3	1 0
TOWN TO												
olate Chinalone	· (ug/kg)	,										
aipha-Chlordane	ON THE	0.340	[1]	Š	0.260)[1]	0.870	0.260	(11)	QX	0.00	E
beta-BHC	Q Z	0.340	(1)	S	0.260)[1]	QN QN	0.260	: E	2	0740	Ξ
delta-BHC	2	0.340)[1]	QN	0.260)[1]	Q	(0.260	E	2 5	0400	<u> </u>
gamma-BHC(Lindane)	S	0.340	[I](N	0.260		Ê	0920	[F] (9 9	0.240	Ξ;
garuma-Chlordane	Ω	0.340)[1]	QN QN	0.260		e S	0.200)[1]	2 9	0.240	EE :
					•)	0	E (Š	0.240)[E]
OLMO3.2 - Semi-Volatile Organic Compounds (ng/kg)	4/8n) spanodu	9										
1,2,4-Trichlorobenzene	Q.	0.79))[1]	QZ QZ	(52.0)[1]]	Š	(53.0	111	4	•	
1,2-Dichlorobenzene	N Q	0.79)	[1]	QN	(52.0	ΞΞ) E	0.00		S :	(48.0	Ξ
1,3-Dichlorobenzene	ND	0.79	<u>(E)</u>	Ð	(52.0	Ę	9 9	53.0	Ξ.	2 9	(48.0) <u>[</u>
1,4-Dichlorobenzene	QN Qu	0.79))[1]	QN QN	(52.0) E	0.53	(1)	ON A	(48.0) [E]
2,2'-oxybis(1-chloropropane)	ND	0'19))[1]	ND	(52.0	E =	2	(53.0		2 4	. 48.0	<u>[]</u>
2,4,5-Trichlorophenol	ND	0'.09)	[1]	Q	(52.0	ΞΞ	2	(.530	ΞΞ.	2 2	(48.0	Ξ
2,4,6-Trichlorophenol	Q.	0'29))[1]	QN QN	(52.0	<u>(E)</u>	QN	(53.0	E	<u> </u>	46.0	Ξ,
2,4-Dichlorophenol	2	0.79)	[1]	Q	(52.0	<u>[1]</u>	ND	(53.0	ΞΞ	2	(480	ΞΞ
2.4-Dimemylphenol	2 ;	0.79	[]	Ð	(52.0	Ξ	Q.	(53.0)[1]	Q.	(48.0	E (
Z,+-Dumophenoi	a !	0'29)	(1)	Ð	(52.0)[1]	ND	(53.0)[1]	Q	(48.0	ΞΞ
2,4-Dinitrotoliuene	Q !	0.79) <u>[1]</u>	ON	(52.0)[1]	S	(53.0	(11)	Q	(480	ΞΞ
2,0-Dinitrotoluene	Q	0.79	Ξ	Ω	(52.0) [<u>1</u>]	QN	(53.0	(E) (Q	(480	E 5
2-Unioronaphthalene	Q :	0'29)	[H] (ΩN	(52.0)[1]	S	(53.0	Ξ(Q	(480	ΞΞ
2-Citlorophenol	Q	0'.09))[1]	N Q	(52.0)[1]	QN	(53.0	111	Ê	089	ΞΞ
2-Methylnaphthalene	Ą	0.79)	<u>[i]</u>	ΩN	(52.0)[1]	Ą	(53.0	E (·	46.0	Ξ
2-Nitroaniline	QN	0'29)	(E)	Q.	(52.0	[i] (Q.	(53.0	ΞΞ	2 2	(48.0	Ξ,
									•	!		[.]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	ELEM REF1 REF1	ELEM-SO07 ELEM-SO08 REF1-SO01 . REF1-SO02	02 NA-ELEM-SO08-01 NA-REF1-SO01-31 NA	08-MAR-98 07-MAR-98 07-MAR-98 07-MAR-98	3-12 0-3 0-3
					ELEM	ELEM-SO07	NA-ELEM-SO07-02	08-MAR-98	Parameter 3-12

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, con	nt. (ug/kg)										
2-Nitrophenol	QN	0.79)[1]	ND	(52.0	[1]	QN	(53.0)[1]	ND	(48.0	[][
3,3'-Dichlorobenzidine	QN	0'19))[1]	Q.	(52.0	(II)	ND	(53.0)[1]	N Q	(48.0)[<u>H</u>]
3-Nitroaniline	ND	0.79)	(11)	ND QN	(52.0	(H)	ND	(53.0)[1]	QN Q	(48.0	(1)
4,6-Dinitro-2-methylphenol	ND	0.67.0)[1]	N Q	(52.0)[H]	ND	(53.0)[1]	QN Q	(48.0	<u>(E)</u>
4-Bromophenyl-phenylether	QN	0.67.0)[1]	QN QN	(52.0	[1](QN	(53.0) [1]	S	(48.0	(E)
4-Chloro-3-methylphenol	ND	0.79)) [1]	ND QN	(52.0)[1]	ND	(53.0	[1]	Q.	(48.0	<u>[]</u>
4-Chloroaniline	N Q	0'19))[1]	Q.	(52.0	(11)	QN Q	(53.0)[1]	Q	(48.0	(II)
4-Chlorophenyl-phenylether	ON ON	0.79))[1]	QN	(52.0	(11)	ND	(53.0	[i](QN	(48.0	[][
4-Nitroanaline	ND Q	0.79))[1]	ND	(52.0)[1]	QN	(53.0	([]	Ð	(48.0	(1)
4-Nitrophenol	Q.	0.79))[1]	QN	(52.0	[I](N Q	(53.0	[1]	QN	(48.0)[<u>[</u>]
Acenaphthene	N Q	0.79)	[1]	NO ON	(52.0	(1)	ND	(53.0)[1]	ND	(48.0)[1]
Acenaphthylene	ND	0'19))[1]	NO QN	(52.0	[1](Ω	(53.0)[1]	ND	(48.0	(E)
Anthracene	Q.	0.79)	(1)	NO QN	(52.0	[1](QN	(53.0)[1]	Q.	(48.0	[1]
Benzo(a)anthracene	Q Q	0'.09))[1]	NO QN	(52.0	<u>[I]</u> (Q.	(53.0)[1]	Q	(48.0	(11)
Benzo(a)pyrene	Ð	0'29))[1]	QN	(52.0	(11)	Q	(53.0)[1]	QN	(48.0	(Ξ)
Benzo(b)fluoranthene	QN	0'29))[1]	QN	(52.0)[1]	ND	(53.0)[1]	ΩN	(48.0	<u>(E</u>
Benzo(g,h,i)perylene	ND	0'29))[1]	QN	(52.0	(1)	Q.	(53.0)[1]	S	(48.0	Ξ
Benzo(k)fluoranthene	ND	0.79))[1]	QN	(52.0)[1]	ON	(53.0)[1]	QN	(48.0	[](
Butylbenzylphthalate	ND	0.79)[1]	QN QN	(52.0	[1](76.0	(53.0)[1]	Q	(48.0	(1)
Carbazole	QN QN	0.79)	(1)	ND Q	(52.0)[1]	QN ON	(53.0)[1]	N	(48.0	[1]
Chrysene	N ON	0.79)) [1]	QN Q	(52.0)[1]	Q	(53.0)[<u>[]</u>	QN	(48.0	(11)
Dibenz(a,h)anthracene	ND	0'29))[1]	QN QN	(52.0	[i]	Q	(53.0	(1)	Q.	(48.0	[1]
Dibenzofuran	QN	0'.29))[1]	N Q	(52.0	[1]	ΩN	(53.0	<u> </u>	Q.	(48.0	Ξ(

Results of Organic Analyses For Round I Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	_ 2						
					Sample Id	<u> </u>	•					
				•	Log Date	ate						
				3	Beg. Depth - End Depth (in.)	Jepth (in.)						
		ELEM			ELEM			REF1			REFI	
		ELEM-SO07	4		ELEM-SO08	9 2		REF1-S001			REF1-S002	
		NA-ELEM-SO07-02 08-MAR-98	7-02		NA-ELEM-SO08-01 08-MAR-98	3 -01		NA-REF1-SO01-31 07-MAR-98	<u></u>		NA-REF1-SO02-01 07-MAP-08	Ę.
Parameter		3-12			0-3			0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	c Compounds, co	nt. (ug/kg)										
Diethylphthalate	QN .	(67.0)[1]	Ð	(52.0	[1](73.0	(53.0	(1)	130	(48.0) [1]]
Dirnethylphthalate	ND	0'19)	(1)	<u>Q</u>	(52.0)[1]	Q	(53.0	(E) (ND	(48.0	ΞΞ
Fluoranthene	N Q	0'29)	[1]	N ON	(52.0	<u>(II)</u>	Q	(53.0)[1]	ND ON	(48.0	Ξ
Fluorene	QN O	0.79))(II)	QN Q	(52.0	[1]	N Q	(53.0	[1]	QN	(48.0	Ξ
Hexachloro-1,3-butadiene	QN	0.79)	(1)	N Q	(52.0	(11)	ND	(53.0)[1]	Q	(48.0)[1]
Hexachlorobenzene	Q	0.79	(1)	Q Q	(52.0	[1](Q.	(53.0	(1)	QN	(48.0	(H)
Hexachlorocyclopentadiene	QN	0'29)	[1]	Q.	(52.0	(1)	Q.	(53.0)[1]	QN	(48.0	Ξ(
Hexachloroethane	Q.	0'.09)	<u>[i]</u> (Q	(52.0	[][QN	(53.0)[1]	S.	(48.0	Ξ
Indeno(1,2,3-cd)pyrene	Ð	0'19)	<u>(</u>	ND	(52.0	<u>E</u>](QN	(53.0	<u>(E</u>]	N Q	(48.0	Ξ
Isophorone	Ð	0'19))[1]	Q.	(52.0	<u>(E)</u>	Q	(53.0	<u>[1]</u> (S	(48.0	(H)
N-Nitroso-di-n-propylamine	Ð	0'.29)	[<u>i]</u>	Q.	(52.0	<u>(</u>	S	(53.0	[1]	QN	(48.0	<u>(II)</u>
N-Nitrosodiphenylamine	S	0'19)	[1](Ω	(52.0)[i]	NO.	(53.0	[1](g	(48.0) [E]
Naphthalene	Q.	0.70	<u>=</u>	Ř	(52.0)[I]	QN QN	(53.0	[1](ND	(48.0	(11)
Nitrobenzene	æ	0'29)) <u>[11]</u>	N O	(52.0)[1]	ΔN	(53.0	<u>(E)</u>	QN	(48.0	(1)
Pentachlorophenol	Q.	0'0')	<u>(</u>	Š	(52.0	[1]	NO NO	(53.0	<u>(13</u>	N	(48.0	(11)
Phenanthrene	£	0'19)	<u>(II)</u>	Q.	(52.0	EJ (QN	(53.0	[](Q.	(48.0	(H)
Phenol	S	0'.09)	(11)	Q	(52.0	[1](QN Q	(53.0	[1](N Q	(48.0	Ξ(
Pyrene	Q	0'29)	[1](Q	(52.0	<u>(1</u>	QN	(53.0	[1](QN QN	(48.0	<u>(E)</u>
bis(2-Chloroethoxy)methane	Q	0'29))[1]	Q	(52.0	(1)	Q	(53.0	<u>(</u>	AD	(48.0	(1)
bis(2-Chloroethyl)ether	QN	0.79))[1]	N Q	(52.0	(1)	NO	(53.0	Ξ	QN	(48.0	(E)
bis(2-Ethylhexyl)phthalate	95.0	0'29)	Ξ(230	(52.0	([]	200	(53.0	<u>(</u>	130	(48.0	(11)
di-n-Butylphthalate	QN	0.79))[1]	NO NO	(52.0	(1)	280	(53.0	<u>(</u>	0.00	(48.0	(1)
di-n-Octylphthalate	Q	0'29))[1]	Q	(52.0	(1)	QN	(53.0)[1]	QN	(48.0	(1)

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

10-	E 4	Ξ,	T3 ()[1]	[1])[1]	(E)) <u>(E</u>	Ξ) [<u>H</u>]	Ξ	Ξ;	(E)	Ξ	<u> </u>	<u>=</u>	Ξ(<u>(</u>	(E)	Ξ.	Ξ	(1)
REF1 REF1-S002 NA-REF1-S002-01 07-MAR-98	5	0.04	46.0	001	006'0)	00200	0.500	00200	0.500	0.400	0.500	0.400	0.500	0.500	0200	0.400	0.500	0.400	0.400	00300	00200	009:0)
Ž								-	_			ļ	-	_	-				-			
	Ę.	2 5	2	336	39.8	26.7	42.2	2:00	2.50	18.7	5.60	8:00	8.20	0.970	3.20	5.70	14.8	7.90	0.470	7.30	116	78.9
.31	5	Ξ,	141	[1](E) ((11))[1])[1])[<u>[</u>]	<u>[i]</u> ((11)	Ξ)[ii]	(II)	(E)	<u>[i]</u>	[1]([](<u>=</u>	<u>[i]</u> ((11)	[1]
REF1 REF1-SO01 NA-REF1-SO01-31 07-MAR-98	S-1	0.55.)	930	0.400	0.300	0.200	0.200	0.200	0.200	0.200	0.200	0.100	0.200	0.200	(,0.200	0.100	0.200	0.100	00100	00200	0.200	0.200
. X				-				-					- ,	-								
	Ę	2 5	N N	629	136	156	172	27.5	9:00	97.8	19.7	41.2	23.3	3.80	9.80	20.0	101	37.4	1.50	20.5	318	323
1 Id 1 Id ate kepth (in.) 8	5	ΞΞ	[1]((11))[1]	[1]	[1]	[1]	<u>[i]</u> (Ξ((11)	(1))[1])[1]	[1]) [1])[1])[1])[1])[1])[1]	[1]
Site Id Location Id Sample Id Log Date Log Date ELEM ELEM-SO08 NA-ELEM-SO08-01 08-MAR-98	5	0.25.0	(32.0	0.500	0.400	0.400	0.300	0.400	0.400	0.200	0.300	0.200	0300	0300	0.300	0.200	0300	0.700	0.700	0.200	0.400	(0.400
Beg. D								-	-		-	-		-	¬	-	-	-	-			
	Š	2 5	S S	379	36.5	49.8	56.6	2.80	1.10	7.50	3.50	3.40	9.50	0.540	2.60	1.90	8:00	3.00	0.250	1.90	90.4	59.1
7.02		E 5	[1]()[1]	(1)	(1)	(11)	[1]([1](<u>[i]</u>	[[])[1])[1]	<u>[</u>]	<u>=</u>	<u>(</u>	<u>[1]</u> ((11)	(1)	(1)	(E))[1]
ELEM ELEM-SO07 NA-ELEM-SO07-02 08-MAR-98	3-12 (ug/kg)	07.70	07.69)	006:0)	00.700	00.700	0.500	009:0	00.700	0.400	00900	0.300	009:0	0.500	0.500	0300	(0.400	0300	0.200	0.200	00200	0.500
ž	, cont.							-	-		-	-			-	-		-				
	ic Compounds	2 9	Q X	337	28.2	45.6	33.4	3.60	1.30	8.40	3.30	3.70	08.9	QN	2.20	2.40	7.20	3.80	Q.	3.10	9.98	70.5
	Parameter 3-12 OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	o-Cresol	p-Cresol SW8290 - Dioxins (ppt)	1,2,3,4,6,7,8,9-OCDD	1,2,3,4,6,7,8,9-OCDF	1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF	1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF	2,3,4,6,7,8-HxCDF	2,3,4,7,8-PeCDF	2,3,7,8-TCDD	2,3,7,8-TCDF	Total HpCDD	Total HpCDF

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	. 19						
					Sample Id	PI						
					Log Date	ate						
					Beg. Depth - End Depth (in.)	epth (in.)						
		ELEM			ELEM			REFI			REFI	
		ELEM-SO07	20.		ELEM-SO08	8 18_01	•	REF1-S001	7		REF1-S002	į
		08-MAR-98	!		08-MAR-98	700		07-MAR-98	į,		07-MAR-98	
Parameter		3-12			0-3			0-3			53	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	41.6	009:0	[1](42.7	0.300	[1]	239	0.200	(E)	989	0.200	(1)
Total HxCDF	7:4	0.400) [E]	44.8	0.200	(1)	535	0.200	[1](98.5	0.200	Ξ(
Total PeCDD	13.0	0.500	[E]	17.4	0.300	[](205	0.200	(<u>[</u>]	24.5	0.200	Ξ
Total PeCDF	48.2	0.300	<u>(II)</u>	42.2	0.200	<u>[1]</u> (809	0.100)[I]	106	0.400	Ξ
Total TCDD	14.7	0.200	<u>(II)</u>	14.4	0.200	<u>(</u>	152	0.100)[1]	27.3	0.400	Ξ(
Total TCDF	40.7	0.200)[1]	37.0	0.100)[1]	522	0.100	(11)	108	0.300	(11)
TOC (mg/kg)												
Total Organic Carbon	AN			NA			00929	(2540	(1)	58700	(1760)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							٠
					Location Id	Į.						
					Sample Id	Į.						
					Log Date	te						
				Beg	Beg. Depth - End Depth (in.)	pth (in.)						
		REF1			REFI			REFI			REF1	
		REF1-SO02			REF1-S002			REF1-S003	103		REF1-S004	
		NA-REF1-S002-02	20	I-VA-I	NA-REF1-SO02-12 Dup of	Jo dn		NA-REF1-S003-01	03-01		NA-REF1-S004-01	11
					NA-REF1-SO02-02	95		07 MAN 00	96		07.WAR-08	
Parameter		07-MAR-98 3-12			0/-!MAK-98 3-12			0-3	0		0-3	
OLM03.2 - Pesticides and PCBs (ug/kg)	g/kg)											
4,4'-DDD	ND	0.260)[1]	ND	(0.250	<u>(</u>	Q	0.560		Q	0.270	Ξ.
4,4'-DDE	1.10	0.260	(1)	1.40	(0.250	[1](066	6 5.60) [20]	150	0.540	[2]
4,4'-DDT	0.800	0.260)[1]	0.970	(0.250	(11	200	J (5.60		43.0	0.270	Ξ
Aldrin	QN	0.260)[1]	QN	(0.250	[1](Ð	0.560		ΩN	0.270	Ξ.
Aroclor-1016	8	0.260)[1]	QN	(0.250	[1]	Q.	0.560	•	QN QN	0.270	<u>(II</u>
Aroclor-1221	Q	(0.260)(11]	QN	(0.250	(11)	QN	0.560		QN	0.270	Ξ
Aroclor-1232	R	0300)	<u>[i]</u> (NO	0.250	(1)	Ω	0.560		Q	0.220	Ξ;
Aroclor-1242	Q	0.260)[1]	Q	(0250	<u>(</u>	N Q	0.560	,		0.270	<u>=</u> ;
Aroclor-1248	Q	0.260)[1]	QN	(0.250) [I]	QN QN	0.560		Q :	0.270	ΞΞ
Aroclor-1254	QN QN	0360)[1]	QN	0.250	(11)	QN	0.560		Q I	(0.270	Ξ;
Aroclor-1260	Q.	0360)[<u>1</u>]	QN	(0.250)[1]	QN	0.560		Q '	0.270	Ξ:
Dieldrin	QN	0700	(1)	QN	0220	EE (Q Q	0.560		2	0.270	Ξ,
Endosulfan I	QN	0.260	(11	ND	0.250	[1]	2	0.560		<u>Q</u> !	0.270	Ξ,
Endosulfan II	ND	0.260)[<u>[</u>]	Q.	0.250	<u>[</u>](2	0.560		2 !	0.270	Ξ,
Endosulfan sulfate	Ð	0.260)[1]	Q	(0250	<u>[]</u> (QN QN	0.560			0.270	<u>=</u> :
Endrin	Ø	0.260	[1](QN	(0250	[1]	Q	0200		Q !	0.270	Ξ,
Endrin aldehyde	9	0.260)[1]	Q.	0.250	(1)	Q	0.560		Q I	0/20)	Ξ.
Endrin ketone	Ð	0.260	<u>[1]</u> (Q	0.250	[1]	QN QN	0.560		2	0.230	<u>=</u> ;
Heptachlor	S	0.260)[1]	Q	(0250	[1]	Q	0.560		Ð	0.270	[1]
Heptachlor epoxide	Ð	0.260	(H)	QN	(0.250)[I]	Ω	0.560		Q	0.270	Ξ.
Methoxychlor	₽	0.260)[H]	ΩN	(0.250)[1]	Q.	0.560		Q '	0.270	Ξ.
Toxaphene	2	0.260)[1]	QN	(0.250)[1]	2	0.560		<u>2</u> !	0.220)	Ξ,
alpha-BHC	Q	0.260	[1]	QN	(0.250)[1]	Q.	0.560) ([2]	QN	0.20	111

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					PI 44%							
					Location Id	5 0						
					Sample Id	707						
					Log Date	3						
				Beg. 1	Beg. Depth - End Depth (in.)	pth (in.)						
	2	REFI			REF1	•		REF			Deter	
	REF	REF1-S002			REF1-S002			REF1-SO03			REF1-SOM	
	NA-REF	NA-REF1-S002-02		NA-RE	NA-REF1-SO02-12 Dup of NA-REF1-SO02-02	jo of OZ		NA-REF1-S003-01	-01		NA-REF1-S004-01	401
	M-70	07-MAR-98			07-MAR-98	•		67-MAR-98			94 44 10 00	
Parameter	3-	3-12			3-12			0-3			0/-MAK-98 0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)											
aipha-Chlordane	O) QN	0.260	[1]	QN	0.250)[[]	Ž	0.00	121	Ş		3
beta-BHC	O) ON	0.260	[1]	ND	0220	Ξ(2	0950	2 E	2 8	0/7:0	ΞΞ
delta-BHC	ND ON	0200	[1]	N O	(0.250	101	Ę	0950	3 5	<u> </u>	0/70)	<u> </u>
gamma-BHC(Lindane)	0) QN		EE (NO ON	(0.250	E (2	0000	<u> </u>	2 2	0.270	Ξ.
gamma-Chlordane	ND (0		[1]	g	(0.250	ΞΞ	9 €	0950)	[2]	2 5	0.270	E E
								,	<u>.</u>)	0/70	111
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	pounds (ug/kg)											
1,2,4-Trichlorobenzene	<u> </u>		[1]	Q.	(51.0)[1]	Ä	(56.0)[1]	Ş	240	101
1,2-Dichlorobenzene	J	51.0) [I]	ND QX	(51.0	(11)	QN.	(56.0		2	, S	ΞΞ
1,3-Dichlorobenzene	<u> </u>		[1]	Q.	(51.0	(11)	S S	(56.0	ΞΞ	2) (1) (1) (1)	ΞΞ
1,4-Dichlorobenzene	<u> </u>) <u>[1]</u>	ND	(51.0	(11)	ND	(56.0	(1)	QN	540	E
Z,Z'-oxybis(1-chloropropane)	<u> </u>		<u>=</u>	Ð	(51.0	EE (QN	(56.0)[1]	ND	(\$4.0	Ξ(
2,4,3-1 rentorophenor	<u> </u>		Ξ:	Q	(51.0	(II)	NO	(56.0)[1]	N QN	(54.0	ΞΞ
2,4,0-11 tentologueiroi	٠ ,		Ε	Q !	(51.0	<u>[]</u>	ΩN	(56.0)[1]	QN	(54.0	Ξ(
2,+-Diametrichenol	- \			Q !	(51.0	<u>=</u>	Ą	(56.0	(11)	Ą	(54.0	(E)
2,+-Danciny spilenoi 2.4 Divitoschessi	<u> </u>		<u>=</u> =	Q !	(51.0)[<u>[</u>]	Q Q	0.96.)	(11)	N Q	(54.0	(1)
2,4-Danaphicalol	٠		[1]	QZ Q	(51.0)[1]	Q	(56.0)[1]	Q	(54.0)[1]
2.4-Dinuconuene	<u> </u>		Ξ	Ę	(51.0	(11)	Q.	(56.0)[1]	ND	54.0	Ξ
2,0-Dundomiene	<u> </u>		Ξ	Q.	015))[1]	QN QN	(56.0)(11)	QN	54.0	Ξ
2-Chloronaphthalene			(1)	Ω	(51.0	[1]	ΩN	(56.0)[1]	QN QN	 54. 0	E (
z-chlorophenol	<u> </u>) [1]	ΔŽ	(51.0)[1]	Q	6.56.0)[1]	QX	. 54.0	E (
Z-Methylnaphthalene	Ų) [<u>1</u>]	Ð	(51.0)[1]	Q.	(56.0)[1]	QN	540	
2-Nitroaniline	NO ON	51.0	[1]	QN	(51.0)[1]	ND	0.96.0	<u> </u>	2	540	Ξ.
									,		?	₹

() = Detection Limit [] = Dilution Factor

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					P1 ****							
					Site tu Location Id	35						
					Sample Id	2 5						
					Log Date	. <u>.</u>						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		REF1			REF1			REF			REFI	
		REF1-S002			REF1-S002			REF1-S003	į	•	REF1-S004	,
		NA-REF1-S002-02	23	NA-I	NA-REF1-S002-12 Dup of NA-REF1-S002-02	Jup of -02		NA-REF1-S003-01	5		NA-KEF1-5004-01	
		07-MAR-98			07-MAR-98			07-MAR-98			07-MAR-98	
Parameter		3-12			3-12			6-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, con	nt. (ug/kg)									;	į
2-Nitrophenol	QN.	(51.0	(11)	QN QN	(51.0)[1]	QN	(56.0	(1)	Q.	(54.0	Ξ.
3 3'-Dichlorobenzidine	S S	(51.0)[1]	Q.	(51.0) <u>[i]</u>	QN	(56.0)[1]	Q.) %	Ξ.
3-Nitroaniline	æ	(51.0	(1)	ΩN	(51.0)[1]	QN	(56.0	(II)	N Q	. 54.0	Ξ :
4.6-Dinitro-2-methylphenol	Ð	(51.0)[1]	QN Q	(51.0)[1]	QN	(56.0	<u>(E</u>	Q.	54.0	Ξ;
4-Bromonbenvi-phenylether	Ð	(51.0)[]]	QN	(51.0)[1]	QN	0.95)[1]	Q.	(54.0	Ξ
4-Chlom-3-methylphenol	QN	(51.0	[](QN QN	(51.0)[1]	QN	(56.0	(1)	QN	. 54.0	Ξ.
4-Chloroaniline	Q	(51.0	[1]	Q.	(51.0)[1]	Ð	(56.0	<u>[i]</u>	Q	(54.0	Ξ.
4-Chlorophenyl-phenylether	2	(51.0	(11)	Ą	(51.0)[1]	QN	0.98)[1]	Q N	. 54. 0	<u>(E)</u>
4-Nitroanaline	8	(51.0)[1]	QN	(51.0)[1]	Q.	(56.0)[1]	Q	(54.0	EI (
4-Nitronhenol	S	(51.0	Ξ	QN QN	(51.0)(11)	ΩN	(56.0	<u>(E)</u>	QN QN	(54.0	Ξ
Acenaphthene	Ð	(51.0	[1](ND	(51.0	[1]	QN	(56.0	(II)	Q.	54.0	Ξ.
Acenaphthylene	Q	(51.0	<u>[i]</u> (Q.	(51.0)[1]	QN	(56.0	Ξ	2	54.0	Ξ.
Anthracene	Q	(51.0) [i]	Q.	(51.0	[][ΩN	0.98	<u>=</u>	QN	54.0	Ξ;
Benzo(a)anthracene	Q	(.51.0)[1]	ND	(51.0	[](ΩN	(56.0	<u>=</u>	Q !	(.52.0	ΞΞ
Benzo(a)pyrene	ND	(51.0	(E)	QN	(51.0	(1)(Q.	(56.0)[1]	Q	54.0	EI :
Benzo(h)fluoranthene	QN QN	(51.0)[1]	ND	015))[1]	QN	(56.0)[<u>1</u>]	QN QN	. \$4.0	Ξ.
Benzo(g.h.i)berylene	Q	(51.0	[1]	Q	(51.0)[1]	Q	(56.0)[1]	Q	, %)[<u>[]</u>
Benzo(k)fluoranthene	QX	(51.0	<u> </u>	QN ON	(51.0)[1]	ΩN	(56.0	(11)	ON ON	(54.0	===
Butulbenzylohthalate	2	(51.0	[<u>[</u>]	QN	(51.0)[1]	QN QN	(56.0)[1]	N Q	(54.0	Ξ(
Carhazole	2	(51.0	· [I](QN	(51.0)[1]	QN	0.95))[1]	Q Q	54. 0	Ξ
Chrysene	Q	(51.0	Ξ	QN QN	(51.0)[1]	QN	(56.0)[1]	2	(54.0	Ξ
Dibenz(a h)anthracene	2	(51.0	Ξ	QN	(51.0)[1]	ΩN	(56.0)[1]	Ð	(54.0	Ξ
Dibenzofuran	Q	(51.0	(11)	QN	(51.0)[1]	Q	(56.0	Ξ(2	. 54.0)[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id							
					Location	D :						
					Sample Id							
					Log Date	ate						
				ag.	Beg. Depth - End Depth (in.)	depth (in.)						
		REF1			REF1			PER			, Line	
		REF1-S002	•		REF1-S002	•		REF1-SO03			KEF1	
		NA-REF1-SO02-02	20-2	NA-	NA-REF1-S002-12 Dup of	Jup of		NA-REF1-S003-01	Ŧ		NA. PEF1-SO04	4
		-			NA-REF1-S002-02	7-05			:		MA-MAI I-SOU	ş
1		07-MAR-98			07-MAR-98			07-MAR-98			07-MAR-98	
Parameter		3-12			3-12			0-3			6.9	
OLMO3.2 - Semi-Volatile Organic Commounds. cont. (100/kg)	Commonings, cor	nt. (no/ke)										
Diethylphthalate	2	(51.0	(1)	Q	(51.0) [[]	58.0	0 \$\$	101			3
Dimethylphthalate	NO	(51.0)[1]	NO	(51.0	<u> </u>	Q.	(56.0		9 5	0 2	ΞΞ
Fluoranthene	QN	(51.0)[1]	N Q	(51.0	(3)	0.09	(56.0	ΞΞ	2	3	ΞΞ
Fluorene	Ä	(51.0)[1]	QN	(51.0	<u>[1]</u> (QN	099	ΞΞ	9	540	E 5
Hexachloro-1,3-butadiene	S	(51.0)[1]	QN	(51.0	[1]	QN	(56.0	Ξ	9	, 25 0.25	ΞΞ
Hexachlorobenzene	Q	(51.0)[1]	QN	(51.0	[1]	N QN	(56.0	[](2	(540	E (
Hexachlorocyclopentadiene	Ŝ	(51.0)[1]	Q	(51.0	[<u>E]</u> (Q	0'95)	Ξ(Q	540	Z
Hexachloroethane	Q.	(51.0	(1)	QN	(51.0	<u>[I]</u> (ND	(56.0	ΞΞ	2	24.0	ΞΞ
Indeno(1,2,3-cd)pyrene	QN Q	(51.0)[1]	QN	(51.0	(1)	ND	0.96.)	ΞΞ	Q.	54.0	ΞΞ
Isophorone	QN Q	(51.0)[1]	QN Q	(51.0	[H]	ND	0.98)	Ξ(QN	540	
N-Nitroso-di-n-propylamine	Q.	(51.0)[1]	Q	0.12)	[<u>i</u>](ND	0'95)	Ξ(ND	(54.0	E
N-Nitrosodiphenylamine	2 !	(51.0)[1]	QV	(51.0	[1]	Š	0.96.)	Ξ	QN QN	54.0	ΞΞ
Naphthalene	9 !	(51.0	<u> </u>	Q	(51.0	(1)	NO	(56.0	(11)	NON	. 540	ΞΞ
Nitrodenzene	9 !	(51.0	(E)	Q.	(51.0)[<u>H</u>]	QN	0.98)	Ξ(ND	(54.0	Ξ.
rentachiorophenoi	2 !	(51.0)[<u>]</u>	Q	(51.0	[1]	ΩN	(56.0	[1]	QN	. 54.0	Ξ(
Fuenanurene	Q !	51.0)[1]	Q.	(51.0	[<u>:</u>]	Q.	(56.0	<u>[I]</u> (ΩN	. \$4.0	ΞΞ
rienol	Q !	(51.0	[1]	Ω	(51.0	[][S	0.95)	<u>(1)</u>	QN	. 54.0	<u> </u>
Pyrene	Q N	(51.0)[1]	8	(51.0)[1]	70.0	6.56.0)[1]	Q	240	
bis(2-Chloroethoxy)methane	Q Q	(51.0	(1)	QN	(51.0	(E)	Q	(56.0	<u> </u>	Q) 22.	ΞΞ
bis(2-Chloroethyl)ether	2	(51.0)[1]	QN	(51.0	[1]	QZ	56.0	Ξ	Q) (12)	3 5
bis(2-Ethylhexyl)phthalate	Q	(51.0	<u>(E</u>	QN	(51.0)[1]	270	(56.0	E	220	240	3 5
di-n-Butylphthalate	æ	(51.0)[1]	Q.	(51.0)[1]	150	56.0		8	3	Ξ
di-n-Octylphthalate	QN	0.15))[1]	QN QN	(51.0	Ξ	Q.	(56.0	E (Ę	C. 7.	ΞΞ
								•		ì	21.0	Ξ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Location Id	121								
							Sample Id	PI								
							Log Date	ıte								
						Beg. De	Beg. Depth - End Depth (in.)	epth (in.)								
			REF1				REF1				REF1				REFI	
			REF1-S002			. •	REF1-S002				REF1-S003				REF1-S004	
		NA	NA-REF1-S002-02	9 2	Z	A-REF	NA-REF1-SO02-12 Dup of NA-REF1-SO02-02	up of -02		NA	NA-REF1-SO03-01	1 0		Ä	NA-REF1-S004-01	-01
			07-MAR-98			_	07-MAR-98				07-MAR-98				07-MAR-98	
Parameter			3-12				3-12				0-3				0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	: Compounds,	comt.	'ug/kg)									, 120				
o-Cresol	Ð		(51.0)[1]	QN		(51.0)[1]	2		260) III	CN		(440	101
p-Cresol	Q.		(51.0	[1](NON		(51.0	(E)	QN		(56.0	ΞΞ	Q			Ξ <u>Ξ</u>
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	39.0		0.800)[1]	58.1		0.500	(1)	757		0.900	111	85		0.800) [1]
1,2,3,4,6,7,8,9-OCDF	3.90	-	0.000)[1]	7.50	-	0.400)[1]	82.0		00.700	ΞΞ	91.5	_	0.700	ΞΞ
1,2,3,4,6,7,8-HpCDD	5.90	-	0.500	(11)	6.70		0.400	(1)	112		009:0	Ξ	91.8	-	0.500	Ξ(
1,2,3,4,6,7,8-HpCDF	4.70	_	0300	(1)	5.40		0300)[1]	86.1		0.400	Ξ	79.9		0.400	E (
1,2,3,4,7,8,9-HpCDF	QN		0.500	[1]	0.710	ī	0.400	<u>(</u>	11.5		009:0	<u>(E)</u>	12.1		009.0	Ξ(
1,2,3,4,7,8-HxCDD	ΩN		0.400	(1]	QN		0.300)[1]	4.80	-	0.500	[1]	3.60	۳,	0.400	<u> </u>
1,2,3,4,7,8-HxCDF	2.10	-,	0.300	<u>(</u>	2.20	- 1003	0300)[1]	41.2		0.400	(E) (34.4		0.400	Ξ
1,2,3,6,7,8-HxCDD	1.40	-	0300)[1]	1.60	_	0.200	[1](11.3	_	0.400	[1](9.80	-	0.300	Ξ
1,2,3,6,7,8-HxCDF	0.960	æ	0.300	[1]	1.10	B	00300	[1]	17.9		00300	<u>(I)</u>	15.2		0.300	(11)
1,2,3,7,8,9-HxCDD	5.30	-	0300	<u> </u>	4.90	_	0.200)[<u>i</u>]	14.2	 ,	0.400	(11)	10.7	-	0.300	(1)
1,2,3,7,8,9-HxCDF	ON SE		0.400	E)(QN		0300	<u>(E)</u>	1.10	_	005'0	<u>[E]</u>	0660	-	0.500	(11)
1,2,3,7,8-PeCDD	1. 3 0	- , ,	0.400	Ξ:	2.00	_	0300	<u>=</u>	5.10		0.500	(11)	4.60	_	0.400	(11)
1,2,3,7,8-PeCDF	0.800	- ,	0300	Ξ	0.610	-	0.300	=	10.8		0.400	<u>(E</u>	7.70		0.400	Ξ
2,3,4,6,7,8-HxCDF	1.80	æ	0.300	(11)	2.00	Bì	0300	Ξ(39.7		0.400	(11)	33.6		0.400)[<u>1</u>]
2,3,4,7,8-PeCDF	1.10	,	0.300) <u>[1]</u>	1.10	-	00:300	[1]	16.6		0.400	[1]	13.2		0.400)[1]
2,3,7,8-TCDD	Q.		0.300	<u>[E]</u> (QN		00:300	[<u>[</u>]	0.860	-	0300	[](0.730	- ,	0.300	(E)
2,3,7,8-TCDF	066:0	_	0.200	<u>E</u>)(1.00		0.200	[<u>H</u>]	14.5		0.300	(E)	9.90		0.300	E
Total HpCDD	13.1		0.500)[i]	13.7		0.400	[H]	234		009:0	Ξ(181		0.500	
Total HpCDF	5.60		0.400	[1](011		0.300)[1]	160		0.500	[1]	155		(0.500	ΞΞ

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	므						
					Sample 1d	<u> </u>						
					Log Date	te						
				Be	Beg. Depth - End Depth (in.)	epth (in.)						
		REF1			REF1			REF1			REF1	
		REF1-S004 NA-REF1-S004-02	7 0-		REF1-SO05 NA-REF1-SO05-01	Ģ		REF1-S006 NA-REF1-S006-01	06 106-01		REF1-SO06 NA-REF1-SO06-02	2
		67-MAR-98			07-MAR-98			07-MAR-98	98		07-MAR-98	
Parameter.		3-12			0. 3			0-3			3-12	
OLM03.2 - Pesticides and PCBs (ug/kg)	(ug/kg)											
4,4'-DDD	Q.	(0.250)[1]	Q	0.270	(11	Q	0.260	(E)	Ð	(0.250) [E]
4,4'-DDE	5.80	0.250)[1]	0.860	0.270)[H]	10.0	(0.260	<u>(</u>	0.990	(0.250)[]
4,4'-DDT	1.70	(0.250)[1]	QN	0.270	[1]	6.90	J (0.260	(II)	Q	(0.250	Ξ(
Aldrin	Q.	(0.250	(11)	QN	0.270	(1)	Q	0.260		Q	0.250	Ξ
Aroclor-1016	QN ON	(0.250	<u>[i]</u>	QN	0.270)[1]	ΩN	0700		QN Q	(0.250	Ξ
Aroclor-1221	NO ON	(0.250)[1]	QN	0.270)[1]	Ð	0.260		Ð	(0.250) <u>[</u>
Aroctor-1232	QN ON	(0.250	(11)	ND	0.270	<u> </u>	Q.	0.260		QN Q	(0.250	<u>(</u>
Aroclor-1242	ND	(0.250	(11)	NO	0.270	(13)	Q	0.260		QN QN	(0.250)[1]
Aroclor-1248	QN QN	(0.250	<u>[1]</u> (Q	0.270)[1]	ND	0.260		Q	(0.250)[:]
Aroclor-1254	ON	(0.250)[1]	QN	0.270	([]	R	0.260		Q.	0.250)[Ξ]
Aroclor-1260	QN	(0.250	[1]	QN	0.270	(11)	S	(0.260		Q.	(0250)[1]
Dieldrin	QN Q	(0.250	<u>[E]</u> (Q	(0.270	(1)	S	0.260		ND	0.250)[1]
Endosulfan I	ND	0.250	[1]	QN	0.270)[1]	S	(0.260		QN QN	0.250)[1]
Endosulfan II	ND	(0.250	[E]	QN	0.270	<u>[i]</u> (2	0.260		QN	0.250)[1]
Endosulfan sulfate	QN	(0.250	<u>[1]</u> (QN	0.270	[1]	S	(0.260		Q.	0.250)[1]
Endrin	ND	(0.250	(E]	QN	0.270	(11)	Q	0.260		QN QN	0.250)[1]
Endrin aldehyde	QN	(0.250)[1]	Q	0.270	([]	Q.	0.260		QN	0.250	(1)
Endrin ketone	ON	(0.250	(1)	QN ON	(0.270	[1]	Q.	0.260		QN O	0.250)[1]
Heptachlor	QN	0.250	(1)	ND	0.270) [<u>i</u>]	QN ON	(0.260		QN	0.250)[1]
Heptachlor epoxide	S S	(0.250	(1)	ΩN	(0.270	<u>[]</u>	9	0.260		Ð	(0.250) [E]
Methoxychlor	QN	(0.250)[1]	QN	0.270)[<u>1</u>]	S	0.260	. ,	S.	(0.250	Ξ
Toxaphene	Q	(0.250)[<u>i</u>]	Q	0.270)[1]	Ą	0.260		Q.	0.250	<u>=</u>
alpha-BHC	QN	(0.250	[1]	Q.	0.270	(11)	Q	0.260	<u>(E</u>	Q.	(0.250	Ξ

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	3						
					Sample Id	8 28 1						
				Be	Log Date Beg. Depth - End Depth (in.)	ate ep¢h (in.)						
		REF1			REFI			REF1			REFI	
	Ź	NA-REF1-SO04-02 07-MAR-98	7 2		KEF1-SO05 NA-REF1-SO05-01 67-MAR-98	10-		REF1-SO06 NA-REF1-SO06-01 07-MAR-98	<u> </u>		REF1-S006 NA-REF1-S006-02	20
Parameter		3-12			0-3			0-3			3-12	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	. (ug/kg)											
alpha-Chlordane	Q	0.250	[1]	Ð	0.270)[1]	Ð	0.260)[[]	2	(0.250	E
beta-BHC	QN Q	0.250	[1](N	0.220	([]	QN QN	0.260	<u> </u>	QX	(0.250	E (
delta-BHC	ND	0.250)[1]	N Q	0.220)[1]	Q.	0.260	E)(QX	(0.250	E (
gamma-BHC(Lindane)	QN QN	0.250	[1]	ND	0.220	(11)	Q.	(0.260	(11)	ND	(0.250	(E)
gamma-Chlordane	Q	0.250)[1]	2	0.270	(1)	QN O	0.260)[1]	QN	(0.250	ΞΞ
OI.MO3.2 - Semi-Volatile Organic Compounds (ug/kg)	mpounds (ug/kg	-										
1,2,4-Trichlorobenzene	QN	(51.0	<u>(</u>	ND QN	(54.0	[1]	QN QN	(52.0)[1]	QX	(51.0) (III
1,2-Dichlorobenzene	ΩN	0.13	[1]	Q.	(54.0	(1)	QN	(52.0	<u> </u>	QN	(51.0	E (
1,3-Dichlorobenzene	N Q	(51.0	[1]	ON	54.0	(11)	Q.	(52.0)[1]	ND	(51.0	Ξ
1,4-Dichlorobenzene	Q.	(51.0)[1]	Q	54.0)[1]	ON	(52.0)[1]	QN	(51.0)[]
2,2'-oxybis(1-chloropropane)	Ð	(51.0) <u>[1]</u>	QN Q	(54 .0	[1]	QN	(52.0	<u>[i]</u> (QN QN	(51.0	(E) (
2,4,5-Trichlorophenol	S S	(51.0	[]	8	. 54.0	[]	Q	(52.0)[1]	QN	(51.0	(E) (
2,4,6-Trichlorophenol	2	(51.0	Ξ.	Ω	6 54.0	<u>(E)</u>	QN	(52.0	[1](Q.	(51.0	(11)
2,4-Dichlorophenol	Q.	(51.0	<u>=</u>	Ω	(54.0	(E)	ND	(52.0	(11)	QN	(51.0	(1)
2,4-Dimethylphenol	Q	(51.0	<u>(</u>	Ð	(54.0	<u>E</u>	ND Q	(52.0)[1]	ΩN	(51.0)[1]
2,4-Dinitrophenol	Q	(51.0	Ξ(QN Q	(54.0	<u>[]</u>	ΩN	(52.0)[1]	Q	(51.0)[1]
2,4-Dinitrotoluene	Q	(51.0)[1]	Q	54.0) <u>[]</u>	N O	(52.0	(1)	Š	015)	(E)
2,6-Dinitrotoluene	QN Q	(51.0)[1]	Š	54.0	<u>[I]</u> (QN	(52.0) [<u>1</u>]	N ON	(.51.0) [E]
2-Chloronaphthalene	Š	(51.0)[1]	Q Q	(54.0)[1]	ON	(52.0)[1]	Æ	(51.0	(E)
2-Chlorophenol	Q.	(51.0)[1]	Q	(54.0	(1]	QN	(52.0	(1)	Q.	(51.0	(E) (
2-Methylnaphthalene	S Q	(51.0	(1)	QN	(54.0)[i]	ΩN	(52.0	(1)	Š	(51.0	(1)
2-Nitroaniline	2	(51.0	. [1](Q.	(54.0	[1]	N Q	(52.0	(1)	QN	(51.0)[]]

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					REFI	REF1-S006	NA-REF1-SO06-02	07-MAR-98	3-12
					REF1	REF1-SO06	NA-REF1-SO06-01	07-MAR-98	0-3
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	REFI	REF1-SO05	NA-REF1-S005-01	07-MAR-98	0-3
					REFI	REF1-S004	NA-REF1-SO04-02	07-MAR-98	3-12
									Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	t. (ug/kg)										
2-Nitrophenol	ΩN	(51.0)[1]	ND	(54.0	[1]	ND	(52.0)[1]	ND	(51.0	[1](
3,3'-Dichlorobenzidine	ΩN	(51.0)[1]	g	(54.0)[<u>[1]</u>	N ON	(52.0) [1]	ND	(51.0	[1](
3-Nitroaniline	QN	(51.0)[1]	g	(54.0	[<u>H</u>](N Q	(52.0)[1]	ND	(51.0)[i]
4,6-Dinitro-2-methylphenol	QN	(51.0)[1]	QN	54.0)[<u>1</u>]	N Q	(52.0)[1]	ND QN	(51.0	(11)
4-Bromophenyl-phenylether	Q.	(51.0)[1]	ΩN	(54.0	<u>[]</u> (ND	(52.0)[1]	QN Q	(51.0	<u>(E)</u>
4-Chloro-3-methylphenol	ND	(51.0)[1]	Q	(54.0	(<u>E</u>)(ND	(52.0)[1]	QN	(51.0	[1](
4-Chloroaniline	Q	(51.0)[1]	ND Q	(54.0)[I]	N Q	(52.0	(13	NO QN	(51.0	[1](
4-Chlorophenyl-phenylether	QN	(51.0)[1]	ND	54.0	[E]	N O	(52.0)[1]	QN QN	(51.0	Ξ(
4-Nitroanaline	QN	(51.0)[1]	NO	(54.0	<u>[i]</u>	QN Q	(52.0)[1]	ND	(51.0	<u>[i]</u> (
4-Nitrophenol	S	(51.0)[1]	QN	(54.0	[<u>[</u>](QN Q	(52.0)[1]	QN	(51.0	[1]
Acenaphthene	ΩN	(51.0)[1]	ΩN	(54.0	[I](ND	(52.0)[1]	Ð	(51.0	(11)
Acenaphthylene	Ð	(51.0)[i]	QN	6 54.0)[<u>i</u>]	QN	(52.0)[1]	QN QN	(51.0	[1]
Anthracene	Ð	(51.0)[1]	ΩN	(54.0	[1](ND	(52.0)[1]	ND	(51.0	[1](
Benzo(a)anthracene	Q	(51.0)[1]	ND	(54.0	[<u>:</u>](ND	(52.0	[1](Q.	(51.0) <u>[1]</u>
Benzo(a)pyrene	2	(51.0)[1]	ΩN	(54.0	<u>[i]</u>	ND	(52.0)[1]	QN Q	(51.0	<u>(</u>
Benzo(b)fluoranthene	Q	(51.0)[1]	QN	(54.0	<u>[]</u>	ND	(52.0)[1]	NO	(51.0	[1]
Benzo(g,h,i)perylene	2	(51.0)[1]	QN	(54.0)[<u>1</u>]	ND QN	(52.0)[1]	Q.	(51.0	[1](
Benzo(k)fluoranthene	QN	(51.0)[1]	QN	(54.0	<u>(</u>	N O	(52.0)[1]	NO	(51.0	[](
Butylbenzylphthalate	Q.	(51.0)[1]	ΩN	(54.0	[](83.0	(52.0)[1]	ND	(51.0	<u>(</u>
Carbazole	<u>Q</u>	(51.0)[1]	QN	(54.0	[1]	ND	(52.0)[1]	ND	(51.0	[1](
Chrysene	£	(51.0)[1]	QN Q	(54.0)[1]	ND	(52.0)[1]	ND	(51.0) [ii]
Dibenz(a,h)anthracene	Ω	(51.0)[1]	ND	(54.0)[1]	Q.	(52.0)[1]	NO	(51.0) [E]
Dibenzofuran	S	(51.0	[1]	Q	6 54.0	[1](Q.	(52.0)[1]	QN	(51.0)[I]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id							
					Location Id	3	,			•		
					Sample Id	2	•					
					Log Date	ite						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		REF1			REF1			REF1			REFI	
		REF1-S004			REF1-S005			REF1-SO06			REF1-SO06	
		NA-REF1-SO04-02 07-MAR-98	-02 -		NA-REF1-S005-01 07-MAR-98	-		NA-REF1-SO06-01 07-MAR-98	10		NA-REF1-SO06-02 07-MAR-98	\$
Parameter		3-12			0-3			0-3			3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	nt. (ug/kg)										
Diethylphthalate	NO QN	(51.0)[1]	61.0	(54.0)[[]	0.99	(52.0	(11)	58.0	(51.0	(11)
Dimethylphthalate	QN	(51.0)[1]	QX	54.0)[<u>[</u>]	ND	(52.0	(E)	QN	(51.0)[1]
Fluoranthene	QN	(51.0)[1]	ΩN	54.0	(11)	55.0	(52.0	(11)	N ON	(51.0)[1]
Fluorene	QN	(51.0	(1)	ND	(54.0	[1]	S	(52.0	[1]	QN	(51.0)[I]
Hexachloro-1,3-butadiene	Q.	(51.0)[1]	QN	(54.0	[1]	S	(52.0	<u>[1]</u> (S	(51.0	<u>(II</u>
Hexachlorobenzene	QN	(51.0)[1]	ND	(54.0	<u>(II</u>	Q.	(52.0	(<u>[1]</u>	Q	(51.0)[1]
Hexachlorocyclopentadiene	Ω	(51.0	[1](QN QN	(54.0	[][Q.	(52.0	<u>(E)</u>	QN	(51.0	(11)
Hexachloroethane	QN Q	(51.0)[1]	QN	6 54.0	<u>(II</u>	Q.	(52.0	(II)	S	(51.0)[1]
Indeno(1,2,3-cd)pyrene	QN	(51.0)[1]	QN	(54.0	[1]	Q.	(52.0	<u>[I]</u>	Q	(51.0)[1]
Isophorone	QN	(51.0	[1]	ND	(54.0)[I]	ND	(52.0	(E)	Q	(51.0)[1]
N-Nitroso-di-n-propylamine	Q.	(51.0	[1]	ND	6 54.0	[1](Q.	(52.0	(E)	Q	(51.0)[1]
N-Nitrosodiphenylamine	Q.	(51.0	[](ND	6.54.0	[1](9	(52.0	(11)	QN	(51.0	(11)
Naphthalene	QN	(51.0	[1]	QN	6 54.0	(11)	QN	(52.0	<u>(II)</u>	Q.	(51.0)[I]
Nitrobenzene	QN	(51.0	(1]	NO	6 54.0	<u>=</u>	QN Q	(52.0	[1]	Q	(51.0)[1]
Pentachlorophenol	Q.	(51.0	<u>[1]</u> (N Q	. 54.0	(1)	Q.	(52.0	<u>(I)</u>	Q	(51.0)[1]
Phenanthrene	N Q	(51.0	[1](N	(54.0	(H)	Q.	(52.0	[1]	Q.	(51.0)[1]
Phenoi	Q.	(51.0	<u>(</u>	N Q	6 54.0	[1]	Q.	(52.0	(1)	Ð	(51.0	(11)
Pyrene	Q.	(51.0	<u>[1]</u>	Q	(54.0	<u>=</u>	53.0	(52.0	<u>(E</u>	Q	(51.0	(13)
bis(2-Chloroethoxy)methane	Q	(51.0	[1]	QN	(54.0	(E)	Q	(52.0	<u>(I)</u>	S	(51.0)[1]
bis(2-Chloroethyl)ether	Q.	(51.0) [1]	Q	54.0	(E)	Ð	(52.0	(<u>[</u>]	QN	(51.0	<u>(H</u>
bis(2-Ethylhexyl)phthalate	QN	(51.0) [E]	160	(54.0)[E]	360	(52.0	Ē	ND	(51.0)[i]
di-n-Butylphthalate	0.77	(51.0)[1]	110	(54.0	[][140	(52.0	<u>=</u>	Q	(51.0	<u>(E)</u>
di-n-Octylphthalate	Ð	(51.0	[[]	2	. \$ 40)[1]	QN	(52.0	(11)	Ð	(51.0	(11)

Not Detected NA = Not Applicable () = Detection Limit [] = Dilution Factor b

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					ш	leg. De	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	d d ie pth (in.)								
		X V	REF1 REF1-SO04 NA-REF1-SO04-02 07-MAR-98	2		NA.	REF1 REF1-SO05 NA-REF1-SO05-01 07-MAR-98			ž	REF1 REF1-SO06 NA-REF1-SO06-01 07-MAR-98	16		NA-	REF1 REF1-SO06 NA-REF1-SO06-02 07-MAR-98	8
Parameter			3-12				0-3				6-3				3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds,	cont.	(ug/kg)													
o-Cresol	Q		(51.0)[]]	æ		(54.0)[1]	Q		(52.0)[1]	QN		(51.0	[1]
p-Cresol	N		(51.0	111	Q.		(54.0)[1]	Q		(52.0)[1]	Q.		(51.0	(1)
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	35.3	-	0.400)[1]	257	 ,	0.400)[1]	385	-	0.400	[1](39.6	- ,	0300)[1]
1,2,3,4,6,7,8,9-OCDF	4,60	-	0300)[1]	38.2	-	00300)[1]	61.6	-	0.300	(11)	4.50	_	0.200)[1]
1,2,3,4,6,7,8-HpCDD	5.70	-	(0.400)[1]	53.9	-	0.400	[1]	71.3	-	0.300	(11)	00.9	_	0.700) [[]
1,2,3,4,6,7,8-HpCDF	5.10		(0.300)[1]	46.4		00:00	[[]	61.3		0.300) [1]	4.80	_	0.200)[<u>=</u>]
1,2,3,4,7,8,9-HpCDF	1.00	-	00500	[1]	8.40	-	0.400	[1]	7.10		0.500	(E)	Q		0.300)[1]
1,2,3,4,7,8-HxCDD	QN ·		0.300)[1]	2.50	-	0.400)[1]	5.40	-	0.400	(E)	Q		0.200)[1]
1,2,3,4,7,8-HxCDF	1.90	- , -	0.300	E (18.9		0.300	E)	28.3	-	(0.200	E	2.10	- -	0.200	Ξ,
1,2,3,6,7,8-HxCDF	0.850		0.300	E (E	8.70		(0.300	E (E)	12.6	•	0.200	ΞΞ	1.10	B	0.200	ΞΞ
1,2,3,7,8,9-HxCDD	4.00	_	00:00	(E)	11.7	-	0.300	(11)	19.5	_	0.400)[1]	5.30	r	0.200)[1]
1,2,3,7,8,9-HxCDF	Q		0.400)[1]	1.00	-	0.400	(11)	0.880	-	00000	(11)	QN QN		0300)[i]
1,2,3,7,8-PeCDD	1.30	-	0.400	[<u>i</u>](3.30	-	0.400	(11	4.10	-	0.300)[1]	1.60	_	0.200	<u>(</u>
1,2,3,7,8-PeCDF	0.540	-	0.400)[<u>i</u>]	3.80	_	0.300	[](7.20		0.300	<u>E</u>](0990	_	0300	<u>(</u>
2,3,4,6,7,8-HxCDF	2.00	B	0.400	<u>[E]</u> (8'61		0.300	[1]	26.0		(0.300	[1]	2.20	B	0.200	<u>[i]</u>
2,3,4,7,8-PeCDF	0.880	ſ	(0.400)[1]	6.30		0.300	(<u>ii</u>	12.7		0.300	<u>(11)</u>	120	-	0.300	<u>(</u>
2,3,7,8-TCDD	8		00:00	(1)	QN		0.300	<u>[i]</u> (0.680	_	0.400	[i]	Ð		0300)[1]
2,3,7,8-TCDF	0.790	_	0.400	(11)	3.60		0.200	[E]	10.2		0.300	<u>[E]</u>	0.940	-	0.100	(11)
Total HpCDD	11.0		0.400	<u>[1]</u> (101		0.400	[1]	123		0.300	Ξ(10.4		0700	Ξ
Total HpCDF	10.0		0.400)[1]	97.8		0.300)[1]	105		0.400	[1]	8.20		0.300)[i]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

Parameter		REF1 REF1-SO04 NA-REF1-SO64-02 07-MAR-98 3-12	-02	æ.	Site Id Location Id Sample Id Log Date Log Deth - End Depth (in.) REF1 REF1-SO05 NA-REF1-SO05 07-MAR-98 0-3	Id ste epth (in.)		REF1 REF1-SO06 NA-REF1-SO06-01 07-MAR-98 0-3	10-		REF1 REF1-SO06 NA-REF1-SO06-02 07-MAR-98 3-12	70
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	13.8	0.300	(1)	72.0	0.300	(13)	145	0.400)[1]	17.4	(0.200) [1]
Total HxCDF	8.70	0.300)[1]	95.6	0.300)[1]	149	0200	Ξ(11.5	(0.200	ΞΞ
Total PeCDD	3.40	0.400	(1)	35.1	0.400	<u>[1]</u> (27.9	0.300	(E) (1.60	0200	Ξ
Total PeCDF	7.40	0.400)[]]	75.9	0.300	([]	147	0300	(11)	9.70	0300	Ξ
Total TCDD	1.70	0.300	(1)	21.3	0.300	<u>(</u>	34.8	0.400	<u>(E)</u>	1.70	0300	ΞΞ
Total TCDF	8.70	0.300	(1)	60.4	0300	(1)	138	0.300	(11)	4.90	(0.300	Ξ
TOC (mg/kg) Total Organic Carbon	29100	(1130)[1]	60400	(2820	[1]	41300	06/21)	[1]	\$2600	(1740)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					REFZ	REF2-SO03	NA-REF2-SO03-01	07-MAR-98	0-3
					REF2	REF2-S002	NA-REF2-S002-01	07-MAR-98	0-3
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	REF2	REF2-SO01	NA-REF2-SO01-02	07-MAR-98	3-12
					REF2	REF2-S001	NA-REF2-S001-01	07-MAR-98	0-3
									Parameter

OLM03.2 - Pesticides and PCBs (ug/kg)	(ng/kg)													
4,4'-DDD	ON		0.370)[1]	QN	0.340	[[]	ND		0.340	(1]	Q.	0.370	[1]
4,4'-DDE	28.0		0.370) [<u>1</u>]	10.0	(0.340)[1]	71.0		0.340	(11)	3.30	0.370)[1]
4,4'-DDT	14.0	_	0.370)[1]	7.30	0.340	(Ξ)	24.0	-	0.340	(11)	2.50	0.370)[1]
Aldrin	ND		0.370)[1]	QN	0.340	(11)	ND		0.340	(11)	ND	0.370	(11)
Aroclor-1016	Q.		0.370)[1]	QN	0.340)[1]	ND		0.340)[1]	ND	0.370)[1]
Aroclor-1221	QN ON		0.370	(1)	QN	0.340	(11)	ND		0.340	(11)	QN	0.370	[1]
Aroclor-1232	Ð		0.370	(1)	QN	0.340)[1]	QN		0.340) [£]	ΝΩ	0.370)[1]
Aroclor-1242	Ð		0.370)[1]	QN	0.340)[1]	ON		0.340	[I](ND	0.370)[1]
Aroclor-1248	QN		0.370)[1]	QN	0.340)[1]	QN		0.340	[1]	S	0.370	<u>[I]</u>
Aroclor-1254	Q		0.370)[1]	ND	0.340)[1]	QN		0.340	(1]	ND Q	0.370)[1]
Aroclor-1260	QN		0.370)[1]	Ð	0.340)[1]	QN ON		(0.340)[1]	QN	0.370	(1)
Dieldrin	Q		0.320)[1]	æ	(0.340	(11)	N N		(0.340)[1]	Q.	0.370)[1]
Endosulfan I	Q		0.370)[I]	ON O	0.340	(1)	Q.		0.340	(11)	ND	0.370	<u>(II)</u>
Endosulfan II	Q.		0.370)[1]	ND	0.340	(1)	ON		0.340	(11)	ND	0.370)[1]
Endosulfan sulfate	Q.		0.370)(II)	ND	0.340)[1]	Q.		0.340	(11)	Q.	0.370	[1]
Endrin	QN QN		0.370	[1](ND	0.340	(E)	Q		(0.340)[1]	ND	0.370	<u>(i)</u>
Endrin aldehyde	QN		0.370)[1]	S	0.340	[1]	QN		0.340)[1]	ND	0.370	<u>[i]</u>
Endrin ketone	QN		0.370) <u>[1]</u>	S	0.340	(1)	QN		0.340)[1]	N Q	0.370)[1]
Heptachlor	QN		0.370)[ii]	N Q	(0.340	(E]	ND		0.340)[1]	ON	0.370)[I]
Heptachlor epoxide	QN		(0370)[ii]	Q.	(0.340	(1)	ND		0.340)[1]	ND	0.370	(1)
Methoxychlor	QN		0.370)[I]	QN	(0.340	(11)	ND ND		0.340)[1]	ND	0.370	(11)
Toxaphene	NO.		0.370)[1]	Q.	(0.340	(11)	ND QN		(0.340	<u>(II)</u>	Q.	0.370)[1]
alpha-BHC	QN.		0.370)[1]	Ð	0.340) [H]	QN ON		0.340)[]]	ND	0.370	(Ξ)

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	ı Id						
					Sample Id	PI;						
					Log Date	late						
				Be	Beg. Depth - End Depth (in.)	Septh (in.)						
		REF2 REF2-SO01 NA-REF2-SO01-01	<u>.</u> [0-1		REF2 REF2-S001 NA-REF2-S001-02	_ <u>\$</u>		REF2 REF2-S002 NA-RFF2-SO02-01			REF2 REF2-SO03	3
Parameter		07-MAR-98 0-3			07-MAR-98 3-12	l Lan		07-MAR-98	£		07-MAR-98	F
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	cont. (ug/kg)											
alpha-Chlordane	QN	0.370	[1](Q.	0.340	(1)	AN	0.340)[1]	QN	0.370	[1]
beta-BHC	QN	0.370	(11)	Q.	0.340)[1]	ON	0.340)[1]	QN QN	(0.370	[E](
delta-BHC	Q.	(0.370	. [1] (QN	0.340)[1]	N Q	0.340	(<u>[</u>]	QN	0.370	(E) (
gamma-BHC(Lindane)	ND	(0.370	[1](QN	0.340)[1]	N Q	0.340)[<u>i</u>]	Ð	0.370	Ξ(
gamma-Chlordane	Ð	0.370	[1](Q.	0.340	[1]	S	0.340)[1]	Q.	0.370	(1)
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	c Compounds (u	ıg/kg)										
1,2,4-Trichlorobenzene	Q.	0.97)[1]	QN	0.89	[<u>H</u>](N	0.89	[1]	S	(72.0)[1]
1,2-Dichlorobenzene	ND QN	(76.0	(1)	ND	0.89))[1]	QN	0.89	<u>[1]</u> (QN	(72.0	Ξ(
1,3-Dichlorobenzene	Q	0.97)[I]	Q.	0.89)	[1](NO	0.89	(11)	QN	(72.0	<u> </u>
1,4-Dichlorobenzene	S Q	0.92)[1]	N Q	0.89)[1]	QN	0.89	[1](QN	(72.0)[1]
2,2'-oxybis(1-chloropropane)	Q.	0.92	(II)	QN Q	0.89)	[1](ND	0'89)	(II)	Q.	(72.0	. [1]
2,4,5-Trichlorophenol	Q	(76.0	(13)	Q.	(68.0	([]	QN ON	0'89)	(E)	ND Q	0.27)	(1)
2,4,6-Trichlorophenol	QZ QZ	0.92	[1]	<u>R</u>	0.89)	([]	QN QN	0'89)	(1)	QN Q	(72.0	(11)
2,4-Dichlorophenol	Ð	0.92	(<u>[1]</u>	Ð	0.89	(1)	Q.	0.89))[1]	QN.	(72.0	<u>(E)</u>
2,4-Dimethylphenol	Q.	(76.0)[1]	Q	0'89)) [1]	QN	0.89)	(II)	S S	(72.0)[1]
2,4-Dinitrophenol	<u>R</u>	0.92)(1]	Q	0'89))[1]	Q.	0'89)	(11)	Q.	(72.0)[i]
2,4-Dinitrotoluene	£	0.92)[1]	ND	0.89))[1]	QN	0'89)	(E)	Q.	(72.0	<u>[i]</u> (
2,6-Dinitrotoluene	Ð	0.97)[1]	Q.	0.89))[1]	QN	0'89)	<u>E</u>	QN Q	(72.0	<u>(</u>
2-Chloronaphthalene	S S	0.92)[1]	QN	0'89))[1]	QN	0:89)	[1](QN	(72.0)[1]
2-Chlorophenol	QN	0.92	<u>(E</u>	Q	0.89)) [1] (Q	0.89)	[:](Q.	(72.0)[1]
2-Methylnaphthalene	Q	0.92)[1]	Q	0'89)	(11)	8	0.89)	(1)	Q.	0.27	(E)(
2-Nitroaniline	QN N	(76.0	Œ	Q	0.89)	[1](Q	0'89)	(H)	S	0.27)[1]

() = Detection Limit [] = Dilution Factor [

Not Detected NA = Not Applicable

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	;						
					Location Id	Iđ						
					Sample Id	Id						
					Log Date	ite						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		REF2			REF2			REF2			REF2	
		REF2-SO01			REF2-S001			REF2-SO02			REF2-S003	
		NA-REF2-SO01-01	10-1		NA-REF2-SO01-02	-03		NA-REF2-SO02-01	10		NA-REF2-SO03-01	61
		07-MAR-98			07-MAR-98			07-MAR-98			07-MAR-98	
Parameter		0-3			3-12			0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	nt. (ug/kg)										
2-Nitrophenol	N	(, 76.0) [1]	N Q	0.89)[1]	ND	0.89))[1]	ND	(72.0	<u>E</u>
3,3'-Dichlorobenzidine	Q	(76.0)[1]	Q	0.89))[1]	Q.	0.89))[1]	Q.	(72.0	<u>(</u>
3-Nitroaniline	Q	0.92)[1]	Q.	0.89))[1]	NO	0'89))[1]	ON	(72.0	[1]
4,6-Dinitro-2-methylphenol	ND	(76.0)[1]	QN	0.89))[1]	QN	0'89))[1]	Q Q	(72.0) [E]
4-Bromophenyl-phenylether	QN	0.92)[1]	ND	0.89))[1]	QN	0.89))[1]	S	(72.0	Ξ
4-Chloro-3-methylphenol	NO	0.92)[1]	QN	0.89))[1]	ND	0.89)	(11)	Q	(72.0	(11)
4-Chloroaniline	S	0.92)[1]	ND	0.89))[1]	QN	0.89)	(1)	S Q	(72.0)[<u>[</u>]
4-Chlorophenyl-phenylether	QN	0.92)[1]	NO ON	0.89))[1]	Q	0.89))[I]	Q.	0.27)[1]
4-Nitroanaline	QN	(76.0)[1]	QN QN	0.89))[1]	ND QN	0.89))[1]	<u>R</u>	0.27)[1]
4-Nitrophenol	NO ON	0.92)[1]	QN	0.89))[1]	NO	0.89))[1]	ΩN	(72.0)[1]
Acenaphthene	ND	0.92)[1]	ND	0.89))[1]	ND	0.89))[1]	QN	(72.0) [<u>1</u>]
Acenaphthylene	QN	0.97))[1]	ND	0.89))[1]	ΩN	0'89))[1]	ΩN	(72.0)[1]
Anthracene	ΩN	0.92)[1]	ΩN	0.89)) [1]	9	0.89))[1]	QN	0.27)[1]
Benzo(a)anthracene	QN	0.92)[1]	ON	0'89))[1]	Ð	0.89))[]	S	0.27	<u>(</u>
Benzo(a)pyrene	QN O	0.97)[1]	Q	0.89)	(11)	Q	0.89))[1]	AD	(72.0	Œ
Benzo(b)fluoranthene	N O	0.97)[1]	QN	0.89))[1]	Q.	0.89))[1]	ND	(72.0	<u>(</u>
Benzo(g,h,i)perylene	NO	0.97	[1](QN QN	0.89))[1]	Q.	0.89))[1]	QN	(72.0	(E)
Benzo(k)fluoranthene	ND	0.97	(11)	QN QN	0.89))[1]	QN	0'89))[1]	ND	(72.0	Ξ
Butylbenzylphthalate	Q	0.97))[1]	QN	0'89))[1]	Q	0'89)) <u>[i]</u>	Q	0.27	<u>(</u>
Carbazole	QN	0.92)[1]	QN	0.89))[1]	Q	0.89))[1]	N Q	(72.0	Ξ
Chrysene	ND	(76.0	(1)	Ą	0'89))[1]	QN	0.89))[1]	ND	(72.0	<u>[i]</u>
Dibenz(a,h)anthracene	ND QN	0.92)[1]	ND	0'89))[1]	QN	0.89))(11)	ND	(72.0	<u>[</u>](
Dibenzofuran	QN	(76.0)[1]	QN	0'89)	(11)	QN	(68.0)[1]	<u>Q</u>	(72.0	<u>=</u>

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	_ 3								
					Sample Id Loe Date	1 P								
				Beg	Beg. Depth - End Depth (in.)	epth (in.)								
		REF2			REF2				REF2				REF2	
		REF2-SO01 NA-REF2-SO01-01	 01		REF2-SO01 NA-REF2-SO01-02	25		NA-	REF2-S002 NA-REF2-S002-01	=		ZA.	REF2-SO03	=
		07-MAR-98			07-MAR-98				07-MAR-98				07-MAR-98	
rarameter		3			3-12				93				0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	i. (ug/kg)												
Diethylphthalate	QN	(76.0	[1]	Q	0'89))[1]	S		(68.0)[1]	QX		0720	1111
Dimethylphthalate	QN	0.92	[1](QN	0.89)[]	Q		0.89	(E) (Q.		072.0	Ξ
Fluoranthene	Q	0.97	[](ND	0.89)	[1]	2		0.89))[1]	Ş		(72.0	Ξ
Fluorene	Q.	0.92)(IJ	Q.	0'89))[1]	R		0'89)	(1)	S		(72.0	ΞŒ
Hexachloro-1,3-butadiene	Ð	0.92)[1]	Š	0.89))[1]	N		0'89)	[1]	£		(72.0	Ξ(
Hexachlorobenzene	Ð	0.92	(11)	S	0.89)	(11)	N N		0'89)	[1]	Q.		(72.0	ΞΞ
Hexachlorocyclopentadiene	QN Q	0.92)[1]	S	0'89)	[]]	S	n	(68.0)[1]	QN	n	(72.0	Ξ
Hexachloroethane	Q	(76.0	(E)	Q	0.89))[1]	Ð		0.89))[1]	Q.		0.27))[1]
Indeno(1,2,3-cd)pyrene	2	0.92	<u> []</u>	2	0'89'))[1]	Ð		0:89)	<u>[I]</u> (Q.		(72.0	(E) (
Isophorone	QN !	0.92)[1]	NO NO	0.89)	[1]	S		0.89)	(11)	Q		0.27)	(11)
N-Nitroso-di-n-propylamine	Q !	76.0	Ξ.	Q.	0.89)	[1]	æ		0'89))[<u>[</u>]	QN		0.27)	<u>[I]</u> (
N-Nitrosodiphenylamine	Q (0.96	Ξ;	2 :	0.89	Ξ	Q.		0'89)) <u>[</u>	Ð		(72.0)[1]
Newsterne	2 4	0.06	Ξ	2 !	(68.0	Ξ.	2		0.89)	[1]	2		(72.0)[<u>1</u>]
Pentachlorophenol	2 2	0.67		2 2	D:80	[](2 2		089)	Ξ.	2 9		(72.0	Ξ
Phenanthrene	Ę	092)	E	2	089	ΞΞ	9 9		0.00	ΞΞ	3		0.27	Ξ;
Phenol	9	092)	ΞΞ	2 5	0.80	ΞΞ	2 5		n'90 \	ΞΞ	2 9		0.27	Ξ
Pyrene	QX	0'92)		9 8	(89)		9 5		000	ΞΞ	2 9		0.21	
bis(2-Chloroethoxy)methane	QN QN	(76.0	E (2	089	E E	2		089	<u> </u>	9 9		0.2/	
bis(2-Chloroethyl)ether	ND	(76.0	Ξ	QX	(68.0	Ξ(2		089)	ΞΞ	2 2		22.0	ΞΞ
bis(2-Ethylhexyl)phthalate	230 J	0'92)) [E]	QN	0.89)	<u>(E)</u>	200	_	0.89)	ΞΞ	260	т,	72.0	<u> </u>
di-n-Butylphthalate	120	0'92)	(1)	Q.	0.89)	[i]	140		0.89)	ΞΞ	110		(72.0	ΞΞ
di-n-Octylphthalate	Q.	0.92	(1)	Ð	0'89)	[1](8		0.89)	[1](QN		(72.0	ΞΞ

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					H	leg. De	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ld (d te pth (in.)								
		NA	REF2 REF2-SO01 NA-REF2-SO01-01 07-MAR-98	10		XX	REF2 REF2-SO01 NA-REF2-SO01-02 07-MAR-98	-02		NA	REF2 REF2-SO02 NA-REF2-SO02-01 07-MAR-98	=		NĀ	REF2 REF2-SO03 NA-REF2-SO03-01 07-MAR-98	-
Parameter			0-3				3-12				0-3				0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds,	cont.	(ug/kg)													
o-Cresol	Ð.		0.92	[1](Q !		(68.0	E (2		0.89)	Ξ.	2 :		(72.0	Ξ.
p-Cresol	£		0.92	[1]	S		0.89)	[2]	2		0.89)	(1)	Q.		(72.0	[]
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	1230	т,	0.500	<u>E</u>	755		0.800)[1]	786		(1.00)[1]	61.1		(2.00	(E)
1,2,3,4,6,7,8,9-OCDF	130	,,	0.400	(1)	62.4		0.700)[1]	110		0.800)[1]	100		(1.70	(1)
1,2,3,4,6,7,8-HpCDD	187	Ь	0300) <u>[1]</u>	104	-	0.500)[1]	157	-	0.800)[1]	129	-	(130)[1]
1,2,3,4,6,7,8-HpCDF	96.4		0300	Ξ	43.0		(0.400	<u>(11</u>	298		0.400)[1]	89.1		008:0)[1]
1,2,3,4,7,8,9-HpCDF	18.5	¬	0.400	[1]	7.70	-	0.500	(1)	18.2		009'0)	(11)	20.3		(120	[[]
1,2,3,4,7,8-HxCDD	8.00	-	0.300	[1]	2.50	-	0.500	(E)	9.00	-	009:0)[1]	08.9	-	(1.00	<u>E</u>
1,2,3,4,7,8-HxCDF	42.5	- , •	0.300	[1]	13.7	, , , , , , , , , , , , , , , , , , ,	0.400	Ξ.	38.3	-	0.300	Ξ	39.8	ь,	0.600	三
1,2,3,6,7,8-HxCDD	15.0	-	0.300	E (86. 198	_	0.400		13.4	-	0.000	<u> </u>	12.5	-	0060	
1,2,3,7,8,9-HxCDD	24.0	-	0.300	ΞΞ(11.8	-	0.400	E (29.5	-	0090)	ΞΞ	22.9	-	0060	ΞΞ
1,2,3,7,8,9-HxCDF	1.50	-	0300	(11)	0.550	-	0.500)[1]	1.40	-	0.400	(11)	2.20	_	0.800)[1]
1,2,3,7,8-PeCDD	6.20	-	0.300	(1)	3.10	-	0.500)[1]	5.20		0.400	<u>(11</u>	5.40		00200)	[1](
1,2,3,7,8-PeCDF	9.30		0.300)[1]	3.40	_	0.400	[1](9.90		0.300	[]]	00:6		0.500)[1]
2,3,4,6,7,8-HxCDF	37.2	_	0.300)[i]	13.5	-	0.500	<u>[i]</u>	32.5	-	0.400	<u>(</u>	34.2	_	002:0) [<u>1</u>]
2,3,4,7,8-PeCDF	12.7		0.300	(E]	4.40	-	0.400	Ξ	12.5		0.300)[1]	11.2		0.500	<u>(E)</u>
2,3,7,8-TCDD	0.690	-	0.300	[1]	Q		0.000	<u>[i]</u> (0.770	-	0.300)(II)	0960	-	0.000	Ξ
2,3,7,8-TCDF	9.10		0.200	(E)	4.00		0.500	<u>[i]</u> (00.6		0.300	[1]	8.10		009:0)	<u>=</u>
Total HpCDD	322		0.300	(1)	178		0.500	(1)	329		008'0))[<u>[</u>]	762		(1.30	Œ
Total HpCDF	179		0.300	(1)	88.7		(0.500)[1]	171		0.500)[1]	170		001	[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					REF2	REF2-S003	NA-REF2-S003-01	07-MAR-98	6. 3
					REFZ	REF2-S002	NA-REF2-SO02-01	07-MAR-98	0-3
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	REF2	REF2-SO01	NA-REF2-SO01-02	07-MAR-98	3-12
					REF2	REF2-S001	NA-REF2-S001-01	07-MAR-98	0-3
									Parameter

W8296 - Dioxins, cont. (ppt)												
Total HxCDD	171	0300	(E)	70.4	0.400	[1]	211	009'0)	<u>[1]</u> (167	(1.00)[1]
Total HxCDF	203	0300	[1](74.5	0.400	[<u>H</u>]	186	0300)[1]	189	0.700)[1]
Total PeCDD	38.9	0.300	[<u>E]</u> (19.1	0.500	[1]	46.2	0.400	(1)	38.3	00.700	<u>(E)</u>
Total PeCDF	162	0.300	Ξ(40.7	0.400	<u>(E)</u>	151	0300	(1)	127	0.500) H
Total TCDD	44.5	0.300	[E](9'01	009'0)	[1]	54.2	0300	Ξ	37.3	00900)	<u>(ii</u>
Total TCDF	114	0.200	[E](966	0.500	(E)	118	0.200	<u>[i]</u> (616	0.500	Ξ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	9						
					Sample Id	Į.						
					Log Date	te						
				Beg	Beg. Depth - End Depth (in.)	pth (in.)						
		REF2			REF2			REF2			REF2	
		REF2-S003			REF2-S004			REF2-SO05	905		REF2-SO05	05
	_	NA-REF2-SO03-02 07-MAR-98	2 9		NA-REF2-S004-01 07-MAR-98	- 0		NA-REF2-SO05-01 07-MAR-98	105-01 -98		NA-REF2-SOUS-02 07-MAR-98	.05-02 98
Parameter		3-12			0-3			0-3			3-12	
OLM03.2 - Pesticides and PCBs (ug/kg)	(ug/kg)											
4,4'-DDD	QN	(0.330	(11)	QN QN	0.290	(1)	QN	(0.330	([]	QN	(0.280	(11)
4,4'-DDE	1.40	(0.330	[1]	4.20	0.290	[1]	14.0	0.330	•	05'9	(0.280	(E)
4,4'-DDT	2.30	(0.330	(1)	4.00	0.290	[1]	8.30	J (0.330		6.40	J (0.280	[1](
Aldrin	Q.	(0.330	(1]	ND	0.290	(1)	Q Z	(0.330		Q	(0.280	(11)
Aroclor-1016	QN	0.330	[:]	QN	0.290	<u>[i]</u>	g	(0.330		Q	(0.280	
Aroclor-1221	Q	0.330	(E]	ND	0.290	[E](ΩN	(0.330		QN.	(0.280	
Aroclor-1232	QN	(0.330)[i]	QN.	0.290	<u> </u>	Q.	(0.330		QN	0.280	
Aroclor-1242	QN	(0.330	(1]	N Q	0.290	[]]	Q	(0.330		QN	0.280	
Aroclor-1248	Q	0.330	<u> </u>	QN	0.290	(1)	QN	(0.330		QN	0.280	,
Aroclor-1254	QN	(0.330	(II)	QN	0.290	(11)	Ð	(0.330		QN QN	(0.280	(1)
Aroclor-1260	Q	0.330	(11)	QN	0.290	(11	QN	(0.330		QN	(0.280	
Dieldrin	QN	0.330	(11)	QN	0.290	[1]	ΩN	(0.330		<u>Q</u>	0.280	
Endosufan I	QN	0.330	(E)	ON	0.290	[1]	Ŕ	(0.330		ND ND	(0.280	
Endosulfan II	QN	(0.330	[1]	QN	0.290	[<u>H</u>]	Q.	(0.330		Q	0.280	•
Endosulfan sulfate	Q	(0.330	[1]	ON	0.290	<u>[1]</u>	QN	(0.330		£	(0.280	
Endrin	ND	0.330	(11)	ND	0.290	(11)	QN	(0.330		Q	0.280	
Endrin aldehyde	QN	0.330	(11)	ND	0.290	[1]	ΩN	(0.330		Q Q	(0.280	,
Endrin ketone	ND	0.330	[1](ND	(0.290	<u>(E)</u>	N Q	(0.330		QN	0.280	
Heptachlor	QN	0.330)[H]	ND Q	(0.290	(E)	QN.	(0.330		QN	0.280	
Heptachlor epoxide	ND	0.330	[<u>H</u>](ND	(0.290)[1]	ND O	(0.330		Q	0.280	
Methoxychlor	QN	(0.330	[E](ND	0.290){1]	Q.	(0.330		QN N	(0.280	•
Toxaphene	ND	(0.330	[1]	QN	0.290	(11	QN	(0.330		Q	0.280	
alpha-BHC	QN QN	(0.330	(1)	QN	0.290	(11)	Q	(0.330	(1)	2	(0280)[<u>1</u>]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

				Be	Site Id Location Id Sampie Id Log Date Beg. Depth - End Depth (in.)	Id Id ate epth (in.)						
	Ž	REF2 REF2-SO03 NA-REF2-SO03-02 07-MAR-98	-0.5		REF2 REF2-S064 NA-REF2-S064-01 07-MAR-98	101		REF2 REF2-SO05 NA-REF2-SO05-01 07-MAR-98	10-		REF2 REF2-SO05 NA-REF2-SO05-02 07-MAR-98	70
Parameter		3-12			0-3			0-3			3-12	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	t. (ug/kg)											
alpha-Chiordane	8	0.330	(11)	Q	0.290)[1]	N	(0.330	[1]	Q	0.280)[1]
beta-BHC	S	0.330	<u>(E</u>	ΝD	0.290)[1]	QN	(0.330)[1]	NO	0.280	Ξ
delta-BHC	2	0.330	[]	Q.	0.290	[1]	ND	0.330	(1)	QN QN	0.280	Ξ(
gamma-BHC(Lindane)	S	0.330)[1]	Q.	0.290	[1]	ND	0.330)[1]	QN QN	0.280	E)(
gamma-Chlordane	2	0.330	[][Q	0.290	<u>E</u>](Q.	0.330)[1]	NO N	0.280	(E)
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	A/gu) spunoduc	3										
1,2,4-Trichlorobenzene	NO	0.59))[1]	Q.	(58.0	(11)	Ð	0.79)	(1)	Q	(56.0)[[]
1,2-Dichlorobenzene	N Q	(65.0)[1]	Q	(58.0	<u>(E</u>)	ND QN	0.79)[1]	Q	(56.0	Ξ(
1,3-Dichlorobenzene	QN Q	0'59)	(1]	Q.	(58.0	[1]	N Q	0.79)	[1](ND	(56.0	ΞΞ
1,4-Dichlorobenzene	QN Q	0.59)	(1)	2	(58.0	<u>E</u>	Ð	0.79))[1]	QN QN	(56.0	(E) (
2,2'-oxybis(1-chloropropane)	Q :	0.50	[1]	Q	(58.0	(<u>[</u>]	QN	0'.02)	[1]	QN	(56.0	(1)
2,4,5-Trichlorophenol	Q !	09)	Ξ.	€!	(58.0	<u>=</u>	Ð	0.19	[1]	Q.	(56.0)[1]
2,4,6-1 richlorophenol	2 9	0.50)		2 9	(58.0	ΞΞ	2 9	0.73	Ξ	2	(26.0)[1]
2,4-Dicholophenoi	2 (02:0	E S	N !	0.88.0	<u>=</u>	Q	0.79	E)(Q Q	0'95)	<u>(E</u>
2,4-Dimethylphenol	€ ;	0.65.0	Ξ.	Q	(58.0	Ξ	Š	0'.09)	(1)	Q	(56.0) [E]
2,4-Dinitrophenol	Q :	(65.0)[<u>]</u>	2	(\$8.0)[1]	Q.	0.79))EI)	Q	(56.0	(E) (
2,4-Dinitrotoluene	Q.	(65.0)[1]	Ð	(58.0) [1 <u>3</u>	Æ	0.79)	<u>[I]</u> (ND	0.95))[I]
2,6-Dinitrotoluene	QN Q	(65.0) <u>E</u>	S	(58.0)[1]	Ω	0'.29))[1]	Q.	(56.0	(11)
2-Chloronaphthalene	e	(65.0	<u>(E</u>	Q.	(58.0	<u>(II)</u>	Š	0.79))[1]	ND	0'95)	<u>(H</u>
2-Chlorophenol	2	(65.0	[1]	N Q	(58.0	<u>(II</u>	ð	0'09))(IJ	ND Q	(56.0)[1]
2-Methylnaphthalene	Q !	65.0) [1]	Q.	(58.0	Ξ(ð	0'.09)	(1)	Q.	(56.0	<u>(E)</u>
2-Nitroaniline	Q Z	(65.0	<u>(ii</u>	£	0.88.0	<u>(i)</u>	Ð	0'.09)	E) (Q	0'95))[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					REF2	REF2-SO05		07-MAR-98	3-12
					REF2	REF2-SO05	NA-REF2-S065-01	07-MAR-98	0-3
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	REF2	REF2-S004	NA-REF2-S004-01	07-MAR-98	0-3
					REF2	REF2-S003	NA-REF2-S003-02	07-MAR-98	3-12
									Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, cont	:. (ug/kg)										
2-Nitrophenol	QX	0.50)[1]	QN Q	(58.0)[1]	Q	0'29))[1]	ND	(56.0	<u>(</u>
3,3'-Dichlorobenzidine	QN	0.50) [<u>1</u>]	QN QN	0.83)[1]	ND	0'19))[1]	S	0.95)	<u>(II)</u>
3-Nitroaniline	ΩN	0.50)	[1]	QN Q	(58.0)[1]	Q.	0'.29))[1]	N Q	0.98)[1]
4,6-Dinitro-2-methylphenol	NO ON	0.59)[1]	QN	(58.0)[1]	ON	0.79))[1]	ND	(56.0	(E)
4-Bromophenyl-phenylether	N Q	(65.0)[1]	QN	(58.0)[1]	N ON	0'.29))[1]	ON.	(56.0)[1]
4-Chioro-3-methylphenol	Q.	(65.0)[1]	ND	6.58.0)[1]	QN.	0.79))[1]	Q.	(56.0	(11
4-Chloroaniline	Q	(65.0	(1)	ND	(58.0)[1]	ND QN	0.79))[1]	QN ON	(56.0)[1]
4-Chlorophenyl-phenylether	Ð	(65.0)[1]	ND	(58.0)[1]	QN QN	0.79)	(11)	QN	(.56.0)[i]
4-Nitroanaline	Q.	0.59))[1]	ND	0'85))[1]	ND	0.79)) [1]	ND QX	(56.0	(E)
4-Nitrophenol	QN	(65.0)[1]	ND	0.85))[1]	QN	0'.29)) [1]	ND	(56.0	<u>[i]</u>
Acenaphthene	QN QN	(65.0)[1]	N Q	(58.0)[1]	Q	0.69.))[1]	Q.	(56.0	<u>(I</u>
Acenaphthylene	QN	(65.0)[1]	ND	0'85))[1]	QN	0'.09))[1]	N Q	0.95	(E)
Anthracene	NO ON	0'59))[1]	N ON	(58.0)[1]	QN	0'29))[I]	QN.	(56.0)[1]
Benzo(a)anthracene	NO ON	(65.0)[1]	ND	(58.0	(11)	Q	0.79)	(11)	Q.	(56.0	<u>(II)</u>
Benzo(a)pyrene	QN ON	(65.0	(1)	ND	0.88	(1)	QN Q	0.79)[1]	Q	(56.0	<u>(II)</u>
Benzo(b)fluoranthene	Ą	(65.0	(1)	ND	0.88)[1]	ND ND	0.79))[1]	QN	6 56.0	<u>(E</u>
Benzo(g,h,i)perylene	N QN	(65.0	(11)	ND	0.85))[1]	QN QN	0.79))[1]	QN	0.95)	Ξ
Benzo(k)fluoranthene	Q.	(65.0	[1]	ND	0.88.))[1]	ΝD	0.79)	(11)	Q.	(56.0	<u>[I]</u> (
Butylbenzylphthalate	Q	(65.0)[1]	QN	0.85) [1]	QN	0'29))[1]	S	0.95)	(1)
Carbazole	ND	0.59))[1]	ND	0.86)[1]	ND	0'29))[1]	Q.	(56.0	(1)
Chrysene	ΩN	(65.0)[1]	N Q	0.86)[1]	ΩN	0'29))[1]	Q.	(56.0	Ξ(
Dibenz(a,h)anthracene	QN	(65.0)[1]	ND	0.88)[1]	ND	0.79))[1]	ΩN	(56.0	<u>[1]</u>
Dibenzofuran	N Q	(.65.0)[1]	QN	0.85)(11)	QN Q	0'.29))[1]	Q	(56.0	(11)

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id Location Id Sample Id Log Date	75 75 44								
					P	leg. Dep	Beg. Depth - End Depth (in.)	pth (in.)								
			REFZ				REF2				REF2				REF2	
		~	REF2-S003			#	REF2-S004				REF2-S005				REF2-S005	
		NA-R	NA-REF2-SO03-02 07-MAR-98	9 7		T-V	NA-REF2-SO04-01 07-MAR-98	10		N	NA-REF2-SO05-01 07-MAR-98	0 1		-N	NA-REF2-SO05-02 07-MAR-98	23
Parameter			3-12				0-3				0-3				3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds,	cont. (ug	g/kg)													
Diethylphthalate	Q	Ĭ	0.50) [<u>1</u>]	QN		(58.0	[1]	Q.		0'19)) <u>[1]</u>	æ		(56.0)[1]
Dimethylphthalate	Q	Ĭ	0.59	<u>[i]</u> (ΩN		(58.0	<u>[E]</u> (Ð		0'29)	(E)	Ð		(56.0	<u>[I]</u>
Fluoranthene	QN	Ĭ	0.50	(E)	Q.		0.85)	(1)	Ð		0'29)	<u>[i]</u> (Ð		990)	(E)
Fluorene	Q	Ĭ	0.50	Ξ(ON		(58.0	[:]	Ð		0'29)	[[]	Ð		(56.0	(E)
Hexachloro-1,3-butadiene	Q	Ĭ	0'29	(E)	g		(58.0)[I]	Ð		0'29)	[1]	Ð		(56.0) [1]
Hexachlorobenzene	Q	Ĭ	0.50	(E)	QN		0.86.)	<u>(E)</u>	Ω		0'29)	[1]	Æ		(56.0)[1]
Hexachlorocyclopentadiene	Q	5	0:59	(E)	9	n	(58.0	[<u>E]</u> (Q	B	0'29)	[1]	æ	n	(56.0)[1]
Hexachloroethane	Q	Ĭ	0.50) <u>[1]</u>	윤		(58.0	[][9		0'29)	[1]	S		(56.0	([]
Indeno(1,2,3-cd)pyrene	Q	Ĭ	0:59	(E)	S		(58.0	[1]	9		0'.09)	[i]	g		(56.0)[3]
Isophorone	Q	Ĭ	0.59	(E]	S		(58.0	<u>(E)</u>	Q		0'29)	[1]	æ		(56.0	(11)
N-Nitroso-di-n-propylamine	Q.	Ŭ	0.50) [<u>:</u>]	Q		(58.0	<u>(E</u>	Q		0'19)	(11)	S		(26.0	<u>(</u>
N-Nitrosodiphenylamine	Q	Ĭ	0.59	Ξ	ND		0.83	<u>E</u>](Q		0'.09)	<u>=</u>	S		96.0)[1]
Naphthalene	Q	Ŭ	0.59	ΞŢ	QN		(58.0	<u>(E)</u>	Q		0'29)	[1]	S		(56.0)[1]
Nitrobenzene	Q	Ŭ	0.50	Ξ	Q		(58.0	Ξ	2		0'29)	<u>[]</u>	2		0.98))[1]
Pentachlorophenol	Q	Ŭ	0:59	E)(ΩN		(58.0	<u>(E)</u>	Q		0'29)	<u>=</u>	£		96.0)[1]
Phenanthrene	Q	Ŭ	0.50	Ξ(QN		(58.0	<u>[E]</u> (Q		0'29)	[1]	QN QN		(56.0	(11)
Phenol	QN	Ĭ	0:59	<u>(E</u>	9		(58.0	Ξ	Q		0'29)	<u>[1]</u>	2		(56.0	(1)
Pyrene	Ð	Ĭ	0.59	Ξ	Q Q		(58.0	Ξ(2		0'19)	[1]	쥝		0.98)	<u>(</u>
bis(2-Chloroethoxy)methane	Q	Ĭ	(65.0	Ξ	QX		(58.0	Ξ	Q		0'29)	(11)	Ð		0.98)	<u>(II</u>
bis(2-Chloroethyl)ether	Q	Ĭ	0.50	Ξ	QN		28.0	Ξ	Ð		0'29)	<u>[i]</u> (S		26.0	(1)
bis(2-Ethylhexyl)phthalate	Q	Ĭ	0.50	Ξ(270		(58.0	(13)	200		0'29)	[1]	Q.		0.96.0)[1]
di-n-Butylphthalate	Q	•	0.59	Ξ	75.0		(58.0	<u>=</u>	210		0'.29)	<u>(E)</u>	330		96.0	<u>[]</u>
di-n-Octylphthalate	Q	•	0'29	(E)	Q.		(58.0)[1]	S		0.79))[1]	<u>R</u>		0'95)	<u>=</u>

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Comple 1d	_								
							Log Date	. 4								
					H	eg. Dep	Beg. Depth - End Depth (in.)	th (in.)								
			REF2			•	REF2				REF2			-	REF2	
		Ä	REF2-SO03 NA-REF2-SO03-02 07-MAR-98	ŭ		NA.	KEF2-SO04 NA-REF2-SO04-01 07-MAR-98	.		N A	NA-REF2-SO05-01 07-MAR-98	-		NA-I	NA-REF2-SO05-02 07-MAR-98	
Parameter			3-12				0-3				63	:			3-12	
	-		- Confidence					Advantage value				;				
OLMOS.2 - Semi-volatue Organic Compounts, cont. (ug. kg) o-Cresol (65)	ompounts, ND	COUNTY.	(ug/kg) (65.0)[[]	Q.		(58.0)[1]	Q.		0.79)	(11)	Q		0'95))[1]
p-Cresol	ND ND		(65.0)[1]	QN		(58.0	(11)	QN		0.79))[1]	Q.		(56.0)[1]
SW8290 - Dioxins (ppt)				٠												
1,2,3,4,6,7,8,9-OCDD	123		(1.10	(1)	307		009:0)[1]	801		0060)	(II)	503		(120	<u>(</u>
1,2,3,4,6,7,8,9-OCDF	17.8		(0.900)[1]	36.3		0.500	(11)	116		008'0)	[E](29.0		(1.00	[1]
1,2,3,4,6,7,8-HpCDD	7.2.7	-	0.800)[1]	50.4	-	009'0))[1]	136		00300	(1)	33.5		0.800)[1]
1,2,3,4,6,7,8-HpCDF	10.9		0.500)[1]	34.5		(0.400)[1]	98.1		0.400	[1](21.9		00970)) <u>[</u>
1,2,3,4,7,8,9-HpCDF	N N		00900))[1]	8.40		0.500)[1]	24.1	_	009.0) [1]	4.60	_	0060)	(E)
1,2,3,4,7,8-HxCDD	Q	n	009'0))(11)	3.70	-	005:0)[1]	5.70		0.400)[<u>[</u>]	1.20	_	009:0	Ē
1,2,3,4,7,8-HxCDF	2.90	-	0.300)[1]	15.1	'n	0.300	(11)	39.8		0.300)[1]	8.10	-	0.500	Ξ
1,2,3,6,7,8-HxCDD	Q	S	06:1)[<u>:</u>]	9.90	۳,	0.500)[1]	14.3		0.400	<u>(</u>	8. S	- -,	0090	Ξ ;
1,2,3,6,7,8-HxCDF	1.10	-	0300)[1]	7.20		0.200)[1]	17.7		00:00	Ξ	3.70	_	0.200	Ξ
1,2,3,7,8,9-HxCDD	6.30	-	009'0)	[1]	20.2	-	0.500)[i]	21.4	-	0.400	<u>(</u>	1.1	-	0090	Ξ
1,2,3,7,8,9-HxCDF	S		0.400	(11)	0.680	-	0.300	(1)	1.50	-	0.400	三	2		009.0	(E) (
1,2,3,7,8-PeCDD	0.890	_	0.400)[1]	3.70	_	0.300) [1]	5.90		0.500	<u>(</u>	7.80	_	0.700	Ξ:
1,2,3,7,8-PeCDF	0.950	-	0.300	<u>(E)</u>	3.70	_	0300)(E]	8.20		0.300) [1]	2.00	_	0.500	Ξ
2,3,4,6,7,8-HxCDF	2.50	_	0.400)[1]	15.3	_	(0.300	[1](42.1	-	0.400	<u>(E)</u>	870	-	0.000) <u>(</u>
2,3,4,7,8-PeCDF	1.10	-	0.300)[1]	5.60		0.300	<u>(E</u>)	12.1		0300	<u>(E)</u>	3.10	ь,	0.500	Ξ
2,3,7,8-TCDD	Q		0.300	(11)	0.390	-	0.300	Ξ(0.920	-	0.300	<u>(</u>	2		0.000	Ξ
2,3,7,8-TCDF	0.850	-	(0.400)[1]	2.20		0.1.70	(11)	7.80		00900)	<u>=</u>	1.80		00.700	Ξ
Total HpCDD	43.3		0.800)[1]	101		0.000	==	251		0.300	Ξ	29.8		0.800	E
Total HpCDF	21.0		0.500	(E)	97.9		0.400	<u>(</u>	198		0.500	[1]	43.8		0.700	<u>=</u>

Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	REF2 REF2 REF2 REF2-SO04 REF2-SO05 REF2-SO05 NA-REF2-SO04-01 NA-REF2-SO05-01 NA-REF2-SO05-02 07-MAR-98 07-MAR-98 07-MAR-98 0-3 0-3 3-12	(0.500)[1] 159 (0.400)[1] 48.2 (0.600)[1] (0.300)[1] 48.2 (0.500)[1] (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.300)[1] 127 (0.400)[1]
	REF2 REF2-SO03 NA-REF2-SO03-02 07-MAR-98 3-12	25.8 (0.600) [1] 14.2 (0.400) [1] 2.30 (0.400) [1] 8.40 (0.300) [1] 2.00 (0.300) [1] 8.60 (0.200) [1]
	Parameter	SW8290 - Dioxins, cont. (ppt) Total HxCDD Total PeCDD Total PeCDF Total TCDD Total TCDD

)[]

3320

86600

Ϋ́

Ϋ́

Χ

TOC (mg/kg) Total Organic Carbon

Compiled: 07/01

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Be	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ate epth (in.)						
		REF2			REF2			TOWR			TOWR	!
		REF2-S006 NA-REF2-S006-01	6 6-01	NA-	REF2-SO06 NA-REF2-SO06-11 Dup of	Jo dn		TOWR-SO01 NA-TOWR-SO01-01	1-01		TOWR-SO02 NA-TOWR-SO02-01	02 102-01
		07-MAR-98	200		NA-REF2-SO06-01 07-MAR-98	[-]		08-MAR-98			08-MAR-98	20
Parameter		63			0-3			0-3			0-3	:
OLM63.2 - Pesticides and PCBs (ug/kg)	ug/kg)							·				
4,4'-DDD	ND	0.380	(1)	A A	0.380)[<u>1</u>]	ND	0.280) [II]	Q.	(0.250	(13)
4,4'-DDE	12.0	0.380	(1)	8.60	0.380	[1]	09'9	0.280)[i]	44.0	(0.250	<u>[i]</u> (
4,4'-DDT	J.60	Ŭ	(1)	5.10	0.380	(E)	3.60	0.280	<u>[H]</u>	25.0	J (0.250	[1]
Aldrin	QN	0.380	Ξ	QN	0.380	(11)	Q	0.280	<u>[1]</u> (ND	(0.250	(E)
Aroclor-1016	Q	0.380	[][ND	0.380	[1]	Q.	0.280) <u>[</u>]]	Q.	(0.250)[<u>1</u>]
Aroclor-1221	Ð	0380	<u>[]</u>	ND	0.380)[1]	Q.	0.280)[1]	QN QN	(0.250)[<u>[</u>]
Aroclor-1232	QN Q	0.380	Ξ	QN Q	0.380	(11)	QN QN	0.280	[1]	QN QN	(0.250	Ξ
Aroclor-1242	ND Q	0.380	<u>[H</u>	ON ON	0.380	[<u>1</u>]	Q.	0.280	<u>[1]</u>	QN	(0.250	Ξ
Aroclor-1248	Q.	0.380	(1)	QN Q	0.380	<u>(II)</u>	Q.	0.280	Ξ	N Q	(0.250	Œ
Arocior-1254	N Q	0.380	(11)	2	0.380	<u>=</u>	QZ Q	0.280	<u>[i]</u>	QN	(0.250)[<u>1</u>]
Aroclor-1260	Q N	0.380	[](ON	0.380	Ξ	QN :	0.280	(1)	QN	(0.250	E) (
Dieldrin	Q.	0.380	<u>=</u>	QN :	0.380	<u>=</u>	Q I	0.280	E (Q ¦	(0.250	Ξ.
Endosulfan I	QN	0.380	Ξ	QN N	0.380	=	Q.	0.280	Ξ	<u>Q</u> !	(0.250	Ξ
Endosulfan II	9 :	0.380	Ξ	9 :	0.380	E)(2 9	0.280	Ξ,	9 9	0250	Ξ,
Endosultan sultate	ON !	0.380	[1](0.380	[7](Q !	0870	E :	2 :	0570	<u>-</u>
Endrin	2	0380	<u> </u>	Q N	0.380	Ξ.	QN :	0.280	<u>=</u>	Q !	0.250	[1]
Endrin aldehyde	Q	0.380)[1]	Q.	0.380	<u>=</u>	QN	0.280	<u>=</u>	Q N	(0.250	(II)
Endrin ketone	Ω	0.380	<u>=</u>	Q.	0.380	<u>=</u>	Q V	0.280	(1)	QN	(0.250	<u> </u>
Heptachlor	QN Q	0.380	(11	Q.	0.380	Ξ	Q Q	0.280)[1]	Q	(0.250	(E)
Heptachlor epoxide	Q	0.380	(11)	Q.	0.380	<u>=</u>	Ω	0.280	<u>(</u>	Q.	(0.250	Ξ
Methoxychlor	S S	0.380	[](QN QN	0.380	<u>=</u>	Q	0.280	<u>E</u>	QN	(0.250	Ξ(
Toxaphene	S S	0.380	[](ΩN	0.380	[1]	Q Q	0.280	Ξ	Q.	(0.250	Ξ
alpha-BHC	Q.	(0.380	(<u>[</u>]	Q	0.380)[1]	QN	0.280) <u>[1]</u>	Q.	(0250)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Parameter	2	REF2 REF2-SO06 NA-REF2-SO06-01 07-MAR-98 0-3	14	Beg	Site Id Location Id Sample Id Log Date Log Date REF2 REF2-SO06 NA-REF2-SO06-11 Dup of NA-REF2-SO06-01 07-MAR-98 0-3	Id Id ate lepth (in.) up of -01		TOWR TOWR-SO01 NA-TOWR-SO01-01 08-MAR-98 0-3	1-01		TOWR TOWR-SO02 NA-TOWR-SO02-01 08-MAR-98	20.5
OLM03.2 - Pesticides and PCBs, cont. (ug/kg) alpha-Chlordane beta-BHC ND	. (ug/kg) ND ND	(0.380	E E E	999	(0.380) [1] (1) (1)	Q Q	(0.280	[1](A A	(0250 (0250	E)(
detta-BHC gamma-BHC(Lindane) gamma-Chlordane	2 Q Q	(0.380 (0.380 (0.380) E (2 2 2	(0380		2 2 2	(0280 (0280 (0280		<u> </u>	(0250 (0250 (0250	
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg) 1,2,4-Trichlorobenzene ND	mpomds (ug/k ND	$\overline{}$)[1]	Q.	0.97)	[1)(N Q	0'95')	[1]	æ	015)	[1]
1,2-Dichlorobenzene 1,3-Dichlorobenzene	2 2	0.87)	E (99	(76.0 (76.0		22	(56.0	三(三)	2 2	(51.0	Ξ <u>Ξ</u>
1,4-Dichlorobenzene 2,2'-oxybis(1-chloropropane)	9 9 !	(76.0	E (2 2 :	(76.0 (76.0	E (<u>8</u>	(56.0	EE (<u>8</u> 8	(51.0	<u>E</u> E
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dicklorophenol	222	(76.0 (76.0	E E E	999	0.87) 0.87)		2 2 9	(56.0	E E E	221	(51.0	<u>E</u> (
2,4-Dimethylphenol 2.4-Dimitrophenol	2 2 2	(76.0 (76.0 (76.0		2 9 9	(76.0		2 2 2	0.00		2 2 9	0.12 (51.0 (51.0	
2,4-Dinitrotoluene 2,6-Dinitrotoluene	99	0.97)		2 2	0.97		2 2 2	(56.0	E (E (E	2 2 2	016)	= = =
2-Chloronaphthalene 2-Chlorophenol 2-Methylnaphthalene 2-Nitroaniline	2222	(76.0 (76.0 (76.0 (76.0		<u> </u>	(760)			(56.0 (56.0 (56.0		2 2 2 2	(51.0 (51.0 (51.0 (51.0	

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	Id						
					Sample Id	Id						
					Log Date	ate						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		REF2			REF2			TOWR			TOWR	
		REF2-SO06			REF2-S006			TOWR-SO01	_		TOWR-SO02	
	_	NA-REF2-S006-01	1 0	NA-R	NA-REF2-SO06-11 Dup of NA-REF2-SO06-01	Jup of F-01		NA-TOWR-SO01-01	1-01		NA-TOWR-S002-01	2-01
		07-MAR-98			07-MAR-98			08-MAR-98			08-MAR-98	
Parameter		0-3			0-3			0-3			0-3	ļ
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	mpounds, con	t. (ug/kg)										
2-Nitrophenol	e e	(76.0	[1]	Q	(76.0)[1]	QN	0.98)	(11)	QN ON	(51.0	[1]
3,3'-Dichlorobenzidine	ND	0.92)[i]	ND	0.92)[1]	QN QN	(56.0)[1]	ND	(51.0)[1]
3-Nitroaniline	Q	0.92)[1]	ON ON	0.97)[1]	QN	(56.0	(E)	ΩN	(51.0) <u>[1]</u>
4,6-Dinitro-2-methylphenol	æ	0.92)[1]	ND	0'92)	(11)	Q	(56.0	[1]	Q.	(51.0)[1]
4-Bromophenyl-phenylether	QN	0.92)[1]	ΩN	0.92)[1]	QN	(56.0)[1]	N Q	(51.0)[1]
4-Chloro-3-methylphenol	Q.	0.92)[1]	Q.	(76.0)[1]	ΩN	(56.0	[][S	(51.0)[1]
4-Chloroaniline	OZ OZ	0.92)[1]	N Q	0.97)[1]	QN ON	(56.0	Ē	Q.	(51.0) [I]
4-Chlorophenyl-phenylether	S	0.92)[1]	ND	0.97))[1]	QN Q	. 56.0	<u>(E)</u>	QN	(51.0)[i]
4-Nitroanaline	S	(76.0)[1]	QN	0.92)[1]	ND	(56.0)[I]	Q	(51.0)[1]
4-Nitrophenol	ΝΩ	(76.0)[1]	QN QN	0.92)[1]	QN	(56.0)[1]	QN QN	(51.0)[1]
Acenaphthene	S	0.92	[1](Q.	0.92)[1]	QN	(56.0	Ξ(QN QN	(51.0	<u>(1</u>
Acenaphthylene	Q	0.92	[](QN	0.92)[1]	QN	(56.0	<u>[1]</u> (QN	(51.0	<u>[]</u>
Anthracene	Q	0'92))[1]	QN	(76.0)[1]	QN	(56.0	[1](S	(51.0) <u>[1]</u>
Benzo(a)anthracene	Ð	0'92)	(1)	Q.	0.97)[1]	Ð	(56.0	[][S S	0.15	[]
Benzo(a)pyrene	ND	0.92)[1]	ND	0.92)[1]	QN	(56.0)[1]	QN	(51.0	(11)
Benzo(b)fluoranthene	QN	0'92))[1]	ND	0.92)[1]	QN	0.95))[1]	QN	(51.0	[1]
Benzo(g,h,i)perylene	Q	0'92))[1]	Q.	0.92)[1]	QN	(56.0	<u> </u>	Q	(51.0) [<u>1</u>]
Benzo(k)fluoranthene	QN	(76.0)[1]	Q.	0.97))[1]	QN	0.98) <u>[i]</u>	Q	015))[1]
Butylbenzylphthalate	QN	0.92)[1]	N Q	0.92))[1]	QN	(56.0)[1]	æ	0.15)	(1)
Carbazole	Ω	0.92) [1]	N N	0.92)[1]	QN	0.98	[<u>H</u>]	Q.	(51.0)[<u>[</u>]
Chrysene	QN	(76.0)[1]	NO	0.92	(1)	Q.	(56.0)[I]	51.0	(51.0)[1]
Dibenz(a,h)anthracene	Q	(76.0)[1]	N Q	0.92)[1]	Q.	0.98)) <u>[1]</u>	R	(51.0	(1)
Dibenzofuran	S	0.97	[1]	Q	0.92	(1)	2	0.96))[1]	2	(\$1.0	[]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id								
						I	Location Id								
							Sample Id								
							Log Date	_							
					H	Beg. Depth - End Depth (in.)	- End Dep	th (in.)							
		R	REF2			12	REF2				TOWR			TOWR	
		REF	REF2-SO06			RE	REF2-S006				TOWR-SO01			TOWR-SO02	2
		NA-REF	NA-REF2-S006-01		Ž	NA-REF2-SO06-11 Dup of NA-REF2-SO06-01	KEF2-SO06-11 Dup NA-REF2-SO06-01	Jo C		NA-1	NA-TOWR-SO01-01	-01	-	NA-TOWR-S002-01	10-01
		07-M	07-MAR-98			07-I	07-MAR-98			•	08-MAR-98			08-MAR-08	
Parameter		Ó	0-3				0-3			•	0-3			63	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	npounds, co	ont. (ug/kg													
Diethylphthalate	2	, ~	0.97	[1]	QN	Ū	76.0	[1]	S.		26.0)[[]	C X	(510	E
Dimethylphthalate	Q	×)	0.97	(1)	<u>R</u>	Ù	0.97	(E)	S		26.0	ΞΞ	2	(51.0	Ē
Fluoranthene	ND	×)	0.97	[1]	Q	Ù	76.0	(11)	Q.		0.95)	<u>(</u>	56.0	(510	ΞΞ
Fluorene	Ð	٧		(11)	Ð	Ù	76.0)[1]	Q		0.98)	[I]	ND	(51.0	ΞΞ
Hexachloro-1,3-butadiene	S S	¥ `		[1]	Q	Ù	76.0)[1]	QN		0'95)	<u>(II)</u>	ND	(51.0	Ξ
Hexachlorobenzene	g	Ù		[1]	g	Ù	76.0	[1]	Q.		26.0	<u>(I)</u>	N QN	(51.0	Ξ
Hexachlorocyclopentadiene	g	2 10 10		(1)	Ω	B	76.0	[1]	S	5	0'99	(H)	Q	(51.0	[I](
Hexachloroethane	2	۱ ک		<u>=</u>	2	`_	0.92)[1]	Q		0'99	(11)	Q.	(51.0)[1]
indeno(1,2,3-cd)pyrene	₽ :	94		Ξ	R	Ù	0.92) <u>[1]</u>	2		. 56.0	[H]	ND	(51.0	(1)
Isophorone	2	2		Ξ	<u>R</u>	Ù	76.0)[1]	S		(56.0	<u>[i]</u> (Q.	(51.0	(H)
N-Nitroso-di-n-propylamine	£ :	92		[1]	S	Ù	76.0)[<u>1</u>]	S		(56.0	<u>(II)</u>	QN Q	(51.0	<u>[i]</u> (
N-Nitrosodiphenylamine	2	92)		Ξ	2	Ù	76.0	<u>[i]</u>	S		. 56.0	[1]	NO O	(51.0	(1)
Naphthalene	2 !	92 }		Ξ.	2		76.0	<u>[</u> E]	S		(56.0) <u>[1]</u>	Ð	(51.0	Œ
Nitrobenzene	2 !	92 ;			2	Ü	76.0	Ξ(Ð		0.96.0	(1)	ΩN	(51.0	(11)
Fentachlorophenol	Q !	9 1		Ξ.	2	Ü	76.0	[:]	S		0.98	(11)	QN QN	(51.0)[1]
Phenanthrene	€ :	0.97		Ξ	£	Ü	76.0	<u>=</u>	S	-	0.96.0	<u>[i]</u>	QN	(51.0	Ξ
Phenol	2	0.92		Ξ(Q	Ü	76.0	<u>[E]</u> (S		26.0	[1]	N Q	0.18)	[I](
Pyrene	S	0.92		Ξ	£	Ü	76.0	Ξ	Ð	_	26.0	[1]	57.0	(51.0)[<u>:</u>]
bis(2-Chloroethoxy)methane	£	0.92		<u>=</u>	S	Ü	76.0	<u>[i]</u>	Ð	_	26.0	(11)	QN	(51.0	<u>(1)</u>
bis(2-Chloroethyl)ether	g	0.97		<u> </u>	S	Ü	76.0	Ξ(Ð		26.0	(11)	QN	(51.0	(1)
bis(2-Ethylhexyl)phthalate	230	0'92)		[]	220	Ü	76.0	<u>[I]</u> (130	_	0.95	(1)	200	(51.0	Ξ(
di-n-Butylphthalate	380	0.92		(1)	320	Ü	76.0	[1]	R	•	0.95	<u>(E)</u>	83.0	(51.0	Ξ
di-n-Octylphthalate	S	0.97		[1]	Ð	Ü	76.0)[1]	Q	Ī	26.0)[<u>1</u>]	QN QN	(51.0	ΞΞ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
						2	Location Id									
						võ.	Sample Id									
							Log Date									
						Beg. Depth - End Depth (in.)	End Dept	h (in.)								
			REF2			RE	REF2				TOWR			TOWR		
		_	REF2-S006			REEZ	REF2-S006			•	TOWR-SO01			TOWR-SO02	202	
		NA.	NA-REF2-S006-01	T	Z	NA-REF2-SO06-11 Dup of	XEF2-SO06-11 Dup	Jo.		NA	NA-TOWR-S001-01	1 0		NA-TOWR-SO02-01	002-01	
		_	07-MAR-98			NA-KEF	07-MAR-98	_		_	08-MAR-98			08-MAR-98	8	
Parameter			0-3			٥	0-3				0-3			0-3		
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, co	ont.	ıg/kg)													
o-Cresol	Ð		0.97)[1]	Q	, J	76.0)[1]	Ð		0.95))[1]	ΩN	(51.0)[1]	
p-Cresol	Q		0'92)	[1](Q.	ر ب <u>ا</u>	76.0)[1]	Q		0.98))[1]	Ð	(51.0)[1]	
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	1610		00.700)[1]	1670	1)	1.50	[1]	8.66		0.700	(1)	865	00600	(1)	
1,2,3,4,6,7,8,9-OCDF	181		009'0)	[1]	189	~	130	<u>[I]</u> (19.9		0.500)[1]	611	009:0)[1]	
1,2,3,4,6,7,8-HpCDD	211		0.400)[1]	229	0)	0.900	(E)	22.6		(0.400	(11)	44	00900)[1]	
1,2,3,4,6,7,8-HpCDF	133		0.300)[1]	14	0)	0.700) [I]	21.3		0300	[1]	134	0.400)[1]	
1,2,3,4,7,8,9-HpCDF	32.3		005:0	[1](36.9	.	1.00)[1]	5.10		0.500) <u>[1]</u>	22.5	0090)[1]	
1,2,3,4,7,8-HxCDD	7.20		0.300)[i]	8.30	0)	0.700	([]	1.00	ī	0.400) [I]	5.70 J	0.500	(1)	
1,2,3,4,7,8-HxCDF	58.2	_	0300)[1]	89.9) (0	0.500)[1]	9.80	_	00300) [I]	63.4	0.500	(1)	
1,2,3,6,7,8-HxCDD	18.9		0300)[I]	19.9	0)	0.600	[1]	3.70	_	0300	(1]	14.0	0.400)[1]	
1,2,3,6,7,8-HxCDF	23.6		0.200) <u>[i]</u>	25.6	0)	0.500)[1]	3.80	_	0.300	(1)	26.3	0.400	<u>=</u>	
1,2,3,7,8,9-HxCDD	25.5	—	0300)[1]	27.1	J (0	0.700)[1]	11.1	'n	0300)[<u>1]</u>	14.4 J	0.500	(E)	
1,2,3,7,8,9-HxCDF	3.60	_	0300	(1)	3.50	0) f	0.700)[1]	ND		0.400	[1]	2.10	0050))[1]	
1,2,3,7,8-PeCDD	7.30		0.300)[1]	8.20	0	0.700	<u>(E</u>	2.80	_	0.400	<u>E</u>	5.40	0090	Ξ(
1,2,3,7,8-PeCDF	13.0		00300)[1]	14.1	0	0.500	<u>(</u>	2.00	_	0.200	[1]	12.7	0.400)[1]	
2,3,4,6,7,8-HxCDF	54.6	_	0300	[[]	58.9) [009.0) <u>[i]</u>	10.7		0.400	[1](0.09	00500	(E)	
2,3,4,7,8-PeCDF	17.9		00:300	[1]	18.0	0)	0.500	(11	2.80	-	0.200	<u>[</u>]	21.7	0.400	<u>(</u>	
2,3,7,8-TCDD	1.10		0.300)[1]	0.850	J (0	0.500)[1]	0.400	_	0.400	[1]	1.20	0.500	(E)	
2,3,7,8-TCDF	10.9		00200	[1]	0.11	0	0.700)[1]	Q		0.800	[1]	10.5	0.500	(13)	
Total HpCDD	395		0.400	<u>(E</u>	416	0)	0.900	(11)	39.1		0.400)[<u>1</u>]	261	009'0	(E)	
Total HpCDF	263		0.400	[1]	285	0)	0.800	(1)	41.6		0.400)[1]	254	0.500	(11)	

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

				Ĕ	Site Id Location Id Sample Id Log Date Beg. Depth • End Depth (in.)	! Id Id ate epth (in.)						
Poromotor		REF2-SO06 NA-REF2-SO06-01 07-MAR-98	#	A.	REF2 REF2-SO06 A-REF2-SO06-11 Dup of NA-REF2-SO06-01	on of including of		TOWR-SO61 NA-TOWR-SO61-01 08-MAR-98	01 01-01		TOWR TOWR-SO02 NA-TOWR-SO02-01 08-MAR-98)2 02-01
rat attacker		3			3			0-3			0-3	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	195	0.300	<u>[1]</u>	209	00200)	(1)	46.2	0.300	[1]	141	0.500)III
Total HxCDF	71.7	00:00	(E)	236	009:0	[<u>H</u>](45.7	0.300	111	317	0.500	
Total PeCDD	57.4	0.300	(E)	299	00200	(E)	26.2	0.400	EE (115	00900	Ξ
Total PeCDF	197	0300	(E)	212	0.500	[<u>1</u>]	33.3	0.700	[1](317	(0.400	ΞΞ
Total TCDD	609	0300	<u>(H)</u>	63.1	0.500	<u>[i]</u> (10.9	0.400	H (803	0.500	E (
Total TCDF	136	0.200)[1]	147	0.400)[1]	36.3	0300	Ξ	707	(0.400	ΞΞ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	;						
					Location Id	ΡĮ						
					Sample Id	2						
					Log Date	ate						
				ă	Beg. Depth - End Depth (in.)	epth (in.)						
		TOWR			TOWR			TOWR			TOWR	
		TOWR-SO02	2		TOWR-S003	83		TOWR-SO03	5		TOWR-SO04	_
		NA-TOWR-SO02-32	2-32		NA-TOWR-SO03-01	03-01	A N	NA-TOWR-SO03-11 Dup of NA-TOWR-SO03-01	Dup of 3-01		NA-TOWR-S004-01	4-01
		08-MAR-98			08-MAR-98			08-MAR-98			08-MAR-98	
Parameter		3-12		-	0-3			0-3			0-3	
OLM03.2 - Pesticides and PCBs (ug/kg)	s (ug/kg)											
4,4'-DDD	QN	0.240	<u>[I]</u> (QN	(0.290	<u>(11)</u>	ΩN	0.310)[<u>1</u>]	QN	0.240	<u>(E)</u>
4,4'-DDE	7.90	0.240	[1]	12.0	(0.290	[1](0.11	(0.310	<u>(E)</u>	140	0.970)[4]
4,4'-DDT	7.50	0.240)[1]	38.0	(0.290	[E](36.0	(0.310	(11)	0.09	0.240)[I]
Aldrin	QN	0.240)[1]	Q	0.290	(1)	QN	(0.310	<u>[i]</u> (ND	0.240)[1]
Aroclor-1016	ND	0.240	<u>[i]</u> (QN ON	0.290	[1](Ð	(0.310	Ξ	QN	0.240)[]]
Arocior-1221	QN	0.240)[1]	ND Q	(0.290)[1]	ON	(0.310	<u>(11</u>	QN	0.240)[1]
Aroclor-1232	QN	0.240	(11)	QN	(0.290	(1]	ND	(0.310	[1]	Q.	0.240	Ξ
Aroclor-1242	QN	0.240	(11)	ND	(0.290	(1]	Q	(0.310)[1]	Q.	0.240	<u>[i]</u>
Aroclor-1248	Q.	(0.240)[1]	QN	0.290	<u>[]</u>	Q.	(0.310	Ξ(<u>R</u>	0.240	[1]
Aroclor-1254	ND	0.240	(E)	QN	0.290	(1)	QN	0.310	(11)	2	0.240	Ξ
Aroclor-1260	QV	(0.240)[1]	ND	. (0.290	[1]	Q	0.310	(1)	Q.	0.240	<u>=</u>
Dieldrin	QN QN	0.240	<u>(II)</u>	QN	(0.290	(E)	QN Q	(0.310	<u>=</u>	QN O	(0.240	<u>=</u>
Endosulfan I	QV	0.240	(11)	Q	0.290	[]	ΩN	(0.310	<u>(E</u>	QN	(0.240	Ξ
Endosulfan II	QN	(0.240	[1](Q	0.230	[1]	Q.	(0.310	<u>(</u>	QN	(0.240	Ξ
Endosulfan sulfate	QN N	(0.240	[1]	QN Q	0.290	(E)	Ð	0.310	(1)	Q.	0.240	<u>(</u>
Endrin	QN	0.240	[](QN	(0.290	Ξ	S	0.310) <u>[1]</u>	Q	0.240	<u> </u>
Endrin aldehyde	QN	0.240	(1)	QN	0.290	Ξ(2	(0.310	[1]	QN	0.240	(E)
Endrin ketone	QN	0.240	(1)	QN	0.290	E)(Q.	(0.310)[1]	Q	(0.240)[1]
Heptachlor	QN	0.240	(1)	ΩN	0.290	[](S	0.310)[1]	Q.	(0.240	Ξ(
Heptachlor epoxide	QN	(0.240) [<u>1</u>]	1.40	(0.290	(1)	1.50	(0.310	(11)	Q.	(0.240	Ξ
Methoxychlor	QN	0.240	[1]	ON	(0.290)[1]	QN QN	(0.310	<u>=</u>	QX	0.240	Ξ:
Toxaphene	ND	(0.240)[I]	QN	(0.290	[1](QN	0.310	Ξ	Q	0.240	Ξ
alpha-BHC	QN	(0.240)[1]	Q.	0.290)[1]	Q Q	(0.310	<u>=</u>	Q.	0.240	(E)

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

						Site Li								
					_5	Location Id								
					, w	Sample 1d								
						Log Date								
					Beg. Depth - End Depth (in.)	End Depth	(in.)							
		TOWR			TO	TOWR			¥	TOWR			TOWR	
	L	TOWR-SO02			TOW	TOWR-SO03			TOW	TOWR-SO03			TOWR-SOM	₹
	NA-T	NA-TOWR-S002-32	-32		NA-TOW	NA-TOWR-S003-01	_	NA	NA-TOWR-SO03-11 Dup of NA-TOWR-SO03-01	FOWR-SO03-11 Dap	- of		NA-TOWR-S004-01	4-01
	8	08-MAR-98			W-80	08-MAR-98			M-80	08-MAR-98	ı		08-MAD-08	
Parameter		3-12			Ö	0-3			٥	6-3			0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	ug/kg)					!								
alpha-Chlordane	QN QN	0.240	<u>(E)</u>	3.80	1 (0)	0.290	[]]	3.40	J (0	0.310		Ş	07007	183
beta-BHC	ND	0.240)[I]	S	. 0		ΞΞ	Ð	<i>-</i>			2	0.240	
delta-BHC	QN ON	0.240	(Ξ)	Ð	0	0.290	ΞΞ	S	0		E =	£	0.240	
gamma-BHC(Lindane)	QN	0.240	(1)	Ð	· 0		ΞΞ	Q	0		Ē) <u> </u>	0.240	3 5
gamma-Chlordane	ON	0.240	(E)	2.90	, , ,		ΞΞ	2.80			ΞΞ	2 2	0.240	
OLMO3.2 - Semi-Volatile Organic Compounds (ng/kg)	oounds (129/kg)													Ę
1.2.4-Trichlorobenzene	ON CIN	48.0	1111	5	03 /		Ξ	ģ			Ş	;		
1.2-Dichlorobenzene		48.0		2 5	ς ς		ΞΞ	2 9	3 S		Ξ.	2	(48.0	<u>(</u>
1.3-Dichlombenzene		48.0	ΞΞ	2 9	χ ς		ΞΞ	2 9	39 °		Ξ	Q :	(48.0	<u>[]</u> (
1.4-Dichlorobenzene		48.0	ΞΞ	2 5	χ -		Ξ.	2 5	39 °		Ξ:	2	(48.0)[I]
2 2 orthis(1 chloromonana)		0.04	ΞΞ	2 2	ጽ 8 ~ `		Ξ.	2 :	S		Ξ:	Q.	(48.0	(1)
2,4.5-Trichloronhenol	9 9	48.0		2 2	0.86.)		ΞΞ	2 9	S		豆:	2	(48.0)[1]
2.4.6-Trichlorophenol		480	ΞΞ	2 5	0.000		E (2 9	30 5	0.20	Ξ Ξ	2 !	(48.0	Ξ
2,4-Dichlorophenol		48.0	ΞΞ	2	58.0		ΞΞ	2 2	3 6		Ξ.	2 2	(48.0	E :
2,4-Dimethylphenol	ON ON	. 48.0) [I]	N	(58.0		ΞΞ	Ð	79		Ξ Ξ	2 2	, , , , , , , , , , , , , , , , , , ,	E E
2,4-Dinitrophenol	ON ON	48.0	[1]	Q	(58.0		(11)	Q.	(62.0		<u> </u>	QZ QZ	(48.0	Ξ
2,4-Dinitrotoluene) QN	48.0)[<u>[</u>]	æ	(58.0		[1]	S	(62.0		[1]	N	(48.0	E (
2,6-Dinitrotoluene) QN	48.0	<u>(IJ</u>	S	(58.0		[]]	S	(62.0		[1]	QN QN	(48.0	Ξ
2-Chloronaphthalene) QN	48.0	<u>(E)</u>	S	(58.0		[1]	Q	(62.0		[1]	ND	(48.0	Ξ(
2-Chlorophenoi	ON ON	48.0	(11)	Ð	(58.0		[1]	Q.	(62.0		[1]	ΩN	(48.0	ΞΞ
2-Methylnaphthalene) QN	48.0	[1]	Ð	(58.0	,	Ξ	Q	(62.0		[1]	ND	(48.0	
2-Nitroaniline) Q	48.0	[[]	Q.	(58.0		[1]	N Q	(62.0		ΞΞ	Ð	(48.0	ΞΞ

() = Detection Limit [] = Dilution Factor | Not Detected NA = Not Applicable

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

					Site Id							
					Location Id	=						
					Sample Id	P	•					
					Log Date	te						
				Be	Beg. Depth - End Depth (in.)	epth (in.)						
		TOWR			TOWR			TOWR			TOWR	
		TOWR-S002	8		TOWR-S003	3		TOWR-SO03	m		TOWR-SO04	
	Æ.	NA-TOWR-SO02-32	12-32		NA-TOWR-SO03-01	3-01	NA-T	NA-TOWR-SO03-11 Dup of NA-TOWR-SO03-01	Dup of 3-01		NA-TOWR-SO04-01	<u>.</u>
		08-MAR-98			08-MAR-98			08-MAR-98			08-MAR-98	
Parameter		3-12			0-3			0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, cont	. (ug/kg)										
2-Nitrophenol	QN	(48.0	(1]	Ð.	(58.0	(E)	QN	(62.0)[1]	QN	(48.0)[1]
3,3'-Dichlorobenzidine	NO	(48.0)[1]	ND	(58.0	(1)	Q.	(62.0	[1](ΝD	(48.0	(1)
3-Nitroaniline	QN QN	(48.0	(11)	S	(58.0	[1](N Q	(62.0)[1]	QN	(48.0)[1]
4,6-Dinitro-2-methylphenol	QN	(48.0	[<u>H</u>]	Q.	(58.0	[1]	ΩN	(62.0	<u>E</u>	Q.	(48.0)[<u>1</u>]
4-Bromophenyl-phenylether	ND	(48.0)[1]	ND	(58.0	<u>[1]</u> (ΩN	(62.0	[1]	Ð	(48.0	<u>(</u>
4-Chloro-3-methylphenol	QN	(48.0	(11)	Q.	(58.0	(11)	QN	(62.0	[1]	QN Q	(48.0)[1]
4-Chloroaniline	QN QN	(48.0)[1]	Q	(58.0	<u>[1]</u> (QN QN	(62.0	(11)	Q.	(48.0	Ξ(
4-Chlorophenyl-phenylether	Q.	(48.0	<u>(E)</u>	QN	(58.0)[<u>1</u>]	ON	(62.0	[]	Ð	(48.0	
4-Nitroanaline	QN	(48.0	[1]	Q.	(58.0)[1]	Q	(62.0)[1]	Q.	(48.0	Œ
4-Nitrophenol	QN	(48.0)[1]	ND	(58.0)[1]	QN	(62.0)[<u>1</u>]	ΩN	(48.0)[1]
Acenaphthene	QN	(48.0)[]]	Q	(58.0)[1]	Q.	(62.0	[1]	Q.	(48.0)[1]
Acenaphthylene	ND QN	(48.0	(1)	ND	(58.0	(11)	ND	0.29	(E)	Q.	(48.0)[1]
Anthracene	Q.	(48.0	(1)	Q	(58.0	<u>(II)</u>	ΝD	(62.0	[1]	S	(48.0)[[]
Benzo(a)anthracene	NO ON	(48.0	<u>[i]</u> (N Q	(58.0)[1]	ND	(62.0	<u>[1]</u>	140	(48.0	Ξ(
Benzo(a)pyrene	S	(48.0	(11)	N	(58.0	(11)	QN	(62.0) [i]	230	(48.0)[I]
Benzo(b)fluoranthene	Q.	(48.0	(11)	ND	(58.0	(11)	Q	(62.0	(E)	180	(48.0	(1)
Benzo(g,h,i)perylene	QN QN	(48.0	(11)	ND	(58.0	<u>(ii</u>	Q.	(62.0) <u>[1]</u>	170	(48.0	Ξ
Benzo(k)fluoranthene	ND	(48.0)[1]	QN	(58.0	[1](ΩN	(62.0)[1]	200	(48.0	<u>=</u>
Butylbenzylphthalate	NO ON	(48.0	[1]	0.06	(58.0	<u>[i]</u> (0.7.0	(62.0)[1]	QN Q	(48.0	Ξ
Carbazole	Q.	(48.0	[](QN	(58.0	(13)	QN	(62.0	<u>(E</u>	Q.	(48.0	<u>=</u>
Chrysene	ND	(48.0	<u>(E)</u>	QN	(58.0	[[]	Ą	(62.0	<u>=</u>	170	(48.0	Ξ
Dibenz(a,h)anthracene	Q.	(48.0	(11)	QX	(58.0	Ξ(Q.	(62.0)[1]	Q.	(48.0	Ξ
Dibenzofuran	Q.	(48.0)[1]	R	(58.0	(11)	Ð	(62.0)[1]	2	(48.0	<u>(</u>

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

						Ste Id									
						nr and	7								
						Samule Id	5 -								
						Log Date	92								
				-	веg. Dep	Beg. Depth - End Depth (in.)	pth (in.)								
		TOWR				TOWR				TOWR				TOWR	
		TOWR-SO02	22		F	TOWR-SO03			F	TOWR-SO03			T	TOWR-SO04	
	~	NA-TOWR-SO02-32	02-32		NA-T	NA-TOWR-SO03-01	-01	Z	A-TOWR	NA-TOWR-SO03-11 Dup of NA-TOWR-SO03-01	up of -01		L-W	NA-TOWR-S004-01	5
		08-MAR-98			8	08-MAR-98			80	08-MAR-98	!		õ	08-MAR-98	
Parameter		3-12				6-3				0. 3				6-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	mpounds, con	· (ug/kg)													
Diethylphthalate	Ð	(48.0	(E)	QN	Ĭ	(58.0)[1]	Ø		62.0)[1]	2		48.0	100
Dimethylphthalate	Ð	(48.0)[1]	ND	Ĭ	0.86.0	[1]	æ	Ÿ	62.0	[1]	S		48.0	Ξ
Fluoranthene	ΩN	(48.0	(III)	72.0	Ī	(58.0	[1]	QN	`	62.0)[1]	110		48.0	Ξ
Fluorene	Ä	(48.0)[ii]	R	Ĭ	0.88	(H)	æ	Ŭ	62.0	[1]	9	Ĭ	48.0	(E)
Hexachloro-1,3-butadiene	ND	(48.0	<u>=</u>	Q	Ĭ	(58.0)[<u>[</u>]	9	Ŭ	62.0	(1)	Q	Ť	48.0	(E) (
Hexachlorobenzene	ΝΩ	(48.0	(1)	QN	Ĭ	(58.0	[II]	QN	Š	62.0)[1]	QN	Ĭ	48.0	Ξ(
Hexachlorocyclopentadiene	Q Q	(48.0)[1]	Ð	5	(58.0	<u>(E)</u>	æ	B	62.0	(E)	S	5	48.0)[1]
Hexachloroethane	Q.	(48.0)[1]	Q.	Ū	28.0	(E)	Q.	_	62.0	(II)	QN	Ĭ	48.0	[<u>1</u>](
Indeno(1,2,3-cd)pyrene	ND Q	(48.0	[1]	R	Ŭ	(58.0)(II)	Q	Ŭ	62.0	(11)	Q.	Ŭ	48.0	(E)
Isophorone	ND	(48.0	[1]	QN	_	(58.0	(1]	Q.	J	62.0	<u>(H</u>	Q	Ŭ	48.0)[1]
N-Nitroso-di-n-propylamine	Ð	(48.0)[1]	S		(58.0) [<u>:</u>]	Q.	<u> </u>	62.0	(E)	Q.	Ŭ	48.0)[1]
N-Nitrosodiphenylamine	S	(48.0	<u>[](</u>	S	Ĭ	. 58.0	(1)	Q.	_	62.0	[1](QN	Ĭ	48.0)[1]
Naphthalene	Q.	(48.0	E)(2	Ĭ	58.0) [1]	NA				Ð	Ŭ	48.0	Ξ
Nitrobenzene	Ð	(48.0	<u>(II</u>	2	•	28.0	Ξ	윤	_	62.0	[<u>E]</u> (QN	•	48.0)[1]
Pentachlorophenol	Ê	(48.0)[1]	2	Ĭ	28:0)[1]	Q	_	62.0	[1](Q	Ŭ	48.0	<u>(</u>
Phenanthrene	Q	(48.0	<u>(II</u>	g	Ĭ	28.0) <u>[i]</u>	Q.	_	62.0)(II)	Ω	Ŭ	48.0	(11)
Phenoi	Q.	(48.0)[1]	Ð		58.0	<u>(</u>	Q Q	_	62.0	[1](Ð	Ŭ	48.0) <u>[</u>
Pyrene	Q	(48.0	<u>(</u>	64. 0	Ĭ	(58.0	E](Q.	_	62.0	[1]	991	Ŭ	48.0	<u>=</u>
bis(2-Chloroethoxy)methane	Q.	(48.0	(11)	Ð	Ĭ	(58.0	[1]	£	_	62.0) <u>[1]</u>	Ð	Ŭ	48.0	(E) (
bis(2-Chloroethyl)ether	Q.	(48.0)[1]	æ	Ŭ	(58.0	<u>E</u>	Ð	~	62.0)[1]	Ð	Ŭ	48.0	Ξ
bis(2-Ethylhexyl)phthalate	Q	(48.0)[1]	490	Ĭ	(58.0	[1]	88	_	62.0	(II)	092	_	48.0	Ξ
di-n-Butylphthalate	QN Q	(48.0)[1]	700	Ŭ	28.0	<u>(1</u>	180	Ŭ	62.0)[I]	S		48.0	Ξ
di-n-Octylphthalate	ND	(48.0)[1]	Q.	Ŭ	58.0)[1]	Q.	_	62.0)[I]	Ð		48.0) [](
											! !		•		

0 = Detection Limit [] = Dilution Factor [

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Beg. D	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ute epth (in.)								
		Z	TOWR TOWR-SO02 NA-TOWR-SO02-32	2 2-32	-	Ž	TOWR TOWR-SO03 NA-TOWR-SO03-01	3 3-01	Z	A-TO!	TOWR TOWR-SO03 NA-TOWR-SO03-11 Dup of NA-TOWR-SO03-01	3 Dup of 3-01		ZĀ	TOWR-SO04 TOWR-SO04-01	10-
Parameter			08-MAR-98 3-12				08-MAR-98 0-3				08-MAR-98 0-3	.			08-MAR-98 0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cent. (ug/kg)	ic Compounds	, cont.	(ug/kg)													
o-Cresol	- A		(48.0	(11)	QN QN		0.85) [1]	Q.		(62.0)[1]	Q		(48.0)[1]
p-Cresol	N		(48.0	[1]	QN		(58.0)[1]	Q		(62.0)[1]	Q		(48.0)[1]
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	196		0.70	(1]	2410		0.270	(1)	2000		(230	(13)	264		08.1)[1]
1,2,3,4,6,7,8,9-OCDF	33.6		(1.20	(1)	555		(2.00	(11)	239		0971	[1]	39.8		(1.30	(11)
1,2,3,4,6,7,8-HpCDD	33.4		006'0))[1]	423		071	H)	350		0060)	(E)	31.1		006:0)	<u>(E)</u>
1,2,3,4,6,7,8-HpCDF	29.5		0.800)[1]	330		0060)	Ξ(275		0.000)[1]	21.2		00200)	(1)
1,2,3,4,7,8,9-HpCDF	4.10	-	(120	(11)	62.9		0.130)[1]	37.4		0.800)[1]	2.20	-	(1.00	[1](
1,2,3,4,7,8-HxCDD	0960	-	0.800)[1]	17.6	ſ	00.1)[1]	16.2		009:0)	(1)	1.00	-	00500	<u>(E</u>
1,2,3,4,7,8-HxCDF	10.7	-	00200	(1)	140	-	0.800)[1]	116	-	0.400)[1]	7.30	-	0.400)[<u>=</u>]
1,2,3,6,7,8-HxCDD	3.60	-	009:0)[1]	39.9	-	00600))[1]	31.1		0.500	(11)	2.60	-	0.400	<u>(E)</u>
1,2,3,6,7,8-HxCDF	4.50	-	0.000)[1]	9.09		00.700	[<u>11]</u> (47.4		0.400	<u>(II</u>	3.00	-	0.400	[1]
1,2,3,7,8,9-HxCDD	4.00	-	0.700)[1]	46.2	-	0.900	<u>(</u>	42.6		0.600	<u>(</u>	7.80	-	0.500	=======================================
1,2,3,7,8,9-HxCDF	Q.		00200	<u>=</u>	6.40	-	0060	Ξ.	5.20	-	0050	EE :	006:0	 , 1	0.500	<u>=</u> :
1,2,3,7,8-PeCDD	1.50	-	006:0	Ξ(13.6		(1.00)[1]	10.8		0.500	Ξ	1.10	-	009.0	<u>(</u>
1,2,3,7,8-PeCDF	2.70	_	0.800	Ξ	25.4		0.800)[1]	18.5		0.400) [1]	1.80	_	009:0	<u>(</u>
2,3,4,6,7,8-HxCDF	8.20		002:0	Ξ	114		006:0	(11)	102		0.500)[i]	5.70		0.500	[1]
2,3,4,7,8-PeCDF	3.90	-	008'0)	[1](43.2		0.800)[1]	34.5		0.400	E](2.70	-	00900	([]
2,3,7,8-TCDD	NO		008:0	<u>(H</u>	2.10		0.800	[1](1.70		0.400	(E)	Q.		009'0))[i]
2,3,7,8-TCDF	2.80		0300	Ξ(15.9		009'0)	(11)	14.1		00200	[H] (2.10		0.200)[1]
Total HpCDD	56.2		006'0)	[1](805		(120	(11)	741		006:0	<u>[i]</u> (X		0060)	<u>(</u>
Total HpCDF	53.5		00'1	(1)	629		(1.10	[1](523		009'0)	[1]	47.7		0.800	[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

Parameter		TOWR TOWR-SO02 NA-TOWR-SO02-32 08-MAR-98	2-32	8	Site Id Location Id Sample Id Log Date Log Date TOWR TOWR-SO03 NA-TOWR-SO03 08-MAR-98 6-3	Id ate epth (in.) 33-01	NA-	TOWR TOWR-SO03 NA-TOWR-SO03-01 NA-TOWR-SO03-01 08-MAR-98 0-3	3 Dup of 3-01		TOWR TOWR-S004-01 NA-TOWR-S004-01 08-MAR-98	, # 4
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	34.4	00.00	<u>E</u>	403	0060)	<u>[1]</u>	377	00900	(ii)	24.0	0.500	111
Total HxCDF	56.9	00.700	Ξ	738	00800	Ξ(633	0.400	(1)	38.9	0.400	ΞΞ
Total PeCDD	11.7	006:0	[](138	001)	(E)	118	0.500	(E)	3.10	0090	Ξ.
Total PeCDF	48.8	00800	(1)	592	0.800	<u>E</u>	474	0.400	<u>(1)</u>	33.1	009'0	ΞΞ
Total TCDD	8.90	0.800	(11)	145	0.800	<u>(II)</u>	113	0.400	Ξ(3.50	0090	E
Total TCDF	46.1	0.700)(11)	413	009'0))[1]	338	0.300	(11)	33.1	0.500	ΞΞ
TOC (mg/kg) Total Organic Carbon	NA A			124000	(4700)[1]	114000	(3680)[1]	NA		

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	-						·
					Sample Id	3 7 3						
					Log Date	_ e ₂						
				Beg.]	Beg. Depth - End Depth (in.)	pth (in.)						
		TOWR			TOWR			TOWR			TOWR	·
		TOWR-SO04			TOWR-SO04			TOWR-SO05	•		TOWR-SO06	
	NA	NA-TOWR-S004-02	73	NA-TO N	NA-TOWR-SO04-12 Dup of NA-TOWR-SO04-02	Jup of 1-02		NA-TOWR-SO05-01	2-01	· ·	NA-TOWR-SO06-01	-01
		08-MAR-98			08-MAR-98			08-MAR-98			08-MAR-98	
Parameter		3-12			3-12			0-3			0-3	
OLM03.2 - Pesticides and PCBs (ug/kg)	/kg)											
4,4'-DDD	Q.	0.280	(11)	ND	0.280)[<u>H</u>	Q	(0.180)[]]	4.40	(0.350)[1]
4,4'-DDE	1.10	0.280) <u>[i]</u>	1.60	0.280)[<u>1</u>]	1.60	0.180	(11)	65.0	(0.350	(1)
4,4'-DDT	0.980	0.280	[1]	0.710	0.280)[1]	1.50	0.180)[1]	42.0	0.350)[1]
Aldrin	ND	0.280	[1]	ND	0.280)[1]	N Q	0.180)[<u>1</u>]	ON ON	0.350)[<u>:</u>]
Aroclor-1016	ΝΩ	0.280	[1]	Q	0.280	<u>[]</u> (Q.	0.180)[<u>[</u>]	Q	0.350)[1]
Aroclor-1221	QN QN	0.280) <u>[1]</u> (ΩN	0.280	(1)	ND QN	0.180	(1)	QN	(0.350	[1]
Aroclor-1232	ND	0.280	(11)	QN	0.280)[1]	Q.	(0.180)[1]	NO	(0.350)[1]
Aroclor-1242	QN QN	0.280	(11)	ND	0.280	(E) (Q.	(0.180	<u>(II)</u>	QN	(0.350	<u>E</u> (
Aroclor-1248	QN QN	0.280	(11)	N Q	0.280)[1]	QN	0.180	[1](QN	(0.350	[E]
Aroclor-1254	QN QN	0.280	Ξ(N ON	0.280	[1]	QN	0.180	(11)	ND	0.350	(11)
Aroclor-1260	N QN	0.280	[1]	N Q	0.280)[1]	ON	0.180)[1]	ND	0.350	(11)
Dieldrin	ND QN	0.280)[1]	ND	0.280)[1]	Q.	0.180	<u>[I]</u> (Q.	0.350	(11
Endosulfan I	QN	0.280	[1]	QN	0.280	<u>(</u>	Q.	0.180	<u>[</u>](<u>Q</u>	(0.350	<u>[]</u>
Endosulfan II	QN	0.280)[1]	Q.	0.280	<u>(I</u>	Q	0.180	[](Q	0320	<u>(</u>
Endosuifan sulfate	ND	0.280	(11)	N Q	0.280	(11)	QN	(0.180	(1)	QN	0.350	Ξ
Endrin	NO ON	0.280	(1)	R	0.280	[1]	QN	0.180)[1]	Q.	0.350	[[]
Endrin aldehyde	QN	0.280)[i]	N.	0.280)[1]	Q	0.180	[1]	QN	0.350)[1]
Endrin ketone	N O	0.280)[<u>1</u>]	ND GN	0.280	[1]	Q.	0.180	<u>[I]</u>	ΩN	0320)([]
Heptachlor	ND	0.280)[1]	ND	0.280	(11	Q	0.180) <u>[</u>	Q.	0320	[]
Heptachlor epoxide	N Q	0.280	[1]	Q.	0.280	[1]	QN	0.180	[1]	QN Q	0.350)[1]
Methoxychlor	ND	0.280)[1]	N Q	0.280	(11)	QN	(0.180	[1](N Q	0.350	<u>[i]</u> (
Toxaphene	N Q	0.280)[1]	ND	0.280	(11	QN	(0.180	(1)	ND	(0.350)[I]
alpha-BHC	ND QN	0.280)[1]	QN	(0.280	[1]	ND	(0.180	<u>[1]</u> (QN	0.350) [E]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					I contion Id	3						
					Location	j :						
			-		Sample 1d	P						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		TOWR			TOWR	•		d d d				
		TOWR-SO04	4		TOWR-SO04	4		TOWE SOOK	¥		TOWK	
	NA	NA-TOWR-S004-02	4-02	NA-T	NA-TOWR-SO04-12 Dup of	Dup of		NA-TOWR-SO05-01	05-01		NA-TOWR-SO06-01	. 1
					NA-TOWR-SO64-02	4-02						
		08-MAR-98			08-MAR-98			08-MAR-98			08-MAR-98	
Farameter		3-12			3-12			0. 3			0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)											
alpha-Chlordane	N ON	0.280	(1)	ND ON	0.280	(1)	Q	(0.180	1111	QX	05:0)	M
beta-BHC	Q	0.280)[1]	QN	0.280	(E) (N	(0.180	EI(2	0.350	ΞΞ
delta-BHC	QN	0.780) [1]	Q	0.280)[1]	QN QN	(0.180	Ξ	QN	(0.350	E
gamma-BHC(Lindane)	ND	0.280	[i](QN	0.280	(11)	S	(0.180	(E) (Q	(0.350	E (
gamma-Chlordane	Q.	0.280	[1](Q.	0.280) [I] (QN	(0.180	Ξ	Ð	(0.350	ΞΞ
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	npounds (ug/kg)											
1,2,4-Trichlorobenzene	Q.	0.95))[1]	QN	(56.0)[1]	Q.	(37.0	. [1]	Q.	069)	. 191
1,2-Dichlorobenzene	ND	(56.0	(E)	N Q	6.56.0	(1)	S	(37.0	Ξ	2	069)	ΞΞ
1,3-Dichlorobenzene	A A	(56.0	[1]	ND	6 56.0)[1]	Q	(37.0	E) (QN	0.69)	ΞΞ
1,4-Dichlorobenzene	N Q	0.96.0	[E] (ΔN	(56.0)[1]	Ð	0.75)[1]	ND QN	0.69.)	Ξ
2,2'-oxybis(1-chloropropane)	8 !	. 56.0	Ξ	Q Q	(56.0)[<u>[]</u>	Ð	0.75	[1]	ND QX	0.69)	<u>(</u>
2,4,5-Trichlorophenol	Q ;	26.0	Ξ;	Q :	26.0)[1]	Ð	0.75)[1]	ND	0'69)	(11)
2,4,0-inchlorophenol	2 8	. 36. 0	Ξ	₽!	56.0	<u> </u>	£	(37.0)[1]	QN	0'69)	(Ξ)
2,4-Dichordprenoi	2	000 Y	E) (Q	(56.0	(E)	Q.	(37.0) <u>[1]</u>	QN	0'69)	(E)
2,4-Dimenyiphenoi	Q :	26.0			(56.0)[1]	Ð	(37.0	(1)	QN	0'69)	[1](
2,4-Unitrophenol	Q :	26.0) <u>[1]</u>	Q.	(56.0)[1]	Q.	(37.0)[1]	QN QN	0.69))[1]
2,4-Dinitrotoluene	Q.	. 56.0	(1)	QN Q	0.95)[1]	ON	(37.0)[1]	Q.	0'69)	(1)
2,0-Dinitrotoluene	QN	26.0)[1]	Q Z	(56.0)[1]	Q	(37.0)[1]	Ð	0.69))[i]
2-Chloronaphthalene	QN Q	26.0)[1]	Q.	(56.0)[1]	ND	(37.0)[1]	QN	0.69)	Ξ(
2-Chlorophenol	QN Q	26.0	(11)	Q.	(56.0)[1]	ND	(37.0	(1)	QN	0'69)	(E) (
2-Methylnaphthalene	Q.	(56.0)[I]	S	(56.0)[1]	QN Q	0'46)	[1]	QN	0.69)	(II)
2-Nitroaniline	Đ	0.98))[1]	NO NO	(56.0)[1]	Q.	(37.0	(1)	S	0.69	Ξ(
												,

() = Detection Limit [] = Diluțion Factor 1

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Beg. D	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	d 1 e e pth (in.)						
	TC TOW NA-TOW	TOWR-SO04 NA-TOWR-SO04-02	7	NA-TO	TOWR TOWR-S004 NA-TOWR-S004-12 Dup of	o dng	_	TOWR-SO05 NA-TOWR-SO05-01	2-01	E.	TOWR-SO06 NA-TOWR-SO06-01	10-
	08-M	08-MAR-98		ž	NA-TOWR-SO04-02 08-MAR-98	-02		08-MAR-98			08-MAR-98	
Parameter	3-12	2			3-12			0-3			6 -3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	pounds, cont. (ug/kg											-
2-Nitrophenol	ND CN	56.0	(11)	Q	(56.0	(11)	Q.	(37.0	[1]	8	(69.0)[1]
3,3'-Dichlorobenzidine	ND CN	56.0	[1]	ND Q	(56.0)[1]	QN	(37.0)[1]	N Q	0.69)	(1)
3-Nitroaniline	<u>`</u>	56.0	[1]	Ð	(56.0	(1)	QN QN	(37.0	[1]	Ð	0'69)) [1]
4,6-Dinitro-2-methylphenol	<u> </u>	56.0	[1]	ND	0.96.0) [1]	QN	(37.0)[1]	ND	0'69))[1]
4-Bromophenyl-phenylether	ND CN	26.0	[]]	ND	(26.0)[1]	Q	(37.0)[1]	ND	0'69)	[1]
4-Chloro-3-methylphenol	ND CN	56.0	. [1]	ND	(56.0)[1]	Q	(37.0)[1]	ND	0.69)	[1]
4-Chloroaniline	ND ON	26.0	[1]	ND Q	(56.0)[i]	Q.	(37.0)[1]	ΝD	0'69)	[1]
4-Chlorophenyl-phenylether	`	56.0	[1]	ND	(56.0)[1]	ON	(37.0)[1]	ND	0'69))[1]
4-Nitroanaline	~	56.0	[]]	QN Q	(56.0)[I]	Q.	(37.0)[1]	NO ON	0.69)	Ξ
4-Nitrophenol)	56.0	[1]	ND	(56.0)[1]	QN	(37.0)[1]	QN Q	0'69)	[=]
Acenaphthene	<u> </u>	56.0	[1]	NO OX	990))[1]	Q.	(37.0)[1]	QN	0'69)	[:]
Acenaphthylene	_	56.0	[]]	Q.	(56.0	<u>(E)</u>	Q.	(37.0)[1]	Ω	0.69)	<u>[1]</u>
Anthracene	J	56.0	[]]	S	(56.0)[1]	S S	(37.0)[1]	QN QN	0.69)	Ξ
Benzo(a)anthracene	<u> </u>	56.0	[1]	N Q	0'96')	(1)	Q.	(37.0)[1]	Q.	0'69)	(E)
Benzo(a)pyrene	<u> </u>	56.0	[1]	N Q	(56.0)[1]	QN QN	(37.0)[1]	QN QN	0.69)	(E)
Benzo(b)fluoranthene	<u> </u>	26.0	[1]	QN	(56.0)[1]	Q	(37.0)[1]	QN	0.69))[1]
Benzo(g,h,i)perylene	<u> </u>	26.0	<u>(E)</u>	S S	(56.0)[1]	ΩN	(37.0)[1]	S	0'69))[1]
Benzo(k)fluoranthene	<u> </u>	56.0	[1]	ΝD	(56.0)[1]	Ω	0.75)[1]	S	0.69)	<u>(II)</u>
Butylbenzylphthalate	<u> </u>	56.0	[:](QN	(56.0)[1]	Q.	(37.0)[1]	Ą	0.69))[1]
Carbazole	<u> </u>	56.0	[1]	QN	(56.0)[1]	QN Q	(37.0)[1]	Q Q	0'69)	(E)
Chrysene)	56.0)[<u>[]</u>	Q.	(56.0	(11)	QN	0.75)[1]	S	0'69))[i]
Dibenz(a,h)anthracene)	56.0	(11)	ND Q	(56.0)[1]	Q	(37.0)[1]	Q.	0:69)	<u>=</u>
Dibenzofuran	ND C	56.0	[1]	9	(56.0	(1)	Ð	(37.0	<u>[1]</u>	Ð	0.69)	Ξ

Results of Organic Analyses For Round I Soll Samples, Atsugi NAF, Japan

				٠	Site Id	Id						
					Location Id	on Id						
					Sam	Sample Id						
					Log	Log Date						
				8	Beg. Depth - End Depth (in.)	l Depth (in.)						
		TOWR			TOWR	~		TOWR			TOWR	
		TOWR-SO04	25		TOWR-SO04	004		TOWR-SO05	S		TOWR-SO06	9 2
		NA-TOWR-SO04-02	04-0 2	Ž	NA-TOWR-SOI4-12 Dup of NA-TOWR-SOI4-02	12 Dup of 1004-02		NA-TOWR-SO05-01	05-01		NA-TOWR-S006-01	16-01
		08-MAR-98			08-MAR-98	8 8		08-MAR-98			08-MAR-98	
Parameter		3-12			3-12			0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, co	nt. (ug/kg)										
Diethylphthalate	Ð	(56.0	[](Š	(56.0	[1](QN QN	(37.0	(I) (77.0	0.69))[[]
Dimethylphthalate	Q	(56.0	[H] (Q.	0.98	(1)	QN	(37.0	Ξ(N	0.69)	E (
Fluoranthene	QN	(56.0	(E)	æ	6.560	(1]	QN	(37.0	[i](N	0.69)	E) (
Fluorene	Ð	0'95)	(E)	Ą	0.95))[1]	Q.	0.75	[1](QN	0.69)	(1)
Hexachloro-1,3-butadiene	g	0.98)[1]	Ð	(56.0	(1)	g	0.76	Ξ	N QN	0.69))[1]
Hexachiorobenzene	Ð	(56.0)[1]	Ð	(56.0	[1]	Q.	0.76)	Ξ(QN	0.69))[1]
Hexachlorocyclopentadiene	Q	(56.0	[1]	Ð	UJ (56.0) [1]	QN	0.76	<u>(II)</u>	QN	0.69.)	[1]
Hexachloroethane	S	(56.0) [1] [1]	Q.	(56.0	(11)	ND	(37.0	<u>(II)</u>	ND	0.69.))[1]
Indeno(1,2,3-cd)pyrene	S	0.98	<u>;;</u>	S	(56.0	(11)	ND	(37.0	Ξ(Q	0.69.))[1]
Isophorone	Q	(56.0)[1]	S	(56.0	(1)	ND	(37.0	(11)	ND	0.69)	[1](
N-Nitroso-di-n-propylamine	<u>Q</u>	0.98)	(11)	Q	(56.0)[1]	ND	(37.0	(H)	QN	0.69))[1]
N-Nitrosodiphenylamine	Ð	(56.0) [<u>1</u>]	g	(56.0	[]]	Q	(37.0	<u>(II)</u>	Q.	0.69))[1]
Naphthalene	Ð	(56.0	<u>(E)</u>	Ð	(56.0)[1]	QN	(37.0	<u>(II)</u>	QN	0'69))[1]
Nitrobenzene	Ä	(56.0)[1]	S	0.95))[1]	ND	(37.0	[[](ΩŽ	0.69)) [1]
Pentachlorophenol	QN Q	(56.0	(11)	ΩN	(56.0) [E]	Q	0.75) [1]	N Q	0'69)	[1]
Phenanthrene	QN Q	(56.0)[1]	Ð	0.98))[1]	ND	0.72	[1]	Q.	0'69)	. [1](
Phenol	QN	0'95))[1]	2	0.95)[1]	QN	0.72	(1)	Q.	0.69)	(1)
Pyrene	Q.	(56.0	<u>(E)</u>	Ð	(56.0)[1]	ND	(37.0	[1]	83.0	0'69))[1]
bis(2-Chloroethoxy)methane	S	(56.0)[1]	Ð	(56.0	<u>(II)</u>	Q.	(37.0	<u>(E)</u>	Q.	0.69))[1]
bis(2-Chloroethyl)ether	Q	0.98))[1]	Ð	(56.0)[1]	ND	(37.0	(11)	Q.	0.69))[1]
bis(2-Ethylhexyl)phthalate	Ð	(56.0)[1]	Ð	(56.0	<u>(II)</u>	330	0.75	(1)	120	0.69))[1]
di-n-Butylphthalate	Q.	(56.0)[1]	Ð	(56.0)[1]	QN O	0.75	Ξ(190	0.69.))[1]
di-n-Octylphthalate	QN	0'95))EI	Q	(56.0)[1]	N Q	(37.0	(1)	Ð	0.69))[I]

Not Detected NA = Not Applicable

0 = Detection Limit [] = Dilution Factor b

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				,			Site Id	-								
							Sample 1d									
					7	Beg. D.	Log Date Beg. Depth • End Depth (in.)	ie pth (in.)								
			TOWR				TOWR				TOWR				TOWR	
			TOWR-SO04	4			TOWR-SO04				TOWR-SO05	į		i	TOWR-SO06	;
		Z	NA-TOWR-S004-02	4-02	Z	A-TO! An	NA-TOWR-SO64-12 Dup of NA-TOWR-SO64-02	Jup of 1-02		Ž	NA-TOWR-S005-01	-01		Z	NA-TOWR-S006-01	Ę
			08-MAR-98				08-MAR-98			,	08-MAR-98				08-MAR-98	
Parameter			3-12				3-12				0-3				6-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	nic Compounds,	cont.	(ug/kg)													
o-Cresol	QN		(56.0)[1]	QN		(56.0)[1]	QN QN		(37.0)[<u>H</u>]	QN		0.69))[1]
p-Cresol	S		(56.0	[1](Ð		(56.0	(11)	QN QN		(37.0)[1]	N		0.69)	([]
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-0CDD	14.7		0.1.70)[1]	16.8		0.100)[1]	74.2		0.200)[1]	3180		0.0900)[1]
1,2,3,4,6,7,8,9-OCDF	QN		(1.30)[1]	0.750	_	0.100)[1]	16.3		0.100)[1]	215		0.0700)[1]
1,2,3,4,6,7,8-HpCDD	QN		0.800)[1]	1.60	-	0.100	[1]	22.4	-	(0.100)[<u>i</u>]	126		0.0600	· [<u>I</u>](
1,2,3,4,6,7,8-HpCDF	NO ON		002:0	[1]	0.710	-	00800)	[1]	25.6		0.0900)[<u>[</u>]	85.8		0.0400	<u>(</u>
1,2,3,4,7,8,9-HpCDF	QN		00'1)[1]	QN QN		00100	(11)	3.70	-	(0.100	(13	20.7		0090'0)	Ξ(
1,2,3,4,7,8-HxCDD	ON	m	Ū	(11)	ON.		0.100)[1]	1.30	-	0.200	(11)	2.00		009000	Ξ
1,2,3,4,7,8-HxCDF	QN QN		0.400	(11)	0.350	B	0.0700	Ξ.	12.0	,	0.100	Ξ;	18.4		0.0300	Ξ
1,2,3,6,7,8-HxCDD	0.990	-	0.400	Ξ	1.20	- , ·	0.100	Ξ.	3.00	-	0.200	Ξ	6.46		0.0600	= 5
1,2,3,6,7,8-HxCDF	Q &	-	0.400	Ξį	0.240	_	0.0700	Ξ	χ. Σ. έ	-	0.100		98.6 E 6	-	00300	ΞΞ
1,2,3,7,8,9-HxCDF	ON ON	٠,	0.500	E (0.160	-	00800)	E (0.560		(0.100	E (0.810		0.0400	ΞΞ
1,2,3,7,8-PeCDD	1.30	 ,	0.500	Ξ	1.50	۳,	0.100)[1]	1.20	-	0.100	(1)	2.10	-	005000))[1]
1,2,3,7,8-PeCDF	Q.		0.500	(1)	0.150	-	0.0700)[1]	2.20	-	0.0800	<u>[i]</u> (2.00	_	0.0400	<u>(II</u>
2,3,4,6,7,8-HxCDF	ΩN		0.500	(11)	0.320	-	0.0800	[1]	6.20	-	0.100)[1]	13.3		0.0400	(II)
2,3,4,7,8-PeCDF	QN		0.500	[][0.210	_	0.0700	[1]	4.90	_	00800)) [1]	3.70	-	0.0400	Ξ(
2,3,7,8-TCDD	QN		009'0))[<u>[</u>]	0.260	pers.	0.0600	[1]	0.210	_	0090'0	<u>=</u>	0.350	-	00000)	<u>=</u>
2,3,7,8-TCDF	ND		0.400)[1]	0.570	-	0.0500	(1)	1.80		0300)[1]	1.50		0.200	Ξ
Total HpCDD	ND		0.800)[1]	320		0.100	(1)	43.1		(0.100)[:]	215		0.0000	Œ
Total HpCDF	QN		008'0)[1]	0.710		00600)	(11)	43.1		0.100	<u>[]</u>	268		0.0500	<u>=</u>

Table I
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					100							
					Site 10	i						
					Location Id	P						
					Sample Id	2						
					Log Date	ate						
				6	Beg. Depth - End Depth (in.)	epth (in.)						
		TOWR			TOWR			TOWR			TOWER	
		TOWR-SOM	4		TOWR-SOM	3		TOWR-SO05	δ.		TOWR-SOM	
		NA-TOWR-S004-02	4-02	V.	NA-TOWR-SO64-12 Dup of NA-TOWR-SO64-02	Dup of 14-02		NA-TOWR-SO05-01	19-91		NA-TOWR-S006-01	1 0-5
		08-MAR-98			08-MAR-98			08-MAR-98			08.MAR.08	
Parameter		3-12			3-12		•	0-3			0-3	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	10.4	0.400	(11)	20.8	0.100	[1](42.2	(0.200)[1]	66.4	00900	TII.
Total HxCDF	0.470	0.400	<u>(E)</u>	1.60	00/000	<u>(</u>	62.4	(0.100	<u> </u>	113	00400	ΞΞ
Total PeCDD	1.30	0.500)[1]	2.80	0.100	(E)	20.0	(0.100	Ξ	22.2	00500)	E
Total PeCDF	S	0.500	(11)	1.40	00000)	<u>[i]</u> (62.7	00800	[H(48.0	0.0400	ΞΞ
Total TCDD	Ð	00900))[<u>H</u>]	0.850	0090'0)[I]	11.8	009000	<u> </u>	13.7	00600)	ΞΞ
Total TCDF	2.30	0.400	(1)	4.30	0.050.0)[1]	51.4	00900)	(1)	36.1	0.0300	ΞΞ
TOC (mg/kg) Total Organic Carbon	NA			NA			0/16	\$259	EE (NA		

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	3						
					Sample Id	Id						
				6	Log Date	ate						
				Ä	Beg. Depth - End Depth (in.)	epth (In.)						
		TOWR			TOWR			TOWR			TOWR	
		TOWR-SO06 NA-TOWR-SO06-02 08-MAR-98	6-02		TOWR-SO07 NA-TOWR-SO07-01 08-MAR-98	77 07-01		TOWR-SO08 NA-TOWR-SO08-01 08-MAR-98	8 8-01		TOWR-SO09 NA-TOWR-SO09-01 68-MAR-98	10-4
Parameter		3-12			0-3			0-3			0-3	
OI M03.2. Pesticides and PCRs. (multa)	(04)											
4,4'-DDD	QN P	(0.350)[i]	Ð	(0.180	[1]	15.0	(0.270)[[]	08:8 08:8	(0.250)-[1]
4,4'-DDE	23.0	0.350	<u>(E)</u>	<u>R</u>	(0.180	Ξ	170	(1.10	<u> </u>	73.0	(0250	ΞΞ
4,4'-DDT	79.0	0.350)[1]	ND ON	(0.180	[1](240	(1.10	<u>*</u>	27.0	(0.250	ΞΞ
Aldrin	N QN	0.350)[1]	N Q	0.180	<u>[i]</u> (ND ON	0.270	(11)	QN	(0.250	<u>(E)</u>
Aroclor-1016	QN	0.350	[1]	Ð	0.180)[1]	ND	0.270	(11)	NO	(0.250	(II)
Aroclor-1221	ON	0.350)[1]	ND	0.180	(11)	QN	0.270	(11)	Q	(0.250	[1]
Aroclor-1232	QN	0.350	[1]	Ø	0.180	(1)	QN	0.270	[1]	QN	(0.250	<u>[i]</u>
Aroclor-1242	QN ON	0.350)[1]	ΩN	0.180	<u>[i]</u> (Q	0.270	[H]	N QN	0.250)[i]
Aroclor-1248	S	0.350)[1]	Q.	0.180	[<u>1</u>](ND	0.270	<u>(II)</u>	QN	(0.250)[1]
Aroclor-1254	Q.	0.350)[1]	Q	0.180	(11)	N	0.270	[1](QN Q	(0.250)[1]
Aroclor-1260	QN QN	(0.350	[1]	Q	0.180	([1]	ND	0.270)[1]	QN Q	(0.250	(1)
Dieldrin	Q.	0.350)[1]	Q.	0.180	<u>(E)</u>	ND	0.270	(11)	QN	0.250)[1]
Endosulfan I	Q.	0.350	Ξ.	<u>R</u>	0.180	<u>=</u>	QN ON	0.270	[1](Q	0.250)[1]
Endosulfan II	QN	0.350	<u>[i]</u>	8	0.180)[1]	ND	0.270	(13)	QN O	0.250	[1]
Endosulfan sulfate	Q	0.350) <u>[1</u>	Q.	0.180	(1)	QN	0.270	<u>=</u>	QN	(0.250)[1]
Endrin	QN QN	(0.350	<u>[I]</u>	Ð	0.180)[1]	ND	0.270	<u>(E</u>	ND	0.250	(1)
Endrin aldehyde	Q.	0.350)[<u>H</u>]	Ð	0.180	<u>(</u>	QN ON	0.270	<u>=</u>	QN	(0.250	(11)
Endrin ketone	QN QN	0320)[1]	N Q	0.180	<u>(II)</u>	QN ON	0.270	[1]	ND	0.250	(11)
Heptachlor	S	0.350)[1]	2	0.180	<u>[]</u>	ND ND	0.270	<u>[i]</u>	QN	(0.250)[[]
Heptachlor epoxide	Q.	0320)[1]	Š	0.180	[1]	ND	0.270	[1](Q	(0.250	(11)
Methoxychlor	QN Q	0.350)[1]	Š	0.180	<u>[i]</u> (ND	0.270)[<u>ii</u>]	QN	(0.250	(11)
Toxaphere	Q.	0.350)[1]	ΩN	0.180	[1]	QN N	0.270	[<u>i]</u>	QN	(0.250	(11)
alpha-BHC	QN	(0.350)[1]	QN	0.180)[1]	N Q	0.270)[1]	Q	0.250	(11)

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugt NAF, Japan

						Site Id									
						Location Id	ΡΙ								
						Sample Id	2								
						Log Date	ate								
					Beg	Beg. Depth - End Depth (in.)	epth (in.)								
		TOWR	ĸ			TOWR				TOWR			TOWR		
	-	TOWR-SO06 NA-TOWR-SO06-02 08-MAR-98	SO06 SO06-02			TOWR-SO07 NA-TOWR-SO07-01 08-MAR-98	77 07-01		NA	TOWR-SO08 NA-TOWR-SO08-01 08-MAR-98	8 8-01		TOWR-SO09 NA-TOWR-SO09-01 08-MAP-08	10-0	
Parameter		3-12	}			0-3				0-3			0-3		
												1000			
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	g/kg)														
alpha-Chlordane	Q	0.350		(11)	Ð	(0.180	[<u>I</u>](S		0.270	[1]	2.00	0.250	<u>(II)</u>	
beta-BHC	QN Q	0.350		[I](Ð	0.180	(E)	æ		0.230	[1]	Q.	(0250	<u>(I)</u>	
	Q.	0.350		[1]	Q	0.180	[1]	æ		0.270)[1]	ND QN	0.250	(1)	
gamma-BHC(Lindane)	S	0.350		[1]	Q	(0.180	[1](R		0.220	[]	QN ON	(0250)[<u>[</u>]	
gamma-Chlordane	Ą	(0.350		[1]	Q.	0.180	[1]	<u>R</u>		0.220)[1]	2.30	0.250	(1)	
OLMO3.2 - Semt-Volatile Organic Compounds (ug/kg)	/gu) spunc) (j)													
1,2,4-Trichlorobenzene	ND ON	U (71.0		[1]	Ð	(36.0)[1]	S	B	(54.0	[I]	QN	0'0'0')	(1)	
1,2-Dichlorobenzene	ND UI	U (71.0		[1]	Q	(36.0	(E)	S	n	54.0	[1]	Q.	0'05)	[1](
1,3-Dichlorobenzene	ND UI	U (71.0		(1)	Q	(36.0	(1)	S	'n	54.0	(1)	Q.	0.05)[1]	
1,4-Dichlorobenzene	E CN	$\overline{}$		(1)	Ð	(36.0	[1]	Q	B	(54.0	(11)	QN QN	0.08)[1]	
2,2'-oxybis(1-chloropropane))		[1]	Q	(36.0	[1]	g	B	54.0)[1]	N Q	0.08)(11)	
2,4,5-Trichlorophenol		_		[1]	Q.	(36.0	<u>(</u>	2	Ħ	54.0	(1)	QN	0.08	(11)	
loi	ED ON	~		[=]	QN N	(36.0	<u>(</u>	S	n	54.0	<u>[i]</u> (QN O	0.08)[1]	
2,4-Dichlorophenol	ND ON	Ų		[1]	Q.	(36.0	(1)	2	∄	54.0	<u>[I]</u>	QN Q	0.08)(11)	
2,4-Dimethylphenol	ND ON	Ų		[1]	g	(36.0	(11)	Q	⋽	54.0)[1]	QN QN	0.08)	(11)	
2,4-Dinitrophenol	ND ON	J		[]	<u>R</u>	(36.0	(1)	æ	Ħ	54.0) <u>[1]</u>	S.	900	<u>(II)</u>	
2,4-Dinitrotoluene	ND ON	0.17) U		[1]	Q.	(36.0)[1]	QN QN	₽	54.0	<u>(II)</u>	N Q	0.05	(1)	
2,6-Dinitrotoluene		~		[1]	R	(36.0	[]	S	Ħ	54.0	(E)	Q	0.08	(1)	
ilene		Ŭ		<u>(E)</u>	g	(36.0	(13	S	'n	54.0	[i]	QN	0.08))[1]	
2-Chlorophenol		Ų		[1]	Q	(36.0	<u>(5</u>	Q.	Ħ	(540	(1)	ND	9005)[]]	
2-Methylnaphthalene	EN ON	0.17) U		(E)	Q.	(36.0)[1]	Q	∄	540	<u>[i]</u> (QN QN	0.08)[]]	
2-Nitroaniline	ID ON	U (71.0	=	[1]	Ð	(36.0	(1)	Q.	'n	6 54.0	(1]	Ð	0.08)[1]	

0 = Detection Limit [] = Dilution Factor 1

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Site Id								
						Location Id								
						Sample Id								
						Log Date								
					Beg. Del	Beg. Depth - End Depth (in.)	th (in.)							
			TOWR			TOWR				TOWR			TOWR	
		T T-AN	TOWR-SO06 NA-TOWR-SO06-02	-03	NA-	TOWR-SO07 NA-TOWR-SO07-61	91		T-AN	TOWR-SO08 NA-TOWR-SO08-01	01	N	TOWR-SO09 NA-TOWR-SO09-01	12
		5	08-MAR-98		J	08-MAR-98			8	08-MAR-98			08-MAR-98	
Parameter			3-12			0-3				0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	pounds, c	ont. (u	g/kg)											
2-Nitrophenol	ND	n	(71.0)[1]	ND	(36.0) [1]	Q	ħ	. \$4.0)[1]	Q Q	0.08))[1]
3,3'-Dichlorobenzidine	Q	C)	(71.0)[1]	QN QN	(36.0)[1]	S	5	54.0)[1]	N Q	0.03)[i]
3-Nitroaniline	QN QN	Ħ	0110)[1]	QN QN	(36.0)[1]	Q.	B	54.0)[1]	N Q	(50.0)[1]
4,6-Dinitro-2-methylphenol	Ω	n	(71.0	[1](ND	(36.0)[1]	ND	'n	(54.0)[1]	ND	(50.0)[1]
4-Bromophenyl-phenylether	Ω	n	(71.0)[1]	QN QN	(36.0)(1]	QN	5	(54.0)[1]	ΩN	0.08	[1]
4-Chloro-3-methylphenol	QN	5	(71.0	(1)	ND	(36.0)[1]	QN	5	54.0)[1]	QN QN	0.08	[1]
4-Chloroaniline	S	n	0.17))[<u>1</u>]	ND QN	(36.0	(11)	S	5	54.0	. [1]	NO ON	(50.0)[i]
4-Chlorophenyl-phenylether	Q.	ñ	(71.0)[1]	NO ON	(36.0)[1]	Ω	m	54.0)[1]	QN QN	6.00	<u>(</u>
4-Nitroanaline	Ð	Ħ	0.17))[1]	ND	(36.0)[1]	Q	B	54.0)[1]	QN	(50.0	(1]
4-Nitrophenol	Q	m	(71.0)[1]	QN	0'96'))[1]	Q.	'n	54.0)[1]	QZ	0:05)[<u>[</u>]
Acenaphthene	QN	B	(71.0)[1]	ND	0.96.0)[1]	Q.	B	(54.0)[1]	QN QN	0.08))[<u>1</u>]
Acenaphthylene	QN	Ħ	(71.0)[1]	ND	(36.0)[1]	9	E	54.0	(1)	QN Q	0.05)[1]
Anthracene	Q	n	(71.0)[1]	QN	96.0)[1]	Ð	n	54.0)[1]	QN Q	0.08)[1]
Benzo(a)anthracene	N Q	Ħ	0.17))[1]	ND	(36.0)[1]	S	Ħ	(54.0)[1]	QN Q	0:05	(E)
Benzo(a)pyrene	Q	Ħ	(71.0)[1]	ND	36.0)[1]	QN QN	5	(54.0	(11)	Q.	(50:0	Ξ
Benzo(b)fluoranthene	Q.	5	(71.0)[1]	ND	96.0)[1]	Ð	5	. 54.0) [1]	Q.	0.08)[i]
Benzo(g,h,i)perylene	N Q	n	(71.0)[1]	ND	(36.0	(11)	ΩN	5	54.0	(1]	2	0.08	<u>(I)</u>
Benzo(k)fluoranthene	<u>R</u>	n	(71.0	[1]	ND	(36.0)[1]	ND	n	(54.0)[1]	<u>Q</u>	(50.0	<u>=</u>
Butylbenzylphthalate	R	m	(71.0)[1]	ND Q	(36.0)[1]	S	Ħ	(54.0	(1)	S Q	(50.0	<u>(1</u>
Carbazole	ND	ħ	(71.0)(1]	ND	(36.0)[1]	S	Ħ	(54.0)[1]	N Q	(50.0	<u>=</u>
Chrysene	QN	'n	(71.0)[1]	QN	(36.0	[1]	QN	5	(54.0)[1]	S S	50.0	<u>=</u>
Dibenz(a,h)anthracene	S	5	(71.0)[1]	ND	0'96')	[1]	Ð	5	(54.0)[1]	<u>8</u>	0:05)	<u>=</u>
Dibenzofuran	Q	n	(71.0	(1)	N	(36.0	(1)	Q	5	(54.0	[1]	2	20.0	(1)

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

· ·					Be	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ate epth (in.)							
		T NA-T	TOWR TOWR-SO06 NA-TOWR-SO6-02 08-MAR-98	29		TOWR-SO07 TOWR-SO07 NA-TOWR-S007-01 08-MAR-98	77.07-01		NA	TOWR-SO08 TOWR-SO08-01 NA-TOWR-SO08-01	8 8-01		TOWR TOWR-SO09 NA-TOWR-SO09-01	9-01
Parameter			3-12			0-3				6-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont.	mpounds, co	et.	(ng/kg)											
Diethylphthalate	- QN	n	(71.0	(1)	Q.	0'96')	(ij)	Q	n	54.0	(11)	QN QN	200)[1]
Dimethylphthalate		5	(71.0	[1]	QN	(36.0	<u>[]</u>	R	5	54.0	(11)	QN	(50.0	ΞΞ
Fluoranthene		5	(71.0) [[]	QN	(36.0	[1](65.0	-	54.0	(11)	N Q	(50.0	Ξ
Fluorene		5	(71.0	ΕE	Q	(36.0	<u>(E</u>	S S	5	54.0	(11)	QN	0.08)	Ξ(
Hexachloro-1,3-butadiene		5	(71.0	<u>E</u>	Q.	(36.0	(1)	Ð	Ħ	54.0	[1]	QZ QZ	0'05)	Ξ
Hexachlorobenzene		5	0.17) <u>[]</u>	ð	0'96')	(3)	Q	5	6 54.0)[1]	ND	(50.0	[1](
Hexachlorocyclopentadiene		5	71.0) <u>[1]</u>	Ð	(36.0	Ξ	Q	'n	54.0	(E)	Q.	6.50.0) [I]
Hexachloroethane		5	017	三	QN Q	(36.0	Ξ(2	5	· 5 4.0	[][ND	0.08))[1]
Indeno(1,2,3-cd)pyrene) 3	71.0)[<u>[</u>]	QN Q	(36.0	<u>[i]</u>	Q	5	× × × × × × × × × × × × × × × × × × ×	[](Q.	0.08)	(11)
Isophorone) 	71.0	Ξ	Q .	36.0	<u>=</u>	Q.	∄	. S4. 0	<u>(II</u>	QN	0.08	[<u>[</u>](
N-Nitroso-di-n-propylamine) 	71.0	Ξ	2 !	36.0	Ξ	2	3	(54.0	([]	QN Q	0.00) [1]
N-Minosociphenylamine	2 5	3 5	01.F		2 1	36.0	Ξ	2 !	3	54.0	Ξ	Q :	0.05)[<u>[</u>]
Nitrohenzene		3 E	0.17	E)	2 2	. 36.U	Ξ.	2 9	3 5	54.0	Ξ,	2 5	20.0	Ξ
Pentachlorophenol		3 5	71.0	ΞΞ	2 2	36.0	E (2 2	3 5	54.0	ΞΞ.	2 2	0.0X)	
Phenanthrene	NO) E	71.0	(II)	QN	(36.0	I I.(Q.	m	(54.0	E E	2	2000	E (
Phenol		'n	71.0	[1]	ND	(36.0	<u>(II)</u>	R	n	6 54.0	[1]	QN	(50.0	Ξ
Pyrene		'n	71.0	<u>E</u>](Q	(36.0	<u>[1]</u> (64.0	_	54 .0	(1)	56.0	0:00	[](
bis(2-Chloroethoxy)methane		5	71.0	Ξ	Q.	(36.0	[1](Ø	₽	(54.0	(1)	QN QN	0.00	(Ξ)
bis(2-Chloroethyl)ether		5	71.0)[I]	QN	0.96.)	[]	Q	₽	(54.0	(E)	ND	0.000	ΞΞ
bis(2-Ethylhexyl)phthalate		n	71.0	<u>(E)</u>	78.0	0.96.)	(11)	96 96	_	(54.0	(E)	150	0.08)[I]
di-n-Butylphthalate) E	71.0	(1)	Q.	(36.0	[1]	QN	3	(54.0	(1)	58.0	(50.0	Ξ
di-n-Octylphthalate	e e	5	71.0	(1)	£	0'96')	(11)	QN Q	5	(54.0	[1](Q.	0.02)	(E) (

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						S	Site Id									
						Loc	Location Id									
						S.	Sample Id									
					¥	Log Date Beg. Depth - End Depth (in.)	Log Date End Depth	(jr.)								
						•	1									
			TOWR			TO	TOWR				TOWR			7	TOWR	
		NA	TOWR-SO06 NA-TOWR-SO06-02 08-MAR-98	-02		TOWR-SOO NA-TOWR-SOC 08-MAR-98	TOWR-SO07 NA-TOWR-SO07-01 08-MAR-98	_		NA-1	TOWR-SO08 NA-TOWR-SO68-01 08-MAR-98	10.		TOW NA-TOW 08-M	TOWR-SO09 NA-TOWR-SO09-01 08-MAR-98	
Parameter			3-12			0-3	မ				0-3			.	6-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ic Compounds,	cont.	(ug/kg)													
o-Cresol	QN	m	(71.0)[I]	QN	(36.0		[1]	QN	TÎ.	54.0	([]	QN	ъ)	50.0	[1]
p-Cresol	QZ	Ħ	(71.0)[1]	QN	(36.0		[1]	QN	ī	54.0	[1]	N Q	₹ ,	50.0	[1]
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	147		0200	[1]	13.0	(0.3	0.300	[]	563		(1.50)[1]	251	0	0060	[]
1,2,3,4,6,7,8,9-OCDF	48.2		0.100)[1]	1.80	J (0.3	0.300	[1]	48.9		(1.30	[<u>E]</u> (31.6	0	0.800	Ξ
1,2,3,4,6,7,8-HpCDD	21.2		0.0800)[1]	2.30) (0.	0.300	(11)	43.7		(1.30)[<u>[</u>]	33.2	0	0.700	Ξ
1,2,3,4,6,7,8-HpCDF	29.5		0.0500)[1]	2.60	70) I	0.200	[1]	28.5		0060)) <u>[</u>]	26.2	0	0.500	E)(
1,2,3,4,7,8,9-HpCDF	5.30		009000)	(11)	0.600	J (0.2	0.300	[1]	3.80	_	(1.10	[1]	4.80	0	0.600	(1)
1,2,3,4,7,8-HxCDD	0.720	-	0.0600	(11)	Q.	;0)	0.300	(H)	Q		(1.30	[E](1.30	0	0.700	[]
1,2,3,4,7,8-HxCDF	7.00		0.0300	(11)	1.00) (07	0.200	[1]	8.10		008:0)[1]	11.4	0	0.500	(1)
1,2,3,6,7,8-HxCDD	1.80	-	0.0600	(11)	0.320	J (02	0.300	[1]	3.10	- ,	(1.10)[1]	3.10	0)	009.0	[1]
1,2,3,6,7,8-HxCDF	2.80	_	0060.0	(11)	0.620	1 (07	0.200	[1]	3.60	,	00.700	(11)	5.30	0)	0.400	[1]
1,2,3,7,8,9-HxCDD	3.40	-	0.0500)[1]	0.440	J (02	0.200	[1]	4.20	_	(1.10	<u>[1]</u> (6.50	0)	0.000	[i]
1,2,3,7,8,9-HxCDF	0.340	-	0.0400	[1](QN QN	70)	0200	[1]	QN		0.000)[E]	0.590	0	0.500	(1)
1,2,3,7,8-PeCDD	0.750	7	0.0500	<u>(II)</u>	QN	70)	0.200	(1)	1.30	_	(1.00)[I]	2.20	0	0.500	(1)
1,2,3,7,8-PeCDF	1.10	-	0.0300	[<u>1]</u> (0.310) (0;	0.300	(11)	1.90	-	008:0	<u>[I]</u> (2.60	0	0.400	[1]
2,3,4,6,7,8-HxCDF	7.20		0.0400)[1]	1.10) (07	0.200	(11)	3.60	-	0.800)[1]	9.30	0)	0.500	[1]
2,3,4,7,8-PeCDF	1.90	-	0.0300	<u>[I]</u> (QN	70)	0200	(11)	1.70	_	0.800)[I]	4.80	0	0.400	[1]
2,3,7,8-TCDD	0.150	ь.	0.0300)[i]	QN	70)	0.200	[1]	Q.		008'0)	(1)	QN	0	0.400	E)(
2,3,7,8-TCDF	0.810	_	0.0700)[1]	QN	io)	0.900	[1]	1.40		(1.00)[1]	1.90	0	0.400	(11)
Total HpCDD	37.9		0.0800)[1]	2.30	;0)	0.300	[1]	83.4		(1.30)[1]	61.4	0	0.700	[1]
Total HpCDF	7.75		0.0600)[1]	4.60	70)	0.200	<u>(E)</u>	65.3		(1.00)[1]	51.8	0	0.500	[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Sample Id Sample Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TOWR TOWR-SO06 TOWR-SO07 TOWR-SO08 TOWR-SO09 NA-TOWR-SO06-02 NA-TOWR-SO07-01 NA-TOWR-SO09-01 NA-TOWR-SO09-01 08-MAR-98 08-MAR-98 08-MAR-98 08-MAR-98 3-12 0-3 0-3	(pdc))[1] 2.90 (0.300)[1] 36.5 (1.10)[1] 44.7 (0.600	(0.0400)[1] 3.50 (0.200)[1] 41.8 (0.800)[1] 58.6 (0.400	(0.0500)[1] 0.370 (0.200)[1] 8.30 (1.00)[1] 17.7 (0.500	(0.0300)[1] 2.60 (0.200)[1] 20.4 (0.800)[1] 61.8 (0.400	(0.0300)[1] 0.290 (0.200)[1] 10.8 (0.800)[1] 22.2 (0.400	(0.0200) [1] 1.00 (0.100)
	Parameter	SW8290 - Dioxins, cont. (ppt)				_	Total TCDD 6.20	Total TCDF 13.2

Compiled: 07/01/

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ste epth (in.)						
Parameter		TOWR-S010 NA-TOWR-S010-01 08-MAR-98 0-3	.0 10-01		TOWR TOWR-SO10 NA-TOWR-SO10-02 08-MAR-98 3-12	0-07		TOWR TOWR-SO11 NA-TOWR-SO11-01 08-MAR-98	-0 1		TOWR TOWR-SO12 NA-TOWR-SO12-01 08-MAR-98 0-3	10
OLW03.2 - Pesticides and PCBs (ug/kg)	(ug/kg)					·						
4,4'-DDD	6.50	(0.270)[1]	9.50	(0.290)[1]	Q.	0.190	(1)	8.50	0.270)[1]
4,4'-DDE	36.0	0.270	Ξ(55.0	(0.290	(E]	ΩN	0.190)[1]	23.0	0.270)[1]
4,4'-DDT	68.0	0.270	(1)	79.0	0.290	[1]	N ON	0.190	(E)	63.0	(0.270)[1]
Aldrin	Q.	0.270	<u>=</u>	Q	0.290	Ξ	ΩN	0.190	<u>[i]</u>	Q.	0.270	(11)
Aroclor-1016	Q.	0.270	(E)	Q.	0.290	[E]	Q.	0.190)[1]	QN	0.270)[i]
Aroclor-1221	Q Q	0.270	[1]	Q.	(0.290	[](S Q	0.190	<u>[1]</u> (S	0.270)[1]
Aroclor-1232	Q.	0.270	[1]	ND	0.290	[E](Q.	0.190	<u>(</u>	QN	0.270)[1]
Aroclor-1242	QN O	0.270) [E]	Q	0.290	[1](Q.	0.190)[1]	ΩN	0.270)[1]
Aroclor-1248	ΩN	(0.270	(E]	QN QN	0.290	<u>(1)</u>	N Q	0.190	([]	ND	0.270)[1]
Aroclor-1254	QN	0.270) [<u>H</u>]	ND	(0.290)[<u>[</u>]	ΩN	0.190)[1]	ND	0.270	[1](
Arocior-1260	QN	0.270)[i]	Q.	0.290	(11)	Ð	00.190)[1]	ND	0.270)[1]
Dieldrin	2 9	(0.270	ΞΞ	2 9	(0.290	Ξ	2 5	0.190	Ξ,	2 5	0.270	Ξ,
Endosulfan II	2 2	0.270		2 2	(0.290		2 2	0.130		2 2	0.270	ΞΞ
Endosulfan sulfate	ND	(0.270) [1] (QN	(0.290	(E)	Q	(0.190		Q.	0.270	Ξ
Endrin	Q.	0.270)[1]	QN	(0.290)[<u>1</u>]	Q.	0.190	<u>[i]</u> (NO	0.270)[1]
Endrin aldehyde	Q	0.270)[1]	QN	0.290	[<u>[</u>](N Q	0.190	<u>[I]</u> (QN	0.270	(11)
Endrin ketone	ND	0.270	(1)	QX	(0.290	(E)	QN	0.190)[<u>[</u>]	QN	0.270)[1]
Heptachlor	0.880	0.270	[1](QN	0.290	<u>(E)</u>	ND	0.190	(<u>E</u>)	Q	0.270)[1]
Heptachlor epoxide	ND	(0.270)[1]	Q	(0.290	<u>=</u>	ND	0.190)[1]	ND	0.270	<u>E</u>)(
Methoxychlor	QN	0.270)[1]	Ω	(0.290	(E]	ND	0.190)[1]	NO	0.270	<u>[</u>]
Toxaphene	QN QN	0.270	(1)	QN QN	0.290	[E](ΔN	(0.190)[1]	ND	0.270	(E)
alpha-BHC	Q.	0.270	(E)	QZ	0.290)[1]	QN	0.190	[1]	Q	0.270)[1]

Table 1
Results of Organic Analyses For Round 1 Soll Samples, Atsugi NAF, Japan

						Beg. De	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ld Id ate epth (in.)							
		NA-1	TOWR-SO10 NA-TOWR-SO16-01 08-MAR-98	1		N	TOWR-SOI0 NA-TOWR-SOI0-02 08-MAR-98	10-02		TOWR TOWR-SO11 NA-TOWR-SO11-01 08-MAR-98	1 1-01		NA	TOWR-SO12 NA-TOWR-SO12-01 08-MAR-98	
Parameter			\$				3-12			0-3				6.3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)														
ordane	7.80		0.270	(1)	4.60	-	0.230)[1]	Q	0.190	[1]	2.80	-	0.220	[1]
beta-BHC	Ð		0.270	<u>[1]</u>	S		0.230	[E](QN	0.190	[i]	Q.		0.270	(E)
delta-BHC	Q		0.220)(II)	S		0500))[<u>[</u>]	S	(0.190	(1)	Ð		0.270) E
ane)	Ð		0.270	<u>(E)</u>	S		0.230)[I]	QN	0.190	(1)	Q.		0.270	<u>[1]</u> (
gamma-Chlordane	8.20		0.220)[I]	4.60		0.290)[1]	Q.	0.190	(1)	2.90	н	0.270)[I]
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)) spunodu	ug/kg)													
1,2,4-Trichlorobenzene	Q.	Б	(54.0)[1]	QN QN	ħ	(58.0	(1)	Q.	(37.0	[1]	Ð		(54.0	(11)
1,2-Dichlorobenzene	Q	a	. 54.0	<u>[i]</u>	Q	3	(58.0	(1)	Q.	(37.0	[1]	Q.		6 54.0)[I]
1,3-Dichlorobenzene	Ð	n	54.0	<u>(</u>	NO	₽	(58.0	[]	Q	0'12')	(II)	S		(54.0)[1]
1,4-Dichlorobenzene	Š	3	54.0	<u>[i]</u>	Ð	5	(58.0	(II)	QN	(37.0	[1]	S		(54.0)[1]
2,2'-oxybis(1-chloropropane)	Q !	3	. %	<u>=</u>	2	5	28.0	[1]	Q	(37.0)[1]	Q		. 54.0	[1]
2,4,5-Trichlorophenol	2 :	B ;	× 5	Ξ.	2	3	58.0	Ξ	2	(37.0	(1)	Ð		54.0	(E)
2,4,6-Trichlorophenol	2 2	3 3	× 2	ΞĘ	2 9	B	(58.0	E	2 8	(37.0	Ξ.	2 9		(S	Ξ
2,4-Dichelopheriol	2 2	3 5	2.5	ΞΞ	€ €	3 5	0.00	[F]	2 9	(37.0	Ξ,	2 !		٠ <u>۲</u>	E
z,4-Dunemyipherkoi	2 :	3 :	2 t t		S i	3 :	0.80	[<u>]</u>	Q !	(177)	[1]	Q		54.0	<u>=</u>
Z,4-Dinitrophenoi	2 :	3 :	0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43	EE (2	3	28.0	Ē	Ž	(37.0	Ξ	Q		· 54.0	<u>(</u>
2,4-Dinitrotoluene	S	5	54.0	<u>=</u>	2	3	28.0) <u>[</u>	Ð	(37.0	<u>[I]</u>	2		. S 4.0	<u>(II</u>
2,6-Dinitrotoluene	S	5	. 54.0	<u>=</u>	2	₿	0'85')	(1)	<u>g</u>	(37.0	Ξ	Q		. S 4.0	[1]
2-Chloronaphthalene	2	Ħ	54.0	Ξ(2	₽	(58.0	(1)	Ð	(37.0	Ξ(Ð		. 54.0)[I]
2-Chlorophenol	Q !	5	54.0	<u>(E</u>	R	₽	(58.0	(1)	Ð	0.75) <u>[1]</u>	Ð		54.0	(13)
2-Methylnaphthalene	2	3	. 54 .0	Ξ	2	5	0.85)	<u>=</u>	Q	(37.0	(E)	Q		. 54.0)[1]
2-Nitroaniline	£	3	54.0	Ξ	S	Ħ	(28.0	<u>(</u>	S	(37.0	<u>(II)</u>	R		(54.0)[1]

0 = Detection Limit [] = Dilution Factor N

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						1 TOWR-S012	NA	08-MAR-98	0-3	
					TOWR	TOWR-SO11	NA-TOWR-SO11-01	08-MAR-98	0-3	
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	TOWR	TOWR-SO10	NA-TOWR-SO10-02	08-MAR-98	3-12	
					TOWR	TOWR-SO10	NA-TOWR-SO10-01	08-MAR-98	0-3	
									Parameter	

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	empounds,	cont. (ug/kg)											
2-Nitrophenol	QN Q	5	(54.0)[1]	Ð	Ħ	(58.0)[1]	ND	(37.0)[1]	QN	(54.0	(11)
3,3'-Dichlorobenzidine	Q.	5	(54.0	Ξ(æ	Ħ	0.85))[1]	Q.	(37.0	[1]	Q	6 54.0)[1]
3-Nitroaniline	Q	5	(54.0	(1)	Q.	n	0.85)[1]	QN QN	(37.0	[1](QN	(54.0	(11)
4,6-Dinitro-2-methylphenol	Q	n	(54.0	(1)	Q	5	0.85)) [ij]	QN	(37.0	<u>[i]</u> (ΩŽ	6 54.0	(1)
4-Bromophenyl-phenylether	Q.	n	(54.0) <u>[</u>	Q	5	0.85))[1]	QN	(37.0	<u>[i]</u> (Q.	54.0	(1)
4-Chloro-3-methylphenol	ΩN	Ħ	(54.0	(11)	Ð	5	(58.0	[1]	NO ON	(37.0	<u>(E</u>	Q.	(54.0	(1)
4-Chloroaniline	Q	₿	(54.0	(11)	N	5	0.85)[1]	QN QN	0.75	(H)	QN QN	(54.0)[1]
4-Chlorophenyl-phenylether	QN	Ħ	(54.0)[1]	Ð	n	(.58.0)[1]	N Q	(37.0) [[]	Ð	(54.0	[1]
4-Nitroanaline	QN QN	5	(54.0)[1]	ND	5	(58.0)[1]	ND	(37.0	(E)	N QN	(54.0	(E)
4-Nitrophenol	S	∄	(54.0	[1](Q.	5	(58.0)[1]	QN	0.75	(E)	QN QN	(54.0	<u>(</u>
Acenaphthene	Ð	∄	(54.0)[1]	Q.	5	(58.0)[1]	QN	(37.0	(1)	QN	6 54.0) [E]
Acenaphthylene	Q	∄	54 0)[1]	Ð	5	(58.0)[1]	Q	0.76)	(11)	ND	(54.0)[1]
Anthracene	Q.	Ħ	54.0	<u>[I]</u> (Ð	5	(58.0)[1]	QN	0'22')	([]	Q	54.0)[1]
Benzo(a)anthracene	<u>Q</u>	n	54.0)[II]	74.0	_	0.85))(1]	QN	0'22')	(11)	Ð	(54.0	(1)(
Benzo(a)pyrene	Ð	5	54.0	(E)	88.0	-	0.85)[1]	ND	0'22')	<u>(II)</u>	QN	(54.0)[1]
Benzo(b)fluoranthene	g	n	(54.0	(11)	0.67	-	0.85))[1]	N Q	0.75	(<u>[</u>]	N Q	(54.0	(1)
Benzo(g,h,i)perylene	R	5	54.0	[1]	Ð	∄	0.85))[1]	QN	(37.0	<u>(i)</u>	QN	(54.0)[1]
Benzo(k)fluoranthene	R	5	(54.0	(1)	81.0	_	0.85))[1]	N Q	0'12')	[](QN O	(54.0	(E)
Butylbenzylphthalate	QN N	6	(54.0	E](Ð	Ħ	0.85))[1]	ΩN	(37.0	[1]	QN	(54.0	(1)
Carbazole	S	5	(54.0	[1]	R	n	0.85))[1]	QN	(37.0	<u>(I</u>)	QN ON	. 54.0	(11)
Chrysene	Ð	5	(54.0	<u>[1]</u> (0.67	-	0.85))[1]	QN	(37.0	<u>[i]</u> (QN	(54.0	(E)
Dibenz(a,h)anthracene	Q	5	(54.0	(1)	QN	5	0.85))[1]	QN	0.75)) [I]	QN	(54.0	(E)
Dibenzofuran	Ð	5	54.0	<u>II</u> (Q	5	0'85))[1]	QN	(37.0	Ξ(N QN	(54.0)[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

						Beg. De	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	id ld te spith (in.)						
Parameter		ZA-1	TOWR-SO10 TOWR-SO10-01 08-MAR-98 0-3	0-01		N.	TOWR TOWR-SO10 NA-TOWR-SO10-02 08-MAR-98 3-12	0-02		TOWR TOWR-SO11 NA-TOWR-SO11-01 08-MAR-98	1-01		TOWR TOWR-SO12 NA-TOWR-SO12-01 08-MAR-98 0-3	2-01
OLMO3.2 - Semi-Volatile Organic Compounds, cont.	`ompounds', c		(ug/kg)											
Diethylphthalate	Q !	5	54.0	(1)	QN	n	. 28.0)[1]	110	0.75)[1]	QN Q	(54.0	[1](
Dimethylphthalate	2	3	54.0	<u>=</u>		3	(58.0	Ξ	Q	0.75	(E]	Q.	(54.0	(1)
Fluoranthene	2	3	54.0	(E)	g	5	(58.0	[<u>i</u>](QN Q	0.75	[1]	55.0	6.54.0)[<u>[</u>]
Fluorene	2	B	54.0	Ē	2	∄	(58.0) <u> </u>	QN	(37.0	<u>(E)</u>	Q	. 54 .0	[1](
Hexachloro-1,3-butadiene	S	₿	(\$4.0)[1]	QN	5	(58.0	[1]	QN	0.75	<u>(II)</u>	S	6 54.0) [](
Hexachlorobenzene	2	₽	54.0)[I]	Ð	3	(58.0	[1]	Q	(37.0	<u>(II</u>	ND	54.0)[1]
Hexachlorocyclopentadiene	S	5	54.0	[E](Q	∄	(58.0	[:]	QN	(37.0	(1)	ND	6 54.0)[1]
Hexachloroethane	2	⋽	. 54.0)[I]	S	5	0.88	(11)	Q.	(37.0) <u>[1]</u>	N Q	(54.0	<u>=</u>
Indeno(1,2,3-cd)pyrene	Q	5	(54.0	[1](Ð	5	0.83	[]]	S	(37.0	(E)	ND	54.0	<u>[i]</u> (
Isophorone	8	5	(54.0	<u>(I</u>	Ð	5	(58.0) <u>[H]</u>	2	0.75	<u>(E</u>	ND	6 54.0	[1](
N-Nitroso-di-n-propylamine	2 !	5 :	54.0	Ξ.	2	3	58.0	Ξ	Q	(37.0	[](QN	(54.0	(1)
N-Nitrosodiphenylamine	2 9	5 :	(5 4.0	Ξ,	2 !	B :	. 58.0	Ξ	9 !	(37.0	Ξ	QN	. 5 4.0	<u>(II)</u>
Nitrobourges	2 2	3 5	. X .0	E 5	2 9	3 5	280	Ξ,	2 1	(37.0	Ξ,	<u>Q</u> ;	<u> </u>	Ξ
Pentachlorophenol	2 2	3 5	. 54. 0	E (2 2	3 5	58.0		2 2	(37.0	<u> </u>	2 2	, y	<u> </u>
Phenanthrene	Ø	∄	54.0	[1](Ð	Ħ	(58.0	Ξ	QN QN	(37.0	Ξ(S	. \$4.0	ΞΞ
Phenol	S	Ħ	54.0)[<u>[</u>]	QN QN	₿	(58.0	[<u>i]</u> (QN	(37.0	(E)	QN	. 54 .0	Ξ
Pyrene	R	3	54.0)[1]	73.0	-	(58.0	(E)	Ð	(37.0)[1]	58.0	(54.0	<u>=</u>
bis(2-Chloroethoxy)methane	8	∄	54.0)[1]	Ð	B	(58.0	(1)	Ð	(37.0	[1](ND	54.0	Ξ
bis(2-Chloroethyl)ether	Q	Ħ	54.0	(11)	æ	B	(58.0	(11)	Q.	(37.0)[1]	QN	(54.0)[1]
bis(2-Ethylhexyl)phthalate	280	_	54.0	<u>(I)</u>	5 1	_	0.88)	<u>(E)</u>	26.0	0.72)[1]	0.420	. 54. 0	<u>(II)</u>
di-n-Butylphthalate	0.99		54.0	<u>(E)</u>	0.09	-	(58.0	<u>(II)</u>	QN QN	(37.0)[1]	78.0	(54.0	(E)
di-n-Octylphthalate	8	5	(54.0)[<u>[</u>]	S S	5	(58.0	(1)	2	(37.0	(1)	QN	· 540	Ξ

() = Detection Limit [] = Dilution Factor 1

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id								
							Location Id	-							
							Sample Id	_							
							Log Date	60							
					-	Beg. De	Beg. Depth - End Depth (in.)	oth (in.)							
			TOWR	•			TOWR				TOWR			TOWR	
		NA-	TOWR-SO10 NA-TOWR-SO10-01	10		NA.	TOWR-SO10 NA-TOWR-SO10-02	-0 5		T-AN	TOWR-SO11 NA-TOWR-SO11-01	10		TOWR-SO12 NA-TOWR-SO12-01	12 12-01
Parameter			08-MAR-98 0-3			-	08-MAR-98 3-12			ĕ	08-MAR-98 0-3			08-MAR-98 0-3	~~
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds,	cont.	ug/kg)												
o-Cresol	QN Q	n	(54.0)[1]	N Q	B	0'85))[1]	ND	_	37.0	(11)	QN	6 54.0)[1]
p-Cresol	Q	ħ	(54.0	(11)	Q.	B	(58.0)[1]	N N		37.0	(1)	QN	(54.0)[1]
SW8290 - Dioxins (ppt)															
1,2,3,4,6,7,8,9-OCDD	1110		(5.20	(1)	280		(3.10	(E)	11.3		0.200	[1]	1050	(2.50	[1]
1,2,3,4,6,7,8,9-OCDF	110		3.90)[1]	47.4		(2.30)[1]	3.60	<u> </u>	0.200	(11)	0.69	08.1	[1](
1,2,3,4,6,7,8-HpCDD	73.6		(1.80)[1]	40.2		(1.30)[1]	1.80	_	0.200) <u>[</u>	58.3	(1.10	(1)
1,2,3,4,6,7,8-HpCDF	39.3		(1.00	[1]	17.0	,	002:0)[1]	3.10	_	0.200)[<u>1</u>]	27.1	00900	(11)
1,2,3,4,7,8,9-HpCDF	9.60		(1.40) [E]	1.40	-	00'1	[1]	0.970	_	0.200)[1]	3.20 J	0060)	[1](
1,2,3,4,7,8-HxCDD	3.20	-	00.1	. [1] (1.10	-	002:0)[1]	N N	_	0.200)[1]	1.30 J	009'0)	[1]
1,2,3,4,7,8-HxCDF	8.20	r	0.500	[1]	2.50	ŗ	0.400	(11)	1.40	_	0.200)[1]	4.20 J	0.300)[1]
1,2,3,6,7,8-HxCDD	5.90		00'1)	[1]	2.80	-	002:0)[1]	QN		0.200)[1]	3.50 J	009'0)	[][
1,2,3,6,7,8-HxCDF	4,10	-	0.500	[1]	1.50	-	0.400)[1]	0.650	_	0.200)[1]	1.70 J	0300)[1]
1,2,3,7,8,9-HxCDD	9.20		0060))[1]	4.00	-	00200)	(11)	QN	_	0.200)[1]	4.40 J	00900))[1]
1,2,3,7,8,9-HxCDF	2.10	-	0.700)[1]	0.820	-	00900)[1]	ND	_	0.200)[1]	0.650	0.500)[1]
1,2,3,7,8-PeCDD	3.00		0.000)[1]	1.30	-	0.400)[1]	ND		0.200	<u>[i]</u> (1.30 J	0.400)[1]
1,2,3,7,8-PeCDF	2.40	-	(0.300	<u>(II)</u>	0.810	- ,	0.200) <u>[1]</u>	0.600	-	0.200) <u>[</u>]]	0.660	(0.200) [1]
2,3,4,6,7,8-HxCDF	8.30		0.600)[1]	2.30	-	0.500	[1]	0.910	_	0.200	(11)	4.20 J	0.400) [1]
2,3,4,7,8-PeCDF	3.50	-,	0.300)[<u>1</u>]	0.930	-	0.300)[<u>1</u>]	0.680	_	0.700)[1]	1.40 J	0200)[1]
2,3,7,8-TCDD	0.580		0.300)[<u>[</u>]	0.290	-	0.200	[1]	QN		0.200	([]	N Q	0.200)[1]
2,3,7,8-TCDF	1.60		0.500	[1]	0.810	-	0.300)[II]	ND	-	009:0	(1)	0.820	0.300)[1]
Total HpCDD	137		(1.80) <u>[1]</u>	74.2		(1.30)[1]	2.10		0.700	<u>(II)</u>	112	(1.10)[1]
Total HpCDF	7.26		(120)[1]	42.3		0.900)[1]	5.20		0.200)[1]	71.7	00200)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

TOWR-SO10	FR -SO10 -SO10 -SO10-01 -SO10-	23.1	Site Id Location Id Sample Id Log Date Log Date TOWR-S010 NA-TOWR-S010-02 08-MAR-98 3-12 (0.700) [1] (0.400) [1]	oth (ii.)	2.40 4.40 1.30	TOWR TOWR-SO11 NA-TOWR-SO11-01 08-MAR-98 0-3 (0.200) [(0.200) [19 (E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	31.1 36.1	TOWR TOWR-S012 NA-TOWR-S012-01 08-MAR-98 0-3 (0.600) (0.400)	2
		12.0	0.300	Ξ(3.50	0.200	Ξ(18.3	0.200	ΞΞ
		4.50 7.60	(0200	EE (0.610	(0.200	EE (278 19.8	(0.200 (0.100	E) (

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Parameter		TRND TRND-SO01 NA-TRND-SO01-01 15-MAR-98	01 01-01 8	-	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.) TRND TRND-SO01 NA-TRND-SO01-02 15-MAR-98 3-12	d n Id n Id Date Depth (in.) 01-02		₹ Z	TRND TRND-S002 NA-TRND-S002-01 15-MAR-98 0-3	Į.		TRND TRND-SO02 NA-TRND-SO02-02 15-MAR-98	02-02 8
OLM03.2 - Pesticides and PCBs (ug/kg)	(3									·			
4,4'-DDD	N Q	0.290	[1]	ON	(0.250	(E]	Q		(0.310	(11)	QN	0.340)[1]
4,4'-DDE		(0.290)[1]	ND	(0.250)[1]	2.70	-	(0.310	[1]	QN Q	0.340	ΞΞ
4,4'-DDT	2 !	0.290	<u> </u>	Q	(0.250)[1]	Q.		0310)[1]	Q.	0.340	Ξ(
Aidrin	Q !	0.290	(11)	S	(0.250)[I]	ON		0.310)[1]	Q.	0.340	(E) (
Aroclor-1016	S	(0.290	<u>=</u>	ND ND	(0.250	<u>(II)</u>	ND		0.310)[1]	Q	0.340	Ξ
Aroclor-1221	S	0.290)[1]	QN	(0.250	(11)	ND ON		0.310)[1]	Q	0.340	I =
Aroclor-1232	g	(0.290	<u>=</u>	Q	(0.250	<u>[1]</u>	QN QN		0.310)[1]	QX	(0.340	ΞΞ
Aroclor-1242	£	(0.290	<u>=</u>	Q	(0.250)[1]	ΩN		0.310)[1]	Q	0.340	[1](
Arocior-1248	Ê	(0.290	<u>=</u>	Q.	(0.250)[<u>[</u>]	QN		0.310)[1]	Q	0.340	[](
Aroclor-1254	2	0.290	<u>[</u>]	ND ON	(0.250	[1]	ΩN		0.310)[1]	Q	0.340	
Aroclor-1260	2	(0.290	[1]	S O	(0.250	[1](ND		(0.310	(1)	QN	0.340	Ξ(
Dieldrin	Q	0.290	Ξ	QN	(0.250)[1]	ΩN		0.310)[1]	Q	0.340	Ξ(
Endosultan I	2	(0.290	Ξ	Q.	(0.250	(<u>I</u>	S S		0.310)[1]	QN	(0.340	<u> </u>
Endosultan II	€ :	0.290	Ξ	Q.	(0.250	[1]	ND		0.310) [1]	QN	0.340	Ξ(
Endosultan sultate	Q !	0.230)[i]	QN	(0.250) [E]	ΩN		0.310)[1]	S S	0.340)E3
	2	0.230)[1]	Q.	(0.250	<u>(II</u>	QN		0.310) [I]	Q.	0.340	(1)
Endrin aldehyde	2	(0.290	Ξ	Q.	0.250	(11)	Q		0.310	(1)	ΩN	0.340	<u> </u>
Endrin ketone	2	(0.290)[I]	QN .	(0.250)[]]	QN		0310)[1]	Ð	(0.340	ΞΞ
Heptachlor	Q	(0.290	(1)	Q	(0.250)[1]	QN		0.310	(1)	Ð	0.340	
Heptachlor epoxide		U	[1]	QN	(0.250)[1]	QN		0.310	(1)	Ð.	(0.340	E (
Methoxychlor		UJ (0.290	(1)	Q.	0.250	(1	Q	5	0.310	[1]	Q.	UJ (0.340	E (
Foxaphene	Q	(0.290)(1]	Q.	(0.250	(11)	QN		0.310)[1]	Ð		ΞΞ
alpha-BHC	Q	0.290	(1)	QN	(0.250	(11)	Q		(0.310	(1)	QN	0.340	ΞΞ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Site Id

					e	eg. Deptl	Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	1 L e oth (in.)								
	2	TRA TRA	TRND TRND-S001 NA-TRND-S001-01	=		TF NA-TI	TRND-SO01 NA-TRND-SO01-02	8		NA-1	TRND TRND-SO02 NA-TRND-SO02-01	15		T-AN	TRND-SO02 TRND-SO02-02	Q
Parameter		.	15-MAK-98 0-3			2	15-MAK-98 3-12			-	13-MAK-98 0-3			4	15-MAK-98 3-12	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)															
alpha-Chlordane	Q	J	0.290	[1]	Q.)	0.250	(11)	Š		0.310)[1]	Q	Ŭ	0.340	(11)
beta-BHC	ND Q	J	0.290)[1]	Q.	_	0.250)[1]	Ð		0.310)[1]	Q	Ŭ	0.340) <u>[1]</u>
delta-BHC	æ	J	0.290)[1]	Ð	_	0.250)[1]	Q		0.310)[1]	2	_	0.340	Ξ
gamma-BHC(Lindane)	Ω Ω	J	0230	() ()	Q	_	0.250)[1]	S		0.310) [1]	2	Ŭ	0.340	Ξ
gamma-Chlordane	g	J	0.290	[1]	Ð	•	0.250	[1]	QN Q		0310)[1]	Ð	Ŭ	0.340	Ξ
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	/Sn) spunodui	ķ		·												
1,2,4-Trichlorobenzene	ND ON	J	58.0)[1]	N Q	'n	49.0)[1]	Q	5	(62.0)[1]	8	5	0'19	(E)
1,2-Dichlorobenzene	ND QN	~	58.0)[1]	QN	'n	49.0)[1]	S	5	(62.0)[1]	Ð	Ð	0.7.0) [E]
1,3-Dichlorobenzene	ND ON	J	58.0)[1]	QN	'n	49.0)[1]	QN	5	(62.0	(1)	Q.	5	0.79)[<u>[</u>]
1,4-Dichlorobenzene	ND ON	Ų	58.0)[1]	Q	5	49.0)[1]	2	5	(62.0)[1]	Ð	B	0.70	<u>=</u>
2,2'-oxybis(1-chloropropane)	ND ON	Ų	58.0)[1]	S	n	49.0)[1]	QN	5	(62.0)[1]	Ð	∄	07.0) [E]
2,4,5-Trichlorophenol		Ų	58.0)[1]	S	5	49.0	Ξ	Q Q	5	(62.0) [I]	2) 	67.0	Ξ
2,4,6-Trichlorophenol		<u> </u>	58.0)[1]	g	5	49.0)([]	2	5	(62.0)[1]	2	5	0.7.0	Ξ
2,4-Dichlorophenol	IN ON	<u> </u>	58.0) [1]	Q.	5	49.0)(11)	S	5	(62.0)[1]	2	5	02.0	Ξ
2,4-Dimethylphenol		J	58.0)[1]	S	5	49.0)(11)	Q	∄	(62.0)[1]	Q	5	0.7.0	<u>=</u>
2,4-Dinitrophenol	ND ON	$\overline{}$	58.0)[1]	Ð	5	49.0) <u>[1]</u>	2	₿	(62.0	[1]	2	5	0.70	Ξ
2,4-Dinitrotoluene	IO ON	J	58.0)[1]	Q	5	49.0) <u>[1]</u>	2	B	(62.0)[1]	S	5	0.79)[<u>[</u>]
2,6-Dinitrotoluene	ED CN	J	58.0)[1]	Q	5	49.0)[1]	g	3	(62.0	[1]	g	5	07.0	Ξ
2-Chioronaphthalene	UD QN	_	58.0)[1]	S	n	49.0)[1]	Ñ	5	(62.0)[1]	R	5	0.70)[]]
2-Chlorophenoi	ND QN	_	58.0)[1]	S) B	49.0)[1]	Ð	5	(62.0)[1]	Q.	5	0.70	Ξí
2-Methylnaphthalene	ND ON	J	58.0)[1]	Q	n	49.0)[1]	Q	6	(62.0)[1]	Q	5	07.0	<u> </u>
2-Nitroaniline	N ON	U	58.0	(1)	S) B	49.0	(1)	Š	5	(62.0)[1]	g	5	0.79	[][
												•				

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

Site Id

							Location Id	P		,						
							Sample Id Log Date	ld te								
					E	eg. Dep	Beg. Depth - End Depth (in.)	epth (in,)								
			TRND				TRND				TRND				TRND	
		NA.	TRND-SO01 NA-TRND-SO01-01	5		NA-1	TRND-SO01 NA-TRND-SO01-02	1-02		N.	TRND-SO02 NA-TRND-SO02-01	-01		Z AZ	TRND-SO02 NA-TRND-SO02-02	72
			15-MAR-98			_	15-MAR-98				15-MAR-98			_	15-MAR-98	
Parameter			6-3				3-12				0-3				3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cont.	ompounds, ((ug/kg)										ļ	;	į	,
2-Nitrophenol	ND N	Ħ	(58.0)[1]	S	Ē	(49.0)[1]	Q	Ħ	(62.0	(E)	2 9	₿;	(67.0	Ξ
3,3'-Dichlorobenzidine	S	m	0.83)[1]	Ð	n	(49.0) <u>[1]</u>	S	3	(62.0	[1]	Q ;	3 ;	0.70	Ξ,
3-Nitroaniline	S	Ħ	(58.0)[1]	Ð	Ħ	(49.0)[1]	2	5	(62.0	(1)	2	3 ;	0./0 (-0./0	EI (
4,6-Dinitro-2-methylphenol	Q	Ħ	(58.0)[1]	Ω	'n	(49.0	(11)	S	B	(62.0)[1]	2	5	0.70	Ξ
4-Bromophenyl-phenylether	Ð	'n	(58.0	[1]	Ð	Ü	(49.0)[1]	S	n	(62.0)[1]	£	3	0'29)	Ξ.
4-Chloro-3-methylphenol	Q	n	(58.0	(11)	S S	E	(49.0)[1]	Q	5	(62.0	111	2	5	0.79	Ξ,
4-Chloroaniline	S	5	(58.0)[1]	Ð	5	(49.0)[1]	Ð	Ħ	(62.0	<u>[i]</u>	Ð	3	07.0	Ξ
4-Chlorophenyl-phenylether	Ð	a	(58.0)[i]	Q.	5	(49.0)[1]	Q	n	(62.0)[1]	Q	3	0'.9	<u>=</u> :
4-Nitroanaline	Q	3	(58.0)[1]	Ð	n	(49.0)[1]	S	5	(62.0	(11)	e E	B	0.79	Ξ
4-Nitrophenol	QN	5	(58.0)[1]	QN	Ħ	(49.0)[1]	Ω	5	(62.0)[1]	2	5	0.70	Ξ,
Acenaphthene	430	_	(58.0) [1]	Q.	Ħ	(49.0	(11)	Q.	5	(62.0) <u>[1]</u>	£	5	0'.29)	<u>=</u> :
Acenaphthylene	N	₽	0.85)[1]	Q	n	(49.0)[1]	Q	n	(62.0	<u>=</u>	<u>2</u>	3 :	67.0	Ξ
Anthracene	750	ь,	(58.0	(1)	R	5	(49.0)[1]	Q	5	(62.0	EI (2	5 :	0.79	Ξ,
Benzo(a)anthracene	0086	_	(230	<u>.</u>	140	_	(49.0)[1]	Q i	3	62.0	Ξ.	2 9	3 :	0./0)	Ξ,
Benzo(a)pyrene	12000	_	230)[4]	180	-	(13.0)[1]	2	i i	(16.0	Ξ.	2 9	3 :	D:91	ΞΞ
Benzo(b)fluoranthene	15000	_	230	<u>)</u> [4]	210	-	(49.0	(1)	2	5	(62.0	[1](2 9	3 :	0.70	Ξ,
Benzo(g,h,i)perylene	6400	-	(230	<u>.</u>	170	-	(49.0) <u>[</u>	2	5	(62.0	(E)	Q.	3	0'/9)	Ξ :
Benzo(k)fluoranthene	2900	_	(58.0)[1]	0.69	_	(49.0)(1]	2	Ħ	(62.0	[]	Q I	3	07.9)	Ξ ;
Butylbenzylphthalate	QN	Ħ	(58.0)[1]	Ñ	∋	(49.0)[1]	9	5	(62.0	E) (Q !	3 :	0.79	Ξ;
Carbazole	820	-	(58.0)[1]	Ð	5	(49.0)[1]	2	5	(62.0	Ξ.	Q !	5 :	0'/9)	Ξ
Chrysene	9400	-	(230) [4]	150	-	(49.0)[1]	S	5	62.0	Ξ	2 !	3 :	0.70	Ξ
Dibenz(a,h)anthracene	2100	-	(58.0)[1]	Q	5	(49.0)[1]	Ð	5	(62.0		2 !	∋ :	07.0	Ξ
Dibenzofuran	110	- .	(58.0)[1]	Q.	5	(49.0	(1)	Q.	5	(62.0	[1](S	3	0./0	7[17]

Compiled: 07/01/98

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id	_								
							Location Id	PI -								
							Sample Id	2								
							Log Date	ate								
						Beg. De	Beg. Depth - End Depth (in.))epth (in.)								
			TRND				TRND				CNOT					
			TRND-SO01	11			TRND-SO01	=			TRND-SO02	2			TEND SOM	
		NA	NA-TRND-SO01-01	10-10		Ä	NA-TRND-SO01-02	1-02		NA	NA-TRND-SO02-01	2-01		Ϋ́	NA-TRND-S002-02	S
			15-MAR-98	•			15-MAR-98				15-MAR-98				15-MAR-98	
Parameter			53				3-12				0-3				3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cont.	Compounds,	comt.	(ug/kg)													
Diethylphthalate	E	Ħ	280)[1]	Q	5	(49.0) [1]	QN	Ħ	(62.0	III	9	-	029)	E) (
Dimethylphthalate	Ð	5	(58.0)[1]	<u>R</u>	m	(49.0	Ξ(Q	'n	(62.0		Q	. 5	079	
Fluoranthene	3200	-	(58.0	[H]	150	-	(49.0)[]	Ð	m	(62.0	(E)	2	5 5	07.9	
Fluorene	240	_	(58.0	[]]	N	5	(49.0	(1)	Q.	5	(62.0	Ξ	Ð	=	0.79	ΞΞ
Hexachloro-1,3-butadiene	Q	3	0'85')	[]	QN QN	5	(49.0)[1]	Ð	5	(62.0	(E) (S	B	0'29)	Ξ
Hexachlorobenzene	£	₽	0.85)[1]	QN	B	(49.0)[1]	Q.	Ħ	(62.0	(11)	S	ī	0.79	Ξ
Hexachlorocyclopentadiene	S	5	28.0)[1]	Q	5	(49.0	<u>[1]</u> (QN	n	(62.0)[1]	Q.	n	(67.0	ΞŒ
Hexachloroethane	Ð	5	0.88	[<u>1</u>](æ	5	(49.0	[1]	Q	5	(62.0)[1]	S	B	0.79	Ξ
Indeno(1,2,3-cd)pyrene	9300	- ,	230) [4]	120	-	(49.0)[1]	Q.	5	(62.0)[1]	S	₽	0.79)	Ξ
Isophorone	2	3	(58.0	(1)	g	∄.	(49.0	(1]	Ø	≘	(62.0)[1]	2	5	0'29)	<u>(II)</u>
N-Nitroso-di-n-propylamine	2	5	28.0	<u>[i]</u>	2	3	(49.0)[<u>[</u>]	S	₿	(62.0)[1]	R	5	0'29)	<u> </u>
N-Nitrosodiphenylamine	71.0	_ :	. 58.0	Ξ.	2	5	(49.0	Ξ(S	5	0.29	[1]	Q	m	0'29))[1]
Naphmalene	2 9	3 :	. 58.0	Ξ:	2	5	(49.0	<u>=</u>	2	₽	(62.0)[1]	Q	∄	0'29)	[I](
Nitrobenzene	2 9	3 :	58.0	Ξ,	2 !	3 :	(49.0	Ξ	g	Ħ	(62.0	<u>E</u>)(QN	₽	0'.29))[1]
Penachorophenoi	QN 5	3.	0.80	E :		3,	(49.0)[I]	2	3	(62.0)[1]	8	3	0'.09)	<u>=</u>
Filenanthrene	0017	_ ;	0.88.0	EE (28:0	-	(49.0)[1]	2	₿	(62.0) [E]	Q.	5	0'19)) [E]
rhenoi	Q ;	₿,	280)[I]	2	3	(49.0	Ξ	QN N	Ħ	(62.0	(13	Ð	Ħ	0'29)	(E)
Pyrene	13000	_	230	<u>[4]</u>	8	-	(49.0	(II)	£	m	(62.0) [i]	2	5	0'29)	Ξ(
bis(2-Chloroethoxy)methane	2	5	. 58.0	[1](2	5	(49.0)[1]	Ð	5	(62.0) [E]	æ	5	0'29)) E
bis(2-Chloroethyl)ether	£	5	(58.0) [E]	S	5	(49.0)[1]	æ	5	(62.0)[1]	æ	Ħ	0'29)	Ξ
bis(2-Ethylhexyl)phthalate	210	-	(58.0	<u>=</u>	g	3	(49.0	(1)	270	-	(62.0)[1]	Ð	5	0.79	Ξ(
di-n-Butylphthalate	961	_	(58.0	<u>[E]</u> (160	-	(49.0)[1]	윷	_	(62.0	(1)	QX	₽	0.79	Ξ
di-n-Octylphthalate	2	₿	(58.0	(11)	ND	ħ	(49.0)[1]	S	5	(62.0)[1]	QN	n	0'.29)	ΞΞ

0 = Detection Limit [] = Dilution Factor

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Location Id	,								
							Sample 1d	_								
							Log Date	a								
						Beg. De	Beg. Depth - End Depth (in.)	oth (in.)								
			TRND				TRND				TRND				TRND	
		NA-1	TRND-SO01 NA-TRND-SO01-01 15-MAR-98	Ħ		NA-	TRND-SO01 NA-TRND-SO01-02 15-MAR-98	5 5		NA-	TRND-SO02 NA-TRND-SO02-01 15-MAR-98	10		T NA-T	TRND-SO02 NA-TRND-SO02-02 15-MAR-98	2
Parameter			0-3				3-12				0-3				3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cent. (ug/kg)	mpounds, co	ont. (v	g/kg)													
o-Cresol	Q.	m	(58.0)[1]	QN	n	(49.0)[1]	QN	n	(62.0)[<u>i</u>]	<u>N</u>	Ħ	0'19))[1]
p-Cresol	ND QN	5	(58.0)[1]	ND	n	(49.0)[1]	Q.	ī	(62.0	[1]	QN	'n	0.79)	(11)
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	919		0020	[1]	95.3		0.300	[1](1320		0.200	(11)	253		0300)[1]
1,2,3,4,6,7,8,9-OCDF	217		0200)[I]	8.10	B	0.200)[1]	352		0.200)[1]	27.5		0.300)[1]
1,2,3,4,6,7,8-HpCDD	149		0.200)[1]	8.30		0.200)[1]	324		0.700)[I]	33.5		0300)[1]
1,2,3,4,6,7,8-HpCDF	141		001.0) <u>[1]</u>	06:9	щ	0.200	[<u>1]</u>	314		0700	[1]	26.6		0.200)[1]
1,2,3,4,7,8,9-HpCDF	33.9		0.200	[1]	1.80	æ	0.200)[1]	64.1		0.200)[i]	4.40	_	00:300	[1]
1,2,3,4,7,8-HxCDD	11.9		0.200)[1]	0.500	_	0300) <u>[</u> []	19.2		0.200	[1]	1.30	'n	0.300)[1]
1,2,3,4,7,8-HxCDF	82.4	_	00100)[1]	3.90	B	0.200)[E]	139	-	0.200)[1]	9.00	-	0.200	<u>(II)</u>
1,2,3,6,7,8-HxCDD	16.4		0.200	Ξí	0.940	-	0.200	(3)	30.9		0.200)[1]	3.10	-	0300)[1]
1,2,3,6,7,8-HxCDF	26.9		00.100) <u>[</u>]	1.20	æ	0.200	<u>(E)</u>	51.5		0.100)[1]	3.50	ъ.,	0700) [1]
1,2,3,7,8,9-HxCDD	28.3	-	0.200	[]	3.20	-	0.200)[1]	46.2	-	0.200	[E]	9.40		0.300)[1]
1,2,3,7,8,9-HxCDF	09.9	_	0200	<u>(II)</u>	0.500	-	0.200)[H]	11.7	-	0.200)[1]	0.900	_	0300	(1)
1,2,3,7,8-PeCDD	7.20		00.100	<u>[E]</u> (0.720	-	0.200	<u>[]</u>	11.8		0.200	Ξ	1.90	_	0700	<u> </u>
1,2,3,7,8-PeCDF	26.6		0060:0)	[1]	1.50	-	0.200	[1]	252		0.100	<u>(E)</u>	1.60	_	0.200) <u>[1]</u>
2,3,4,6,7,8-HxCDF	54.8	_	0.100	<u>[1]</u> (2.40	-	0.200)[<u>1</u>]	120		0.200	[1]	8.90		00:300	[1]
2,3,4,7,8-PeCDF	23.7		0060'0)	[1]	1.40	-	0.200	(1)	38.2		0.100) [<u>1</u>]	2.60	-	0.200	(11)
2,3,7,8-TCDD	1.30		0060'0)	[1]	Ð		0.200)[1]	1.80		0.100) [<u>1</u>]	0.340	_	0.200	[1]
2,3,7,8-TCDF	17.4		009'0)	(1]	1.00	-	0.800	(13	12.6		0.500	[1]	1.10		00.700)[<u>ii]</u>
Total HpCDD	300		0.200) <u>[</u>	16.7		0.200	(1)	5 94		0.200	<u>(E</u>	629		0300	Ξ
Total HpCDF	254		0.200	(11)	12.7		0.200	(1)	296		0.200	(11)	56.2		0.200	(1)

Table i
Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

Parameter		NA.	TRND TRND-SO01 NA-TRND-SO01-01 15-MAR-98 0-3	1-0-		Site Id Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.) TRND TRND-SO01 NA-TRND-SO01-02 15-MAR-98 3-12	1 Id Id sate Septh (in.) 11 11 11		TRND TRND-S002 NA-TRND-S002-01 15-MAR-98 0-3	2-01		TRND TRND-SO02 NA-TRND-SO02-02 15-MAR-98 3-12	2
SW8290 - Dioxins, cont. (ppt)													
Total HxCDD	262		0.200	(1)	16.1	(0.200	III	42.7	00000	187	7	0000	5
Total HxCDF	33		0.100	Ξ(15.4	(0200	Ξ	i %	0000	3 5	t:77	0.300	Ξ,
Total PeCDD	146		0.100	Ξ	5.90	(0.200		204	0020	ΞΞ	t, t	0000	Ξ,
Total PeCDF	278		006000)	Ξ(14.8	(0.200	ΞΞ	437	0.100		300	0.50	Ξ,
Total TCDD	131		006000	(E)	7.30	0.200	E (105	0010	3 5	6.76	0000	Ξ
Total TCDF	242		0.0600	(11)	11.6	(0.100	Ξ(260	0.0800	ΞΞ	17.0	(0.100	ΞΞ
TOC (mg/kg) Total Organic Carbon	00966	×	(3340	(1)	NA			NA			NA		

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						seg. Del	Site Id Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.)	d d e e pth (in.)						
Parameter		TT NA-TI 15	TRND TRND-SO03 NA-TRND-SO03-01 15-MAR-98 0-3	**		NA-	TRND TRND-S003 NA-TRND-S003-02 15-MAR-98	20		TRND TRND-S004 NA-TRND-S004-31 10-MAR-98	જ	ZAZ	TRND TRND-SO04 NA-TRND-SO04-11 Dup of NA-TRND-SO04-31 10-MAR-98 0-3	up of
OLM03.2 - Pesticides and PCBs (ug/kg) 4,4'-DDD 4,4'-DDE 6.	kg) ND 6.50		(0.240	E (3.90		0.270 (0.270)	<u> </u>	ON 057	(3.00	E) (ON 750	(0310	[1](
4,4'-DDT Aldrin Araclar-1016	0 Z Z	-	(0.240 (0.240 (0.240	· E (ON ON ON	-	(0.270 (0.270 (0.270		₽ 6 8	0300	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	₂ 2 2	(3.10 (0.310 (0.310	
Aroclor-1221 Aroclor-1242			0.240				(0.270 (0.270 (0.270		5 5 S	(0.300		2 2 2	(0.310 (0.310 (0.310	
Aroclor-1248 Aroclor-1254 Aroclor-1260	2 2 2	, , , ,	(0.240 (0.240 (0.240		999		(0.270 (0.270 (0.270		999	(0300		2 2 2 2	(0.310 (0.310 (0.310	
Dieldrin Endosulfan I	8 8 8		(0.240		9 9 9		(0.270		ON ON S	0.300		225	(0.310	
Endosulfan sulfate Endosulfan sulfate Endrin	2 2 2		(0.240		2 2 2		(0.270			0.300		<u> </u>	(0.310	
Endrin aldehyde Endrin ketone Heptachlor	2 2 2		(0240 (0240 (0240		2 2 2		(0.270 (0.270 (0.270	E (E (E (2 2 2	(0.300		<u> </u>	(0.310 (0.310 (0.310	
Heptachlor epoxide Methoxychlor Toxaphene alpha-BHC	8888	В	(0240 (0240 (0240 (0240		0 0 0 0 0 0 0 0	5	(0.270 (0.270 (0.270 (0.270		O	(0.300 (0.300 (0.300 (0.300		0 0 0 0 0 0 0 0	(0310 (0310 (0310 (0310	

							Site Id								Ī
							Location Id	72							
							Sample Id	i ne							
							Log Date	بو							
					-	Beg. Dep	Beg. Depth - End Depth (in.)	pth (in.)							
		•	TRND				TRND			TRND			TRND		
		T	TRND-SO03			T	TRND-SO03			TRND-SO04	•		TRND-S004	_	
		NA-TF	NA-TRND-S003-01	-01		L-AN	NA-TRND-S003-02	-02		NA-TRND-S004-31	4-31	NA-	NA-TRND-SO04-11 Dup of NA-TRND-SO04-31	Dup of	
		15-	15-MAR-98			ä	15-MAR-98			10-MAR-98			10-MAR-98	į.	
Parameter			0-3				3-12			0-3			0-3		
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)														1
alpha-Chlordane	Q.	Ų	0.240	[1]	Ø	_	0.220)[1]	QN	0.300)[1]	QZ QZ	(0.310) []]	
beta-BHC	QN Q	J	0.240	(1)	QN O	_	0.220)[1]	Š	0.300	ΞC	Q	(0.310	Ξ	
delta-BHC	Q	J	0.240	[1]	ON.	-	0.270)[I]	QN Q	0300	[1](QN	(0.310	E (
gamma-BHC(Lindane)	Ð	J	0.240	([]	Q	-	0.270)EI)	S	0.300	[1](QX	(0.310	Ξ	
gamma-Chlordane	Q	<u> </u>	0.240)[1]	QN Q	_	0270	[1]	Æ	0300	[1]	ND ND	0.310	(1)	
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	n) spumod	ıg/kg)													
1,2,4-Trichlorobenzene	Q.	m	48.0	[1]	ND	5	54.0	(1)	Q.	(61.0	(11)	QN QN	(62.0)[1]	
1,2-Dichlorobenzene	QN	n	48.0)[1]	Ð	n	(54.0)[1]	Q	(61.0)[1]	QX	(62.0	(E) (
1,3-Dichlorobenzene	S S) B	48.0	[1]	Ð	5	54.0)[I]	Q	0'19)	([]	QN.	(62.0	Ξ	
1,4-Dichlorobenzene	£) Fi	48.0	(1)	Ð	5	54.0	[]	ND	0.19))[1]	QN	0.29	<u>[i]</u> (
2,2'-oxybis(1-chloropropane)	욷	∵ 3	48.0	[][£	5	54.0	(E)	ð	(61.0	<u>(E</u>	Q	(62.0)[1]	
2,4,5-Trichlorophenol	2 !) B :	48.0	<u>(1)</u>	2	5	. 54.0	<u>(</u>	Q.	(61.0)[I]	QN	(62.0) [1]	
2,4,6-Trichlorophenol	2 9) B:	48.0	Ξ.	2	5	54.0	E :	Š	(61.0	(1)	Q.	0.29) [E]	
2,4-Dichlorophenol	2 !) 3	0.8	[1]	2	3	. 54 .0	(E)	Q N	(61.0	(H)	Q.	(62.0	<u>=</u>	
2,4-Dimethylphenol		> 5	0.8	[<u>[</u>]	2	5	54.0)(1)	Ŕ	019))[1]	QN	(62.0	<u>(E</u>	
2,4-Dinitrophenol) B	48:0	<u>=</u>	£	5	54.0)[1]	Q	(61.0	(1)	N Q	(62.0	(E)	
2,4-Dinitrotoluene		J	48.0)[1]	Ð	5	54.0)[1]	ND	019))[1]	QN ON	(62.0)[1]	
2,6-Dinitrotoluene		_	48.0)[1]	Ð	B	54.0)[1]	Q	0'19))[1]	Ð	(62.0) [E]	
2-Chloronaphthalene)	48.0)[1]	Ð	5	\$4.0) [I]	N	0.19)[1]	Q.	(62.0) [I]	
2-Chlorophenol		Ų	48.0)[1]	£	'n	54.0)[1]	ND	(61.0)[1]	S	(62.0) [E]	
2-Methylnaphthalene		<u> </u>	48.0)[]]	g	5	54.0	Œ	QN	(61.0)[1]	Q	(62.0	<u>(</u>	
2-Nitroaniline	Ð) B	48.0	[1]	2	5	54.0	[1]	<u>R</u>	(61.0	(11)	8	(62.0	(1)	

Compiled: 07/01

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id							
							Location 1d							
							Sample Id	9 4						
					_	3eg. Del	Log Date Beg. Depth - End Depth (in.)	rte spth (in.)						
			É							į			į	
			TENTO COOS				LKIND TDND 6069	ن <i>د</i>		TKNI	-		TRND	
		Ä	NA-TRND-SO03-01	. 1 9		NA-	NA-TRND-S003-62	1-02		1 KND-5004 NA-TRND-S004-31	131	NA-1	I KND-SOU4 NA-TRND-SO04-11 Dup of	o dno
		٠	1			,							NA-TRND-S004-31	H31
Parameter			15-MAR-98 0-3			. 7	15-MAR-98 3-12			10-MAR-98 0-3			10-MAR-98 0-3	
OLWO3.2 - Semi-Valatile Organic Commounds, cont. (1997kg)	ompounds.	cont. (no/ko)											
2-Nitrophenol	£	Б	(48.0	(11)	ND	5	54.0	[][QN QN	0.19)[1]	QX	(62.0)[1]
3,3'-Dichlorobenzidine	Ð	n	(48.0	(11)	S	5	(54.0	<u>(I)</u>	ND	(61.0	EI(N ON	(62.0	Ξ
3-Nitroaniline	g	5	(48.0)[1]	Q.	n	(54.0)[1]	ND	0.19)) <u>[1]</u>	QN	(62.0	<u>=</u>
4,6-Dinitro-2-methylphenol	S	5	(48.0)[1]	Q	Б	(54.0	(1)	Q.	0.19)	(1)	QN	(62.0	(1)
4-Bromophenyl-phenylether	g	5	(48.0	(1)	Q	Б	(54.0	<u>[1]</u>	Ð	(61.0	(1)	ΩN	(62.0)[1]
4-Chloro-3-methylphenol	Q	5	(48.0)[1]	Q	Ħ	(54.0)[1]	N Q	019))[1]	ND	(62.0	[1]
4-Chloroaniline	g	5	(48.0) <u>[1]</u>	S	5	(54.0	(1]	ND	(61.0	(11)	QN QN	(62.0)[1]
4-Chlorophenyl-phenylether	£	5	(48.0)[1]	Q	3	(54.0	(1]	NO	(61.0	(1)	Ð	(62.0	(1)
4-Nitroanaline	S	n	(48.0)[1]	S	5	54.0	[1]	ON	(61.0	<u>[I]</u> (Q.	(62.0	(11)
4-Nitrophenol	S	n	(48.0)[1]	£	ñ	54.0)[1]	N Q	(61.0	[1](N Q	(62.0	(1)
Acenaphthene	Q	5	(48.0)[1]	S	5	(54.0	[1]	QN	(61.0	(11)	N Q	(62.0	(II)
Acenaphthylene	Ð	5	(48.0)[1]	S	5	(54.0	(1)	QN	(61.0	[1]	Q.	(62.0)[1]
Anthracene	Ð	n	(48.0)[1]	S	5	54.0)[1]	QN	(61.0	[][ND	(62.0)[1]
Benzo(a)anthracene	Q	5	(48.0)[1]	2	5	54.0)[1]	380	(61.0	[1]	180	(62.0	(11)
Benzo(a)pyrene	33.0	r	(13.0)[1]	Ð	5	(14.0)[1]	94	(61.0	[1](200	(62.0	(1)
Benzo(b)fluoranthene	Q	n	(48.0)[1]	9	Ħ	(54.0	(1]	750	(61.0	(11)	220	(62.0	[1]
Benzo(g,h,i)perylene	S	ā	(48.0	[1]	S	n	(54.0	<u>[]</u> (320	(61.0	[1](140	(62.0)[1]
Benzo(k)fluoranthene	9	5	(48.0	[1]	ND	m	54.0	(11)	S	(61.0	(1)	170	(62.0	(11
Butylbenzylphthalate	Q	5	(48.0	[1]	S	Ħ	(54.0	[1]	Q.	(61.0	<u>(11)</u>	Q	(62.0	[][
Carbazole	Q	5	(48.0)[1]	Ş	5	54.0	[<u>H</u>]	QN ON	(61.0	(11)	Q	(62.0	[1]
Chrysene	S	5	(48.0)[1]	Q	5	(54.0)[1]	380	(61.0	<u>(;</u>	180	(62.0	[1]
Dibenz(a,h)anthracene	Q	5	(48.0)[1]	Ω	5	(54.0)[<u>1</u>]	QN	(61.0	<u>;;</u>	Q	(62.0	[1](
Dibenzofuran	2	5	(48.0)[1]	QN	5	(54.0	<u>[1]</u>	Q	0.19)	[1]	Q	(62.0	[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id	3								
							Sample Id									
					•	Beg. De	Log Dave Beg. Depth - End Depth (in.)	ate lepth (in.)								
			TRND				TRND	•			TRND				TRND	
			TRND-SO03	13			TRND-SO03				TRND-SO04			• '	TRND-S004	
		NA.	NA-TRND-SO03-01	03-01		Ä	NA-TRND-SO03-02	3-02		NA-	NA-TRND-S004-31	Ę.	Z.	A-TRNI NA	NA-TRND-SO04-11 Dup of NA-TRND-SO04-31	up of -31
			15-MAR-98	~			15-MAR-98				10-MAR-98			_	10-MAR-98	
Parameter			0-3				3-12				63				0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont.	Compounds,	l	(ug/kg)													
Diethylphthalate	R	B	(48.0	[1](Q	5	54.0	(II)	8		(61.0	(1)	S		(62.0	[H] (
Dimethylphthalate	S	Ħ	(48.0	[1](Q	ħ	54.0	(1)	Ð		(61.0	[E] (Ŷ		(62.0	Ξ
Fluoranthene	R	Ħ	(48.0) EE (Ð	5	54.0	(11)	8		(61.0) <u>[1]</u>	961		0.29))[1]
Fluorene	Q	₽	(48.0	<u>E</u>)(Q	5	54.0	<u>(II)</u>	Ð		019)	Ξ(Q		(62.0)E
Hexachloro-1,3-butadiene	S	3	(48.0	[1](Q	5	54.0	<u>[i]</u> (Q		019))[i]	Q.		(62.0	[1](
Hexachlorobenzene	Q.	₽	(48.0	(1)	Ð	Ħ	54.0	<u>(E)</u>	Q		0.19))[1]	æ		(62.0)[I]
Hexachlorocyclopentadiene	S	5	(48.0)[]	S	Ħ	(54.0	(11)	Ø	ī	0.19)	(11)	Q	5	(62.0)[I]
Hexachloroethane	Q	5	(48.0)[1]	S	∄	(54.0	(11)	Ð		(61.0	[1]	Q		(62.0)[<u>H</u>
Indeno(1,2,3-cd)pyrene	<u>R</u>	5	(48.0	[1]	QN	Ħ	6 54.0	[1]	350		(61.0	[1](140		(62.0	E)(
Isophorone	Q	5	(48.0	(E)	2	Ħ	(54.0	[1]	S		(61.0	(11)	Ø		(62.0)[1]
N-Nitroso-di-n-propylamine	2	5	(48.0)[<u>[</u>]	2	Ħ	54.0)[1]	Q		(61.0)[1]	S		(62.0)[1]
N-Nitrosodiphenylamine	2 :	3	(48.0	<u>=</u>	Ð	3	54.0	<u>(</u>	9		(61.0) <u>[</u>	Ð		(62.0)[1]
Naphthalene	2 ;	3 :	(48.0	Ξ;	2 !	₿;	54.0	Ξ	2		(61.0	<u>(I)</u>	Ð		(62.0)[<u>H</u>]
Nitrobenzene	2 2	3 5	48.0		2 5	3 5	54.0	ΞΞ	9 9		(61.0	ΞΞ	2 9		62.0	Ξ
remachiolophicalor	3 5	3 5		Ξ	Ę	3 ;	2	Ξ	Ž į		0.10	(H)	ON ;		0.20	Ξį
rienanurene	2 9	3 :	46.0	Ξ	Đ,	3 :	⊋ 6 * 7 * 7	E :	0Z]		0.19	<u>=</u>	0.96		62.0	Ξ
Phenol	2	3	. 48.0)(II)	Q	5) 22 0.	(II)	2		(61.0	Ξ	2		(62.0	Œ
Pyrene	28.0	-	(48.0	(1)	Q	5	. 54.0) <u>[1]</u>	2		(61.0	Ξ	520		(62.0	Œ
bis(2-Chloroethoxy)methane	9	Ħ	(48.0)[1]	S	5	54.0)[1]	2		(61.0	<u>(</u>	Ð		(62.0) [E]
bis(2-Chloroethy1)ether	S	5	(48.0) [11]	2	5	54.0)[1]	2		(61.0	Ξ	S		(62.0) [II]
bis(2-Ethylhexyl)phthalate	230	-	(48.0	[E](Ð	5	54.0	[1](230	-	(61.0) [<u>1</u>]	2100	_	(62.0) E
di-n-Butylphthalate	<u>8</u>	-	(48.0)[1]	0.89	_	54.0	(11	150		(61.0	Ξ	99		(62.0) [E]
di-n-Octylphthalate	Q.	5	(48.0	(11)	ᢓ	5	54.0	(11)	S		019)	[1]	Ŕ		(62.0	ΞŒ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Beg. D	Site Id Location Id Sample Id Log Bate Beg. Depth - End Depth (in.)	ld id te epth (in.)								
		NA	TRND TRND-SO03 NA-TRND-SO03-01	5		ž	TRND TRND-SO03 NA-TRND-SO03-02	-02		ž	TRND TRND-SO04 NA-TRND-SO04-31	+31	Z	A-TRN	TRND TRND-S004 NA-TRND-S004-11 Dup of NA-TRND-S004-31	up of -31
Parameter			15-MAR-98 0-3				15-MAR-98 3-12				10-MAR-98 0-3				10-MAR-98 0-3	1
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ic Compounds,	cont.	(ug/kg)													
o-Cresol p-Cresol	2 2	5 5	(48.0 (48.0	ΞΞ	2 2	88	(54.0 (54.0	EE	2 2		(61.0 (61.0	ΞĘ	2 2		(62.0	E (
SW8290 - Dioxins (ppg)				Ę			})		}	E)	}			F
1,2,3,4,6,7,8,9-0CDD	1250		0.400)[1]	799		0.500	(1)	20040	-	(2.00)[[]	18700	-	0.800)[[]
1,2,3,4,6,7,8,9-OCDF	246		0.300	(1)	70.4		0.400	(1)	2360		(1.60	<u>(</u>	1900		009:0	ΞΞ
1,2,3,4,6,7,8-HpCDD	304		(0.300	(1]	92.9		0300	(11)	4290	-	(1.50	(11)	4390	-	009'0)	[1]
1,2,3,4,6,7,8-HpCDF	256		0.700	(1)	42.0		0.200	(1)	2150	-	007)[[]	1820		0.400	(1)
1,2,3,4,7,8,9-HpCDF	39.6		0.700)[1]	5.20		0.200	(1)	300		(1.40	(11)	253		009:0	[1]
1,2,3,4,7,8-HxCDD	20.7	-	0.300) [<u>1</u>]	2.00	-	0.200	(1)	7	-	(1.40	(1)	127	۳,	009'0)	[1]
1,2,3,4,7,8-HxCDF	<u>2</u>	-	0.200	ΞΞ	13.2		0.200	<u> </u>	767	-	0.800	<u>(1)</u>	929	-	0.300	[1]
1,2,3,6,7,8-HXCDD	30.4 37.8		0070	Ē	97.4 00. c	-, <i>-</i> -	0.200		85 £		(130		331		0.500	ΞΞ
1,2,3,7,8,9-HxCDD	47.2		(0.200	ΞΞ	7.90	•	(0.200	ΞΞ	A72	,	(1.30	E (E)	94 93	-	0.500	ΞΞ
1,2,3,7,8,9-HxCDF	6.40	-	0.200	[[]	1.10	-	0.200	(1)	40.3	-	(1.10	(11)	33.8	-	(0.400	Ξ
1,2,3,7,8-PeCDD	10.0		0.200	(1)	1.80	_	0.100	(11)	108		00600))[1]	8:66		0.400)[<u>1</u>]
1,2,3,7,8-PeCDF	18.7		0.100	[1]	2.60	-	0.100	<u>=</u>	169		00900))[1]	152		0.300	[E](
2,3,4,6,7,8-HxCDF	75.4		0.700)[1]	9.60		0.200	(1)	295		(1.00) [<u>1</u>]	474		0.400)[1]
2,3,4,7,8-PeCDF	36.0		0.100)[1]	4.00	-	0.100	(1]	302		00200	(11)	797		0.300	[1]
2,3,7,8-TCDD	1.50		006000)[1]	0.360	-	0.100)[1]	23.5		00900)	(11)	20.1		00:00)[1]
2,3,7,8-TCDF	00.6		(1.00	[1]	1.50		00.200)[1]	155		(1.90	<u>(II)</u>	147		006:0)[<u>1</u>]
Total HpCDD	287		0.300	[1]	170		0300	[1]	8360	-	(1.50	(1)	8230	-	009:0	<u>[</u>](
Total HpCDF	445		0.200) <u>[]</u>	95.5		0.200)[1]	4480	-	(120)[1]	3720		0.500	[1](

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					EI off								
					Sue ru Lecation Id	_ E4							
					Sample Id	PI							
					Log Date	ate							
				6	Beg. Depth - End Depth (in.)	epth (in.)							
		TRND			TRND			TRND	•		ſ	TRND	
		TRND-SO03			TRND-SO03	3		TRND-SO64	.064 200		E	TRND-SO04	
		NA-TRND-SO03-01	-01		NA-TRND-SO03-02	3-02		NA-TRND-S004-31	3004-31	Z	NA-TRND-SO64-11 Dup of	3004-11 D	np of
		15-MAR-98			15-MAR-98			10-MAR-98	86 -3		NA-1 K 10-	10-MAR-98	5
Parameter		0-3			3-12			2				0-3	
SW8290 - Dioxins, cont. (ppt)													
Total HxCDD	450	0.200	<u>(</u>	54.4	0.200)[1]	4260	(1.30		3750	Ų	0.500)[]
Total HxCDF	476	0.200	<u>(II)</u>	75.1	0.200	(1)	4020	0.900		3180	<u> </u>	0.400	<u>(H</u>
Total PeCDD	202	0.200	(1)	23.0	0.100	[1](1900	0060))[1]	1500	J	0.400)[1]
Total PeCDF	423	(0.100	<u>(II)</u>	207	(0.100)[1]	3500	0.700		2940	J	0300)(E)
Total TCDD	118	0060'0)	<u>(</u>	19.3	0.100)[1]	1220	0900		166	<u> </u>	0300)[]
Total TCDF	263	0090:0	<u>[1]</u> (36.9	00/000	(11)	3330	J (0.500		3090	í	0.200)[1]

Compiled: 07/01

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	TRND	TRND-SO07	NA-TRND-S007-01	10-MAR-98	0-3			
	TRND	TRND-SO06	NA-TRND-SO06-01	15-MAR-98	0-3	or or or or or or or or or or or or or o		
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TRND	TRND-SO05	NA-TRND-S005-01	10-MAR-98	0-3			
	TRND	TRND-SO04	NA-TRND-S004-02	10-MAR-98	3-12			
					Parameter			

OLM03.2 - Pesticides and PCBs (ug/kg)	g/kg)											
4,4'-DDD	QN	0.230)[1]	Q	0.300)[1]	QN	(0.250) [E]	QN	0.300) [E]
4,4'-DDE	220	0.230	(5)	19.0	0.300)[1]	2	(0.250	[1](QN	0.300	(E)
4,4'-DDT	320	0.230	[5]	11.0	0.300)[1]	9	(0.250)[1]	Q.	0.300)[<u>H</u>]
Aldrin	Q	0.230)[1]	N Q	0.300)[1]	Q	(0.250)[1]	Q	00:00)[<u>E]</u> (
Aroclor-1016	QN	0.230) [E]	N Q	0.300	[1](Q	(0.250)[1]	Q.	0.300)[1]
Aroclor-1221	ND	0.230)[<u>1</u>]	S.	006.0)[1]	QN	(0250)[1]	Q.	(0.300)[1]
Aroclor-1232	QN	0.230)[E]	Q	0000)[1]	QN	(0250	(1)	ND	0.300)[1]
Aroclor-1242	N Q	0.230	<u>[i]</u> (NO.	0.300)[1]	Q	(0.250)[1]	ND	0.300	(11)
Aroclor-1248	QN	0.230	<u>[1]</u> (ND	0.300)[1]	QN	(0.250)[1]	Q.	(0.300)[1]
Aroclor-1254	QN	0.230	[1]	ND	0.300)[1]	Q	(0.250	(1)	N Q	0.300) [E]
Aroclor-1260	QN	0.230	<u>(E)</u>	ND	005.0)[1]	Q.	(0.250	(11)	ND	0300)[1]
Dieldrin	QN	0.230	<u>[1]</u>	ND	0.300)[1]	Q	(0.250)[1]	Q.	0300	<u>[II]</u>
Endosulfan I	ND	(0.230	<u>(E</u>	QN	0.300)[1]	Q	(0.250)[1]	N N	0.300	[I](
Endosulfan II	ND	0.230)[<u>1</u>]	NO	0.300)[1]	Q	(0.250)[1]	Q	0.300) [<u>11</u>]
Endosulfan sulfate	ND	(0.230	<u>[i]</u> (ND	(0.300)[1]	Q.	(0.250)[1]	ND	00:00)[1]
Endrin	NO ON	0.230	(E)	ND	0.300)(1)	Q	(0.250)[1]	Q.	0300)[1]
Endrin aldehyde	ND Q	0.230) <u>[</u>	Q	(0.300)[1]	Q	(0.250) [I]	S	0.300	<u>(II)</u>
Endrin ketone	ND Q	0.230	(1)	ND	0.300)[1]	Ð	(0.250)[1]	ND	0.300	(11)
Heptachlor	ND	0.230	<u>(II</u>	Q.	0.300	(11)	S	(0250) [I]	ND	0.300)[1]
Heptachlor epoxide	ND	0.230	(1)	ND	008'0) [1]	R	(0.250)[1]	ND	00300	<u>;</u>
Methoxychlor	ND	0.230	<u>(II)</u>	N Q	0.300)[1]	Q.	UJ (0.250)[1]	N N	0.300)[[]
Toxaphene	QN	0.230	<u>(II)</u>	Q	0.300)[1]	Q	(0.250)[1]	Q	0.300)[[]
alpha-BHC	ND	0.230	(11)	ΩN	0.300)[1]	S	(0.250)[1]	ND	0.300	(E)

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				LI AND	-							
				anc	=							
				Location Id	ı Id							
				Sample Id	b Id							
				Log Date	Jate							
			_	Beg. Depth - End Depth (in.)	Depth (in.)							
	TRND	۵		TRND				TRND			TRND	
	TRND-SO04	SO04		TRND-S005	92			TRND-SO06			TRND-SO07	
	NA-TRND-S004-02	SO04-02		NA-TRND-S065-01	05-01		Ņ	NA-TRND-S006-01	.		NA-TRND-SO07-01	Ŧ
	10-MAR-98	R-98		10-MAR-98	•			15-MAR-98			10-MAR-98	
Parameter	3-12			0-3				0-3			ф3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)											
alpha-Chlordane	ND (0.230	0)[1]	QN	00:300)[1]	Ø		0.250	(11)	QN	0300	(1)
beta-BHC	ND (0.230	[1](0	QN QN	00300)[1]	Ð		0220)[1]	QN	0300	(E) (
delta-BHC	ND (0.230	0)[1]	QN	00300)(1)	R		(0250)[1]	Ą	0300	(E) (
gamma-BHC(Lindane)	ND (0.230	0)[1]	QN	0.300) [E]	Ð		(0.250)[1]	QN QN	0300	(E)
gamma-Chlordane	ND (0.230	0)[1]	QN	(0.300	(1)	Ŷ		0.250)[1]	S	00:00	<u>(II)</u>
M.MO3.2 - Semi-Volatile Organic Compounds (ug/kg)	pounds (ug/kg)											
1,2,4-Trichlorobenzene	ND (46.0	[H]	QN N	0.09)	(1)	QN	5	0.15)	(11	QN	0.09))[1]
1,2-Dichlorobenzene	ND (46.0	[<u>H</u>](QN QN	0'09))[1]	Q	Ħ	(51.0)[1]	QN	0.09))[1]
1,3-Dichlorobenzene	ND (46.0		Q.	0'09))[1]	Q	Ħ	(51.0)[1]	Q.	0.09)	(E)
1,4-Dichlorobenzene	<u> </u>		Q.	0.09)	(1)	S	Ħ	(51.0)[1]	Ð	0'09)	(E) (
2,2'-oxybis(1-chloropropane)	J		Q.	0'09))[1]	Q	5	(51.0)[1]	Q.	0'09)	(1)
2,4,5-Trichlorophenol	<u> </u>		Q	0'09))[1]	Ð	5	(51.0)[1]	Q.	0.00)	(1)
2,4,6-Trichlorophenol	_		QN	0.09)[1]	QN	5	(51.0)[1]	N Q	0.09)) <u>H</u>
2,4-Dichlorophenol	_		Q.	0.09))[1]	Q	n	(51.0)[1]	QN QN	0.00)	<u>[I]</u> (
2,4-Dimethylphenol	_		Q.	0.09)[1]	Q	3	(51.0)[1]	Q.	0.00)	<u>[I]</u> (
2,4-Dinitrophenol	<u> </u>		2	0.00)) [I]	Ð	5	(51.0) [I]	QN QN	0.09)	<u>[i]</u> (
2,4-Dinitrotoluene	Ų		Q.	0.09)(E)	Ð	S	(51.0)[1]	QN N	0.00)	<u>(I</u>
2,6-Dinitrotofuene	<u> </u>		QN	0:09)	(11)	Ð	3	(51.0)[1]	Q.	0.00)	<u>[i]</u> (
2-Chloronaphthalene	ND (46.0		QN QN	0.09)	(1)	Ð	3	(51.0)[1]	QN QN	0.09)	(E) (
2-Chlorophenol	Ŭ		ΩN	0.09)) [1]	Q	5	(51.0)[1]	Ð	0.09))[1]
2-Methylnaphthalene	ND (46.0	Ξ(æ	0.09	(1)	N Q	∄	(51.0)[1]	QN	0'09)	(11)
2-Nitroaniline	ND (46.0	<u>[1]</u> (Q.	0.00)[1]	QN	5	015))[1]	Ð	0'09)	(1)

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Beg	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ste epth (in.)							
Parameter	2	TRND TRND-SO04 NA-TRND-SO04-02 16-MAR-98 3-12	1 4-02		TRND TRND-SO05 NA-TRND-SO05-01 10-MAR-98 0-3	S-01		NA.	TRND TRND-SO06 NA-TRND-SO06-01 15-MAR-98 0-3	~	Z	TRND TRND-SO07 NA-TRND-SO07-01 10-MAR-98 0-3	5
OIMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, cont	; (ug/kg)											
2-Nitrophenol	QN.	(46.0	(1)	ND	0.09)	[1](QN	n	(51.0)[1]	Q.	0.09))[1]
3,3'-Dichlorobenzidine	NO ON	(46.0	[1]	ΩN	0.09)	(11)	S	Ħ	(51.0)[1]	ΩN	0.09	<u>(1)</u>
3-Nitroaniline	QN	(46.0)[1]	ΩN	0.09	(11)	R	'n	(51.0)[t]	ND Q	0.09))[1]
4,6-Dinitro-2-methylphenol	ND	(46.0)[1]	QN	0'09)	[][Ð	'n	(51.0)[1]	NO ON	0.09))[I]
4-Bromophenyl-phenylether	Q.	(46.0)[1]	QN	0'09)	[][R	5	(51.0)[1]	QN	0.09)) [I]
4-Chloro-3-methylphenol	N Q	(46.0)[1]	ND	0'09)	<u>(</u>	Ð	5	(51.0)[1]	ΔN	0.09)) [I]
4-Chloroaniline	ND	(46.0)[1]	QN	0'09)	[1](g	Ħ	(51.0	(11)	ΩN	0.09) <u>[</u>
4-Chlorophenyl-phenylether	ND	(46.0)[1]	QN ON	0.09)	<u>E</u>)(2	n	(51.0)[1]	Q.	0.00))[II]
4-Nitroanaline	Q	(46.0)[1]	QN	0.09)	(1)	Q.	∄	(51.0)[1]	QN	0:09)	Ξ
4-Nitrophenol	N Q	(46.0	(1)	ND	0.00))[1]	<u>R</u>	∄	(51.0)[1]	QN Q	0'09)	Ξ(
Acenaphthene	ND	(46.0	[1](ND	0.09)	[1](Ð	Ħ	(51.0)[1]	ND	0:09))[1]
Acenaphthylene	ND	(46.0)[1]	ND	0.09)	[1](Ð	5	(51.0)[1]	N Q	0.09)) <u>[</u>
Anthracene	ND Q	(46.0	[1]	ΩN	0.00	[1](QN	B	(51.0)[1]	QN	0.09)	<u>(E)</u>
Benzo(a)anthracene	110	(46.0	[1]	130	0.09)	[1]	Q	5	(51.0)[1]	Q	0:09	<u>(</u>
Benzo(a)pyrene	160	(46.0) <u>[1]</u>	100	0:09))[1]	35.0	'n	(13.0) [I]	Q Q	0.09))[[]
Benzo(b)fluoranthene	220	(46.0	(1)	110	0.09)	[1]	Ð	Ħ	(51.0	(1)	Q.	0.09)	<u>[1]</u>
Benzo(g,h,i)perylene	120	(46.0)[1]	QN QN	0.09))[1]	53.0	-	0.18))[1]	QN Q	0.00)	Ξ
Benzo(k)fluoranthene	0.79	(46.0)[1]	Q.	0.09))[1]	Q	3	(51.0	(1)	ND	0:09)	(1)
Butylbenzyłphthalate	ND	(46.0)[1]	71.0	0'09)	[1]	Ð	5	0.13	EE (Q	0.09	<u> </u>
Carbazole	QN QN	(46.0)[1]	QN	0.09)[1]	QN	5	0.15))[1]	Q.	0:09))[I]
Chrysene	110	(46.0) [1]	120	0'09)	[1]	51.0	- ,	(51.0)[1]	S	0:09)	<u>[1]</u>
Dibenz(a,h)andracene	QN	(46.0)[1]	ΩN	0.00))[1]	Ω	5	(51.0)[1]	Q.	0:09)	<u>[i]</u>
Dibenzofuran	QN QN	(46.0) [1]	QN QN	0:09))[1]	2	Ħ	(51.0	[:]	Ð	0.09	[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

						11 000									
						Location Id	74								
						Sample Id									
						Log Date	e								
					Beg. Dept	Beg. Depth - End Depth (in.)	xth (in.)								
		TRND				TRND				TRND				TRND	
	C	TRND-SO04 NA-TRND-SO04-02	04 04-02		EF-AN	TRND-SO05 NA-TRND-SO05-01	5		Z	TRND-SO06	ξ		;	TRND-SO07	į
		10-MAR-98			2	10-MAR-98	;			15-MAR-98	Į.		Š	NA-TRND-SOU7-01 10-MAR-98	Ş
Parameter		3-12				0-3				£				0-3	
												<u> </u>			
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	c Compounds, cont	: (ug/kg)													
Diethylphthalate	N Q	(46.0	[1](Ð	Ų	0.09)[1]	Q.	5	(51.0)[[]	Ş		009	E C
Dimethylphthalate	Q	(46.0	[E](ND	_	0.09	[1]	Ð	3	(51.0	ΞΞ	2		000	Ξ,
Fluoranthene	64.0	(46.0)[1]	130)	0.09	<u>(I)</u>	58.0	_	(51.0	ΞΞ	2		009	Ξ
Fluorene	QN Q	(46.0	(1)	QN)	0.09	(1)	S	n	(51.0	ΞΞ	2		000	ΞΞ
Hexachloro-1,3-butadiene	QN	(46.0)[1]	Q	_	0.09	(E)	Q	3	(51.0	E (2			ΞΞ
Hexachlorobenzene	N Q	(46.0)[1]	QN	_	0.09	[1](Q.	Ħ	(51.0	Ξ	2		009	ΞΞ
Hexachlorocyclopentadiene	2	(46.0)[1]	Q	ín	0.09)[1]	Q	B	(51.0	Ξ	Q	5	009	ΞΞ
Hexachloroethane	S	(46.0) <u>[1]</u>	2)	0.09	(11)	Ð	n	(51.0	(E)	R		0.09	Ξ(
Indeno(1,2,3-cd)pyrene	120	(46.0	(11)	2	Ŭ	0.09	<u>[i]</u>	N N	'n	0.15)	[H]	2		0.09	ΞΞ
Isophorone	Q	(46.0)[1]	Q	_	0.09	[1]	Q	B	(51.0	(E)	N		009)	Ξ
N-Nitroso-di-n-propylamine	Q.	(46.0	(1)	Ð		0.09)[1]	Ω	₿	6.51.0	(11)	Q		0.09	ΞΞ
N-Nitrosodiphenylamine	Q !	(46.0	<u> </u>	2	<u> </u>	0.00	<u>[I]</u>	Q	B	015)	E)(N Q		0.09)	<u>(</u>
Naphunalene	2 9	46.0	E :	2	_	0.09	[1]	S	5	(51.0	[1]	Q.		0.00)	Œ
Nitrobelizene	S S	0.04	Ξ,	2 9	<u> </u>	0.09	Ξ	Ð	3	(51.0)[<u>i</u>]	Q.		0'09)	<u>[1]</u>
remachiolognicalor	2 1	0.04	E :	Q ;	_	0.09) <u>(E)</u>	Ð	∄	(51.0	[1]	Ð		0.09)	<u>[1]</u> (
Phenanurene m	2 !	(46.0	E :	210	_	0.09	<u>[]</u>	g	5	(51.0)[1]	Ð		0.00)[II]
Frenoi	_	(46.0)[1]	Q	_	0.09	<u>=</u>	S	'n	0.13)	(1)	QN		0.00)	111
Pyrene	71.0 J	(46.0	(E)	330	<u> </u>	0.09	<u>=</u>	76.0	۳,	(51.0) [I]	Ð		0:09)[](
bis(2-Chloroethoxy)methane	Q.	(46.0) [E]	S	<u> </u>	0.09	<u>(E</u>	Ð	m	(51.0	(E) (2		000	Ξ
bis(2-Chloroethyl)ether	QN Q	(46.0)[1]	2)	0.00	[1]	S	B	(51.0	[1](8		009	Ξ
bis(2-Ethylhexyl)phthalate	Q	(46.0) [1]	380) [0.09	<u>[i]</u>	370	-	(51.0	Ξ	081	-	000	
di-n-Butylphthalate	Q.	(46.0	(11)	220	<u> </u>	0.00	[1]	200	ī	(51.0	Ξ	0.86		909	E
di-n-Octylphthalate	ΩN	(46.0	(11)	Ð	_	0:09	[E](Ð	'n	015)) E	£		009	3 5
										,				222	(E)

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

						Beg. D	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ld ld ite epth (in.)								
		Ż	TRND TRND-SO04 NA-TRND-SO04-02 10-MAR-98	-03		N.	TRND-S005 TRND-S005 NA-TRND-S005-01	. 10-5		ž	TRND TRND-SO06 NA-TRND-SO06-01 15-MAR-98	10-		L-AN	TRND TRND-SO07 NA-TRND-SO07-01 10-MAR-98	10
Parameter			3-12				0.3				0-3				6-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds,	cont.	(ug/kg)													
o-Cresol	Q		(46.0	(11)	Q		0.09)	[1]	QN	Ħ	(51.0	(1)	QN		0:09)	[1]
p-Cresol	Ð		(46.0) <u>[I]</u>	9		0.09)	[1]	QN Q	Ħ	(51.0)[1]	ND		0.09)	(11)
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	2800	-	0060))[1]	2970		9'91))[1]	2520		0.500)[1]	1050		(1.40)[1]
1,2,3,4,6,7,8,9-OCDF	334		0.800	<u>[I]</u> (1030		(13.4)[E]	3960		0.400	(1)	475		(120	(11)
1,2,3,4,6,7,8-HpCDD	766		002:0	(11)	21.5		0.10	[1]	586		0.400)[1]	300		0.800)[1]
1,2,3,4,6,7,8-HpCDF	291		0.400	<u>[i]</u> (938		(5.00	[1]	2740	-	0.200)[1]	329		0.500)[1]
1,2,3,4,7,8,9-HpCDF	21.4		0.600)[1]	140		(6.50	[<u>-</u>](857		0.300)[1]	84.8		00200)[<u>H</u>
1,2,3,4,7,8-HxCDD	21.3	-	0.500	(11)	66.2		09'8)) [<u>1</u>]	92.3		0.400)[1]	19.0	_	00.700)[<u>H</u>
1,2,3,4,7,8-HxCDF	75.1	-	0.300	[1]	439	-	(4.70)[<u>1</u>]	1600	-	0300)[1]	173	•	0.400	Ξ(
1,2,3,6,7,8-HxCDD	65.5		0.500)[1]	108		0.20)[<u>1</u>]	125		0300)[1]	35.2		0.0900)[1]
1,2,3,6,7,8-HxCDF	29.7		0.300)[1]	163		3.80	[1]	424		0.200	(1)	65.7		0.400) [I]
1,2,3,7,8,9-HxCDD	78.4	-	0.500)[i]	141	-	(7.00	E](176	-	0300	(11)	53.0	_	00900)[1]
1,2,3,7,8,9-HxCDF	3.40	_	0.400	[<u>-]</u>	19.6	_	6 5.50	Œ	165		0300	<u>[i]</u>	15.8		00500)[1]
1,2,3,7,8-PeCDD	19.1		0.400	(13)	4.1		(6.10	(E)	53.2		0.200	<u>[i]</u> (13.9		0.400)[1]
1,2,3,7,8-PeCDF	21.2		0.300	[<u>1</u>]	75.4		3.60)[1]	615		(0.200	[1]	63.0	,	0300	<u>(II</u>
2,3,4,6,7,8-HxCDF	48.0		0.400	[1]	782		(4.80	Ξ(2 2		00300	<u>(13</u>	106		00500) E3(
2,3,4,7,8-PeCDF	36.4		0.300	<u>(E)</u>	122		3.70	(11	311		0200	<u>(II)</u>	50.9		0300)[1]
2,3,7,8-TCDD	4.00		0.300	[1]	11.0		3.20)[1]	15.7		0.200)[<u>[</u>]	2.20		0300) E
2,3,7,8-TCDF	25.5		0.300	(1)	53.9		(3.40	(11)	₹		0.600)[<u>i</u>]	48.1		(1.00	<u>E</u>
Total HpCDD	2050		00200	<u>=</u>	1930		(9.10)[1]	1920		0.400	<u>[]</u>	298		0.800	Ξ
Total HpCDF	969		0.500	(11)	1540		5.70	(1)	4760	_	00:00	[1]	635		0.0900	<u>[I]</u> (

Table 1
Results of Organic Analyses For Round 1 Soll Samples, Atsugi NAF, Japan

					PI etiS							
					Location	. PI						
					Sample Id	Id						
					Log D	ate						
				Be	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND			TRND			TRND			TRND	
		TRND-S004	-		TRND-SO05	ΨΩ		TRND-SO06	28		TRND-SO07	<u></u>
		NA-TRND-SO04-02	4-02		NA-TRND-SO05-01	5-01		NA-TRND-SO06-01	06-01		NA-TRND-S007-01	7-01
		10-MAR-98			10-MAR-98			15-MAR-98	9 0		10-MAR-98	_
Parameter		3-12			0-3			0-3			0-3	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	<i>L</i> 69	0.200	(1)	1630	(7.40) [1]	2130	0.400	(1)	511	009'0	(E)
Total HxCDF	488	0300)[I]	1870	(4.60	(1)	4320	0.200	(1)	711	0.400	Ξ
Total PeCDD	253	0.400	(E)	984	(6.10)[1]	1280	0.200)[1]	317	0.400	[1](
Total PeCDF	461	00:00)[<u>[</u>]	1520	0.3.70)[1]	3310	0.200	(1)	979	0.300	(1)
Total TCDD	152	0300	<u>[i]</u> (427	(320	(1)	1110	0.200)[1]	186	0.300	<u>(1</u>
Total TCDF	522	0000)	[1](1270	(2.30)[1]	2210	J (0.100	(1)	465	00:300)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

TRND SOIR TRND						Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Site Id Location Id Sample Id Log Date	h (in.)						
ND (0.350)[1] ND (0.320)[1] ND (0.320)[1] SM (0.	Parameter	Z	TRND TRND-SO08 A-TRND-SO08 10-MAR-98 0-3	10-		TRN TRN NA-TRN 10-M	RND D-SO09 D-SO09-01 IAR-98	-		TRND TRND-SO1(NA-TRND-SO1 10-MAR-98)-01		TRND TRND-SO10 NA-TRND-SO10-02 16-MAR-98	_ 20
ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] 26 ND (0.320) [1] 26 ND (0.320) [1] 26 ND (0.320) [1] 26 ND (0.320) [1] 26 ND (0.320) [1] 26 ND (0.320) [1] ND (0.320) [1] 26 ND (0.320) [1] ND (0	OLM03.2 - Pesticides and PCBs (ug/kg	<u> </u>												
ND (0.356)[1] 3.00 (0.320)[1] 2.00 2.00	4,4'-DDD	ND	(0.350)[1]	Q	0	320	[1]	Q.	0.320)[1]	Ö	0.300	III
ND	4,4'-DDE	QN Q	(0.350)[<u>i</u>]	3.00	0)	320	[1]	14.0	(0.320)[1]	26.0	(0.300	ΞΞ
NB	4,4'-DDT	QN :	(0.350)[1]	2.80	J	320	[1]	22.0	0.320)[1]	29.0	(0.300	E (
10	Aidrin	Q !	0.350	[]	2	0	320	[1]	ND	0.320)[1]	ND	(0.300	ΞΞ
2.1 ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] 42 ND (0.326) [1] ND (0.320) [1] ND (0.320) [1] 42 ND (0.326) [1] ND (0.320) [1] ND (0.320) [1] 54 ND (0.326) [1] ND (0.320) [1] ND (0.320) [1] 54 ND (0.326) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND	Aroclor-1016		0.350) <u>(1</u>	Ð	0	320	(1)	S S	0.320	(11)	QN	(0.300	Ξ
42 ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] 42 ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] 48 ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] 54 ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] 60 ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND 1 ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (Aroclor-1221	Q !	0.350	<u>=</u>	8	0	320	<u>[i]</u>	ND	0.320)[1]	QN ON	0.300	ΞΞ
42 ND (0350)[1] ND (0320)[1]	Arocior-1232	<u>Q</u> :	0.350	Ξ	S	Ó))[1]	Q.	0.320)[1]	QN	0.300	Ξ
National Properties National Properties	Arocior-1242	2 :	(0.350	<u>=</u>	2	Ö		[1]	N Q	(0.320)[1]	ND	0.300	ΞΞ
Marcola Marc	Aroclor-1248	2 9	0.320	Ξ,	2 9		,	Ξ	Ð	0.320	[1]	NO Q	0.300	(11)
National Columbia Nati	Arcelor-1254 Arcelor-1260	2 5	0.350	E E	2 9	o (三	e i	(0.320	[1](ND	0.300	[1]
1	Dieldrin	2 2	(0.350	E (2 2	5 c	330		210 N	0.320	Ξ(300	00:300	(1)
II	Endosulfan I	Ð	(0.350	Ξ(2	; o	320	ΞΞ.	2 2	0.320		2 2	0.300	E
sulfate ND (0.350) [1] ND (0.320) [1	Endosulfan II	QN	0.350)[1]	Q.	(0		<u> </u>	2 S	(0.320	Ξ(2 2	0300	
hyde ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ine ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ine ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] epoxide ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] for ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1]	Endosulfan sulfate	Q Q	0.350) [II]	Q.	(0.		(11)	QN	(0.320	<u>(</u>	Q	0300	E (
ND	Endrin	Q :	0.350	<u>(</u>	Ð	0)		<u> </u>	QN	0.320	<u>[1]</u> (QN.	0.300	Ξ(
ND	Endrin aldehyde	Q !	0.350	Ξ	g	0)		[1]	QN	(0.320	[1]	QN.	0300	ΞŒ
RD (0.320) [1] ND (0.320) [1] ND (0.320) [1] epoxide ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] for ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1]	Endrin Kelone	Q !	0.350	<u> </u>	Q	Ó)		[1]	QN QN	0.320)[1]	ND	0.300	Ξ
epoxide ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] lot ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] ND (0.350) [1] ND (0.320) [1] ND (0.320) [1]	repaction	a :	0.350)[1]	S	0	320	Ξ(Q.	0.320	Ξ(QN	0.300)[1]
lor ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] ND (0.350) [1] ND (0.320) [1] ND (0.320) [1]	Heptachlor epoxide	Q !	(0.350)[1]	2	0		[1]	Q	0.320	[1](ND	0.300	<u>=</u>
ND (0.350) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1] ND (0.320) [1]	Methoxychlor	Q Z	0.350)[1]	2	0) [E]	ND	0.320	(1)	QN	0.300) E
ND (0.350) [1] ND (0.320) [1] ND (0.320) [1]	Toxaphene	QN Q	0.350)[1]	8	0		(1)	QN	(0.320	[E](AN	(0300	Ξ
	alpha-BHC	QN	0.350	[1](ð	 	320	[1]	N O	0.320	(1)	QN	0300	ΞΞ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Peg.	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ate epth (in.)						
	Z	TRND TRND-SO08 NA-TRND-SO08-01 10-MAR-98	8-01		TRND TRND-SO09 NA-TRND-SO09-01 10-MAR-98	9-01		TRND TRND-SO10 NA-TRND-SO10-01 10-MAR-98	0-01		TRND TRND-SO10 NA-TRND-SO10-02 10-MAR-98	-02
Farameter		3	,		2			2			3-12	
OLMUS. 2 - Festichoes and PCDS, cont. (18/18) alpha-Chiordane ND	(ugykg) ND	0.350	(1)	QN	0.320	(E)	QN	(0.320)[1]	Q.	(0.300)[[]
beta-BHC	Ą	0.350	(E)	QN	0.320	<u>(11</u>	N	(0.320	Ξ	QN QN	(0.300	Ξ
delta-BHC	Ð	0.350)[1]	Q.	0.320)[1]	ND	(0.320)[1]	QX	0.300	Ξ
gamma-BHC(Lindane)	Ð	0.350)[1]	QN Q	0.320	<u>(</u>	N Q	(0.320	[1]	QX	0.300	<u>(</u>
gamma-Chlordane	Ð	0.350	[1]	Q.	0.320)[1]	QN QN	0.320)[1]	Q	0300)[1]
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	4/gu) sbanodo	9										
1,2,4-Trichlorobenzene	Q.	0.69))[1]	ND QN	0.49)[1]	N ON	(63.0	(1)	Q	0.09)	(1)
1,2-Dichlorobenzene	QN	0.69))[1]	ND	(64.0)[1]	Q.	(63.0	[]	Ą	0'09)	<u>[i]</u> (
1,3-Dichlorobenzene	QN	0.69))[1]	Q.	(64.0	[<u>ii]</u> (Q.	(63.0	<u>=</u>	QN	0'09)	<u>[1]</u> (
1,4-Dichlorobenzene	Q	0'69))[1]	NO	(64.0	[1](Q.	(63.0	<u>(H</u>	QN	0'09))[[]
2,2'-oxybis(1-chloropropane)	Ð	0'69))[1]	ΩN	(64.0	[1]	Q	(63.0	(11)	QN	0'09)	[I](
2,4,5-Trichlorophenol	Q.	0'69))[1]	QN	(64.0	[1](Q	(63.0	(11)	QN	0'09)	[1]
2,4,6-Trichlorophenol	₽	0.69)) [I]	QN QN	64. 0	<u>(E)</u>	Q Q	(63.0)[1]	QN	0'09)	[1]
2,4-Dichlorophenol	Q.	0:69))[1]	Q.	64.0)[i]	QN Q	(63.0	(11)	QN	0'09)	[1]
2,4-Dimethylphenol	Ð	0'69'))[1]	QN	(64.0	(1)	N Q	(63.0	(11)	Q.	0'09)	(11)
2,4-Dinitrophenol	Q.	0'69))[1]	Q.	(64.0	Ξ(Q	0.69.)	<u>[1]</u> (QN	0'09)	[1](
2,4-Dinitrotoluene	Q.	0'69))[E]	QN	(64.0	<u>::</u>	QN	0.63.0	(II)	Q.	0'09)	[1](
2,6-Dinitrotoluene	ND Q	0'69))[1]	QN	(64.0	(1)	ND	(63.0)[1]	Q.	0.09)	[]]
2-Chloronaphthalene	ND	0'69)	<u>(II)</u>	Q.	(64.0	(1)	Q.	0.63.0)[1]	QN QN	0.09)	(1)
2-Chlorophenol	N Q	0'69))[1]	QN QN	(64.0	<u>(II)</u>	QN Q	(63.0	(II)	Q	0.09	(E)
2-Methylnaphthalenc	S S	0'69)	<u>[1]</u> (QN QN	(64.0	<u>(E)</u>	Q.	0.63.0	(II)	QN	0.09)	(11)
2-Nitroaniline	Q.	0.69)	[1]	N N	0.40	EE (Q.	(63.0	(11)	QN	0.09)	. [1]

() = Detection Limit [] = Dilution Factor N

Not Detected NA = Not Applicable

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	_						•
					Location Id	ם ;						
					Sample 1d Log Date	Id ate						
				Be	Beg. Depth - End Depth (in.)	Jepth (in.)						
		TRND			TRND			TRND			TRND	
		TRND-S008	eo 9		TRND-SO09	&		TRND-SO10	0		TRND-SO10	_ ;
		NA-TRND-SO08-01 10-MAR-98	[0- 2 2		NA-TRND-SOU9-UI 10-MAR-98			NA-TRND-SO10-01 10-MAR-98			NA-TRND-SO10-02 10-MAR-98	70 -
Parameter		0-3			6-3			0-3			3-12	
			-					-				
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	: Compounds, con	rt. (ug/kg)										
2-Nitrophenol	QN	0.69.))[1]	Q	(64.0	(1)	N QN	(63.0	[1](QN	0.09)	(11)
3,3'-Dichlorobenzidine	QN	0'69))[1]	Q.	(64.0	(1)	QN QN	(63.0	[I](QN	0.09	(11)
3-Nitroaniline	QN	0.69))(1]	N Q	(64.0)[1]	Q.	(63.0)[1]	S.	0.09)) [E]
4,6-Dinitro-2-methylphenol	N Q	0'69))[1]	QN	(64.0)[1]	QN	(63.0	(1)	Q.	0:09))[1]
4-Bromophenyl-phenylether	ND	0'69))[1]	NO ON	(64.0	[1](QN	(63.0	<u>(E)</u>	Q.	0'09)	(1)
4-Chloro-3-methylphenol	ND	0'69))[1]	ΩN	(64.0	[][QN	(63.0	(11)	Q	0.09	[]
4-Chloroaniline	ND	0.69)	[1]	ND	(64.0	[1]	Q	(63.0	(1)	ND	0.09)	<u>(H)</u>
4-Chlorophenyl-phenylether	ND	0.69))[1]	ΩN	(64.0	[[]	QN	0.63.0) [1]	ON	0.09)) [I]
4-Nitroanaline	N Q	0.69))[1]	Q	(64.0	[1]	NO	(63.0	(13	ND	0.09))[1]
4-Nitrophenol	Q.	0.69))[1]	ΩN	(64.0)[1]	QN	(63.0)[1]	ND	0.09)	[](
Acenaphthene	ND	0.69))[1]	Ω	(64.0)[1]	ND	0.63.0)[1]	QN	0.09)	[1](
Acenaphthylene	ND	0'69)	(1)	Q.	(64.0	(Ξ)	ON	0.63.0)[1]	ΩN	0.09	[1](
Anthracene	ON	0'69))[1]	QN Q	(64.0	<u>[]</u>	ON	0.63.0)[1]	QN	0.09	[](
Benzo(a)anthracene	QN ON	0'69))[1]	QN	0.49	<u>[1]</u> (QN	0.63.0	<u>(11</u>	QN	0'09))[1]
Benzo(a)pyrene	QN	0'69))[1]	QN	(64.0)[1]	ND	(63.0)[1]	Q	0'09)	EE) (
Benzo(b)fluoranthene	ND	0'69))[1]	NO	(64.0	<u>[i]</u> (QN	(63.0	[[]	Q Q	0.09)	<u>[i]</u>
Benzo(g,h,i)perylene	QN	0'69))[1]	QN	(64.0	<u>[i]</u>	QN	0.63.0	<u>(E</u>	QN QN	0.09)	(E)
Benzo(k)fluoranthene	QN	0.69)) <u>[1]</u>	ND	(64 .0)[1]	ND	(63.0) <u>[1]</u>	QN ON	0.09)	<u>(II)</u>
Butylbenzylphthalate	110	0.69))[<u>i</u>]	QN	(64.0)[1]	110	(63.0)[1]	71.0	0.09	([]
Carbazole	QN O	0.69))[1]	QN	(64.0	[[]	ND	0.63.0	<u>[]</u>	ΝΩ	0'09)	Ξ(
Chrysene	QN	0.69))[1]	QN	(64.0)[1]	87.0	0.63.0)[1]	ΔÑ	0:09)	<u>[i]</u> (
Dibenz(a,h)anthracene	ON	0.69))[1]	QN QN	(64.0	(1)	ND	0.63.0	(11)	QN	0.09)	<u>[i]</u>
Dibenzofuran	QN	0.69)	(11)	æ	(64.0)[1]	Q	0.63.0	[1](Ð	0.09)	[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

							Site Id Location Id	3								
							Sample Id Log Date	E E								
						Beg. Dep	Beg. Depth - End Depth (in.)	pth (in.)								
			TRND				TRND	·			TRND				TRND	
			TRND-SO08	3			TRND-S009				TRND-SO10				TRND-SO10	
		NA-II 10	NA-1KND-SOUS-UI 10-MAR-98	5		NA-1	NA-TRND-SOB9-BI 10-MAR-98	=		¥Z	NA-TRND-SO10-01 10-MAR-98	-0 <u>-</u>		Ż	NA-TRND-SO10-02 10-MAR-98	2 7
Parameter			0-3				0-3				6-3				3-12	
OLIVIOS. 2 - Semi-volatue Organic Compounds, cont. (ug/kg) Diethylphthalate (69)	Compounds, ND	, com. (ug ,	69.0)[1]	Q		040	1111	g		63.0	101	Ş		009	111
Dimethylphthalate	N N		0.69	Ξ	Q.		0.40	ΞΞ	Q		(63.0	Ξ(2		909	Ξ
Fluoranthene	73.0	J	0.69)[11]	S		(64.0	(E) (0.19		(63.0	Ξ	g		000	E
Fluorene	QN QN)	0.69	(11)	Q.		64.0)[[]	Q.		(63.0	Ξ	8		(60.0	E (
Hexachloro-1,3-butadiene	g	~	0.69	<u>(E</u>)	Q.		(64.0	[1](QN.		(63.0	([]	Q		(60.0	ΞŒ
Hexachiorobenzene	Q)	0.69	(11)	QN		0.40) [11] <u>(</u>	Q.		0.63.0	(1)	QN		0.00	Œ
Hexachlorocyclopentadiene	Q	n	0.69	<u>=</u>	Q	B	(64.0	(11)	S	5	0.63.0)[ii]	Q.	Ħ	0'09)	Ξ
Hexachloroethane	æ)	0.69)[1]	Q		(64.0)[i]	Q		0.63.)) [E]	N Q		0.09)	ΞΞ
Indeno(1,2,3-cd)pyrene	Ð	_	0.69) [1]	QN		64.0	[](QN		0.69)	(E)	S		0.09)	(E)
Isophorone	S	_	0.69	(11)	Ð		64.0	<u>=</u>	£		0.69)	[E]	Q.		0.09)) [E]
N-Nitroso-di-n-propylamine	Q.	<u> </u>	0.69	<u>(</u>	Ð	-	64.0	<u>(E)</u>	Ð		0.63.0) [IJ]	Q.		0.09)	<u>(E)</u>
N-Nitrosodiphenylamine	Ð	_	0.69	<u>(</u>	Ð	-	64.0	[E](Ð		(63.0	(1)	æ		0.09))[1]
Naphthalene	2	<u> </u>	0.69	Ξ(Ð	_	0. 4 0 0.40) <u>[1]</u>	Q.		(63.0	(1)	æ		0.00)[1]
Nitrobenzene	2	<u> </u>	0.69) <u>[1]</u>	Q.		(64.0	<u>[]</u>	Æ		(63.0	(1)	Q		0.09)	<u>[I]</u> (
Pentachlorophenol	S	<u> </u>	0.69	<u>=</u>	£		0.4.0	(1)	Ê		(63.0	<u>(E)</u>	QN QN		0'09)	<u>[1]</u> (
Phenanthrene	Ð	<u> </u>	0.69	Ξ	9		0.40)[1]	R		(63.0	<u>(I)</u>	Q.		0.09)	[1]
Phenol	2	<u> </u>	0.69	<u>(</u>	Ð		64.0	(1)	Ð		(63.0	<u>(E)</u>	Q.		0.09)	(1)
Pyrene	Ð	<u> </u>	0.69	<u>(E</u>	65.0		64.0	<u>[]</u>	911		(63.0	(E)	61.0		0.00)) [E]
bis(2-Chloroethoxy)methane	Ð	_	0.69)[1]	Ð		0.4.0	(Ξ)	Ð		(63.0	[1]	2		0.09)	(11)
bis(2-Chloroethyl)ether	ę	_	0.69	[1]	Q		64.0	<u>(</u>	Ð		(63.0)[E]	Q		0.00)	(11)
bis(2-Ethylhexyl)phthalate	330) I	0.69	<u>[]</u>	320	_	64.0	[1]	730		(63.0	(11)	300	_	0.09)	(11)
di-n-Butylphthalate	<u>8</u>	<u> </u>	0.69	<u>(E</u>	150	_	64.0)[i]	300		0.63.0	Ξ	250		0:09)) EE
di-n-Octylphthalate	ð	_	0.69	(1)	QN Q	•	64.0	[H] (N N		0.63.0)[1]	Q.		0.09)	(E)

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id	3								
							Sample Id	<u> </u>								
						Beg. D	Log Date Beg. Depth • End Depth (in.)	te ppth (in.)								
*			TRND TRND-SO08				TRND TRND-SO09			Ħ	TRND TRND-SO10			T ST	TRND TRND-S010	
		Ž	NA-TRND-SO08-01 10-MAR-98	3-01		Ž	NA-TRND-SO09-01 10-MAR-98	-01		NA-TI	NA-TRND-SO10-01 10-MAR-98	, .		NA-TR	NA-TRND-SO10-02 10-MAR-98	
Parameter			0-3				9-3				6-3			ri,	3-12	
OLMO3.2 - Semi-Volatile Organic Compounds, cent. (ug/kg)	Compounds,	cont.	(ug/kg)													;
o-Cresol	QN		0.69))[1]	S		(64.0) [1]	S	_	63.0	Ξ	QX	Ū		Ξ
p-Cresol	Q.		0.69)	(11)	S		64.0)[1]	Q.	_	(63.0	Ξ	2	Ū	00:09	Ξ
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	4300	-	(2.60	<u>[i]</u> (4180	-	009'0)	(1)	3150	_	2.40	[1]	1320	<u> </u>	0.600	Ξ)(
1,2,3,4,6,7,8,9-OCDF	866		(2.10)[1]	955		005:0)[1]	1060	_	2.00)[I]	271	<u> </u>	0.500	Ξ
1,2,3,4,6,7,8-HpCDD	1380		0.1.70	E)(1340		0.400	<u>[i]</u> (822	_	1.60)[1]	228	J	0.400	Ξ
1,2,3,4,6,7,8-HpCDF	1150		007	<u>(E)</u>	1110		0.200) [<u>1</u>]	898	_	0.900	[1]	207	\	0300	Ξ
1,2,3,4,7,8,9-HpCDF	502		0.1.40	(11)	198		0300	(1]	187	_	1.30)[]]	48.2)	0.400	Ξ
1,2,3,4,7;8-HxCDD	73.6	_	(1.30	(11)	7.4.7	т,	00300	(11)	43.7) I	1.10	[1](10.1	'n	0.300	[1]
1,2,3,4,7,8-HxCDF	489	_	00200)	[1](487	~	0200	<u>(II)</u>	371	·	0.600	[1](616) [0.200	<u>(E</u>
1,2,3,6,7,8-HxCDD	137		(120	<u>(E)</u>	135		00300	[1]	78.9	_	1.00)[1]	212	<u> </u>	0300	Ξ
1,2,3,6,7,8-HxCDF	215		00.700	<u>[E]</u> (200		0.200	(11)	148	Ŭ	0.600)[1]	34.5	<u> </u>	0200	Ξ
1,2,3,7,8,9-HxCDD	203	-	(120	[1]	38	_	00:300	[1]	116	-	1.00)[1]	28.1) F	0.300	Ξ
1,2,3,7,8,9-HxCDF	32.2	_	0060)	(11)	27.4	_	0.300	[1](29.8	-	0.800	[1]	7.30	·	0700	Ξ
1,2,3,7,8-PeCDD	48.1		0060)	(E)	71.1		0.400	<u>(11</u>	345	Ŭ	0.800	Ξ	7.70	<u> </u>	0.200	Ξ
1,2,3,7,8-PeCDF	114		0090	<u>[</u>](103		0.200	(11)	011	Ŭ	0.500)[1]	26.9	_	0.200	Ξ
2,3,4,6,7,8-HxCDF	377		0.800	<u>(E</u>	387		0.200	Ξ(248	Ĭ	0.700	<u>(1</u>	56.7)	0.200	Ξ
2,3,4,7,8-PeCDF	169		009'0	<u>(1)</u>	175		0.200	<u>[i]</u>	119	Ĭ	0.500)[1]	27.4	<u> </u>	0.200	Ξ
2,3,7,8-TCDD	00.9		0.500)[1]	7.40		0.200	[][2.60	Ĭ	0.400)[1]	97.	<u> </u>	0.200	=======================================
2,3,7,8-TCDF	67.5		(1.40	(11)	0.69		(5.90	<u>=</u>	69.1	Ĭ	1.30	<u>[i]</u>	19.8	<u> </u>	2.80	Ξ
Total HpCDD	2760		0.170	[](2640		0.400	Ξ(1630	_	1.60	<u>[]</u>	431	_	0.400	Ξ
Total HpCDF	1980		(1.10	E](1880		0.300) <u>[1]</u>	1560	_	1.00	(E)	378	_	0.300	<u> </u>

Compiled: 07/01/98

			(11)	Ξ	<u> </u>	Ē	E	E (
	TRND-SO10 TRND-SO10-02 10-MAR-98 3-12		0.300	0.200	0.200	(0.200	0.200	(0.200
			276	382	7.06	313	110	179
	0-01		(1)	(1))[1])[[]	Ξ	[1]
	TRND-SO10 NA-TRND-SO10-01 10-MAR-98 0-3		0.10	009'0)	0.800	0.500	0.400	0300
			1190	1630	774	1450	442	732
ld ld spth (in.)	. 1 9		[E]([H] ((H))[]])[1])[1]
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TRND TRND-SO09 NA-TRND-SO09-01 10-MAR-98 0-3		0.300	0.200	0.400	0700	0.200	0.100
ă			1910	2240	1370	2050	512	673
	7		(11))[]])[1])[I]	[1]() [i]
	TRND TRND-SO08 NA-TRND-SO08-01 10-MAR-98 0-3		(120	0.800	0060)	00900)	0.500	0.400
			1950	2260	1010	2070	407	1210
	Parameter	SW8290 - Dioxins, cont. (ppt)	Total HxCDD	Total HxCDF	Total PeCDD	Total PeCDF	Total TCDD	Total TCDF

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Ĕ	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Site Id Location Id Sample Id Log Date 1 - End Depth (i	(i							
		TRND TRND-S011 NA-TRND-S011-01	1 0-1		TRND TRND-SO12 NA-TRND-SO12-01	D SO12 SO12-01		NA-TI	TRND TRND-SO12 NA-TRND-SO12-11 Dup of NA-TRND-SO12-01	2 Dup of 2-01		TRN TRN NA-TRN	TRND TRND-SO13 NA-TRND-SO13-01	
Parameter		10-MAR-98 0-3			10-MAK-98 0-3	86-38			15-MAK-98 0-3			Ai-CT	15-MAK-96 0-3	
OLM03.2 - Pesticides and PCBs (ug/kg)	(ug/kg)													
4,4'-DDD	18.0	(0240	Ξ(Q !	0.340			<u> </u>	(0.330	Ξ	£ 5	Ξ :		ΞΞ
4,4'-DDE	76.0	0.240	Ξ,	2 9	0.340				(0.330	ΞΞ	80.9 90.99	-	0.310	ΞΞ
4,4'-DDT	908	0.970	<u></u>	2 2	0.54C			2 2	0.330	ΞΞ	ON CN	<i>-</i> -		ΞΞ
Andrin Amelor-1016	2 2	0.240	ΞΞ.	2 2	0.340			2 2	0.330	Ξ	Q.	Ĵ		Ξ(
Aroclor-1221	Ð	(0.240	<u>=</u>	Q.	(0.340			N QN	(0.330	Ξ	QN.	Į	0.310	<u>(E)</u>
Aroclor-1232	Ð	(0.240)[1]	QN.	0.340	0)[1]		ND ON	(0.330)[1]	Q	J	0.310	Ξ
Aroclor-1242	QN QN	(0.240)[1]	Q ·	0.340			QN QN	0.330	[]	Q	J	0.310	Ξ
Aroclor-1248	QN	(0.240	(11)	N	0.340			Q.	(0.330	[1]	Q	Į,	0.310	Ξ;
Aroclor-1254	Q.	(0.240	[I](Q `	0.340			£ :	0.330	Ξ	2 :	J (0.310	ΞΞ
Aroclor-1260	2 9	(0.240		2 2	(0.340		ΞΞ	Q (2	(0.330	E (2 5	ت ت	0.310	ΞΞ
Dieldrin Endosulfan I	2 2	0.240	E (E	<u> </u>	0.340			2 2	(0.330	ΞΞ	2 2	Ū	0.310	ΞΞ
Endosulfan II	QN	(0.240)[1]	QN Q	0.340		(1)	ND	(0.330	(11)	QN N	Ū	0.310	(Ξ)
Endosulfan sulfate	N Q	0.240)[1]	Q.	0.340		[1]	QN	0.330	[1]	QN QN	Û	0.310	<u>(</u>
Endrin	QN	0.240)[1]	9	(0.340		[1]	ΩN	0.330)[1]	Q	•	0.310	(11
Endrin aldehyde	Q	0.240)[1]	g	(0.340		[1]	ND QN	(0.330	(11)	Q.)	0.310	Œ
Endrin ketone	Q	(0.240)[1]	g	0.340		[1]	QN QN	(0.330)[I]	QN QN	<u> </u>	0.310	Ξ
Heptachlor	ND	(0.240)[1]	Ð	0.340		[1]	N Q	0.330	(E)	Q	<u> </u>	0.310	Ξ
Heptachlor epoxide	ND	(0.240)[1]	Q	$\overline{}$		[1]		$\overline{}$) <u>[</u>	Q	Ŭ	0.310	Ξ
Methoxychlor	QN	(0.240	(11)	Q	UJ (0.340		(1)	ND UI	<u> </u>	<u>=</u>	2) 5	0.310	Ξ
Toxaphene	QN	0.240)[1]	2	(0.340		(E)	Ð	0.330	Ξ	Q	_ `	0.310	Ξ.
alpha-BHC	QN	0.240) [t]	<u>S</u>	(0.340		[1]	Q	0.330	(E)	9	<u> </u>	0.310	Ξ

						Ct. 1.1							l		
						orte id	,								
						Location Id	-								
						Sample Id	7								
						Log Date	ب								
					Beg. Dept.	Beg. Depth - End Depth (in.)	pth (m.)								
		TRND				TRND				TRND				CINAL	
	Z	TRND-SO11 NA-TRND-SO11-01	1 1-01		TI-NA-TI	TRND-SO12 NA-TRND-SO12-01	Ą	2	A-TRN	TRND-SO12 NA-TRND-SO12-11 Dup of	Jo dn		NA	TRND-SO13 NA-TRND-SO13-01	10-
		10-MAR-98			2	10-MAR-08			Ÿ	NA-TRND-SO12-01	-01				
Parameter		0-3	İ			6-3				13-MAK-98 0-3			-	15-MAR-98 0-3	
OLM03.2 - Pesticides and PCBs, cont.	t. (ug/kg)														
alpha-Chlondane	Q	0.240	[1](QN	Û	0.340	[i]	2		0.330)1111	Ę		0310	7 (41
beta-BHC	QN	0.240)[1]	Ð	J	0.340	(E) (Q		(0.330	EX	2 5		0310	Ξ,
delta-BHC	ND	0.240)[1]	Ð	_	0.340	Ξ	Ð		(0.330	E	9 5		0150	Ξ,
gamma-BHC(Lindane)	Š	0.240)[1]	Q		0.340	Ξ	R		0330	ΞΞ	2 5		0100	Ξ,
gamma-Chlordane	9	0.240	[1]	QN Q		0.340	Ξ(Q		(0.330	Ξ.	2		0310	
OLMO3.2 - Semi-Valatile Organic Commonmels (notles)	դ/ույ .shanoamu	6													
1.2.4-Trichlombenzene	UN) (40)		Š	-	Ş	,	;	ļ	,					
1 2. Dichlorobenzane	2 5	46.0		2 9	3 :	Q:/9		2	5	0.79)[1]	Q	n	(62.0	[1]
1.3 Dichlorohangene	9 9	48.0	Ξ	2	3	0.70	<u>(</u>	S	5	0.79)	(11)	Q	Ħ	0.29	(E)
1,3-Dichlordoenzene	9 1	. 48:0	Ξ.		5	0.79)[]	S	ħ	0'.09))[1]	Q	ñ	(62.0	Ξ(
1,4-Diction obenzene	Ž į	0.48.0	E :	9	5	67.0	<u>(</u>	£	5	0'.29))[1]	Ð	Б	(62.0	Ξ
2.4 -Oxygus(1-chotopropane)	⊋ 9	480	Ξ.	Q !) 5	67.0	<u>=</u>	2	5	0'.09)	(1)	QN	B	0.29)	Ξ
2,4,3-1 inclinational	9 9	5. 5. 6. 5. 6.	E	Q !	B ;	0.70	Ξ	8	ħ	0.79))[1]	QN	B	(62.0	(1)
2.4.0-1 itemorephenol	2 9	. 48.0		Q :) B	0.79	<u>[]</u>	2	5	0'29))[1]	Ð	5	(62.0	(E) (
2.4-Dimetholophenoi	2 5		(E) (2 !) B	0.79	Ξ	S	5	0'29))[1]	S	n	(62.0	Ξ
2,4-Dinimphenol	9 9	48.0	Ξ,	2 !) 5	67.0	Ξ	2	Б	0'29)	(Ξ)	Q.	∄	(62.0	(1)
2, Touring Inches	§ §	46.0	[<u>]</u>	2	_ ∃	0.70) [E]	Ð	₽	0'29))[1]	ð	n	(62.0)[1]
2 6. Dinitatellana	3 4	. 48.0 0.3	<u> </u>	2) B	0.70	Ξ	Ð	₿	0'.09))[1]	Ð	5	(62.0	<u>(E)</u>
Z-to-Diniucioluene	2 !	. 48.0	<u>=</u>	2	5	0.70	[1]	Ð	'n	0'29)	<u>(1)</u>	QN	n	(62.0	<u> </u>
z-Chrorozaphunajene	2	(48.0	(E)	2) 5	07.0	Ξ	g	5	0'.09))[1]	QV	B	(62.0	ΞΞ
z-Chlorophenol	Q :	(48.0)[1]	Q	5	07.0	[1]	Ð	B	0'29))[1]	£	5	(62.0	
2-Methyinaphthalene	æ	(48.0)[<u>1</u>]	S) B	0.70	Ξ(Ð	'n	0.79)	111	Q	: =	079	3 5
2-Nitroaniline	Q.	(48.0)[1]	Q	'n	0.70	(1)	QN	5	0'29)	E (9	3 =		
							1			!)	3	V.2V.	7417

Table 1
Results of Organic Analyses Fer Round 1 Soil Samples, Atsugi NAF, Japan

						Site Id									
						Location Id									
						Sample 1d									
				ă	g, Deptl	Beg. Depth - End Depth (in.)	th (in.)	•							
		(NGL)			-	TRND				TRND				TRND	
		TRND-SO11			E	TRND-SO12			_	TRND-SO12			T	TRND-SO13	
	NA	NA-TRND-SO11-01	11		NA-TI	NA-TRND-SO12-01	п	Z	A-TRNE	NA-TRND-SO12-11 Dup of	jo dr		NA-T	NA-TRND-S013-01	_
									NA-1	NA-TRND-SO12-01	01		•	90 00 00 00	
		10-MAR-98			2	10-MAR-98			_	15-MAR-98			=	S-MAK-98	
Parameter		0-3				0-3				0-3				0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	npounds, cont.	ug/kg)													
2-Nitrophenol	ON.	(48.0)[1]	Q	'n	0.79) [1]	2	Ħ	0'29)	[1](QN	5	0.29)	Ξ
3.3'-Dichlorobenzidine	N QN	(48.0)[1]	Q.	'n	67.0)[1]	Q.	m	0.79)	[1]	Ð	Ħ	(62.0) [[]
3-Nitroaniline	N ON	(48.0)[1]	N O	m	0.70	[1]	QN QN	n	0'.29)	Ξ(8	n	(62.0	Ξ(
4,6-Dinitro-2-methylphenol	QN	(48.0)[1]	QN	m	07.0)[1]	Q	n	0'.29)	(11)	Ð	n	(62.0	Ξ
4-Bromophenyl-phenylether	ND ON	(48.0)[1]	ND	'n	0.79)[1]	£	'n	0.79))[I]	S	Ħ	(62.0	Ξ
4-Chloro-3-methylphenol	ND	(48.0	(1)	QN	'n	0.79)[1]	Q	Ē	0'./9)	(E] (2	⋽	(62.0	Ξ :
4-Chloroaniline	Q.	(48.0)[1]	Ð) m	0.70)[1]	QN	5	0'.29)	(1)	2	5	(62.0	Ξ :
4-Chlorophenyl-phenylether	QN QN	(48.0)[1]	Q) E	0.79)[1]	N	n	0'L9))(11]	2	Ħ	(62.0	Ξ
4-Nitroanaline	Q.	(48.0)[1]	Q) E	0.79	(11)	Q	3	0'19)	<u>(II)</u>	£	∄	(62.0	E) (
4-Nitrophenol	QN	(48.0	[1]	Q	ñ	0.79) [I]	Q	'n	0''.0	<u>[1]</u>	Ð	5	(62.0	Ξ
Acenaphthene	ND	(48.0)(1]	Q	E	0.79)[1]	Q.	Ħ	0'29)	[1]	g	5	(62.0	Ξ
Acenaphthylene	QN QN	(48.0)[i]	ND) Fi	07.0)[1]	Q	5	0.79)	<u>[1]</u>	g	5	62.0	Ξ;
Anthracene	ND	(48.0)[1]	Q	B	0.70	(11)	Q	Ħ	0.79)	<u>(</u>	S	3	(62.0	Ξ
Benzo(a)anthracene	N Q	(48.0)[1]	S	'n	0.70) [1]	Ð	5	0'19)	Ξ(Q	∄ .	(62.0	Ξ,
Benzo(a)pyrene	Q.	(48.0)[1]	S) D	18.0)[1]	2	5	(18.0)[1]	78.0	·	(16.0 ()	Ξ,
Benzo(b)fluoranthene	N ON	(48.0)[i]	Ñ	5	07.0)[1]	Q.	5	0.79)[1]	911	 ,	(62.0	Ξ :
Benzo(g,h,i)perylene	S Q	(48.0)[1]	g) E	0.79	<u>(E</u>	S	3	0.79))[1]	72.0	-	(62.0	Ξ:
Benzo(k)fluoranthene	ND	(.48.0)[1]	S Q	'n	07.0) [1 _]	Q Q	ħ	0''.09)	<u>[1]</u> (8	5	(62.0	Ξ
Butylbenzylphthalate	S	(48.0	(1)	R	5	0.79)[1]	2	n	0.70)[1]	91.0	. , :	0.50	Ξ.
Carbazole	ND Q	(48.0)[1]	QN) B	07.0)[1]	2	5	0.79)[1]	2	∄ .	0.29	Ξ.
Chrysene	QN	(48.0)[1]	QN QN	5	0.79	[1]	S	3	0.79	Ξ	83.0	_ :	(62.0	Ξ
Dibenz(a,h)anthracene	QN	(48.0)[1]	Q	В	0.79)[1]	Q	₽	0.79	<u>E</u>	2 !	3 :	0.29	Ξ,
Dibenzofuran	QN	(48.0	(1)	<u>R</u>	5	0'1'0) <u>[1]</u>	2	5	0.79	[1]	2 Z	3	0.20	[1](

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id	- E								
							Sample Id	Į								
							Log Date	ate								
						Beg. De	Beg. Depth - End Depth (in.)	Depth (in.)								
		F	TRND				TRND				TRND				Ę	
		TRN	TRND-SO11				TRND-S012	2			TRND-SO12	2			TENTO COST	
		NA-TRA	NA-TRND-SO11-01	=		NA.	NA-TRND-SO12-01	12-01		NA-TRN NA	NA-TRND-SO12-11 Dup of NA-TRND-SO12-01	Dup of 12-01		NA	I I I I I I I I I I I I I I I I I I I	3-01
		10-M	10-MAR-98				10-MAR-98				15-MAR-98				15 MAD 00	
Parameter		-	0. 3				0-3				0-3				13-imar-90 0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, c	ont. (ug/k	6													
Diethylphthalate	Ð	4	48.0	[1]	S	3	0.29)[[]	Q	111	0.29	1111	Ę	11	8	5
Dimethylphthalate	Ð	*	48.0	[1]	S	ħ	0'.9)	ΞΞ	2	3 5	0729	3 5	2 2	3 5	0.70	ΞΞ
Fluoranthene	Q.	~	48.0	[1]	Q	ñ	0.79)	Ξ	Q	5	07.9	ΞΞ	<u> </u>	3 _	000	<u> </u>
Fluorene	2	,	48.0	<u>[I]</u>	QN	5	0'19)	[E](Ð	3	0'29)	Ξ	S S	, =	000	Ξ
Hexachloro-1,3-butadiene	Q	*	48.0	(11)	Ð	Ħ	0'29)	<u>(E)</u>	Ð	B	0'29)	ΞΞ	2	3 3	(62.0	
Hexachlorobenzene	9	<u> </u>	48.0) <u>[1]</u>	Æ	ħ	0'29)	(11)	Ð	'n	0.79)	Ξ	QN	5	(62.0	
Hexachlorocyclopentadiene	2	U.	48.0	(E)	Q	ñ	0'29)	[1](S	n	0.79)	(E)	QN	5	(62.0	E (
Hexachloroethane	2) 4	48.0	(11)	Q	5	0'L9)	[1](S	n	0.79)	E)(QN	5	(62.0	ΞΞ
Indeno(1,2,3-cd)pyrene	QZ	<u> </u>	48.0)[1]	S	5	0'.29)	[][Q	ħ	0'29)	[I](62.0	-	(62.0	ΞΞ
Isophorone	Ð	<u> </u>	48.0	[1]	R	5	0'.09)	<u>[]</u> (QN	5	0'19)	(1)	QN QN	n	(62.0	E (
N-Nitroso-di-n-propylamine	ê !	<u> </u>	48.0) <u>[1]</u>	g	5	0.79)	(1)	Q.	ħ	0'19)	(11)	Ð	5	(62.0	Ξ
N-Nitrosodiphenylamine	2	→	48.0	<u>=</u>	Q	5	0.79)	[1]	Q	n	0'.29)	(H)	QN.	B	(62.0	Ξ
Naphthaiene	Q !	∵	48.0	<u>(II)</u>	9	n	0''.0	<u>(1</u>	Ð	B	0'29)	<u>(</u>	QX QX	ħ	(62.0)[[]
Nitrobenzene	2 9	→ . 4 ;	48.0	Ξ.	2	5	0'29)	([]	S	₽	0'29)	(1)	Q.	5	(62.0	Ξ
remachiorophenol	<u>Q</u> ;	→ :	0.84	Ξ	2	ħ	0.09	(1)	Š	5	0'29)	(1)	ND	5	(62.0)[1]
Frienantirene	2 !	→	48.0	<u>=</u>	2	5	0.79)	(1)	Q	5	0'19)	Ξ	QN QN	Ħ	(62.0	(E) (
Phenoi	Q Z	→	48.0	Ξ	2	5	0.79)	(E)	Ω	n	0'29)	[1]	QN ON	5	(62.0	<u> </u>
Pyrene	20.0	<u>→</u>	48.0	<u>(E)</u>	76.0	-	0'29))[1]	S	'n	0'.09)	Ξ(140	۳,	(62.0	Ξ
bis(2-Chloroethoxy)methane	Ω	→	48.0	<u>(</u>	Ð	5	0'29)	(1)	S	Ħ	0'19))[I]	<u>R</u>	Ħ	(62.0	Ē
bis(2-Chloroethyl)ether	Q	→	48.0	<u>(II)</u>	8	'n	0'.09))[1]	Ð	'n	0'29))[I]	S	Ħ	(62.0	Ē
bis(2-Ethylhexyl)phthalate		J (48	48.0	[1]	240	ī	0'19))[1]	220	-	0'19)	(1)	270	-	(62.0	ΞΞ
di-n-Butylphthalate	Ω	<u>`</u>	48.0)[1]	38	_	0'19)) [I]	490	-	0'19)	[1](490	-	(62.0	ΞΞ
di-n-Octylphthalate	Q Z	4	48.0	(1)	<u>S</u>	ħ	0.70)	[1](QN Q	3	0'29)	(1)	QN QN	n	(62.0	ΞΞ.

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Sample Id									
							Log Date									
						eg. Depi	Beg. Depth - End Depth (in.)	th (in.)								
			TRND				TRND				TRND				TRND	
			TRND-SO11			Η	TRND-S012			-	TRND-S012			Η	TRND-SO13	
		-W	NA-TRND-SO11-01	0 10		NA-T	NA-TRND-SO12-01	=	ž	NA-7 NA-3	NA-TRND-SO12-11 Dup of NA-TRND-SO12-01	p of 11		NA-T	NA-TRND-SO13-01	***
			10-MAR-98			=	10-MAR-98			_	15-MAR-98			-	15-MAR-98	
Parameter			0-3				63				0-3				0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Sompounds, c	ont. (ug/kg)		1				<u>}</u>							
o-Cresol	Ð		(48.0	<u>[1]</u> (Q.	₽	0.79))[1]	QN Q	5	0''.29)) <u>[1]</u>	Ð	5	(62.0	Ξ
p-Cresol	QN QN		(48.0)[1]	QN	B	0'19))[1]	ND QN	5	0'19))[1]	Q Q	5	(62.0	<u>=</u>
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	334		3.40	[1]	1500		005:0)[1]	1320		00500)	<u>[]</u>	1300		5:1.3	EI (
1,2,3,4,6,7,8,9-OCDF	113		(2.80	(11)	306		0.400)[]]	214		0.400)[1]	211		97 (138	Ξ;
1,2,3,4,6,7,8-HpCDD	71.4		(2.10	(11)	349		0.400)[1]	317		0.400	(13	314		002:0	E :
1,2,3,4,6,7,8-HpCDF	82.9		(120	[1](279		00300	[1]	287		0300)[1]	256		0.400	Ξ
1,2,3,4,7,8,9-HpCDF	18.0		0.70) [I]	53.2		(0.400)[1]	55.2		0.400)[i]	34.8		0.500	
1,2,3,4,7,8-HxCDD	2.80	-	0 1.40) <u>[</u>	22.7		0.400)[1]	21.5		0.400	(1)	14.2		0.400	Ξ.
1,2,3,4,7,8-HxCDF	24.5	_	0.800	(11)	191		00:300	[1]	147		0.300	[]	707		0.200	Ξ,
1,2,3,6,7,8-HxCDD	02.9		(1.30	(11)	37.2		0.300	[1]	32.0		0.300	Ξ:	29.8		0.400	ΞΞ
1,2,3,6,7,8-HxCDF	10.2		0.800)[i]	59.4		0.200	Ξ	55.2		0.200		43.0	,	007.0	Ξ
1,2,3,7,8,9-HxCDD	10.5	_	(1.30) [1]	59.4	- ,	0300	Ξ	53.2	- ,	0.300	ΞΞ	45.5	<u> </u>	0.400	
1,2,3,7,8,9-HxCDF	2.40	_	(1.00	(11)	9.80	ī	0.300	<u>[</u> .	8.90 6.90	_	0.300	[1]	5.60	_	0060	Ξ
1,2,3,7,8-PeCDD	2.10	_	006'0)	<u>(</u>	13.9		0.300	Ξ	12.9		0300)[1]	11.9		0070	Ξ
1,2,3,7,8-PeCDF	3.10	-	00900))[<u>1</u>]	34.3		0.200	<u>E</u>	29.1		0.200	E (23.5		0.100	Ξ 5
2,3,4,6,7,8-HxCDF	30.4		0060))[I]	113		0.300)[:]	801		0.300	<u>[]</u>	87.4		00:300	Ξ.
2,3,4,7,8-PeCDF	7.10		002:0	(13)	48.0		0.200	(11)	43.8		0.200)[1]	36.3		00.100	E :
2,3,7,8-TCDD	S		0.500	(11)	2.30		0.200	[<u>:</u>]	2.20		0.200	<u>(</u>	2.20		00.100	ΞΞ
2,3,7,8-TCDF	1.90		00300)[1]	20.3		0.300	Ξ(21.9		(120	(TE)	15.6		6.13	Ξ.
Total HpCDD	142		(2.10	Ξ(672		0.400	<u>[i]</u>	628		0.400)[1]	630		002:0	Ξ.
Total HpCDF	181		(1.40)[i]	486		0300	[1]	208		0.300)[]]	418		0.500	Ξ
				i												

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

Parameter SW8290 - Dioxins, cont. (ppt)		TRND TRND-SO11 NA-TRND-S011-01 10-MAR-98 0-3	-	Beg	Site Id Location Id Sample Id Log Date Log Date TRND TRND-SO12 NA-TRND-SO12-01 10-MAR-98 0-3	1 Id ate epch (in.) 2-01	NA-T	TRND TRND-SO12 NA-TRND-SO12-11 Dup of NA-TRND-SO12-01 15-MAR-98 0-3	bu of	Z	TRND TRND-SO13 NA-TRND-SO13-01 15-MAR-98 0-3	70.
Total HxCDD	0.06	(1.30	<u> </u>	496	0.300	(E)	445	0.400) III	448	0.400	E C
Total HxCDF	148	006'0)	<u>(II)</u>	989	0.300)[1]	24	00300	E =	£ 5	9000	Ξ
Total PeCDD	34.0	0060)	(1)	238	0.300		214	0000	<u> </u>	8 6	0000	Ξ
Total PeCDF	7.76	009'0	Ε(\$4	(0.200	E	471	0000	ΞΞ	977	0.200	[] :
Total TCDD	18.3	0.500	Ξ	152	0.200	E	146	0070	Ξ	07 5	0.100	E :
Total TCDF	52.5	0.400	E)(312	(0.100	E (787	0.100	ΞΞ	258	0.100	E
TOC (mg/kg) Total Organic Carbon	NA			178000 K	(10100	[I] (126000 K	(6630	101	139000 K	0626	

Compiled: 07/01

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAE, Japan

							Site Id									
							Location Id	2								
							Sample Id									
						Rea Dev	Log Date Beg Dayth Brd Dayth (iv.)	te								
					-	ioris nei	Y mg - m	den (m.)								
		TRND	₽				TRND		_	TRND	Α			TRND	<u> </u>	
		TRND	TRND-S014				TRND-S015			TRND-SO15	\$015		,	TRND-S015	3015	•
		NA-TRND-SO14-01	-8014-01			NA-	NA-TRND-SO15-61	10 -		NA-TRND-SO15-02	SO15-02		NA-7	NA-TRND-SOIS-12 Dup of NA-TRND-SOIS-02	-12 Dup (SO15-02	
		15-MAR-98	LR-98			-	15-MAR-98			15-MAR-98	8-98			15-MAR-98	86-3	
Parameter		0-3	8	:			63			3-12			·	3-17		
OLM03.2 - Pesticides and PCBs (ug/kg)	kg)															
4,4'-DDD	ND	(03	0.310	(E)	Q		0.230)[1]	ND	(0.290	0)[1]	=	S	00300		[1]
4,4'-DDE	73.0	(0.3	0.310	[1]	4.00		0.230)[1]	0.730	0.290		<u></u>	0.860 J	<u> </u>		Ξ
4,4'-DDT	74.0	(03	0.310	. [1]	QN	Ħ	0.290)[<u>1</u>]	1.00	0.290	0)[1]		120	00300		[]
Aldrin	QN	003	0.310	[1]	QN		0.290)[1]	ΩN	(0.290			Q	0.300		[1]
Aroclor-1016	QN	0.3	0.310	[1]	Q		0.290)[1]	S Q	(0.290			Q	0300		[]]
Aroclor-1221	Q	003	0.310	[1]	S		0.290	[1]	Q Q	(0.290		11	Ð	0300		[1]
Aroclor-1232	Ð	; ()	0.310	[1]	2		0.230	Ξ(ON	(0.290	[1] (0	<u> </u>	Ð	0300		[1]
Aroclor-1242	QN Q	0)	0.310	[1]	S		(0.290	(11	Q	0.290		[]	N Q	00300		<u>(E)</u>
Aroctor-1248	Q	;0)	0310	[i]	Q.		0.290	<u>(II)</u>	QN	0.290	,	1]	Q	0300)[1]
Aroclor-1254	Q.	0)		[<u>[</u>]	ND		0.750	(1)	QN	0.290		1)	_	\smile		[]
Aroclor-1260	Ð	0)	0.310	[1]	Q.		0.230	(11)	28.0	J (0.290	, .	1]	35.0 J	U		(1)
Dieldrin	Ð	;;; ;	0.310	[1]	N		0.290	<u>(H</u>	QN	(0.290		17	QN	0300		[]
Endosulfan I	Ð	0	0.310	[1]	Ð		(0.290	[1]	Q	(0.290		1]	QN	0.300		<u>=</u>
Endosulfan II	Ω	0		[:](QN		0230)[<u>i</u>]	ND	(0.290		11	Q	0.300		[1]
Endosulfan sulfate	g	0	0.310	111	Q		0.230)[1]	Q.	0.290	,	1]	Ð	0300		Ξ
Endrin	Q	0)	0.310	[1]	Q		0.290	<u>[</u>]	Q.	(0.290	•	Ξ	ΩŽ	0.300		<u>(1</u>
Endrin aldehyde	S	0)	0.310	[1]	QN		0.230	[1](QN	(0.290		[]	QN Q	0.300		[1]
Endrin ketone	Ð	0.	0.310	E](Q		0.290	[1](QN	(0.290		Ξ.	R	0000		<u>=</u>
Heptachlor	Q.	0	0.310	[1]	Q.		0.230	<u>[](</u>	QN	0070		1]	Q	0000		<u>(E)</u>
Heptachlor epoxide	Q	0)	0.310	[1]	Q.		0.290)[<u>[</u>]	Q.	(0.290		(E)	Q	0300		Ξ(
Methoxychlor	Ð	m (0;	0.310	(1]	Ð	n	0230	(11	Q	0230	•	Ξ	Q	0.300		[1]
Toxaphene	Ð	0	0.310	(11)	Ð		(0.290	(11)	Q N	(0.290	,	Ξ	QN	0.300		(1)
alpha-BHC	QN	0)	0.310)[1]	Q		(0.290)[1]	Q.	0.290		[1]	Q.	0300		[]

						El ello							
						Location Id	<u> </u>						
						Sample Id	3						
						Log Date	te						
					Beg. Dep	Beg. Depth - End Depth (in.)	pth (in.)						
		TRND				TRND			TRND			TRND	
	•	TRND-SO14 NA-TRND-SO14-01)14)14-01		L NA-T	TRND-SO15 NA-TRND-SO15-01	<u> </u>		TRND-SO15 NA-TRND-SO15-02	2-02 2-02	r.4V	TRND-SO15	, i
			3		;							NA-TRND-S015-02	-02 -02
Parameter		15-MAK-98 0-3	8		=	15-MAR-98 0-3			15-MAR-98 3-12			15-MAR-98 3-12	
OI M03 2 - Destinition and DCBs nest (see first	(a)												
alpha-Chlordane		0310	III	Ş		0000	181	Ę	0000	3	!		
beta-BHC	S	0310		9 5			ΞΞ	2 9	0670)	[](Q	0.300) (E)
delta-BHC	9 5	0.510		2 5		0000	[1] (1)	2 (0670)		9	0.300	Ξ
comma_BHCA indone)	9 9	0.510	E	2 9		0670	T 10	Q Z	(0.290)[I]	Ş	0300)[1]
gainna-bric(Linuaire)	⊋ :	0.310	T-1	Q	_	0.230	(E)	2	0.230)[<u>1</u>]	N N	0300)[1]
gamina-Chordane	2	0310	Ξ	2	_	0.230	(1)	Q	0.290	(1)	QN	0300	(E)
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	/gu) spuno	/kg)											
1,2,4-Trichlorobenzene	ND CI	11 (62.0	(11)	Ð	5	(58.0	[E] (Ą	(58.0)[[]	Š	009)	7411
1,2-Dichlorobenzene	ND ON	Л (62.0)[1]	QN.	5	(58.0	(E)	N QN	(58.0	E (2	000	ΞΞ
1,3-Dichlorobenzene		V) [I]	QN QN	5	(58.0	(1)	<u>R</u>	(58.0	Ξ(2	000 - C	ΞŒ
1,4-Dichlorobenzene		J)[1]	ΩN	ħ	(58.0)[1]	QN	(58.0	<u> </u>	Q.	009	E E
2,2'-oxybis(1-chloropropane)		J)[1]	2	5	(58.0	(H)	N Q	(58.0	Ξ(Q.	000	Ξ.
2,4,5-Trichlorophenol		U)[1]	Q	ħ	(58.0	<u>[i]</u> (QN	0.88)	(1)	NO ON	0.09	E (
2,4,6-I richlorophenol		<u> </u>	[](2	5	(58.0	(11)	QN	(58.0)[1]	ND	0.00	Ξ
z,4-Dichiorophenol		<u> </u>	E :	Q	5	. 58.0)[1]	Q.	(58.0)[1]	QN	0.09)	(E) (
2,4-Dunemyiphenol		<u> </u>	Ξ.	2 :) }	58.0	Ξ	N Q	(58.0	[1]	Ą	0'09)	<u>E</u>
z,4-Dunuopnenoi		٠ .		Q Z	5	28.0	<u>(</u>	Ð	(58.0)[1]	N Q	0.09))[1]
		_	(1)	Ð	5	(58.0	[1]	Q	(58.0) [I]	QN	0.09)	Ξ
		_	(I)	S	5	28.0)[1]	QN	0'85))[1]	Q	0'09)	Ξ
2-Chloronaphthalene		_	(1)	Q.	3	. 58.0)[1]	ND	(58.0)[1]	N Q	0'09)	<u> </u>
2-Chlorophenol		_	<u>[1]</u>	S	5	28.0)[1]	Q	(58.0)[E]	Q	0'09)	Ξ Ξ
2-Methylnaphthalene		~	<u>(1</u>	Ð	B	(58.0)[1]	Ω	(58.0)[1]	N Q N	0'09)	E (
2-Nitroaniline	ED ON	J (62.0	(11)	£	'n	(58.0	[1]	S S	0'85))[1]	ND	0.00	E (

Compiled: 07/01

Not Detected NA = Not Applicable 0 = Detection Limit [] = Dilution Factor N

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id Location Id	-						
							Sample Id	: To						
							Log Date	e .						
					-	eg. Del	Beg. Depth - End Depth (in.)	pth (in.)						
			TRND				TRND			TRND			TRND	
		*	TRND-S014			<u>.</u>	TRND-SO15			TRND-SO15			TRND-SO15	
		NA	NA-TRND-S014-01	01		N.	NA-TRND-S015-01	-01	Z	NA-TRND-SO15-02	02	NA-TR	NA-TRND-SO15-12 Dup of	p of
		-										Ż	NA-TRND-SO15-02	72
			15-MAR-98			_	15-MAR-98			15-MAR-98			15-MAR-98	
Parameter			6-3				0-3			3-12			3-12	
Of MO4 2 . Semi-Voletile Orosute Communits, cent. (199/kg)	mounds	Cont. (i	19/kg)											
2-Nitrophenol	Ð	5	(62.0)[1]	QN	n	(58.0	(1)	QN	(58.0	[i](N QN	0:09))[II]
3.3'-Dichlorobenzidine	QN	n	(62.0	<u>(E)</u> (Ş	B	(58.0)[1]	QN QN	(58.0)[1]	QN Q	0.09))[1]
3-Nitroaniline	S	n	(62.0)[1]	QN	n	(58.0)[1]	N Q	(58.0	[1](ND	0.09))[<u>[</u>]
4,6-Dinitro-2-methylphenol	Q	B	(62.0	[1](N Q	n	(58.0)[1]	QN QN	(58.0)[1]	QN	0.00))[1]
4-Bromophenyl-phenylether	Q	m	0.29))[1]	Q	3	0.86))[1]	ND ND	(58.0)[1]	QN QN	0.09	Œ
4-Chloro-3-methylphenol	S S	Ħ	(62.0	[1]	Ð	Ħ	(58.0)[1]	Q.	(58.0)[1]	Q.	0'09)	Ξ
4-Chloroaniline	Q.	n	(62.0	[1]	Ω	Ħ	(58.0)[]]	ND	(58.0)[1]	Q.	0.09	Ξ
4-Chlorophenyl-phenylether	QN QN	m	(62.0	[1]	Q	S	0.85))[1]	ND	(58.0)[1]	Q	0.00)	<u>(</u>
4-Nitroanaline	Ä	m	(62.0)[1]	QN QN	Ħ	(58.0)[1]	QN	(58.0)[1]	Q Q	0:09	Ξ
4-Nitrophenol	Q	Ħ	(62.0)[1]	Ð	m	(58.0)[1]	QN QN	(58.0)[1]	QN Q	0:09)	Ξ
Acenaphthene	QX	∄	(. 62.0	(11)	N O	ß	0.85)[1]	Q	(58.0)[1]	Q.	0.09)	Ξ
Acenaphthylene	Q	B	(62.0)[1]	QN	5	(58.0)[1]	NO ON	(58.0)[1]	N Q	0.09)	Ξ
Anthracene	Q	₽	(62.0)[1]	g	n	(58.0)[1]	Q.	(58.0)[1]	Q Q	0.09)	<u>E</u>
Benzo(a)antirracene	Q.	n	(62.0)[1]	ND ND	'n	(58.0)[1]	ΩN	(58.0)[1]	8	0.09	
Benzo(a)pyrene	QN	n	(16.0)[1]	N Q	Ħ	(15.0	Œ	S S	0.88)[1]	QN	(60.0	[<u>H</u>]
Benzo(b)fluoranthene	Q	Ħ	(62.0	(11)	Q	5	(58.0)[1]	Q.	(58.0) [H]	Q.	0.09)	Ξ
Benzo(g,h,i)perylene	N Q	Ħ	(62.0	(1)	Q.	n	(58.0)[1]	ND	(58.0) [<u>1</u>]	Ð	0.09	Ξ
Benzo(k)fluoranthene	<u>N</u>	n	(62.0)[1]	Q	Ħ	0.86)[1]	QN Q	(58.0)[1]	Q.	0'09)	Ξ
Butylbenzylphthalate	Ð	Б	(62.0)[1]	S	n	(58.0)[1]	QN	(58.0)[1]	NO ON	0'09)	Ξ
Carbazole	Ą	5	(62.0)[1]	2	n	0'85'))[1]	e E	(58.0)[1]	QN Q	0.09	Ξ
Chrysene	S	5	(62.0	(1)	2	≘	(58.0)[1]	Q	(58.0)[1]	QZ Q	0'09	Ē ;
Dibenz(a,h)anthracene	Q.	5	(62.0)[1]	S	5	(58.0	[1]	Q.	(58.0)[1]	Q	0.00)	Ξ
Dibenzofuran	g	n	(62.0)[1]	Ð	5	0.85	(11)	<u>R</u>	(28.0	<u>(I)</u>	Q	0:09)	[T] (

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id	PI.						
							Location Id	on Id						
							Sami	Sample Id					•	
							Log	Log Date						
						Beg. D	epth - Enc	Beg. Depth - End Depth (in.)						
			TRND							Í				
			TRND-SO14	4			TRND-SO15			TRND	g.		TRND	
		NA	NA-TRND-SO14-01	4-01		NA	NA-TRND-SO15-01	015-01		IRND-SOLS NA-TRND-SOLS-02	5-02	NA.	TRND-SO15 NA-TRND-SO15-12 Dup of	S Dup of
			15-MAR-98				15-MAR-98	86		15.MAD.08			NA-TRND-SO15-02	20-5
Parameter			6.3				6-3	!		3-12			15-MAK-98 3-12	_
OLMO3.2 - Semi-Volatile Organic Compounds, cont.	Compounds,		(ug/kg)											
Diethylphthalate	Q		(62.0)[1]	2	Ħ	(58.0	(11)	QN	(58.0)(13)	Ę	007	5
Dimethylphthalate	Q.	n	(62.0) [1]	N N	5	(58.0	(E) (ND	0.88.)	Ξ	2	000	
Fluoranthene	2	ii	(62.0) [II]	QN	n	(58.0)[1]	Q.	(58.0	Ξ	Ð	009	Ξ
Fluorene	Ê	Ħ	(62.0	Ξ(Ð	m	(58.0	(II)	Q	(58.0	Ξ(NO	0'09	ΞΞ
Hexachloro-1,3-butadiene	2	₽	(62.0)[1]	Ð	∄	(58.0	[1](QV Q	(58.0	(1)	QZ QZ	009	ΞΞ
Hexachlorobenzene	Q :	3	(62.0	<u>=</u>	g	5	(58.0	(E)	N Q	(58.0	(Ξ)	QN QN	(60.0	
Hexachiorocyclopentadiene	€ :	5	(62.0)[1]	æ	5	(58.0)[1]	QN	(58.0)[1]	N QN	000	Ξ
Hexachloroethane	2	3	(62.0) [<u>1</u>]	£	5	(58.0	(11)	Q	(58.0	[1](Q	0'09)	ΞΞ
Indeno(1,2,3-cd)pyrene	2	5	(62.0	Ξ	æ	∄	(58.0	EE) (QN	(58.0	<u>(1</u>	QN QN	0.09	Ξ
Isophorone	2	5	(62.0)[1]	Ð	3	(58.0)[1]	QN	(58.0)[1]	QN.	0'09)	Ξ
N-Nitroso-di-n-propylamine	2 !	5 :	62.0	[1]	윤	5	(58.0	[1]	QN O	(58.0	(E) (QN QN	0.09)	ΞΞ
North-telegranic	e g	3 5	(62.0	Ξ.	₽!	5	28.0	<u>(</u>	Q	(58.0	<u>(E)</u>	A Q	0.09)	Ξ
Naprinalcire Nitrohenzene	2 5	3 5	0.29	= 5	2 9	3 :	0.830	Ξ	QN	(58.0)[<u>[</u>]	Q	0'09)	[E] (
Pentachloronhenol	9 5	3 5	070	Ξ,	2 5	3 5	0.80	Ξ.	Q !	(58.0)[1]	ND	0'09)) [E]
Phenanthrana	9 9	3 =	000		2 9	3 :	0.80		2	(280	<u>=</u>	QN Q	0'09)	[][
Dhamal	2 5	3 5	0.20	Ξ.	2 !	3 .	280	(E)	Q	(58.0	[1]	Q.	0.09)[1]
Description	€ €	3 :	0.20	[<u>]</u>	2	5 :	28:0) <u>[I]</u>	Q.	(58.0	[]	N Q	0'09)	(E)
ryicae	₹ 5	3 :	0.29	[<u>-</u>]	2	5	(\$8.0)(<u>:</u>	Ð	(58.0	<u>[i]</u> (QN	0'09))[]
ois(2-Chloroethoxy)methane	2	3	0.20) <u>[1]</u>	2	3	(58.0)[1]	QN	(58.0	<u>E</u>](S	0.09	ΞΞ
bis(2-Chloroethyl)ether	2	5	(62.0)[1]	g	5	(58.0)[1]	Q	(58.0	[1]	Ą	0.09	E
bis(2-Ethylhexyl)phthalate	<u>96</u>	-	(62.0) <u>[ii]</u>	029	-,	0.880	(13)	88.0	(58.0)[1]	QX	009)	E
di-n-Butylphthalate	902	-	(62.0)[1]	170	-	0.88) [E]	2	0'88')	ΞΞ	460	99	3 5
di-n-Octylphthalate	Ą	Ħ	(62.0	(E)	Q	Ħ	(58.0	(11)	ND	(58.0	Ξ	QN	000	3 5
														7.17

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id Location Id	2								
							Sample 1d	Id								
						Beg. D	Beg. Depth - End Depth (in.)	epth (in.)								
			TRND				TRND				TRND				TRND	
		Ž	TRND-SO14	1 0		Ž	TRND-SO15 NA-TRND-SO15-01	5 5-01		Ž	TRND-SO15 NA-TRND-SO15-02	23	Ž	V-TRN	TRND-SO15 NA-TRND-SO15-12 Dup of	Jo dn
				ļ										Ä	NA-TRND-SO15-02	-02
			15-MAR-98				15-MAR-98				15-MAR-98				15-MAR-98	
Parameter			6-0 6-0				3				3-12				71-0	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds,	cont.	(ug/kg)													
o-Cresol	Q.	5	(62.0	(11)	S	B	(58.0	(E)	2		(58.0	<u>(1</u>	R		0.09)) <u>[1]</u>
p-Cresol	QN	5	(62.0)[1]	ND	m	(58.0)[1]	Q.		0:88)[1]	QN Q		0.00))[1]
SW8290 - Dioxins (ppt)																
1,2,3,4,6,7,8,9-OCDD	774		009:0)[1]	1090		00900)	(11)	158		0.000	(1)	137		(2.80) <u>[</u>
1,2,3,4,6,7,8,9-OCDF	63.4		005:0	(1]	136		0.500	(11)	11.5		0.400	(11)	10.1		(220)[<u>[</u>]
1,2,3,4,6,7,8-HpCDD	111		0.400	(11)	142		0.500	[](16.5		0.400)(11)	14.8		(1.50	Ξ
1,2,3,4,6,7,8-HpCDF	603		0.300	(11)	107		0.300	[1](9.90		0.300)[1]	8:00		0060	<u>(E)</u>
1,2,3,4,7,8,9-HpCDF	9.50		0.400	[1](13.9		0.400)[<u>[</u>]	0.900	-	0.400	Ξ	Q		071	Ξ
1,2,3,4,7;8-HxCDD	4.10	-	0.500)[1]	8.50		0.500	[1]	0.640	-	0.400	<u>=</u>	2.00	ь,	0.100	Ξ
1,2,3,4,7,8-HxCDF	23.4		0.300	Ξ	8.68		0.300	Ξ,	4. 6. 8		0.200	ΞΞ	07.4 CM	-	0.000	<u> </u>
1,2,3,6,7,8-HxCDD	£ 5		0.400		15.5		0.400	E E	R: 5	-	0.300	ΞΞ.	1.63 1.63	-	0.500	E (
1,2,3,7,7,8-HxCDD	13.5		0.400	E Œ	200		0.400	ΞΞ	4.80	-	(0.300	ΞΞ	4.00	-	0.800	E)(
1,2,3,7,8,9-HxCDF	1.60	-	0.400)[i]	2.60	-	0.400	[1]	ND		00:300	(11)	Q		002:0)[1]
1,2,3,7,8-PeCDD	3.00	-	0.300)[1]	6.10		0.300	[1]	1.20	_	0.300	EE) (1.20	_	0.500)[II]
1,2,3,7,8-PeCDF	3.80	-	0.200)[<u>1</u>]	17.1		0.200	(1)	1.40	_	0.200) <u>[i]</u>	1.30	-	0.400	Ξ
2,3,4,6,7,8-HxCDF	22.2		0.300)[1]	48.5		0300)[1]	2.50	-	0.300) <u>[i]</u>	250		0.700	Ξ
2,3,4,7,8-PeCDF	7.80		0.200)[<u>1</u>]	25.8		0.200) [1]	2.20	-	0.200) <u>[1]</u>	06:1	-	0.400	Œ
2,3,7,8-TCDD	0.500	-	0070	(11)	1.20		0.200	[1]	0.200	-	0.200)E)	<u>Q</u>		0.300	Ξ
2,3,7,8-TCDF	2.90		(1.40) <u>[i]</u>	14.6		0 1.40)[1]	1.40		0.300	[1](1.20		0.300	Ξ
Total HpCDD	201		0.400	[1]	230		0.500) [H]	34.4		0.400	<u>[i]</u>	31.9		(1.50	Ξ;
Total HpCDF	123		0.300	(11)	201		0.400	(1)	16.9		0.400	<u>(E)</u>	132		001	E

					Site Id Location Id Sample Id Log Date	_ Id ate						
				F	Beg. Depth - End Depth (in.)	Pepth (in.)						
		TRND TRND-SO14	-		TRND TRND-S015	w		TRND	u		TRND	
		NA-TRND-SO14-01	14-01		NA-TRND-S015-01	2-01		NA-TRND-SO15-02	15-02	Z	NA-TRND-SO15-12 Dup of	Dup of
		15-MAR-98	∽		15-MAR-98			15-MAR-98	_		NA-TRND-SO15-02 15-MAR-98	15-02
Parameter		0-3			0-3			3-12			3-12	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	100	0.400	<u>m</u> (202	0.400	EE (25.9	0.300)[[]	23.3	0060	183
Total HxCDF	134	0.300	(1)	320	0.300	<u>[I]</u> (20.0	0.300	Ξ	17.8	0000	E E
Total PeCDD	39.6	0:300	(1)	125	0300)[<u>[</u>]	5.60	0300)[1]	4.50	00500	ΞΞ
Total PeCDF	100	0.200	(1)	370	0.200)[1]	24.7	0.200	1111	24.8	0.0400	E
Total TCDD	29.3	0.200)[1]	126	0.200)[1]	7.90	0700	E C	05.9	0000)	3 5
Total TCDF	26.7	00100)[1]	331	0.100	(E) (28.2	(0.100	ΞΞ	29.5	(0.200	

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

**************************************							Site Id									
							Location Id									
							Sample Id									
							Log Date									
						Beg. Det	Beg. Depth - End Depth (in.)	th (in.)								
		H	TRND				TRND			ŗ.	TRND			• .	TRND	
		TRI NA-TR	TRND-SO16	=		Ţ Ľ-¥Z	TRND-SO17 NA-TRND-SO17-01	74		TR NA-TR	TRND-SO18 NA-TRND-SO18-01	-		AT. ATAN	TRND-SO19 NA-TRND-SO19-01	_
		15-N	15-MAR-98	.			17-MAR-98	:		17-	17-MAR-98	í		17.	17-MAR-98	
Parameter		-	0-3				0-3				0-3				6-3	
OLM03.2 - Pesticides and PCBs (ug/kg)	ıg/kg)															
4,4'-DDD	N Q	Ĵ	0.300	<u>(E)</u>	Q		0.240)[1]	2	<u> </u>	0.270)[I]	Q)	0.280	Ξ
4,4'-DDE	1.70	Ĵ	0.300)[I]	Ø		0.240	(1)	1.10	<u> </u>	0.270)[1]	25.0	_	0.280	Ξ
4,4'-DDT	N	ٽ	0.300	[1]	0.840	-	0.240	<u>[I]</u>	2.20)	0.270	[1]	17.0	·	0.280	Ξ
Aldrin	Q	٦	0.300)[1]	Ð		0.240	<u>(E)</u>	£		0.270) <u>[]]</u>	2	~	0.280	Ξ
Aroclor-1016	QN	J	0.300)[i]	2		0.240	(1)	Q.	Ŭ	0.270	[<u>E]</u> (Q	_	0.280	Ξ
Aroclor-1221	Ð	٦	0.300)[1]	9		0.240	(11)	Q	<u> </u>	0.270)[1]	2	_	0.280	Ξ
Aroclor-1232	N Q	٦	0.300)[1]	Q.		0.240) <u>E</u>	Q	Ù	0.270)[1]	S	_	0.280	Œ
Aroclor-1242	QN	_	0.300	(11)	S		0.240	<u>(11</u>	Q.)	0.270)[1]	2	<u> </u>	0.280	Ξ
Aroclor-1248	Q.	<u> </u>	0.300	(11)	Q		0.240)[i]	Ð)	0.270)(II)	S)	0.280	<u>=</u>
Aroclor-1254	Ð	<u> </u>	0.300)[1]	Ð		0.240	[1]	S)	0.270) <u>[</u>]	S	~	0.280)[1]
Aroclor-1260	Ð	_	0.300)[1]	Q		0.240	Ξ(Q.)	0.270)[1]	S	~	0.280	Ξ
Dieldrin	<u>N</u>	_	0.300)[<u>ii]</u>	Ð	-	0.240	Ξ(QN)	0.270	<u>(II)</u>	S	_	0.280	Ξ
Endosulfan I	Ð	Ÿ	0.300	[1]	9		0.240	(Ξ)	Q.	<u> </u>	0.270	<u>[1]</u> (Ð	_	0.280	Ξ
Endosulfan II	Ä	<u> </u>	0.300	<u>[i]</u> (QN QN		0.240	<u>=</u>	Q)	0.270)[<u>[</u>]	g	_	0.280	Ξ
Endosulfan sulfate	Ð.	•	0.300)[1]	Q		0.240)[1]	QN	<u> </u>	0.270)[1]	2	~	0.280	Ξ
Endrin	QN	_	0.300)[1]	Q.		0.240	Ξ	Q	~	0.270) <u>[</u>]	2	_	0.280	Ξ
Endrin aldehyde	QN	Ų	0.300	[1](Ð		0.240	(13)	QN QN)	0.270	<u>(II</u>	Q Q	~	0.280	Ξ
Endrin ketone	ON	\cup	0.300)[I]	Q		0.240)[1]	g	`	0.270) [1]	2	~	0.280	Ξ
Heptachlor	QN	$\overline{}$	0.300	[1]	QN QN		0.240	(11	2)	0.270) <u>[1]</u>	Q	_	0.280)[]
Heptachlor epoxide	QN	~	0.300	[1](N		0.240)[1]	2	<u> </u>	0.270)[1]	Q	_	0.280) [<u>1</u>]
Methoxychlor	ND	'n	0.300	(1)	Q	m	0.240	[1]	Ð	5	0.270)[1]	Ð	5	0.280	Ξ
Toxaphene	Ð	<u> </u>	0.300	(11)	Q		0.240	<u>[i]</u>	Q	<u> </u>	0.270) <u>[1]</u>	2		0.280	Ξ
alpha-BHC	QN QN	<u> </u>	0.300	[1](Q		(0.240)[1]	<u>R</u>	•	0.270	<u>E</u>	Q.	_	0.280	Ξ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site 14							
					I ocation Id	. 2						
					Sample Id	12						
					Log Date	ate						
				B	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND			TRND			TRND			ON OF	
		TRND-SO16	9		TRND-SO17	7		TRND-SO18	-		TRND-SO19	_
		15-MAR-98			17-MAR-98	TO-		NA-TRND-SO18-01 17-MAR-98	2-01		NA-TRND-SO19-01	Ŧ
Parameter		0-3			0-3			0-3			1/-MAK-98	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	it. (ug/kg)								,			
aipha-Chlordane	Q	0.300	(11)	QN	0.240)[[]	Q	0.220	1111	Ğ	9000	
beta-BHC	N Q	0.300)[1]	Q	(0.240	Ξ(QX	(0.270	Z	9 5	0070	Ξ,
delta-BHC	ND	0.300)[1]	QN	0.240	[1]	QN	(0.270		9 5	0970	Ξ Ξ
gamma-BHC(Lindane)	Q.	0300	(E) (QN QN	0.240	(1)	QN	(0.270	E)(9 5	0070	E 5
gamma-Chlordane	Q	0300	<u>(11)</u>	QN Q	0.240	(1)	N Q	0.270	ΞΞ	2	0.780	E E
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	/an) spunoduo	(kg)										
1,2,4-Trichlorobenzene	QN	(61.0)[1]	QN QN	(48.0)[[]	Š	0 85 7	101	ğ	0,00	į
1,2-Dichlorobenzene	Q	(61.0	[1]	QX	(48.0	EI (Ę) ()	ΞΞ	<u> </u>	0.00	Ξ
1,3-Dichlorobenzene	Ð	(61.0	(E)	Q.	(48.0	E (E	9	540	ΞΞ	2 2	0.00	Ξ
1,4-Dichlorobenzene	QN	(61.0	(1)	ND QN	(48.0	(E) (QN	(54.0	E	£	0.96	ΞΞ
2,2'-oxybis(1-chloropropane)	2	(61.0	[1]	NO	(48.0	(III)	QN) 54.0	E (E)	2	260	ΞΞ
2,4,5-Trichlorophenol	Q !	(61.0	<u>[i]</u>	Q.	(48.0	[1]	Q.	6.54.0	Ξ	QN QN	(56.0	ΞΞ
2,4,0-1 fichiorophenol	9 1	(61.0	Ξ	QN :	(48.0	[1](Ω	(54.0	[1]	ND	(56.0	ΞΞ
2.4-Dimethilahami	2 9	(61.0	[<u>[</u>]	<u>Q</u> !	(48.0)[1]	Q Q	(54.0)[1]	N QN	(56.0	Ξ
2,4-Dinimappenoi	2 ((61.0 (61.0	Ξ.	2 !	(48.0)[1]	QN Q	(54.0)[1]	Q.	(56.0	Ξ
2.4-Dunicophenol	2 :	0.10	Ξí	2	(48.0) <u>[1]</u>	N Q	(54.0) [E]	Ð	0.98	Ξ(
2,4-Unitrotoluene	Q !	(61.0	[1]	Q	(48.0)[1]	S	(54.0)[1]	Q	(56.0	Ξ
2,6-Dinitrotoluene	Q .	(61.0	<u>(E</u>	<u>Q</u>	(48.0) <u>[ii]</u>	ND	(54.0)(1]	Q.	26.0	E (
2-Chloronaphthalene	S	(61.0)(II)	N Q	(48.0) [1]	Ð	6 54.0	(11)	Š	(56.0	
2-Chlorophenol	e E	(61.0	<u>[I]</u>	2	(48.0) <u>[]</u>	Q.	. 54.0)[1]	QN	(56.0	Ξ
2-Methyinaphthalene	Q.	019)) <u>[1]</u>	ND	(48.0)[1]	QN QN	54.0	[1]	QX	095	3 5
2-Nitroaniline	ND	(61.0)[1]	ND	(48.0)[1]	ND	54.0	<u>=</u>	2	26.0	ΞΞ
											•	

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	2						
					Sample Id	2						
					Log Date	ite						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)			-			
		TRND			TRND			TRND			TRND	
		TRND-SO16	10.1		TRND-SO17			TRND-SO18		•	TRND-SO19	5
		NA-TKND-SO16-01 15-MAR-98	Ę.	-	NA-1 KND-SOI 7-91 17-MAR-98	10-/		NA-1KND-5018-01 17-MAR-98	.	-	NA-1 KND-5019-01 17-MAR-98	Ę
Parameter		0-3			0-3			0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, con	t. (ug/kg)										
2-Nitrophenol	QN	0.19)	(11)	QN	(48.0)[1]	ND	(54.0	(1)	Q.	(56.0	(11)
3,3'-Dichlorobenzidine	S	0.19))[1]	ND	(48.0) [1]	N O	(54.0)[1]	QN Q	(\$6.0) [II]
3-Nitroaniline	QN	(61.0)[1]	S. C.	(48.0	[1]	N Q	6 540	[1]	QN	(56.0	(11
4,6-Dinitro-2-methylphenol	Q	(61.0)[1]	QN QN	(48.0	(E)	QN	(54.0)[1]	QN	(56.0)[1]
4-Bromophenyl-phenylether	QN	(61.0)[1]	N QN	(48.0	[E] (Q	(54.0) [1]	Q.	(56.0	(1)
4-Chloro-3-methylphenol	Q.	(61.0)[1]	N Q	(48.0)[1]	QN	(54.0	[]]	QN	(56.0	(11)
4-Chloroaniline	Q.	(61.0)[1]	ND QN	(48.0)[1]	NO ON	(54.0)[1]	QN Q	(56.0	[1]
4-Chlorophenyl-phenylether	Q.	(.61.0	(1)	ND	(48.0	(11)	Q.	(54.0)[1]	ΩN	(56.0	[1]
4-Nitroanaline	N Q	019))[1]	ND	(48.0)[1]	ND	54. 0	(11)	QN	(56.0	([]
4-Nitrophenol	QN QN	019))[1]	QN	(48.0	(11)	QN	6.54.0)[1]	QN	(56.0	(1)
Acenaphthene	QN	(61.0)[1]	QN	(48.0)[1]	QN	54.0)[1]	QN	(56.0)[1]
Acenaphthylene	ΩN	(61.0)[1]	QN	(48.0	[<u>E</u>](QN Q	6 54.0)[1]	Q.	(56.0	<u>[]</u> (
Anthracene	QN	(.61.0) [1]	Q.	(48.0	<u>=</u>	QN O	· 54.0)[1]	8	(56.0	Ξ
Benzo(a)anthracene	S	(61.0)[1]	S	(48.0)[<u>1</u>]	Q	(54.0)[1]	Q.	(56.0	<u>(II)</u>
Benzo(a)pyrene	QN Q	(61.0)[1]	ND Q	(48.0	(3)	76.0	(54.0) [11]	NO NO	(56.0	[1]
Benzo(b)fluoranthene	Q.	019))[1]	ΩΩ	(48.0	(1]	83.0	(54.0)[1]	QN QN	(56.0)[1]
Benzo(g,h,i)perylene	QN	(61.0)[1]	ND	(48.0	(1)	QN Q	(54.0)[1]	QN	(56.0	Ξ
Benzo(k)fluoranthene	NO	(61.0)[1]	ΩN	(48.0	(1]	S S	54.0)[1]	N Q	(56.0	<u>(II)</u>
Butylbenzylphthalate	0.69	(61.0)[1]	ND	(48.0	(1)	S	(54.0) [1]	Q.	(56.0	<u>(</u>
Carbazole	QN	(61.0)[1]	QN	(48.0	<u>(E</u>	<u>R</u>	(54.0)[1]	ND	(56.0	[1]
Chrysene	NO	(61.0)[1]	ND QX	(48.0)[1]	70.0	(54.0	(11)	Q.	0.98)[1]
Dibenz(a,h)anthracene	Q	(61.0)[1]	NO OX	(48.0)[1]	Q.	(54.0	(II)	ΩN	0.96.0	(11)
Dibenzofuran	S.	(61.0	<u>[i]</u> (Q	(48.0	[1]	QN	(54.0	<u>[i]</u> (Ð	0.98	<u>[i]</u> (

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	, Tel.						
					Location 1d	P :						
•					Sample 1d Log Date	s Id ate						
				Beg	Beg. Depth - End Depth (in.)	Depth (in.)						
		TRND			TRND			TRND			TRND	
		TRND-SO16	9		TRND-SO17	17		TRND-SO18	ac		TRND-S019	•
		NA-TRND-SO16-01 15-MAR-98	6-01		NA-TRND-SO17-01 17-MAR-98	17-01 }		NA-TRND-SO18-01 17-MAR-98	8-01		NA-TRND-SO19-01 17-MAR-98	9-0 1
Parameter		0-3			0-3			0-3			0-3	
Ol MO3 2 . Somi. Volotile Oraquie Campounde cont (nelles)	Commonade	(malka)										
Diethylphthalate	ND ND	019)	(1)	Ð	(48.0)[1]	Ð	54.0	[1](S	098)	Ш
Dimethylphthalate	QN	(61.0	Ξ(QN	(48.0	Ξ(QN	(54.0	ΞΞ	2	(56.0	ΞΞ
Fluoranthene	Q.	019)	(1)	QN	(48.0	(1)	0.66	(54.0	Ξ	QN	(56.0	Ξ
Fluorene	QN Q	0.19)	[1](N Q	(48.0)[1]	QN	. (54.0	(E) (ND	(56.0	Ξ
Hexachloro-1,3-butadiene	QN O	(61.0	(1)	ND	(48.0)[1]	S.	6 54.0	(1)	QN	(56.0	Ξ
Hexachlorobenzene	ND O	(61.0) <u>[</u>]	N Q	(48.0	(<u>[</u>]	N	54 .0	[<u>E]</u> (QN	(56.0)(E)
Hexachlorocyclopentadiene	Q	. (61.0	<u>(I)</u>	QN .	(48.0	[1]	Q	. 54 .0	[<u>H</u>](QN ON	(56.0	(E) (
Hexachloroethane	Q.	(61.0	Ξ(QN QN	(48.0	[1]	QN	(54.0)[1]	Q.	(56.0	[I] <
Indeno(1,2,3-cd)pyrene	2	019)	[I](Ñ.	(48.0	E)(Q.	(54.0	(11)	N O	(56.0) [E]
Isophorone	Q	019))[1]	Q	(48.0	[]]	QN	(54.0	[:](N Q	(56.0)[1]
N-Nitroso-di-n-propylamine	8	019)	[]]	Q	(48.0	(11)	QN	(54.0	[1]	Q.	(56.0	(E)
N-Nitrosodiphenylamine	8	019))[1]	S O	(48.0	[](ND	(54.0	[1]	S	(56.0)[1]
Naphthalene	Q	(61.0)[1]	Q Z	(48.0	<u> </u>	QN Q	(54.0	[1]	S	(56.0)[<u>H</u>
Nitrobenzene	g	(61.0	[]	2	(48.0	[](QN ON	(54.0	[1]	ND	0'95))[1]
Pentachlorophenoi	Q	(61.0)[1]	Q	(48.0)[1]	ΩN	6.54.0	(1)	ND	(56.0	<u>=</u>
Phenanthrene	Ð	(61.0	Ξ(<u>Q</u>	(48.0	<u>[E]</u>	Q.	. 54.0	(1)	Q	(56.0)[1]
Phenol	Q.	(61.0) [<u>1</u>]	Q.	(48.0	<u>(</u>	Q.	(54.0	[<u>n</u>](Q	(56.0)[1]
Pyrene	Q S	(61.0) [E]	Q.	(48.0) <u>[1]</u>	110	(54.0	[1]	Q	(56.0	(1)
bis(2-Chloroethoxy)methane	Q	0.19	<u>(E</u>	Ω	(48.0	[1]	Q	(54.0	[I](QN QN	0.98))[1]
bis(2-Chloroethyl)ether	QN	0.19))[1]	QN	(48.0)[1]	S	(54.0	(11)	ΩN	(56.0	(E)
bis(2-Ethylhexyl)phthalate	330	0.19)	[<u>[</u>]	0.99	(48.0	<u>=</u>	240	(54.0	<u>(II)</u>	110	0.98	Ξ(
di-n-Butylphthalate	0.09	019)	(1)	NO ON	(48.0) <u>[1]</u>	044	(54.0	(11)	0.69	(56.0)[1]
di-n-Octylphthalate	QN	(61.0)[1]	Q	(48.0	(1)	Q	(54.0	(1)	Q.	0.95)	(E)

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Ä	Site Id Location Id Sample Id Log Date Log Depth - End Depth (in.)	id n Id e Id Date Depth (in.)							
	Z	TRND TRND-SO16 NA-TRND-SO16-01 15-MAR-98	Ħ		TRND TRND-SO17 NA-TRND-SO17-01 17-MAR-98	117 117-01 18		T TRN TRN NA-TRN	TRND TRND-SO18 NA-TRND-SO18-01 17-MAR-98			TRND TRND-SO19 NA-TRND-SO19-01 17-MAR-98	10-1
Parameter		0-3			0-3				0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, cont.	, (ug/kg)											
o-Cresol	Q	(61.0)[1]	QN	(48.0)[1]	Q.	: :		Ξ:	2 !	(56.0	Ξ,
p-Cresol	QN .	(61.0)[1]	g	(48.0	[1](Q	÷	54.0	(I)	£	. 26.U	[1](
SW8290 - Dioxins (ppt)													
1,2,3,4,6,7,8,9-0CDD	289	(1.40) <u>[II]</u>	349	(2.80)[1]	21.1	-	1.10	EE)	756	(2.00	[<u>]</u>
1,2,3,4,6,7,8,9-OCDF	110	(1.10)[1]	52.6	(220)[1]	73.2	J	006'0	[1]	75.1	09:1	Ξ
1,2,3,4,6,7,8-HpCDD	163	(1.00	(11)	67.2	(1.50)[1]	89.2	J	0.800	<u>(i)</u>	121	(1.30	Ξ:
1,2,3,4,6,7,8-HpCDF	163	009'0))[1]	48.7	008'0))[1]	58.3	<u> </u>	0.500	[1]	67.1	0060	Ξ,
1,2,3,4,7,8,9-HpCDF	22.1	008:0)[<u>1</u>]	7.40	(1.10)[1]	11.3	J	0.600	(1)	13.2	01.10	Ξ,
1,2,3,4,7,8-HxCDD	12.6	0060)	<u>[E]</u> (4.80	J (120	(11)	4.50	<u> </u>	0.700	Ξ	0.10	(1.10	Ξ,
1,2,3,4,7,8-HxCDF	97.4	0.500)[1]	14.4	00200	(1)	34.1	Ĵ.	0.400	<u>=</u>	37.1	00900)	ΞΞ
1,2,3,6,7,8-HxCDD	21.1	0.700	Ξ.	7.60	(1.00		8.40	<u>ت</u> :	0.500	E S	10.3	0.800	ΞΞ.
1,2,3,6,7,8-HxCDF	37.7	0.400	<u>[</u>](520 136	0000) 1 (1,00	E)(12.2	ر -	0090	E (17.5	0000) 1	ΞΞ
1.2.3.7.8.9-HxCDF	4.50 J	009'0	E (E)	QN	0.800		2.50	. Ĵ	0.500	E)(2.20	J (0.700	(1)
1,2,3,7,8-PeCDD	9.60	0.400	(11)	3.60	J (0.500)[1]	3.50) [0.400	(11	4.10) (0.600	[[]
1,2,3,7,8-PeCDF	20.4	0.300	[1]	2:00	0.400)[1]	9.70	Ū	0300) <u>[</u>]	9.70	0.400	Ξ:
2,3,4,6,7,8-HxCDF	70.8	0.500)[I]	9.40	00.200		21.2	Ū	0.400	[]	22.6	0090	Ξ.
2,3,4,7,8-PeCDF	33.4	0.300	<u>[1]</u> (06'9	0.400		10.0	•	0.300	<u>=</u>	9.60	0.400	Ξ.
2,3,7,8-TCDD	1.70	0.200)[1]	0.610	л (0.300		0.620		0.200)[I]	0.740) (0300	Ξ :
2,3,7,8-TCDF	13.3	01.1)[1]	420	006:0	, ,	6.30	<u> </u>	1.20	[1]	7.10	01.10	Ξ;
Total HpCDD	333	(1.00)[1]	14 1	(1.50	, ,	177	<u> </u>	0.800)[<u>1</u>]	240	(1.30	Ξ;
Total HpCDF	273	00200	(E)	83.4	0.000	(<u>[1]</u>	<u>5</u>	~	0.500	<u> </u>	137	0.1	fr 1 (

Parameter SW8290 - Dioxins, cont. (ppt) Total HxCDD Total HxCDF	350 485	TRND TRND-SO16 NA-TRND-SO16-01 15-MAR-98 0-3 (0.700)	16-01 16-01 8 (11) (11) (11)		Site Id	d a ld a ld bate Depth (in.) 17-01 8 (1) (1) (1)	125	TRND TRND-SO18 NA-TRND-SO18-01 17-MAR-98 0-3 (0.600)	8 8-01 (11)	143	TRND TRND-SO19 NA-TRND-SO19-01 17-MAR-98 0-3 (0.900)	9 01 (E1) (
Total PeCDF	929 230	0300	ΞΞ(87.8	0.400	<u>=</u> =	58.6	(0.400	ΞΞ	66.0 122	(0.600	E (
Total TCDD Total TCDF	95 4	(0.200	E E	40.5	(0.300	E) (39.8	(0.200	E E	41.1	0300	ΞΞ
			2	}	Andrew)	7[4]	200	(U.Z.W	<u>[1]</u>	87.8	0.200	Ξ(

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

					-	Site Id									
					•	Sample Id									
				ш	eg. Depth	Beg. Depth - End Depth (in.)	h (in.)								
		TRND				TRND				TRND			TRND	8	
	z	TRND-SO20 NA-TRND-SO20-01	:0 :0-01		TR NA-TR	TRND-SO21 NA-TRND-SO21-01	=		T-AN	TRND-SO21 NA-TRND-SO21-02	A 1		TRND-SO22 NA-TRND-SO22-01	S022 -S022-01	
Parameter		16-MAR-98 0-3	~		16-1	16-MAR-98 0-3			. 16	16-MAR-98 3-12			16-MAR-98 0-3	R-98	
OLM03.2 - Pesticides and PCBs (ug/kg)	_														
4,4'-DDD	ND QN	0.310	(1)	9.70	J	0.260	(E] (6.20	_	0.270	[1]	Ð.	(0220	50)[1]	=
4,4'-DDE	Q.	(0.310	(1)	160	¥	2.60	(10)	069	Ŭ	2.70	[10]	10.0	(0.250	(1) (0)	=
4,4'-DDT	N Q	0310	(1)	430	<u> </u>	2.60)[10]	300	Ŭ	2.70)[10]	17.0	J (0250	50)[1]	_
Aldrin	QN Qu	(0.310)[1]	ND)	0.260	[1]	Q	Ĭ	0.270	(1)	QN	0220	20)[1]	_
Aroclor-1016	N Q	0.310	(1)	Q.	J	0.260)[1]	QN	Ĭ	0.270	(11)	QN	(0.250	20)[1]	_
Aroclor-1221	QQ.	(0.310)[1]	ND	\cup	0.260	[1]	Q	Ĭ	0.270	(11)	Q.	(0.250	20)[1]	=
Aroclor-1232	ND	0.310)[1]	ND	J	0.260)[1]	QV	Ĭ	0.270)[1]	Q.	(0220		=
Aroclor-1242	Ð	(0.310)[1]	Q	J	0.260)[1]	ND	•	0.270	[1]	Q	(0220		[]
Aroclor-1248	Q.	(0.310)[1]	ND	J	0.260)[1]	2	•	0.270)[i]	Ð	(0250		
Aroclor-1254	N Q	(0.310)[1]	ND	<u> </u>	0.260)[1]	Q	•	0.270)[1]	Q	(0.250		Ξ
Aroclor-1260	S	0.310)[1]	QN	V	0.260)[1]	S	•	0.270)[i]	Q.	0.250		=
Dieldrin	S	0.310)[1]	8)	0.260)[1]	Q.	J	0.270	[1]	Ð	0.250		Ξ
Endosulfan I	Q.	0.310)[1]	8	\	0.260)[1]	Q.	Ĭ	0.270)[1]	QN	(0.250	,	=
Endosulfan II	Q.	0.310)[1]	ΩŽ	\	0.260	(11)	9	Ĭ	0.270)[1]	Q.	(0.250		=
Endosulfan sulfate	N	(0.310)[1]	Q.	<u> </u>	0.260)[<u>:</u>]	Q	Ĭ	0.270	(11)	R	(0250		Ξ
Endrin	QN	(0.310)[1]	N N	J	0.260)[i]	Q	Ĭ	0.270	(11)	Q.	(0.250		<u>-</u>
Endrin aldehyde	QN Q	(0.310)[1]	æ	`	0.260	Ξ(S	Ĭ	0.270	[1]	NO	(0250	50)[1]	_
Endrin ketone	QN Q	(0.310) [1]	QN)	0.260	[1]	N N	Ĭ	0.270	<u>(II)</u>	Q.	(0.250	50)[1]	<u>-</u>
Heptachlor	QN Q	(0.310)[1]	QN)	0.260	[1]	Q	Ĭ	0.270)[1]	Q	(0.250		
Heptachlor epoxide	Ω	(0.310)[1]	ND)	0.260)[1]	S	Ť	0.270	<u>[1]</u> (Q	(0.250		1]
Methoxychlor	ND ON	Ÿ)[1]	Q.	'n	0.260)[1]	Q		0.270	[1]	QN	0.250		11
Toxaphene	QN	(0.310)[1]	Q.	<u> </u>	0.260)[I]	Q	Ī	0.270)[1]	Q	0.250	50)[1]	11
alpha-BHC	N Q	(0.310)[1]	Q.	Û	0.260)[1]	S	_	0.270	[1]	9	(0.250	50)[1]	1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Beg	Site Id Location Id Sample Id Log Date Beg. Depth • End Depth (in.)	d d te pth (in.)						
	X	TRND TRND-SO20 NA-TRND-SO20-01 16-MAR-98	-01	z	TRND TRND-SO21 NA-TRND-SO21-01 16-MAR-98	-01	-	TRND-SO21 TRND-SO21 NA-TRND-SO21-02 16-MAR-98	77	<i>6</i> -4	TRND TRND-SO22 NA-TRND-SO22-01 16-MAR-98	10
Parameter		2			0-3			3-12			Ž.	
OLAMOS. 4 - FESTICIDES and FCDS, CORF. (1987/18) alpha-Chlordane ND	ON ON	(0.310)[1]	Ð	(0.260)[[]	9	(0.270	III	Ę	0.250	E
beta-BHC	QN	(0.310	Ξ	ND	(0.260	E (S	0.270	ΞΞ	Q	0220	Ξ
delta-BHC	ND QN	0.310)[1]	ND	0.260)[1]	Q	0.270	(E)	ND	0.250	ΞΞ
gamma-BHC(Lindane)	ND	0.310)[1]	ND CIN	0.260)[1]	QN	0.270)[1]	ND	0.250)[1]
gamma-Chlordane	N	0.310	(11)	Q	0.260)[1]	ND	0.270	(11)	N Q	0220)[1]
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	spounds (ug/kg	3							٠			
1,2,4-Trichlorobenzene	NO ON	(62.0)[1]	S Q	(52.0)[1]	Q	(55.0	(1)	Q.	0:05))[1]
1,2-Dichlorobenzene	Ð	(62.0	(11)	N Q	(52.0)[1]	ND Q	(55.0)[1]	S S	(50.0)[1]
1,3-Dichlorobenzene	QX	(62.0)[1]	NO	(52.0)[1]	N Q	(55.0)[1]	Q.	0.05))[1]
1,4-Dichlorobenzene	Q	(62.0)[1]	ND ON	(52.0	[1](QN Q	(55.0)[1]	Q.	0.02))[1]
2,2'-oxybis(1-chloropropane)	Q Q	(62.0)[1]	QN	(52.0)[i]	Ð	(55.0	<u>(II)</u>	Q.	(50.0)[1]
2,4,5-Trichlorophenol	Q	(62.0	(E)	Q	(52.0	(1)	Ê	(55.0) <u>[1]</u>	Q Q	0.08)[]
2,4,6-Trichlorophenol	2 9	(62.0	E (2 9	(52.0	ΞΞ	2 2	(55.0	Ξ	2 9	2000	Ξ,
2.4-Dimethylphenol	e e	029	131	Ē	065)	EX	9 5	550	Ξ	2 5		E 5
2,4-Dinitrophenol		070	E)(2	(52.0) E)	2	(55.0	ΞΞ	2 2	9	ΞΞ
2,4-Dinitrotoluene	N QN	(62.0	(1)	QN QN	(52.0	E (Ð	(55.0	ΞΞ	£	2000	Ξ
2,6-Dinitrotoluene	N Q	(62.0)[1]	NO O	(52.0)[1]	Q	(55.0	(E) (ND	(50.0	Ξ
2-Chloronaphthalene	NO	(62.0)[1]	N Q	(52.0)[1]	QN	(55.0) [1]	ð	0.08)[<u>[</u>]
2-Chlorophenol	ND	(62.0)[1]]	S C	(52.0)[1]	QN	(55.0)[1]	Q.	6.50.0	Ξ
2-Methylnaphthalene	Q.	(62.0)[II]	Q.	(52.0)[1]	Q.	(55.0)(1]	Q.	(50.0	<u>(</u>
2-Nitroaniline	£	(62.0	[1]	2	(52.0	(11)	Ð	(55.0	(1)	Q	0.08)	(E)

0 = Detection Limit [] = Dilution Factor

Not Detected NA = Not Applicable

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Beg.	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	id id te ppth (in.)						
Parameter	Ž	TRND TRND-SO20 NA-TRND-SO20-01 16-MAR-98 0-3	-01	-	TRND TRND-SO21 NA-TRND-SO21-01 16-MAR-98 0-3	10-1		TRND TRND-SO21 NA-TRND-SO21-02 16-MAR-98 3-12	-02		TRND TRND-SO22 NA-TRND-SO22-01 16-MAR-98 0-3	
OIMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	mpounds, cont.	(ug/kg)									1	
2-Nitrophenol	Ð	(62.0)[1]	ND	(52.0)[1]	QN	(55.0	[1]	Q.	(50.0	EE (
3,3'-Dichlorobenzidine	ND	(62.0)[1]	QN	(52:0)[1]	Q Q	(55.0	(11)	2	50.0	Ξ
3-Nitroaniline	ND	(62.0)[1]	ND	(52.0	(11	Q	(55.0	<u> </u>	2	50.0	Ξ.
4,6-Dinitro-2-methylphenol	QN	(62.0)[1]	Ω	(52.0)[i]	Q Q	(55.0	Ξ	£	0.08	= ;
4-Bromophenyl-phenylether	N Q	(62.0) [<u>i</u>]	ND	(52.0)[1]	Q.	(55.0) [<u>1</u>]	Ð	(20.0)[<u>=</u>]
4-Chloro-3-methylphenol	N Q	(62.0)[1]	QN	(52.0 ·) [1] (ON	(55.0	(1)	Ð	0:00	Ξ
4-Chloroaniline	N N	(62.0)[1]	QN	(52.0)[1]	ND	(55.0)[1]	£	200	(Ξ)
4-Chlorophenyl-phenylether	Ð	(62.0	(11)	N Q	(52.0)[1]	Q	(55.0)[1]	Ð	(50.0	(11)
4-Nitroanaline	ND	(62.0)[1]	QN ON	(52.0)[1]	S	(55.0)[1]	Q	0.05) <u>[</u>
4-Nitrophenol	ΩN	(62.0)[1]	Q.	(52.0)[1]	Q	(55.0	<u>[i]</u> (R	(50.0	<u>;;;</u>
Acenaphthene	QN QN	(62.0)[1]	R	(52.0)[1]	QN	(55.0	[1]	Ø	6 50.0)[1]
Acenaphthylene	Q.	(62.0)[1]	ND	(52.0)[1]	QN Q	(55.0	[I]	Ð	0.08)[<u>i</u>]
Anthracene	N	0.29)[1]	QN	(52.0)[1]	QN	(55.0	<u> </u>	Q	(50.0	(E)
Benzo(a)anthracene	QN QN	(62.0	(1)	S	(52.0	<u>E</u>	Q	(55.0	(II)	Q.	(20:0	<u>=</u>
Benzo(a)pyrene	QN	(62.0	(11)	N Q	(52.0)[1]	ΩN	(55.0)[1]	R	0.08	Ξ
Benzo(b)fluoranthene	130	(62.0) [E]	QN QN	(52.0)[1]	QN	(55.0) [1]	Q	0.08	Œ
Benzo(g,h,i)perylene	NO ON	(62.0)[1]	QN ON	(52.0)[1]	QN	(55.0)[1]	9	(50.0	Ξ
Benzo(k)fluoranthene	QN	(62.0	(1)	ND	(52.0)[1]	QN	(55.0	<u>(E)</u>	Q	0.08	Ξ
Butylbenzylphthalate	110	(62.0)[1]	QN	(52.0)[1]	NO	(55.0	Ξ	200	J (50.0) [II]
Carbazole	ND QX	(62.0	(1)	Q	(52.0)[1]	ΩN	(55.0	<u>(1</u>	g	0.00	<u>=</u>
Chrysene	150	(62.0)[1]	QN Q	(52.0)[1]	Q	(55.0	Ξ(2	(50.0	Ξ(
Dibenz(a,h)anthracene	QN Q	(62.0)[1]	QN Q	(52.0) [<u>1</u>]	Q.	(55.0	<u>[i]</u> (S	20.0	Ξ :
Dibenzofuran	QN Q	(62.0)[1]	QN	(52.0	[1]	S	(55.0	<u>(E)</u>	Ω̈́	0.08)	<u>[ii]</u>

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	_ :						
					Location Id	PI						
					Sample Id	Ιd						
				1	Log Date	ate						
				Beg	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND			TRND			TRND			TRAIL	
		TRND-S020			TRND-SO21	1		TRND-S021			TRND-SO22	
		NA-TRND-S020-01	0-01		NA-TRND-SO21-01	1-01		NA-TRND-SO21-02	70-1		NA-TRND-S022-01	;-01
		16-MAR-98	_		16-MAR-98	_		16-MAR-98			16-MAR-98	
Parameter		. 0-3			0. 3			3-12			63	
OLMO3.2 - Send-Volatile Organic Compounds, cont. (ug/kg)	: Compounds, con	f. (ug/kg)										
Diethylphthalate	QN.	(62.0	(11)	N QN	(52.0	(13)	QX	(55.0)[[]	g	005	181
Dimethylphthalate	ND	(62.0)[1]	Ð	(52.0	<u> </u>	QN	(55.0	ΞΞ	Q	000	Ē
Fluoranthene	210	(62.0	<u>(E</u>	54.0	(52.0	(1)	QN	(55.0	(E) (Ð	(50.0	ΞΞ
Fluorene	S S	(62.0	[<u>I</u>](QN QN	(52.0	(E)	N QN	(55.0	Ξ(S	(50.0	ΞΞ
Hexachloro-1,3-butadiene	S	(62.0	Ξ	Q	(52.0	(13)	Q	(55.0)[1]	ND	20.0	ΞΞ
Hexachlorobenzene	2	(62.0	[1]	2	(52.0)[1]	N QN	(55.0	(11)	QN ON	(50.0	E (
Hexachlorocyclopentadiene	Q	(62.0	[1]	QN	(52.0	[H]	Q	(55.0)[I]	QN QN	. 50.0	Ξ
Hexachloroethane	Ð	(62.0	(H)	QN Q	(52.0	[1](Q	(55.0	[r] (ND	2000	ΞΞ
Indeno(1,2,3-cd)pyrene	S S	0.29	Ξ(N	(52.0	<u>(E)</u>	QN	(55.0	[1](ND	(50.0	Ξ(
Isophorone	N O	(62.0	(II)	ND	(52.0	[1](QN	(55.0	[1](QX	90.0	Ξ
N-Nitroso-di-n-propylamine	Q	(62.0	[1]	QN	(52.0	[1]	QN	(55.0	Œ	QN	9000	Ξ
N-Nitrosodiphenylamine	Q.	(62.0	(1)	8	(52.0	Ξ	QN QN	(55.0	<u>[i]</u> (NO ON	0.00	Ξ
Naphthalene	QN O	(62.0	<u>(</u>	Q	(52.0	[1]	QN	(55.0	[i](NO ON	(50.0	(E) (
Nitrobenzene	Q.	(62.0)[1]	Q.	(52.0)[:]	Q	(55.0	<u>H</u>)(S	(50.0	Ξ
Pentachlorophenol	Ð	(62.0	(E)	Q.	(52.0)[1]	QN	(55.0	[](Q.	0.05)	Ξ(
Phenanthrene	0.77	(62.0	(<u>[</u>]	QN Q	(52.0	[1]	N Q	(55.0	<u>(</u>	QN QN	0.08)	Ξ(
Phenol	2	(62.0	[1]	S	(52.0	(11)	Q	(55.0	<u>[i]</u> (QN QN	0.08)	Ξ(
Pyrene	210	(62.0	<u>(E)</u>	0.09	(52.0)[1]	Q.	(55.0	(1)	Q	2000	<u> </u>
bis(2-Chloroethoxy)methane	Q.	0.29)[1]	QN	(52.0) <u>[i]</u>	Ð	(55.0	[1]	Q	2000	<u> </u>
bis(2-Chloroethy!)ether	QN O	(62.0	(1)	QN	(52.0)[1]	Q	(55.0	(11)	QN	0.08)	E (
bis(2-Ethylhexyl)phthalate	330	(62.0)[1]	310	(52.0) [E]	Q.	(55.0	<u>(E)</u>	2100	0000	E =
di-n-Butylphthalate	110	0.29	(E)	0:06	(52.0	(13)	620	(55.0	Ξ	510	(50.0	ΞΞ
di-n-Octylphthalate	S	(62.0	(11)	ND	(52.0	(1)	Q.	(55.0	<u>(ii</u>	QN	005)	ΞΞ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Site Id	_								
						Sample Id									
					3eg. Dej	Log Date Beg. Depth - End Depth (in.)	e oth (in.)								
										UNOL				TRANS.	
		TRND-S020				TRND-S021				TRND-SO21			L	TRND-SO22	
		NA-TRND-SO20-01 16-MAR-98	-01		NA.	NA-TRND-SO21-01 16-MAR-98	10		Ν̈́	NA-TRND-SO21-02 16-MAR-98	20		NA-1	NA-TRND-SO22-01 16-MAR-98	=
Parameter		0-3				63				3-12				6-3	
															ļ
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	nt. (ug/kg)													
o-Cresol	Q.	(62.0	(13	QN		(52.0) [<u>1</u>]	S		(55.0)EI)	Q		20.0)[1]
p-Cresol	ND	(62.0)(II)	<u>R</u>		(52.0) [<u>1</u>]	8		(55.0	(11)	S		0.08)[1]
SW8290 - Dioxins (nnt)				v											
1.2.3.4.6.7.8.9-OCDD	1090	(3.60)[1]	1280		00.700	(11)	2 54		(2.30)[1]	1900		0.600) [I]
1,2,3,4,6,7,8,9-OCDF	258	(2.90)[1]	952		00900))[i]	64.2		061)[1]	149		0.500)[1]
1,2,3,4,6,7,8-HpCDD	262	(220	(11)	117		0.500)[1]	54.5		(1.40	[i](165		005:0	[1]
1,2,3,4,6,7,8-HpCDF	380	(120	[I](77.6		0300	(1)	49.0		0060)	[1]	134		0060))EI
1,2,3,4,7,8,9-HpCDF	32.5	(1.60)[1]	5.50		0.400)[1]	1.80	-	(1.20	<u>[1]</u>	15.5		0.400	[1]
1,2,3,4,7,8-HxCDD	15.9	(1.80	[<u>H</u>]	4.70	-	0200	[1](Ð		120)[1]	6.40		00500	[1]
1,2,3,4,7,8-HxCDF	115	(1.00	(E)	18.8		00300)[1]	4.00	-	002:0)[<u>i</u>]	43.1		0300)[1]
1,2,3,6,7,8-HxCDD	26.8	(1.40	<u>[i]</u> (8.80		0.400	<u>E</u>](3.10	_	(1.00	Ξ	12.0		0.400	Ξ
1,2,3,6,7,8-HxCDF	41.8	0.800)[1]	7.60		0.200	(11)	2.10	-	009:0)EI	16.8		0300	Ξ.
1,2,3,7,8,9-HxCDD	39.7 J)	(11)	12.6	-	0.400	<u>[]</u>	520	-	00'1)	<u>=</u>	16.0	-	0.400	(E)
1,2,3,7,8,9-HxCDF	5.50	(120	([]	1.	-	00:00)[1]	Ð.		0.800	<u>[1]</u>	3.70	- ,	0.400	E (
1,2,3,7,8-PeCDD	11.1	(1.00)[1]	3.10	-	00:00	<u>[E]</u> (1.20	_	00200)[1]	4.20	_	0.400	Ξ
1,2,3,7,8-PeCDF	23.8	00900	[1](4.60	-	0.200)[1]	1.00	-	0.200)[1]	7.10		0.300	<u>=</u>
2,3,4,6,7,8-HxCDF	T.TT	00'1)[1]	13.6		0300	<u>(</u>	3.20	-	0.700)[1]	45.6		0.400	<u>[]</u>
2,3,4,7,8-PeCDF	34.8	009'0))[1]	02.9		0.200	(11)	 S.	-	0.500) [E]	13.5		0.300)[<u>H</u>]
2,3,7,8-TCDD	1.70	0.400)[1]	0.490	-	0.200)(11)	S		0.300)[1]	0.680	-	0.200	Ξ(
2,3,7,8-TCDF	15.4	01.6)[i]	3.80		008:0	Ξ	Q		0.800)[1]	6.90		(2.10	Ξ
Total HpCDD	260	(2.20)[1]	224		0.500)[<u>[</u>]	103		(1.40	<u>(E</u>]	327		0.500	Ξ
Total HpCDF	624	(1.40	[1]	141		0.400	(1)	8.96		00.1)(II)	262		0.400)[1]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

	207		į	ΞΞ	Ξ	Ξ	Ξ,	<u>=</u> =		
	TRND TRND-S022 NA-TRND-S022-01 16-MAR-98 0-3			0.400	00:00	0.400	0.300	(0.200		
			ទ្	26.	3 2	/+/ 10t	CKI 9	135		NA
	20- 1		1111		E 5	ΞΞ	ΞΞ	E		
	1 KND TRND-SO21 NA-TRND-SO21-02 16-MAR-98 3-12		7 110	00200	0.000	00:0	0300	(0.200		
			31.7	48.9	1.20	861	60.4	11.6		NA
Id Id ite epch (in.)	- 0-1) [1]	ΞΞ			E (Œ		
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TRND-S021 NA-TRND-S021-01 16-MAR-98 0-3		(0.400	(0.300	0300	0.200	0.200	0.200		
			7.86	114	23.1	87.3	22.5	64.1		NA
	0-01		(E)	<u>[I]</u> ((11)	(1)	(1)) (II)		(11)
TRND	TRND-SO20 NA-TRND-SO20-01 16-MAR-98 0-3		(1.50	00'1	(1.00	00900	0.400	0300		(8310
	Z		407	265	129	443	112	310		157000 K
	Parameter	SW8290 - Dioxins, cont. (ppt)	Total HxCDD	Total HxCDF	Total PeCDD	Total PeCDF	Total TCDD	Total TCDF	TOC (mg/kg)	Total Organic Carbon

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id							
					Location Id	P						
					Sample Id	Ę						
					Log Date	te						
				Ber	Beg. Depth - End Depth (in.)	spth (in.)						
		TOWN			EN ALL			TRND			TRND	
		TRND-S022	_		TRND-S023			TRND-S023			TRND-S024	
	NA-1	NA-TRND-SO22-11 Dup of	Oup of		NA-TRND-S023-01	101		NA-TRND-S023-02	-02		NA-TRND-S024-31	31
		NA-TRND-SO22-01	· 2-01									
		16-MAR-98			16-MAR-98			16-MAR-98			17-MAR-98	
Parameter		0-3			0-3			3-12		i	0-3	
OTTENS A Destriction on DCB. (coeffer)	(1.0)											
OLMUS.4 - resucides and robs (u 4.4'-DDD	ON ND	0.240)[1]	QN	(0.320)[1]	QN ON	0.410	(1)	R	0.260	(11)
4,4'-DDE	8.80	0.240)[1]	QN	0.320	[1](QN	0.410	(1)	49.0	0.260)[1]
4,4'-DDT	J 06.6	(0.240	(E)	Q	(0.320	[1](S	(0.410	(1)	46.0	0.260	<u>[E]</u> (
Aldrin	QN	0.240)[1]	Q.	0.320)[1]	QN Q	(0.410	<u>E</u>	Q	0.260	<u>=</u>
Aroclor-1016	NO	0.240)[I]	N	(0.320	[i](R	(0.410) [1]	Q.	0.260	Ξ
Aroclor-1221	N QN	0.240)[1]	ON	(0.320)[1]	Q	0.410	<u>[i]</u>	NO ON	0.260	Ξ
Aroclor-1232	QN O	0.240)[1]	ON	(0.320)[1]	Q	(0.410)[i]	Ð	0.260	<u>=</u>
Aroclor-1242	Q.	0.240)[1]	QN N	0.320)[1]	QN	(0.410	[1]	NO ON	0.260	<u>=</u>
Aroclor-1248	QN	0.240)[1]	QN	0.320)[1]	QN	(0.410	<u>(1)</u>	Ä	0.260	(E)
Aroclor-1254	QN ON	0.240)[1]	N O	(0.320)[1]	QN	(0.410	[1]	QN	0.260	Ξ
Aroclor-1260	QN ON	0.240)[1]	ND	(0.320)[1]	QN	(0.410	<u>(E</u>	Q	(0.260	<u>=</u>
Dieldrin	QN ON	(0.240)[1]	ND	(0.320	(1)	S	(0.410	[1]	Ð	0.260	Ξ
Endosulfan I	QN	(0.240)[1]	QN	(0.320	(1]	Q Q	0.410	<u>(1</u>	Q Q	0.260	E (
Endosulfan II	Q.	(0.240)[1]	NO	(0.320)[1]	Q.	0.410)[1]	S	0200	E :
Endosulfan sulfate	Q.	0.240)[1]	ND	(0.320)[1]	S S	(0.410	<u>[i]</u>	QN QN	0.260	Ξ
Endrin	N QN	0.240)[1]	Q	(0.320	(11)	QN	(0.410)[]	QN	0.260	Ξ
Endrin aldehyde	QN	(0.240	(1)	Q	(0.320	(11)	Q.	0.410	<u>=</u>	S	0200	
Endrin ketone	QN	0.240)[1]	N Q	(0.320)[1]	QN Q	(0.410	<u> </u>	<u>S</u>	0.260	Ξ
Heptachlor	QN	0.240)(11)	QN	0.320)[1]	ΩN	(0.410)[<u>[</u>]	Q.	0.260)[1]
Heptachlor epoxide	QN	0.240	[1](Q.	(0.320) [<u>1</u>]	QN	(0.410	Ξ	Q	0.260	Ξ
Methoxychlor	ON	0.240)[1]	QN	0.320)[1]	QN	(0.410	<u>[:]</u>	ΩŽ	0970	Ξ
Toxaphene	QN	0.240)[1]	N Q	(0.320)[1]	Q	(0.410	<u>=</u>	S	0.260	Ξ
alpha-BHC	QN	(0.240	(11)	Q.	0.320	(II)	Q.	0.410	[<u>E]</u> (QN Q	0.260	<u>[1]</u>

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					City I.d							
					Suce 10 Location Id	PI						
					Sample Id	PI						
					Log Date	ate						
				Beg.	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND			TRND			TRND			TRND	
		TRND-S022			TRND-SO23	_		TRND-S023	•		TRND-S024	
	NA-TRN NA-	NA-TRND-SO22-11 Dup of NA-TRND-SO22-01	Jup of 7-01	-	NA-TRND-S023-01	3-01		NA-TRND-S023-02	3-02		NA-TRND-S024-31	. I
		16-MAR-98			16-MAR-98			16-MAR-98			17.MAD 00	
Parameter		6-3			ф. 3			3-12			0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ug/kg)											
alpha-Chlordane	Q	0.240)[1]	QN QN	0.320	(11)	Q	(0.410	1111	Č	09007	1111
beta-BHC	ND	0.240)[1]	QN QN	0.320	[<u>E]</u> (QN	(0.410	E (E	2	0500	E 5
delta-BHC	ND	0.240) [E]	Q.	0.320) [1]	ND	(0.410	(E)	Q	0500	ΞΞ
gamma-BHC(Lindane)	QN QN	0.240)[1]	Q	0.320	[1]	ND	(0.410	ΞΞ	Q	(0.260	ΞΞ
gamma-Chlordane	Q	0.240	(11)	Q	0320	([]	QN	(0.410	[I](QN	(0.260	E (
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	npounds (ug/kg)											
1,2,4-Trichlorobenzene	ND	(48.0	(E)	ND	(64.0	(1)	QN	0.18	111	QX	(\$30	101
1,2-Dichlorobenzene	QN Q	(48.0)[1]	N Q	64.0	([]	QN	(81.0	Ξ	2	(530	ΞΞ
1,3-Dichlorobenzene	QN QN	(48.0)[1]	ND	0.49)[1]	QN	(81.0	Ξ	NO	(53.0	E (
1,4-Dichlorobenzene	ND Q	(48.0) <u>[</u>	ND QN	(64.0	(1)	Q.	0.18)	<u>(1</u>	ND	(53.0	ΞΞ(
2,2'-oxybis(1-chloropropane)	Q :	(48.0	[1]	Q Q	(64.0)[1]	æ	0.18))[1]	QN QN	(53.0	Ξ
2,4,5-Trichlorophenol	9 !	(48.0) [<u>1</u>]	Q.	(64.0)[1]	S	(81.0	[1]	QN QN	(53.0	E (
2,4,0-1 richlorophenol	2 4	48.0	ΞΞ	Q !	64.0	Ξ	Q	(81.0	[1]	Q	(53.0)[1]
2,4-Dichierophenol	2 4	(48.0	ÍII (Q !	(64 .0	<u>(E</u>	Q.	0.18) [II]	QN	0.63))[1]
2,4-Uimethylphenol	<u>Q</u> !	48.0	<u>E</u>	Q.	64.0)[1]	S	(81.0)[1]	QN O	(53.0	[I] (
2,4-Unitrophenoi	Q	(48.0)[<u>ii]</u>	S	64.0 0.40)[1]	Q.	0.18))[1]	QN Q	(53.0)[1]
2,4-Dinitrotoluene	e	(48.0) <u>[1]</u>	Ą	64.0)[1]	ΩN	(81.0)[1]	QN QN	(53.0	Ξ(
2,6-Dinitrotoluene	Q.	(48.0)[1]	Q.	64.0)[1]	ð	018))[II]	QN QN	(53.0) II (
2-Chloronaphthalene	S	(48.0)[1]	Q.	(64.0)[1]	N O	(81.0)[1]	N Q	(53.0	(E) (
2-Chlorophenol	2	(48.0	(11)	Ð	(64.0)[1]	ND QN	018)	111	ND	(53.0	E (
2-Methylnaphthalene	SP D	(48.0)[1]	QN Q	(64 .0)[1]	Ð	018))[1]	S	(53.0	E E
2-Nitroaniline	N Q	(48.0)[1]	Q.	(64.0	(1)	QN	0.18))[1]	QX QX	(53.0	
					•							[4]

() = Detection Limit [] = Dilution Factor h Not Detected NA = Not Applicable

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				i.		Site Id							
					ĭ ∞	Location 1d Sample Id							
					ı	Log Date	,						
				1	Beg. Depth - End Depth (In.)	· End Dept	h (h.)					•	
		TRND			F	TRND			TRND			TRND	
		TRND-S022	222		TRN	TRND-S023			TRND-S023	_		TRND-S024	
	Ż	NA-TRND-SO22-11 Dup of NA-TRND-SO22-01	11 Dup of 022-01		NA-TR	NA-TRND-S023-01	Ŧ		NA-TRND-SO23-02	7-07		NA-TRND-S024-31	-31
		16-MAR-98	86:		16-N	16-MAR-98			16-MAR-98			17-MAR-98	
Parameter		0-3				0-3			3-12			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Sompounds, e	cont. (ug/kg)											
2-Nitrophenol	Q.	(48.0)[1]	QN	•	64.0	[1]	ΩN	(81.0	<u>[1]</u>	Ð	(53.0	Ξ
3,3'-Dichlorobenzidine	S	(48.0	[1](QN ON	Č	64.0)[1]	S	(81.0	<u>(</u>	Q.	(53.0	E :
3-Nitroaniline	QN	(48.0)[1]	ON	J	64.0	(11)	Q	(81.0)[i]	Q.	(53.0	Ξ:
4,6-Dinitro-2-methylphenol	S	(48.0) [1] (QN	J	64.0)[<u>i</u>]	ΝΩ	(81.0) <u>[1]</u>	Q ·	53.0	Ξ.
4-Bromophenyl-phenylether	Q.	(48.0	(1)	Q	Ĭ.	64.0)[1]	Q Q	0.18	(1)	QN	53.0	Ξ.
4-Chloro-3-methylphenol	R	(48.0	[1](NO	J	0.4.0	[1]	Q.	(81.0)[i]	Q	(53.0	Ξ ;
4-Chloroaniline	Q	(48.0	[I] (QN	Ũ	64.0)[1]	ND QN	(81.0	<u>(</u>	ND ND	(53.0	Ξ.
4-Chlorophenyl-phenylether	S	(48.0	[1](ND.	ĩ	64.0	<u>[I]</u>	ΩN	(81.0	<u>[i]</u>	Q	(53.0	Ξ.
4-Nitroanaline	8	(48.0	(1)	QN	ũ	64.0	[1]	Q Q	(81.0	<u>(II)</u>	QN	(53.0	Ξ.
4-Nitrophenol	<u>R</u>	(48.0	(1)	QN	Ĵ	64.0)[1]	N Q	(81.0	<u>=</u>	Ð	(53.0	<u>=</u> :
Acenaphthene	QN Q	(48.0	[1](Q	<u>ت</u>	64.0) [[]	Q	(81.0	=	QN	(53.0	E :
Acenaphthylene	Q.	(48.0)[1]	QN	Ū	64.0)[i]	R	0.18	<u>(</u>	Q	(53.0	Ξ.
Anthracene	QN Q	(48.0)[1]	QN	Ū	64.0)[1]	Q.	(81.0	[1]	QN	(53.0	Ξ.
Benzo(a)anthracene	æ	(48.0	(11)	QZ QZ	Ū	64.0	(1)	N Q	(81.0	<u>=</u>	77.0	(53.0	Ξ.
Benzo(a)pyrene	QN	(48.0)[1]	QN	٦	64.0	(E)	QN QN	(81.0	(1)	93.0	(53.0	Ξ
Benzo(b)fluoranthene	N Q	(48.0	(11)	ND	<u> </u>	0.4.0	[1]	S O	(81.0	<u>(</u>	110	53.0	<u>=</u> :
Benzo(g,h,i)perylene	Ð	(48.0	(1)	ND	<u> </u>	04.0)[<u>[]</u>	Q.	(81.0	[1]	57.0	(53.0	Ξ:
Benzo(k)fluoranthene	ON	(48.0	(1)	ND ND	<u> </u>	64.0)[1]	Q.	(81.0	<u>(E</u>	0:69	(53.0	Ξ
Butylbenzylphthalate	20.0	J (48.0)[1]	0.66	·	64.0)[1]	QN	0.18	<u>E</u>	Ð	(53.0	[]
Carbazole	R	(48.0)[1]	ND	~	64.0)[1]	QN	0.18))[I]	Q.	(53.0	<u>=</u>
Chrysene	QN	(48.0)[1]	ND	<u> </u>	64.0)[t]	QN	(81.0)[<u>ii]</u>	78.0	(53.0)[<u>=</u>
Dibenz(a,h)anthracene	Q	(48.0)[1]	QN	<u> </u>	64.0)[1]	QN.	0.18)	Ξ	Q.	(53.0	<u>(</u>
Dibenzofuran	QN	(48.0	[1](QN Q	\	64.0	[1]	Q.	018)	(E) (Q	(53.0	EI(

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	-						
					Location Id	ı Id						
		٠			Sample 1d	. Id						
					Log Date	ate						
				Be	Beg. Depth - End Depth (in.)	Septh (In.)						
		TRND			TRND			CENT				
		TRND-S022	7		TRND-S023	23		TRND-S023	22		TEND SO24	
	NA-7	NA-TRND-SO22-11 Dup of	Dup of		NA-TRND-SO23-01	13-01		NA-TRND-S023-02	23-02		NA-TRND-S024-31	4-31
		NA-TRND-S022-01	2-01									
		10-MAK-98	_		16-MAR-98			16-MAR-98	•		17-MAR-98	
rarameter		₽			0-3			3-12			63	
OLMO3.2 - Semi-Volatile Organic Compounds, cent. (ng/kg)	Compounds, cer	t. (ne/ke)										
Diethylphthalate	Q.	(48.0	[1]	QN	(64.0)[[]	Ŕ	(810)111	C.N	S	
Dimethylphthalate	QN	(48.0	(1)	N QN	049	Ξ(Š	0.18)	E (2	530	
Finoranthene	N Q	(48.0	(11)	Q.	(64.0	(11)	S	(81.0	Ξ	150	(53.0	ΞΞ
Fluorene	Q	(48.0	(1)	QN	0.40)[i]	ND	(81.0	Ξ	QX	(53.0	
Hexachloro-1,3-butadiene	ND	(48.0	[1](QN	64.0	(11)	QX	(81.0	Ξ	Ð	(53.0	
Hexachlorobenzene	S Q	(48.0	[1]	Q	(64.0)[1]	ND	018)	<u>(</u>	Ą	(53.0	E
Hexachlorocyclopentadiene	Q Q	(48.0	<u>(E)</u>	QN	(64.0)[1]	N Q N	0.18)	(E) (QN QN	(53.0	
Hexachloroethane	S Q	(48.0	[1](ΩN	64.0)[1]	ΩN	0.18	[I](<u>R</u>	53.0	EIC
Indeno(1,2,3-cd)pyrene	N Q	(48.0)[1]	QN	0.40)[1]	ND QN	(81.0	[1](ND	(53.0	E) (
Isophorone	Q :	(48.0	<u>(</u>	ND	64.0	(11)	QN	(81.0	(1]	ND	(53.0	
N-Nitroso-di-n-propylamine	Q.	(48.0	Ξ.	<u>R</u>	(64.0	(1)	Q	(81.0	(1)	ND	(53.0	Ξ
N-Nitrosodiphenylamine	Q !	(48.0	Ξ	<u>R</u>	. 64 .0	(13	QN	0.18) [H]	ND	(53.0	<u> </u>
Naphthalene	Q ((48.0	Ξ	Q I	64.0	[](S Q	(81.0	[1](S	(53.0	[]
Nitrobenzene	Q !	(48.0	Ξ:	Q	64.0) <u>[i]</u>	ð	(81.0	<u>(11</u>	Q.	(53.0	[1]
Fentachlorophenol	Q !	(48.0	Ξ	Q	0.40) <u>[1]</u>	<u>R</u>	(81.0	[1]	N Q	(53.0	(11)
rheranthrene re	Q !	(48.0	E	Q.	64.0) <u>[</u>	Q Q	0.18)	(E)	77.0	(53.0)[1]
Frenoi	Q !	(48.0	Ξ	Q.	64.0	Ξ(Q	(81.0	[1]	S	(53.0)[1]
Pyrene	QZ	(48.0	Ξ(ĝ	64.0)[]]	Q.	(81.0)[1]	0%1	(53.0	[1]
bis(2-Chloroethoxy)methane	9	(48.0	(1)	Q Q	(64.0)[1]	Ø	(81.0)[1]	N	(53.0	<u> </u>
bis(2-Chloroethyl)ether	QN	(48.0	<u>(</u>	Q Z	0.40)[1]	<u>R</u>	(81.0)[1]	QN QN	(53.0	<u> </u>
bis(2-Ethylhexyl)phthalate	570	(48.0	<u>[i]</u>	061	(64.0	[E] (ND	(81.0)[1]	110	(53.0	
di-n-Butyiphthalate	160	(48.0	[1]	75.0	(64.0	(13)	QN	(81.0	Ξ	S	(53.0	E
di-n-Octylphthalate	Q Q	(48.0	<u>(II)</u>	NO Q	64.0	(11	QN	(81.0	E (£	(53.0	E)(
									! !			[2]

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id									
					Location Id									
					Sample Id	_								
					Log Date	a)								
				Beg	Beg. Depth - End Depth (in.)	oth (in.)								
		TRND			TRND				TRND			-	TRND	
	-	TRND-S022			TRND-S023			-	TRND-SO23			TR	TRND-S024	
	NA-TRN	NA-TRND-SO22-11 Dup of	jo d	·	NA-TRND-S023-01	10		NA	NA-TRND-S023-02	71		NA-TR	NA-TRND-SO24-31	
	-WA-	NA-TRND-S022-01	.											
		16-MAR-98			16-MAR-98				16-MAR-98			17-	17-MAR-98	
Parameter		0-3			0-3				3-12				0-3	
OLMO3.2 - Semi-Volatite Organic Compounds, cont. (ug/kg)	mpounds, cont. ('ug/kg)												
o-Cresol	. QN	(48.0	(11)	ND	(64.0)[1]	QN		(81.0	(1)	QN	_	53.0	[1](
p-Cresol	QN	(48.0	[1]	QN	0.64.0)(1]	QN		(81.0	(11)	Q.)	53.0	Ξ(
SW8290 - Dioxins (ppt)														
1,2,3,4,6,7,8,9-0CDD	1880	0.500)[i]	1120	009'0)	(E)	29.1		(1.00)[1]	417	Ŭ	1.50	<u>=</u>
1,2,3,4,6,7,8,9-0CDF	142	0.400	(13)	154	0.500)[1]	3.40	 ,	0.800	(11)	58.5	J	1.30	Ξ
1,2,3,4,6,7,8-HpCDD	162	0.400)E]	727	0.500	[1]	5.90		0.0900)[1]	78.8	<u> </u>	001	<u>=</u>
1,2,3,4,6,7,8-HpCDF	132	0.200	(11)	151	0.300	(13)	4.40	- 1	0.500)[i]	64.6)	0.700	Ξ
1,2,3,4,7,8,9-HpCDF	14.6	0.300	[1]	30.2	0.400)[<u>H</u>]	0.630	-	009'0))[1]	8.90)	1.00	Ξ
1,2,3,4,7,8-HxCDD	09.9	0.400	[1]	14.9	0.500	<u>(</u>	Ð		009'0))[1]	3.90)	0.900	<u>[]</u>
1,2,3,4,7,8-HxCDF	40.1	0.200)[i]	75.0	0300	<u>(</u>	1.90	_	0.400)[1]	22.2)	0.600	Ξ
1,2,3,6,7,8-HxCDD	13.0	0.300)[1]	23.8	0.400)[1]	2.70	_	005.0)[1]	7.50)	0.800	Ξ(
1,2,3,6,7,8-HxCDF	15.5	0.200)[1]	29.1	0.200	(11)	0.900	_	0.300)[1]	9.01	Ŭ	0.500	Ξ
1,2,3,7,8,9-HxCDD	17.6	(0.300)[1]	43.9	0.400)[i]	16.2		009:0)[1]	16.8	ì	0.900	Ξ(
1,2,3,7,8,9-HxCDF	3.00 J	0.300	<u>(II)</u>	3.90 I	0.400	[1]	N		0.500)(11)	1.30) r	0.700	<u>(E)</u>
1,2,3,7,8-PeCDD	4.00 J	0.200	<u>[i]</u>	9.50	00:300)[1]	2.30	_	0.400)[1]	4.10) [0.700	Ξ
1,2,3,7,8-PeCDF	02.9	0.200) <u>[</u>]	14.9	0.300	(11	QN		0.300)[1]	6.40	<u> </u>	0.400) <u>[1]</u>
2,3,4,6,7,8-HxCDF	36.1	0.200	.[1](63.5	0.300	(11)	2.00	-	(0.400)[1]	19.8)	0.600	Ξ
2,3,4,7,8-PeCDF	12.3	0.200)[1]	25.0	00:300	(11)	0.720	-	0.300)[1]	9.10	J	0.500	Ξ
2,3,7,8-TCDD	0.590 J	0.200)[1]	1.50	0.200	(11)	ON.		0.300)[1]	0.710) (0.400	Ξ
2,3,7,8-TCDF	4.10	(2.00	(11)	10.4	(3.00	<u> </u>	0.840	-	0.200)[1]	6.20	Ŭ	0.800)[1]
Total HpCDD	322	0.400	[I](439	0.500)[1]	12.1		009:0)[1]	154	Ÿ	1.00	<u>=</u>
Total HpCDF	252	0.300	[1]	282	0.400	[[]	7:90		0.500)[1]	110	_	0.800	<u>E</u>

Compiled: 07/01/98

	_ I E-		E E E E E
	TRND TRND-SO24 NA-TRND-SO24-31	I7-MAR-98 0-3	(0.500 (0.500 (0.700 (0.500 (0.300
			115 118 36.5 110 49.0 94.9
	20-		
	TRND TRND-SO23 NA-TRND-SO23-02	16-MAR-98 3-12	(0.600 (0.400 (0.300 (0.300 (0.300
			48.5 8.80 5.00 3.30 1.00
id id te pth (in.)	-		
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TRND TRND-S023 NA-TRND-S023-01	16-MAR-98 0-3	(0.400 (0.300 (0.300 (0.300 (0.200
"			327 347 139 286 89.9 200
)up of 2-01		
	TRND TRND-SO22 NA-TRND-SO22-11 Dup of NA-TRND-SO22-01	16-MAR-98 0-3	(0.300 (0.200 (0.200 (0.200 (0.100
	Ž		167 241 67.3 182 59.5 126
		Parameter	SW8290 - Dioxins, cont. (ppt) Total HxCDD Total HxCDF Total PcCDF Total PcCDF Total TCDD

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

A Total Control of the Control of th						S	Site Id									
						Loca	Location Id									
						San	Sample 1d									
						ኋ	Log Date									
					Beg	Beg. Depth - End Depth (in.)	nd Depth	(in.)								
		E	TRAN	·		TRND	e				TRND			•	TRND	
		Z	TRND-SO25			TRND-S025	S025			Ē	TRND-SO26			Ħ	TRND-SO26	
		NA-TRN	NA-TRND-S025-01	_		NA-TRND-S025-02	-8025-02			NA-T	NA-TRND-SO26-01	,,	NA	-TRND-	NA-TRND-SO26-11 Dup of	jo -
		*	** 3.64 D 00			17.MAR-08	80°0			1	16-MAR-98			NA-II 16	NA-TRND-SOZ6-U 16-MAR-98	
Parameter			0-3			3-12					0-3				0-3	
OLM03.2 - Pesticides and PCBs (ug/kg)	Kg)															;
4.4'-DDD	Q.)	0.280)[1]	QN	(0.420		[1]	Q	-	0.220	<u>=</u>	£	Ŭ	0.270	<u>=</u>
4.4'-DDE	0.530	. 👅	0.280	E (QN QN	(0.420	•	[1]	14.0	-	0.220)[i]	14.0	_	0.270	Ξ.
4,4'-DDT	Q.	J	0.280	(11)	QN	(0.420		(1)	6.90	-	0.220	(13)	7.20	<u> </u>	0.270	E 5
Aldrin	QN	J	0.280)[1]	QN Q	(0.420		Ξ(Q.		0.270	[1]	2	_	0.270	Ξ,
Aroclor-1016	QN QN	J	0.280)[I]	Q.	(0.420		EE (Q		0.270)[1]	R		0.270	E :
Aroclor-1221	QN	J	0.280)[1]	ND	(0.420		[1]	Q		0.270	Ξ(R	Ŭ	0.270	Ξ.
Aroclor-1232	QN	Ī	0.280)[1]	QN	(0.420		[1]	Ð		0.270)[1]	2		0.270	Ξ,
Aroclor-1242	ND	J	0.280)[1]	Q.	(0.420		[1]	Q.		0.270	[1]	2		0.270	Ξ.
Aroctor-1248	ND	Ũ	0.280	(1)	QN	(0.420		[1]	Q		0.270)[]	2	•	0.270	Ξ,
Aroclor-1254	SP	Ū	0.280)[1]	Q	(0.420		(1)	Q		0.270)[1]	2	_	0.270	E :
Aroclor-1260	QX	Ū	0.280	[1]	QN	(0.420		[1]	Q		0.270	<u>[I]</u>	Q ·	•	0.270	Ξ,
Dieldrin	ND	Ú	0.280	[1]	Q.	0.4		(1)	Q.		0.270	(11)	2		0.270	Ξ.
Endosulfan I	QN	J	0.280	(1)	QN Q	(0.4		[1]	<u> </u>		0.270	Ξ,	2 9		0.770	E1(
Endosulfan II	Ð)	0.280)[1]	Ð) 0.4		Ξ	2 !		0.270	<u> </u>	2 9		0.770	
Endosulfan sulfate	S	_	0.280)[1]	æ	¥.0 •		<u>(1)</u>	2 5		0.2.0	Ξ,	2 9		0770	E
Endrin	QN	<u> </u>	0.280	Ξ(2 9	70 °			2 9		0.770		2 2		0.70	
Endrin aldehyde	£	<u> </u>	0.280	[E] (Q.	70 ·		E) (2 !		0.770		2 5		0220	ΞΞ
Endrin ketone	Q.	Ų	0.280) <u>[</u>]	£	ў.)	0.420	[<u>-</u>]	2		0.270	Elic	2 9		0/70 /	Ξ,
Heptachlor	QN	<u> </u>	0.280)[<u>1</u>]	2	ŏ)	0.420	<u>=</u>	2		0.270	[1](Q :		0.770	ΞΞ
Heptachlor epoxide	QN QN	J	0.280)[1]	2	_	0.420	<u>(</u>	S		0.270	Ξ.	Q !	:	0/7/0	<u> </u>
Methoxychlor	ON ON	'n	0.280	(11)	2	U) (04	0.420) [<u>1</u>]	2	5	0.270	E	2 !	3	0/70	Ξ,
Toxaphene	ND	Ų	0.280)[1]	Ð	70)	0.420	<u>[I]</u> (S		0.270	Ξ	Q		0/7/0	Ξ.
aipha-BHC	ND	\cup	0.280)[1]	<u>R</u>	O	0.420)[1]	S		0.270	(<u>H</u>	£		0.270	<u>=</u>
•																

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					G21- T							
					one id Location Id	, PI						
					Sample Id	Id	•					
					Log Date	ate						
				B	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND			TRND			TRND			TRND	
	Ż	TRND-SO25 NA-TRND-SO25-01	. . .		TRND-SO25 NA-TRND-SO25-02	5 5-02		TRND-SO26 NA-TRND-SO26-01	. 5	T-AN	TRND-SO26	,
		17 144 15 00									NA-TRND-S026-01	5 ₹ 5
Parameter		0-3			17-MAK-98 3-12		,	16-MAR-98 0-3			16-MAR-98 0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	(ue/kg)											
alpha-Chlordane	S S	0.280)[1]	2	(0.420) [[]	£	02200)	1111	ć,		;
beta-BHC	ND Q	0.280)[1]	N	0.420		2	0.230	ΞΞ	2 5	0.770	Ξ
delta-BHC	N Q	0.280	[](Ð	(0.420	E (2	0.270	ΞΞ	2 5	0.770	ΞŞ
gamma-BHC(Lindane)	N Q	0.280)[1]	N Q	0.420)[1]	Q	0.230	ΞΞ	9 9	0.770	Ξ
gamma-Chlordane	QN	0.280)[1]	QN	(0.420	(E)	2	(0.270	E (2 2	0.70	ΞΞ
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	npounds (ug/ke	_										Ξ
1,2,4-Trichlorobenzene	QN .	(56.0)[[]	G.	0.830	1111	Ğ	0 2 2	5	!		
1,2-Dichlorobenzene	Q.	095)		É	83.0		9 9	0.55.)	Ξ,	Q :	(55.0	(II)
1,3-Dichlorobenzene	S	099	E (2	030		2 5	0.55.0		9 9	(55.0	<u>(</u>
1,4-Dichlorobenzene	Q.	. 56.0	ΞΞ	Q	(83.0	ΞΞ	9 8	0.55)	Ξ.	Q Q	55.0	Ξ
2,2'-oxybis(1-chloropropane)	S Q	0.95)	(E) (Ð	(83.0	ΞΞ	2	(55.0	E (2 9	0.00	ΞΞ
2,4,5-Trichlorophenol	Ð	0.98)	[1]	Q.	(83.0	([]	Ø	(55.0		2	0.550	
2,4,6-Trichlorophenol	QN !	0.96.0	(1)	Q.	(83.0	[1]	QN N	(55.0	(E) (N QX	(55.0	E (
2,4-Dichlorophenol	9 9	26.0	Ξ	2	(83.0)[1]	ND	(55.0	([]	NO	(55.0	Ξ(
2,4-Dimemylphenol	2	200	<u>=</u>	운	(83.0	<u>(E)</u>	Q	(55.0	(11)	N ON	(55.0	Ξ
2,4-Unitrophenol	QN :	56.0) E3	Q	(83.0)[1]	ND	(55.0)[1]	Q.	(55.0	Ξ
2,4-Dinitrofoluene	Q !	26.0	Ξ	Ð	(83.0	([]	Q.	(55.0	[1]	N Q	(55.0	E (
2,0-Dinitrotoluene	Q !	. 56.0)[1]	Q Q	(83.0)[1]	Q.	(55.0)[1]	Ä	(55.0	ΞΞ
2-Chloronaphthalene	Q :	26.0	Ξ	2	(83.0)[1]	ND	(55.0	(1)	ND	(55.0	E (
2-Chlorophenol	Q :	26.0	Ξ	2	(83.0)[i]	Q	(55.0) [1]	Ð	(55.0	E (
2-Methyinaphthalene	Q !	(56.0)[1]	Ω	(83.0)[1]	Ω	(55.0)(11)	QN QN	(55.0	E =
2-Mitroanline	Q	(56.0) [1] (Ê	0.83.0	(1)	QN	0.55.)	[1]	QN	(55.0	ΞΞ

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	1						
					Sommie Id	9 3						
	,				Log Date	ite i						
				Beg.	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND			TRND			TRND			TRND	
		TRND-S025	10		TRND-SO25			TRND-SO26			TRND-S026	
		NA-TRND-S025-01	2-01		NA-TRND-SO25-02	2-03		NA-TRND-S026-01	-01	NA-T	NA-TRND-SO26-11 Dup of	Jo du
		17-MAR-98			17-MAR-98			16-MAR-98		6 4	NA-TRND-SO26-01 16-MAR-98	두
Parameter		0-3			3-12			0-3			0-3	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, co	nt. (ug/kg)										
2-Nitrophenol	Q.	(56.0)[1]	ND QN	(83.0	[1]	QN	(55.0)[1]	QN	(55.0	(11)
3,3'-Dichlorobenzidine	N Q	(56.0)[1]	N Q	(83.0)[1]	NO	(55.0	(1)	QN QN	(55.0	(11
3-Nitroaniline	Q	(56.0	[1]	ND	(83.0	[1]	QN	(55.0	(11)	QN	(55.0	(11)
4,6-Dinitro-2-methylphenol	ON	(56.0)[1]	NO	(83.0)[1]	QN	(55.0)[1]	QN	(55.0) [H]
4-Bromophenyl-phenylether	QN QN	(56.0	(1)	N Q	0.83.0)[1]	Ω	(55.0)[1]	QN	(55.0) [E]
4-Chloro-3-methylphenol	QN	(56.0	(11)	QN	(83.0)[1]	N Q	(55.0)[1]	QN	(55.0	<u>(1</u>
4-Chloroaniline	Q.	(56.0	(11)	ND	(83.0)[1]	Q.	(55.0) <u>[1]</u>	QN QN	(55.0	<u>=</u>
4-Chlorophenyl-phenylether	S S	(56.0)[1]	ΝΩ	(83.0)[1]	S	(55.0)[1]	QN	(55.0	[1]
4-Nitroanaline	Q.	(56.0)(11)	QN	(83.0)[1]	Q.	(55.0	[1]	QN	(55.0	(11
4-Nitrophenol	QX	(56.0)[1]	ND	(83.0)[1]	QN	(55.0)[1]	QN	(55.0) [13]
Acenaphthene	ΩN	(56.0) [1]	QN	(83.0)[1]	QN	(55.0	(1)	QN	(55.0)[<u>[1]</u>
Acenaphthylene	QN	(56.0	(11)	QN	(83.0	(11)	Q.	(55.0)[1]	QN	(55.0) <u>[</u>
Anthracene	Ą	(56.0)[1]	N O	0.83.0)[1]	Q.	(55.0)[1]	ND	(55.0)[1]
Benzo(a)anthracene	QN	(56.0)[1]	QN	(83.0)(1)	ND ND	(55.0)[1]	ND	(55.0	(11)
Benzo(a)pyrene	QN	(56.0)[1]	QN	(83.0)[1]	ΩN	(55.0)[1]	N Q	0.55.)	(1)
Benzo(b)fluoranthene	QN Q	(56.0)[1]	QN	(83.0)[1]	Ω	(55.0)[1]	N Q	0.55.)	(E)
Benzo(g,h,i)perylene	ND	(56.0)[1]	QN	(83.0)[1]	Ą	(55.0)[1]	N Q	0.88)) [II]
Benzo(k)fluoranthene	Q	(56.0)[1]	ND	(83.0)[1]	Q.	(55.0)[1]	Q	0.55.0)[<u>H</u>]
Butylbenzylphthalate	Q.	(56.0)[1]	QN Q	(83.0)[1]	Q.	(55.0)[1]	SP	(55.0	(1)
Carbazole	QN	(56.0) <u>[1]</u>	QN	(83.0)[1]	ΩN	(55.0)[1]	N Q	(55.0	(1]
Chrysene	Ω	(56.0)[1]	QN	(83.0)[1]	QN O	(55.0)[1]	Q	(55.0	(1]
Dibenz(a,h)anthracene	Q.	(56.0)[1]	QN	(83.0)[1]	QN	(55.0)[1]	ND	(55.0	[1](
Dibenzofuran	Q.	(56.0	(1)	QN	(83.0	(1)	Q.	(55.0	(1)	Q.	(55.0)[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	-						
					Sample Id	3 73						
					Log Date	, e						
				Beg. D	Beg. Depth - End Depth (in.)	pth (in.)						
		TRND			TRND			TRND			TRAN	
	-	TRND-S025			TRND-S025			TRND-SO26			TRND-SO26	
	NA-1	NA-TRND-SO25-01	=	Ň	NA-TRND-S025-02	, 25		NA-TRND-S026-01	. 0	T-AN	NA-TRND-SO26-11 Dup of	up of
	-	17-MAR-98			17-MAR-98			16-MAR-98		-	NA-TRND-SO26-01 16-MAR-98	=
Parameter		0-3			3-12			0-3			63	
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	npounds, cont. (u	g/kg)										
Diethylphthalate	NO.	56.0	[1]	QN	(83.0	111	S	(55.0)[[]	£	055	E
Dimethylphthalate	QN Q	(56.0)[I]	QN QN	(83.0	Ξ(N ON	(55.0	Ξ(2	(55.0	E =
Fluoranthene	QN Q	(56.0)(<u>i</u>]	ND	(83.0	[1](58.0	(55.0	Ξ(QN QN	(55.0	E E
Fluorene	QN	0'95)	[1]	N Q	0.83.0	[1](ND	(55.0	(1)	QX	(55.0	ΞΞ
Hexachloro-1,3-butadiene	Q.	0.98)	(1)	ND	(83.0	(11)	N Q	(55.0	Ξ	QN.	(55.0	Ξ
Hexachlorobenzene	ND D	0.96.0)[I]	S S	(83.0	(11)	Q.	(55.0	<u>(</u>	N	0.55.)	Ξ
Hexachlorocyclopentadiene	QN Q	0.96.0	[1]	Q.	(83.0	[1]	Q.	(55.0	[1]	ND	(55.0	Ξ
Hexachloroethane	ND I	(56.0)[I]	Q	(83.0	<u>(II)</u>	ND	(55.0	<u>(II)</u>	ND	(55.0	(E)
Indeno(1,2,3-cd)pyrene	QN	. 56.0	(11)	Š	0.68)	[1]	QN	(55.0	(H)	QN QN	(55.0	Ξ(
Isophorone	Q	26.0)[1]	Q.	0.83.0	(1)	ND	(55.0)[II]	N Q	(55.0	Ξ
N-Nitroso-di-n-propylamine	QN Q	. 56.0)[1]	QN Q	(83.0	(1)	QN	(55.0) [<u>1</u>]	Q.	(55.0	(11)
N-Nitrosodiphenylamine	Q :	. 56.0) <u>[1]</u>	g	0.58)	[1]	Q.	(55.0) [E]	QN	(55.0	(E)
Naphthalene	Q !	. 56.0	[1]	Q.	0.83.0	[1]	ΩŽ	(55.0)[]]	QN	(55.0)[1]
Nitrobenzene	Q	26.0	Ξ	Q	(83.0)[1]	Q Z	(55.0)[]]	ND Q	(55.0)[1]
Pentachlorophenol	QN	. 56.0) <u>[</u>	Ω	(83.0	[1]	Q	(55.0	<u>(II</u>	N Q	(55.0)[1]
Phenanthrene	NO.	. 56.0)[1]	Ą	(83.0	[]]	QN	(55.0	(11)	N Q	(55.0	<u>(E)</u>
Phenoi	QN Q	. 56.0)[1]	Ą	(83.0	(11)	Q.	(55.0)[]]	S	(55.0	E](
Pyrene	QN QN	26.0	<u>=</u>	S S	(83.0	(1)	57.0	(55.0	(E)	Q Z	(55.0	(1)
bis(2-Chloroethoxy)methane	QN Q	(26.0	<u>(E)</u>	N N	(83.0)[1]	Q	(55.0)[1]	Q.	(55.0	[]]
bis(2-Chloroethyl)ether	NO.	26.0	(11)	Q.	(83.0	[1]	Q	(55.0	(1)	QN	(55.0	[1]
bis(2-Ethylhexyl)phthalate	QN QN	26.0	[1]	Q	(83.0)[<u>1</u>]	390	(55.0)[1]	280	(55.0	Ē
di-n-Butylphthalate	Q	26.0	[1]	92.0	(83.0	[1]	07.1	(55.0)[1]	90.0	(55.0	Ξ
di-n-Octylphthalate	Ð	0.96.0)[1]	Q.	(83.0)[1]	N Q	(55.0	[1](QN	(55.0	ΞΞ
												1

0 = Detection Limit [] = Dilution Factor N

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id								
							Location Id	9							
							Sample 1d	P							
							Log Date	te							
						Beg. D	Beg. Depth - End Depth (in.)	pth (in.)							
			TRND				TRND			TRND			TRND		
		;	TRND-S025	3		į	TRND-S025			TRND-SO26	, .	1	TRND-SO26	6	
		Ž	NA-1KND-SO25-01	₹		Š	NA-1KND-5025-02	70-1		NA-1 KND-3020-01	Į.	-WI	NA-TRND-S026-01	6-01	
			17-MAR-98				17-MAR-98			16-MAR-98			16-MAR-98		
Parameter			0-3				3-12			0-3			0-3		
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds,	cont.	(ug/kg)												
o-Cresol	Q.		(56.0)[1]	QN		(83.0	(11)	Q	(55.0	(1)	Q	(55.0	(1)	
p-Cresol	QN QN		(56.0	(11)	QN		(83.0	[1](QN	0.55.0)[1]	QN	(55.0	[1] (
SW8290 - Dioxins (ppt)															
1,2,3,4,6,7,8,9-OCDD	868		(2.40)[1]	8.50	-	(1.20	[1]	1270	(2.60)[1]	1380	(4.60	(1)	
1,2,3,4,6,7,8,9-OCDF	17.5		(2.10	(11)	2.50	ſ	00.1	(11)	190	(2.20	(11)	207	(3.90	(11)	
1,2,3,4,6,7,8-HpCDD	9.61		04.1	(11)	2.20	_	00200	(11)	306	(1.50)[1]	77.7	(2.30	(1)	
1,2,3,4,6,7,8-HpCDF	21.8		0.000)[1]	2.00	_	0.500	(11)	269	0060)) [<u>1</u>]	253	(1.40	[1](
1,2,3,4,7,8,9-HpCDF	3.30	-	0.130	<u>[1]</u> (QN		00200	<u>(</u>	29.8	(1.20) <u>[</u>	32.9	(1.90	Ξ(
1,2,3,4,7,8-HxCDD	1.10	-	00.1	(1]	Q		0.600	<u>(E</u>	16.8	(1,00	[1]	14.2	007	<u>[1]</u>	
1,2,3,4,7,8-HxCDF	9.30		0.600	[1](0.890	- ,	0.400)[1]	123	009:0	(11)	108	008'0	(11)	
1,2,3,6,7,8-HxCDD	3.20	ь,	0.800)[1]	1.40	-	0.500)[<u>H</u>	31.6	006'0)	<u>=</u>	30.6	(1.30	Ξ	
1,2,3,6,7,8-HxCDF	4.00	-	0.500	[1]	0.530	_	0.400)[1]	52.4	0.500	[1]	47.1	002:0	Ξ(
1,2,3,7,8,9-HxCDD	11.3		0060)	[H] (8.90		009:0)[<u>1</u>]	4.9	J (0.900	Ξ	40.0	J (1.40	Ξ(
1,2,3,7,8,9-HxCDF	2		0.800	Ξ	S		00:200)[1]	5.90	J (0.700	Ξ	6.70	J (1.00	Ξ(•
1,2,3,7,8-PeCDD	2.40	ī	00200	Ξ	1.60	-	0.500	Œ	13.6	0.800	(1)	13.2	(120	Ξ	
1,2,3,7,8-PeCDF	2.90	ī	0.500	<u>[1]</u>	QN QN		0.400) [<u>1</u>]	31.6	0.500	<u>(</u>	29.5	0.600	Ξ	
2,3,4,6,7,8-HxCDF	7.80		00.700)[1]	0.970	۳,	0.400)[1]	105	0.700	(1)	7.78	0.900	Ξ	
2,3,4,7,8-PeCDF	3.30	-	0.500)[1]	Q		0.400	<u>(E</u>	49.4	00500	<u>(E</u>	45.0	0.600	<u>=</u>	
2,3,7,8-TCDD	0.420	-	0.400	(11	QN		0.300	<u>(</u>	2.30	0.400) [<u>11</u>]	2.10	0.500	<u>=</u>	
2,3,7,8-TCDF	2.10		0.400	(1)	0.560	-	0.700)[1]	24.1	0.800	Ξ	22.7	00.700	<u>=</u>	
Total HpCDD	42.1		(1.40)[<u>1</u>]	3.90		00.700	(Ξ)	647	(1.50)[1]	607	(2.30	<u>=</u>	
Total HpCDF	37.6		(1.10)[1]	2.00		009:0	[1](445	(1.00	(1)	438	097	(E)	

					Site Id	_						
					Location Id	Įq						
					Sample Id	Id						
					Log Date	ate						
				F	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND			TRND			TRND			TRND	
		TRND-S025	us.		TRND-S025	v o		TRND-SO26	.		TRND-S026	•
		NA-TRND-S025-01	5-01		NA-TRND-S025-02	2-03		NA-TRND-SO26-01	5-01	NA	NA-TRND-SO26-11 Dup of	Dup of
		17-MAR-98			17-MAR-98			16-MAR-98			NA-TRND-S026-01 16-MAR-98	6-01
Parameter		0-3			3-12			0. 3			0-3	
SW8290 - Dioxins, cont. (ppt)												
Total HxCDD	51.9	0060)	(11)	20.1	00900)[I]	481	006'0))[[]	459	(1.40	1111
Total HxCDF	45.9	00900)	[H]	3.60	0.400)[1]	637	009:0	ΞΞ	268	0000	ΞΞ
Total PeCDD	18.6	00.700)[1]	3.10	0.500)[1]	295	0.800	(E) (286	(120	ΞΞ
Total PeCDF	44.2	00500)(11)	0.440	0.400	(1)	2 6	0.500	E	675	0090	ΞΞ
Total TCDD	15.0	(0.400	<u>[1]</u> (0.530	0300)[1]	231	0.400	[](228	0050	ΞΞ
Total TCDF	30.1	00:300	(1)	0.560	0.200)[11]	488	0.300	Ē	<u>\$</u>	(0.300	ΞΞ

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

							Site Id	_								
							Sample Id									
							Log Date	. du								
						eg. Det	Beg. Depth - End Depth (in.)	oth (in.)								
		1	TRND			'	TRND			•	TRND			į	TRND	
		L YN	TRND-SO27 NA-TRND-SO27-01	10		NA-	TRND-SO27 NA-TRND-SO27-02	02		NA	TRND-SO28 NA-TRND-SO28-01	II.		T NA-T	TRND-SO29 NA-TRND-SO29-01	-
		1	17-MAR-98			_	16-MAR-98			, ,	16-MAR-98			7	17-MAR-98	
Parameter			0-3				3-12				6.				Z Z	
OLM03.2 - Pesticides and PCBs (ug/kg)	g/kg)															
4,4'-DDD	Q.		0.300	(1)	Q		00300)[1]	Q.		0.260)[1]	QN		0.270	<u>(E)</u>
4,4'-DDE	36.0		0.300	(11)	130		0650))[2]	0.09		0.260)[1]	2.40		0.270	Ξ
4,4'-DDT	28.0	_	0300)[1]	0.68	-	0.300)[1]	42.0	_	0.260)[i]	4.10	-	0.270	(11
Aldrin	QN		0300	<u>[</u>](Q.		0.300	(11)	Q		0.260	(1)	Q.		0.270	Ξ
Aroclor-1016	Ð		0.300	<u>[1]</u> (Ð		0.300	(11	QN		0.260	[1]	Ð		0.270	Ξ
Aroclor-1221	Ð		0300)[I]	Q.		0.300	[1]	QN		0.260)[]]	Q		0.220	Ξ
Aroclor-1232	£		0300	<u>[]</u>	2		0300) <u>[ii]</u>	Ð		0.260	<u>[i]</u>	g		0.270	Ξ(
Aroclor-1242	9		0300	<u>[]</u>	2		0.300) <u>[H]</u>	R		0.260)[1]	S		0.270	Ξ
Aroclor-1248	Ð		00:00	[][Q.		0300	<u>E</u>	Q		0.260	[1](R		0.270	<u> </u>
Aroclor-1254	Q		0.300	[1]	Ø		0.300	<u>E</u>	QN		(0.260	<u>(E)</u>	Q.		0.270	Ξ(
Aroclor-1260	Q		0.300	[1]	N		0.300	[1]	QN		0.260)[1]	Ð		0.270	<u>=</u>
Dieldrin	Q.		00:00	[1]	R		0.300	<u>(E)</u>	QN Q		0.260)[<u>[</u>]	Ð		0.270	<u>=</u>
Endosulfan I	2		0300) <u>[1]</u>	8		0300)[1]	Q		0.260)[<u>1</u>]	Ð		0.270	<u>=</u>
Endosulfan II	2		00:00)[1]	Ð		0.300) [I](Q		0.260	<u>=</u>	Ð		0.270	<u>=</u>
Endosulfan sulfate	QN QN		0300	<u>(</u>	2		0.300	<u>[]</u>	Q		0.260	[1]	Ð		0.270	<u>[</u>]
Endrin	Q		0300	(1)	g		(0.300	[1]	Q.		0.260)[I]	QN		0.270)[1]
Endrin aldehyde	NO		0.300	<u>[i]</u>	S		0300	(<u>ii</u>)	2		0.260)[I]	Q.		0.270)[1]
Endrin ketone	ND		0300	<u>[]</u>	Ð		0300	Ξ(Q		0.260)[1]	QN QN		0.220)[1]
Heptachlor	QN		0.300	<u>[1]</u> (S		0.300	[<u>H</u>]	Q		0.260)[1]	R		0.220)[1]
Heptachlor epoxide	2		00:00	[1]	S		00:00) <u>[1]</u>	Q		0.260)[1]	Ð		0.720	=
Methoxychlor	Q	5	0300	<u>E</u>	S	n	0.300)[1]	QN	5	0.260	[1]	Q	Ħ	0.220)[<u>H</u>]
Toxaphene	Q.		0300)[1]	Ð		0.300	<u>=</u>	Q		0.260	Ξ	S		0.220	Ξ
alpha-BHC	Q		0.300	(E)	Ð		0.300	(1)	2		0.260) <u>[ii]</u>	S		0.270	Ξ

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					bl off							
					1	. ;						•
					Location id	<u> </u>						
					Sample Id	Id						
					Log Date	ate						
				Ā	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND	,		TRND			TRND			TRND	
		TRND-S027	27		TRND-8027	*		TRND-S028	6		TRND-S029	
	z	NA-TRND-SO27-01	27-01		NA-TRND-SO27-02	7-02		NA-TRND-S028-01	8-01		NA-TRND-SO29-01	-01
Parameter		0-3			3-12			16-MAK-98 0-3			17-MAR-98 0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	ıt. (ug/kg)											
alpha-Chlordane	2.70	0300	[1](097	00:300	(1)	QN QN	(0.260)[1]	QN	0.220	1111
beta-BHC	Ð	00300	<u>(I)</u>	Q	0.300	(1)	ND	(0.260	ΞΞ	Ð	(0.270	ΞΞ
delta-BHC	QN	0300	[1](QN	00:300)[1]	ND	0.260	EE (QN QN	(0.270	£ <u> </u>
gamma-BHC(Lindane)	QN	0300	<u>[I]</u>	Q	00:00	[]](QN	0.260	(II)	QN	(0.270	<u> </u>
gamma-Chlordane	2.10	0300	[1]	8	0.300	[[]	Q	0.260)[1]	Q	0.270	E) (
OLMO3.2 - Semi-Volatile Organic Compounds (ug/kg)	/ompounds (ug/k	9										
1,2,4-Trichlorobenzene	QN Q	0.00))[1]	QN	0'09)	[1]	S	0.15))[1]	QN QN	(54.0)[[]
1,2-Dichlorobenzene	NO	0.09	[1](Q	0.09)	(1)	QN QN	(51.0	<u>(</u>	QN QN	. 54.0	<u> </u>
1,3-Dichlorobenzene	Q	0.00	[]]	QN	0.09)	(1]	NO ON	(51.0	[<u>[</u>](QN	. 54.0	ΞΞ
1,4-Dichlorobenzene	QN QN	0.00))[1]	Q	0'09)	[1]	QN	(51.0)[1]	QN	54.0	(1)
2,2'-oxybis(1-chloropropane)	Q.	0.09	Ξ.	Q	0.00	[1](Q.	(51.0	<u>E</u>	QN	54.0	Ξ(
2,4,5-Trichlorophenol	Q !	0.09	Ξ	Q !	0000	<u>(E)</u>	S	(51.0	[](Q	54.0	(E)
2,4,0-Trichlorophenol	2 9	000	ΞŞ	9 9	0.00)	Ξ	2 !	(51.0	Ξ;	<u>Q</u>	54.0) [E]
Z, T. C. C. C. C. C. C. C. C. C. C. C. C. C.	€ €	0.00	Ξ,	2 :	0.00	Fi] (Q !	0.13	[1]	2	S 4.0) EE
2,4-Dimethylphenol	Q :	0.09	Ξ.	2	0.09	[]	Q.	(51.0)[1]	ΩN	. 54.0	EE) (
2,4-Dintrophenol	Q !	0.09	<u>[i]</u>	QZ	0'09)	[1]	Q	(51.0)[1]	ND	6 54.0)[1]
2,4-Dinitrotoluene	Q	0.09	<u>=</u>	2	0.09	<u>(II)</u>	S	(51.0)[1]	Q.	(54.0)[1]
2,6-Dinitrotoluene	Q	0.09)[1]	2	0.09)	<u>:</u>	S	(51.0)[1]	Q.	(54.0)[1]
2-Chloronaphthalene	£	0.00))[1]	Q	0'09))[1]	Æ	(51.0)[1]	Q.	(54.0)[1]
2-Chlorophenol	Q	0.09	(1)	Q	0.09))[1]	Q.	(51.0)[1]	Q.	(54.0)[1]
2-Methylnaphthalene	N Q	0'09)) [1]	Q.	0.00))[1]	Ω	(51.0)[1]	QN	54.0	(13)
2-Nitroaniline	<u>R</u>	0.09)	Ξ(ND	0'09))[<u>[]</u>	QN	(51.0	<u>(II)</u>	Q	. 54.0	Ξ.

Table 1 Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				Beg	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	id id te spth (in.)						
	Z	TRND TRND-SO27 NA-TRND-SO27-01 17-MAR-98	10-	_	TRND TRND-SO27 NA-TRND-SO27-02 16-MAR-98	7-02		TRND TRND-SO28 NA-TRND-SO28-01 16-MAR-98	-01	-	TRND TRND-SO29 NA-TRND-SO29-01 17-MAR-98	16
Parameter		0-3			3-12			0-3			0-3	
OI MO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, cont.	(ug/kg)										;
2-Nitrophenol	QN	0.09	(1)	QN	0.09	[1]	S Q	(51.0	Ξ.	2 :	54.0	Ξ,
3,3'-Dichlorobenzidine	QN	0.09))[1]	ND QN	0'09)	[1](QN QN	(51.0	<u>=</u>	Q :) 24. 0	ΞΞ
3-Nitroaniline	ND	0.00))[<u>[</u>]	QN Q	0'09))[1]	Q :	(51.0	Ξ,	Q f	. X	ΞΞ
4,6-Dinitro-2-methylphenol	ND	0'09)	(1)	<u>Q</u>	0:09	(<u>1</u>]	Q I	(51.0	Ξ,	2 9	24.0	Ξ Ξ
4-Bromophenyl-phenylether	ND	0'09))[1]	Ð	0:09))[1]	Q.	(51.0	E) (2 :	7.540	3 5
4-Chloro-3-methylphenol	ND	0:09))[1]	QN	0.09)	<u>(E</u>	Q	(51.0		2 !	0.45	Ξ
4-Chloroaniline	ND	0.09	(1)	QN Q	0.09))[1]	Q Q	(51.0	[1]	2	. 54.0	Ξ.
4-Chlorophenyl-phenylether	QN Q	0.09)	(E)	QN Q	0.09	(11)	QN	(51.0	Ξ.	<u>S</u> ;	7 X Y	ΞΞ
4-Nitroanaline	Q	0:09))[1]	QN	0:09)	[](QN !	(51.0	Ξ	2 4	0.40	E E
4-Nitrophenol	QN Q	(60.0	<u>[1]</u> (S	0.09	Ξ.	2 !	(51.0	Ξ,	2 2	7. S	ΞΞ
Acenaphthene	QN :	0.00)	Ξ.	2 2	0.09		2 5	0.16)	<u> </u>	N 051	. 540	ΞΞ
Acenaphthylene	Q (0.09		740	909		2 2	(51.0	E (E	3	. 54.0	Ξ
Anthracene	4 C	000	E (550	0000)	三三(Ð	(51.0	(E)	450	(54.0)[1]
Delizo(a)aniunacene Renzo(a)nurene	97.0	009	<u> </u>	420	0.09	(1)	ΩN	(51.0	[1]	410	(54.0	Ξ
Benzo(b)fluoranthene	700	0.09	<u>(1)</u>	800	0.00)[1]	QN	(51.0	[1]	200	54.0	Ξ
Benzo(g.h.i)pervlene	110	0'09)	[1](310	0.09)	(11)	QN Q	(51.0)[1]	280	54.0	Ξ
Benzo(k)fluoranthene	0:06	0.09)	Ξ(210	0'09))[1]	S	(51.0	(E)	250	, X	
Butylbenzylphthalate	QN	0.00)	(11)	QN	0.09)	[1]	Q.	(51.0	Ξ.	2) 84, 2	E E
Carbazole	QN Q	0.09)[1]	74.0	. 0.00)[1]	QN	(51.0	Ξ	OZ S	(34.0	3 5
Chrysene	110	0.09))[1]	200	0.09) [<u>1</u>]	2	(51.0	E) (450	0.45	Ξ
Dibenz(a.h)anthracene	QN QN	0.09)	111	0.96	0:09)	[1](Q.	(51.0)[1]	<u>Q</u> :	0.40	Ξ.
Dibenzofuran	Q	0.09))[1]	QN	0.09	(1)	Ð	(51.0	[1]	Q X) X:U	1111

Results of Organic Analyses For Round 1 Soll Samples, Atsugi NAF, Japan

					Site Id	- F						
					Location Id	PI u						
					Sample Id	PI e						
					Log Date	ate						
				A	Beg. Depth - End Depth (in.)	Depth (in.)						
		TRND			TRND			TRAIN				
		TRND-SO27 NA-TRND-SO27-01	27 27-01		TRND-SO27	77		TRND-S028			TRND-SO29	ຄ
		17-MAR-98			16-MAR-98	70-/2		NA-TRND-S028-01	¥0.		NA-TRND-S029-01	29-01
Parameter		0-3			3-12			10-MAK-98 0-3	_		17-MAR-98 0-3	00
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	: Compounds, con	nt. (ug/kg)										
Diethylphthalate	QN QN	0.09)[1]	Q.	009)	101	Ş	019 /	5	!		
Dimethylphthalate	ND	0.00)	(H)	QN	0.09	E =	9 9	015)	E 5	2 9	54.0) [E]
Fluoranthene	Q	0.09)	(1)	890	0.09	E (e E	015)	ΞΞ	ON ;	. 54.0	Ξ(
Fluorene	ND	0.09)	[1](QN QN	009)	E (9 5	0.5	Ξ,	901	. 54.0	Ξ(
Hexachloro-1,3-butadiene	QN	0.09)	(1)	N	000	E (Ē	0.12	Ξ,	£ ;	. \$4.0	[1](.
Hexachlorobenzene	Q.	0.09)	(E) (N	009)	E (2	0.16)	ΞΞ	₹ \$	54.0	<u>(</u>
Hexachlorocyclopentadiene	N Q	0.00)	(II)	QN.	0'09)	E (9 9	0.10	Ŧ	2 !	54.0	<u>(</u>
Hexachloroethane	ΩN	0.09))[1]	QN QN	(60.0	ΞΞ	9 5	015)		2 ;	54.0	Ξ(
Indeno(1,2,3-cd)pyrene	91.0	0.09)	(1)	280	0.00	<u> </u>	2	31.0	E 5	a ş	54.0) [<u>1</u>]
Isophorone	QN	0.00)	(H)	ND	0.00	ΞΞ	Ę	0.10	<u> </u>	8	\$2.0	<u>(II</u>
N-Nitroso-di-n-propylamine	Q	0'09)	(1)	QN	0.09	E E	2	015	Ξ,	S S	6 54.0	<u>=</u>
N-Nitrosodiphenylamine	QN	0.00	(1)	QN	0:09	ΞΞ	2	(St.0	E 5	2 9	, \$4.0 34.0	Ξ
Naphthalene	Ð	0.09)	[[]	ND	0.09)	E)(2	(510	ΞΞ	2 5	0.84.0	Ξ
Nitrobenzene	Ê	0.09))[1]	QN	0.09)	(1)	N Q	(51.0	E	2 5	0.40	Ξ
Fentachiorophenol	Q !	0.09)	[1]	ND	0'09)	(11)	ND	(51.0	ΞΞ	2 5	, , , ,	E 5
rienandirene	Q ;	0.09))[1]	310	0'09)	(E)	QN.	(51.0	E) (0)	95	Ξ
Principal	QN ,	0.00)	(11)	Q	0'09)	<u>(E)</u>	QX	(51.0		Š	G 3	Ξ.
Pyrene	0.09	0.09))[1]	760	0.09)	<u>E</u>	Q	(51.0	E (<u> </u>	0.4.	Ξ
bis(2-Chloroethoxy)methane	Q Z	0.09	<u>(E)</u>	Q	0'09))[1]	Q	015)	ΞΞ	811	2 K	======================================
bis(2-Chloroethyl)ether	QN	0.09)[1]	QN	0.09)[]]	Ę	0.12		9 9	X	Ξ
bis(2-Ethylhexyl)phthalate	92	0.09)	(11)	120	0'09)	(E) (150	015)	ΞΞ.	<u> </u>	¥ γ	E :
di-n-Butylphthalate	2	0.09)[1]	160	(60.0)[1]	220	015	Ξ	M.	X	Ξ
di-n-Octylphthalate	Q.	0'09)	(1)	QN	0:09	Ξ	Q.	210	Ξ.	2 9	. \$4.0 6.3	Ξ
									Ξ	Ş	7 .	Ξ

0 = Detection Limit [] = Dilution Factor N

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Parameter	SW8290 - Dioxins, cont. (ppt) 161 Total HxCDD 262 Total PcDF 262 Total PcDF 91.4 Total PcDF 321 Total TCDD 67.0 Total TCDF 229 TOC (mg/kg) 705 Total Organic Carbon NA	
TRND TRND-S027 NA-TRND-S027-01 17-MAR-98 0-3	(1.50 (1.00 (1.40 (0.500 (0.600	
7-01		
8	102 55.5 14.0 58.6 12.9 40.3	
Site Id Location Id Sample Id Log Date Log Date TRND TRND TRND-SO27 NA-TRND-SO27 16-MAR-98 3-12	(1.70 (1.00 (1.50 (0.900 (0.600	
Id Id ate epth (in.) 7-02		
	148 258 73.9 22.3 62.2 156	
TRND TRND-SO28 NA-TRND-SO28-01 16-MAR-98 0-3	(0.200 (0.100 (0.100 (0.100 (0.100	
Z	166 188 77.6 175 62.1 133	
TRND TRND-SO29 NA-TRND-SO29-01 17-MAR-98 0-3	(0.100 (0.100 (0.100 (0.100 (0.100 (0.000	•
0.0		

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id							
							Location Id							
							Sample Id							
							Log Date							
						eg. Dept	Beg. Depth - End Depth (in.)	th (in.)						
		-	TRND				TRND			TRND			TRND	
		TR NA-TR	TRND-SO29 NA-TRND-SO29-02	2		T-WA-T	TRND-SO30 NA-TRND-SO30-01	10		TRND-SO31 NA-TRND-SO31-01	1		NA-TRND-SO32-01	=
		17.1	17-MAR-98	ţ		17	17-MAR-98			17-MAR-98			16-MAR-98 0-3	
Parameter		63	3-12				0-3			3			2	
OLM03.2 - Pesticides and PCBs (ug/kg)	ug/kg)							;	!	000		Ş	0.080)[[]
4,4'-DDD	Q)	0.250	[1]	Ą	•	0.280)[1]	Q !	0050	Ξ.	N SE	0.780	Ē
4,4'-DDE	0.860	`	0.250	[1](2:00	_	0.280	Ξ	<u>Q</u> !	006.0	Ξ,	0.72	0300)	Ξ
4,4'-DDT	S	J	0.250	(11)	S	•	0.280	Ξ.	2	0.300	Ξ	20:0 M	0.000	
Aldrin	QN.	•	0.250	(E)	S	_	0.280)[1]	Q N	0.300	E :	2 9	0870	ΞΞ
Aroclor-1016	QN)	0.250	(E)	QN		0.280	[1]	Ω	0.300	<u>=</u>	Q :	0870	= = =
Aroelor-1221	QN)	0.250)[1]	Ð	-	0.280	(E)	ND Q	0.300	(E)	Q !	0.280	Ξ.
Aroclor-1232	QN	_	0.250)[1]	Q		0.280)[<u>[</u>]	QN ON	0.300	<u>=</u>	QN	0.62.0	Ξ.
Aroclor-1242	Ş		0.250	[E](Ð		0.280	[1]	QN	0.300	[1]	Q Z	0.280	Ξ.
Aroclor-1248	æ		0.250	(E)	Q.		0.280	(1)	QN.	0.300	(1)	Q	0.280	E (
Aroclor-1254	QN QN	_	0.250)[1]	S		0.280	[1]	Q.	0.300	Ξ:	Q :	0570	
Aroclor-1260	ΩN	·	0.250)[1]	Q.		0.280	<u>[1]</u>	£	0.300	<u>(E</u>	Q !	0870)	ΞΞ
Dieldrin	Q.)	0.250)[1]	QN		0.280) [1]	2	0.300	Ξ,	9 9	0870	ΞΞ
Endosulfan I	QN)	0.250	(1)	Q		0.280	Ξ:	2 !	0.300	Ξ	2 5	0.280	ΞĘ
Endosulfan II	S	Ŭ	0.250	Ξ	<u>R</u> !		0.280	Ξ,	S S	0.300	ΞΞ	2 2	0280	E (
Endosulfan sulfate	Q	_	0.250	Ξ.	2 9		0870	Ξ.	9 9	0000	E	9	0.280	EE (
Endrin	2		0.250	Ξ,	2 9		0870	ΞΞ	2 5	0000	E E	Q X	(0.280	(E)
Endrin aldehyde	Q.	_	0220	Ξ.	Q.		007.0	Ξź	9 9	00800	ΞΞ	QX	0.280	(E)
Endrin ketone	Q Z	_	0.250	<u>[i]</u> (a i		0000	E 5	2 9	0300	E 5	CX	0.280)[1]
Heptachlor	Q)	0.250	Ξ(2 !		087.0	ΞΞ	2 9	0.000	E	9	(0.280	Ξ
Heptachlor epoxide	NO.	_	0.250	(E)	Q :	;	087.0	E 5	2 9	0.300	ΞΞ	É	(0.280	Œ
Methoxychlor	Q	ħ	0.250	Ξ	2	3	0.780	Ξ,	2 9	0000	ΞΞ	9 €	(0.280)[[]
Toxaphene	ND	_	0.250	<u>=</u>	2		0.230		2 9	0300	ΞΞ	2	0.280	Ξ(
alpha-BHC	QN	Ŭ	0.250)[1]	Q		0.220	III (J.	0000	[r] (,	

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id							
					Location Id	PI						
					Sample Id	H						
					Log Date	ate						
				A	Beg. Depth - End Depth (in.)	epth (in.)						
		TRND	ş		TRND			TRND			TRND	
		17-MAR-98	29-02 8		TRND-SO30 NA-TRND-SO30-01 17-MAP-08	0-01 0-01		TRND-SO31 NA-TRND-SO31-01	_ [-01		TRND-SO32 NA-TRND-SO32-01	2-01
Parameter		3-12			0-3			1/-MAK-98 0-3			16-MAR-98 0-3	
OLM03.2 - Pesticides and PCBs, cont. (ug/kg)	f. (ug/kg)											
alpha-Chlordane	Ð	(0.250)[1]	Q.	(0.280	1111	Š	0300	107	!	,	
beta-BHC	Q	(0.250	(H)	Ä	(0.280	E	2	0000	Ξ	2 !	0.280	<u>(</u>
delta-BHC	ND QN	(0.250	<u>(11)</u>	S S	(0.280	ΞΞ.	9 5	0000	<u> </u>	S S	0.280	(E)
gamma-BHC(Lindane)	Ð	0.250	(1)	Q	(0.280		É	0.300	Ē	2 !	0.280)[<u>:</u>]
gamma-Chlordane	2	0.250	<u>(</u>	Q.	(0.280	E (2 2	005.0	3 5	2 5	0.280	Ξ
OI MO3 1 Same Walash	•								E)	2	0970	[ii]
10 tm: 11 tm: volume Organic Compounds (ug/kg)	ompounds (ug/	_										
1,2,4-1 richlorobenzene	Q N	(51.0)[1]	ND	0.98)	[H]	ND	(61.0)[1]	Ğ	025 /	1111
1,2-Dichlorobenzene	Š	0.15)[1]	Q	. 56.0	(11)	Ą	0.19	[1]	9 8	0.50	ΞΞ
1,3-Dichlorobenzene	QN QN	(51.0	(1)	Q.	0.98)	(1)	QN	(61.0	E =	9 5	07/5	
1,4-Dichlorobenzene	S S	(51.0)[1]	Q.	(56.0	<u>(</u>	QN	0.19)	E E	e e		Ξ
2,2'-oxybis(1-chloropropane)	2 :	(51.0	[1]	<u>R</u>	(56.0	[1]	Ð	(61.0	E (2	075)	Ξ,
2,4,5-1 isoluciophenol 2 4 6.Trichlorophenol	2 9	(51.0	Ξ:	Q	(56.0)[]	QN	0.19	<u>(E)</u>	Q.	(57.0	E E
2,7,5 treducippusion 2 4.Dichlorophenol	9 9	010)	Ξ.	2	(56.0	[]]	QN	(61.0	[1]	QN QN	(57.0	ΞΞ
2.4-Dimethylphenol	2 2	0.16	Ξ	Q !	(56.0	<u>(E)</u>	ND	0.19))[1]	ND	0.72	Ξ(
2.4-Dinitrophenol	2	016)		Q A	0.98)	(E)	Q	(61.0	(1)	QN Q	(57.0	ΞΞ
2,4-Dinitrotoluene	2	015)	ΞΞ	2 2	0.00	Ξ;	Q !	019)	E)(N Q	0.73)	<u> </u>
2.6-Dinitrotoluene	Ę	510		2 1	0.00	[](Q	019))[]]	Q.	0.73	[1]
2-Chlomanhthalene	9 5	0.16)	EI (2 !	999	(E)	Ð	(61.0)[I]	QN	(57.0	
2.Chloroshano!	<u> </u>	0.16)	EII (Q :	0.96.0)[1]	ΩN	0.19)[1]	Q.	(57.0	ΞΞ
2-Mathelmatetelen	⊋ 9	0.16)		Q	6 56.0)[1]	Q.	0.19))[1]	Q.	(57.0	ΞΞ
2-iviettiy tilapituatene 2 Niteooraine	2 1	51.0	(1)	Q	0.98))[1]	Q.	(61.0)[1]	QN	(57.0	ΞΞ
Z-IVIŲ GRIBINE	a N	(51.0)[1]	Š	(56.0	[1]	Q.	(61.0	<u> </u>	QN	(57.0	ΞĘ
							i					

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

				(4		TRND-SO31	NA-TRND-S031-01	17-WAR-98 16-MAR-98	0-3
Site Id	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	TRND		NA-TRND-SO30-01	17-MAR-98	0-3
					TRND	TRND-SO29	NA-TRND-S029-02	17-MAR-98	3-12
									Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, cent.	(ug/kg)		-								
2-Nitrophenol	Q.	(51.0)[1]	ND	(56.0)[1]	QN Q	0.19))[1]	ΩŽ	0.73))[1]
3,3'-Dichlorobenzidine	ND	(51.0)[1]	Ð	0.98))[1]	QN QN	0.19))[1]	S Q	(57.0)[1]
3-Nitroaniline	ND	(51.0)[1]	ΩN	0.95))[1]	N Q	0'19))[1]	N	(57.0)[1]
4,6-Dinitro-2-methylphenol	Q.	(51.0)[1]	ΩN	(56.0)[1]	QN	019)	(1)	N Q	0.72))[1]
4-Bromophenyl-phenylether	R	(51.0)[1]	QN	(56.0)[1]	QN	(61.0)[1]	Q.	(57.0)[1]
4-Chloro-3-methylphenol	QN	(51.0)[1]	ON	(56.0) [E] _.	Q.	(61.0)[1]	QN	0.72))[1]
4-Chloroaniline	N Q	(51.0)[1]	N Q	(56.0)[1]	QN QN	(61.0	(11)	QN	0.73) [II]
4-Chlorophenyl-phenylether	ND	(51.0)[1]	ND	(56.0)[1]	ND	(61.0)[1]	ND	(57.0)[<u>1</u>]
4-Nitroanaline	NO ON	(51.0)[1]	ND	(56.0)[1]	NO	(61.0)[1]	Q.	0.73	[1]
4-Nitrophenol	QN	(51.0)[1]	NO	(56.0)[1]	QN Q	(61.0)[1]	QN	0.72)	(11)
Acenaphthene	Q.	(51.0)[1]	ND	0.95)[1]	S	(61.0)[1]	ND	0.72))[1]
Acenaphthylene	ND	(51.0)[1]	ND QN	(56.0)[1]	Q	0.19))[1]	QN QN	6.27.0) [I]
Anthracene	QN	(51.0)[1]	NO NO	(56.0)[1]	NO ON	0.19))[1]	ND Q	0.72	(11)
Benzo(a)anthracene	63.0	(51.0)[1]	ND Q	(56.0)[1]	ON	0.19))[1]	Q	0.72)	(1)
Benzo(a)pyrene	0.99	(51.0)[1]	ND	(56.0) [1]	QN	(61.0)[1]	QN	(57.0	[1]
Benzo(b)fluoranthene	0.69	(51.0)[1]	ΩN	(56.0)[1]	ON	(61.0)[1]	Q.	0.72)) [<u>1</u>]
Benzo(g,h,i)perylene	51.0	(51.0)[1]	ND	(56.0)[1]	ND	(61.0)[1]	QN Q	0.73) <u>[</u>
Benzo(k)fluoranthene	ND	(51.0)[1]	ND	(56.0)[1]	QN	(61.0)[1]	Q	(57.0	(11)
Butylbenzylphthalate	QN O	(51.0)[1]	ND	(56.0)[1]	NO	(61.0	(1)	QN Q	(57.0)[1]
Carbazole	QN	(51.0	(11)	ΩN	(56.0)[1]	NO	(61.0)[1]	QN O	6.57.0)[]
Chrysene	59.0	(51.0)[1]	QN	(56.0)[1]	<u>Q</u>	(61.0)[1]	QN.	0.72)E3
Dibenz(a,h)anthracene	QN Q	(51.0)[1]	QN	(26.0)[1]	Q.	(61.0)[1]	ON	(57.0) [E]
Dibenzofuran	ND	(51.0	(3)	Q.	(56.0)[1]	2	(61.0)[1]	QN	0'22))[1]

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

					Site Id	_						
					Location Id	PI						
					Sample Id	PI						
				É	Log Date	ate						
				3	Beg. Deptn - End Deptn (m.)	Jepth (m.)						
		TRND			TRND			TRND			UNGL	
		TRND-S029	6		TRND-S030	•		TRND-SO31	15		TRND-SO32	6
		NA-TRND-S029-02	70-6		NA-TRND-SO30-01	10-01		NA-TRND-S031-01	3-0- 31-01		NA-TRND-S032-01	. -
		17-MAR-98	_		17-MAR-98			17-MAR-98	œ.		16-MAR-98	
Parameter		3-12			£3			5			2	
									,			
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	Compounds, con	f. (ug/kg)	•									
Diethylphthalate	QZ.	(51.0	[1](AN AN	(56.0)[1]	QX	(61.0)[[]	QX	(57.0	183
Dimethylphthalate	ND	(51.0	(Ξ)	Q.	(56.0	(H)	QN	(61.0	Ξ	Ð	(57.0	ΞΞ
Fluoranthene	130	(51.0	<u>[I]</u> (QN.	(56.0	<u>[]</u> (QN	0.19)	Ξ(Ð	0'220	E (
Fluorene	N Q	(51.0) [1]	Q.	0.98	[1](ND	(61.0	(1)	ND QN	(57.0	Ξ
Hexachloro-1,3-butadiene	N Q	(51.0	<u>(E)</u>	QN	(56.0	(11)	Q.	(61.0	[1](QN	(57.0	Ξ
Hexachlorobenzene	Q.	(51.0	[]	QN	0.98	(E)	Q	(61.0	(E)	N QN	0.72	E) (
Hexachlorocyclopentadiene	Ω	(51.0	<u>[1]</u> (QN	(56.0	(11)	S	(61.0	[](Q.	0.73	(1)
Hexachloroethane	Q	(51.0)[]]	ON	(56.0	(1)	ND	0.19)	Ξ(QN .	0.73)[1]
Indeno(1,2,3-cd)pyrene	Q.	(51.0	Ξ(Q	(56.0	(1)	ND	(61.0	(11)	Ð	(57.0)EI
Isophorone	S S	(51.0	Ξ.	QN.	(56.0)[1]	QN	(61.0)[1]	<u>R</u>	(57.0	(E)
N-Nitroso-di-n-propylamine	Q.	(51.0) <u>[1]</u>	QN	0.95	<u>(E</u>	ND	(61.0	[[]	9	(57.0)[1]
N-Nitrosodiphenylamine	Q.	(51.0	<u>(</u>	QN	0.98	<u>=</u>	Q.	(61.0	[1](Q	(57.0	[](
Naphthaiene	2 :	(51.0	<u>(I)</u>	QN	(56.0	(1)	Q	(61.0	Ξ(NO	0.72)) [H]
Nitrobenzene	2 :	(51.0	(Ξ)	ND QN	(26.0	<u>(</u>	Q Q	(61.0	<u> </u>	2	(57.0	Ξ(
Pentachlorophenol	Q.	(51.0	Ξ(QN Q	(56.0	[1]	Q.	(61.0	<u>[]</u> (Q	0.72)	[<u>1]</u> (
Phenanthrene	0.09	(51.0	Ξ	N Q	(56.0	[<u>T</u>](QN	019)	<u>(E</u>	Q.	0.72)	(E) (
Phenol	Q	(51.0	<u>(</u>	Q	(56.0	<u>(E)</u>	Ð	(61.0	<u>(II)</u>	Ð	(57.0	(E) (
Pyrene	120	(51.0	Ξ	Q	0.98	<u>=</u>	ΩN	0.19)	(Ξ)	Ð	(57.0	(11)
bis(2-Chloroethoxy)methane	QN Q	(51.0	Ξ	Q	6 56.0	<u>[1]</u>	Q	0.19	[1](ND	(57.0)[1]
bis(2-Chloroethyl)ether	Q Q	(51.0	Ξ	N Q	(56.0	<u>=</u>	QN	(61.0	Ξ	ND	0.72))[1]
bis(2-Ethylhexyl)phthalate	Q	(51.0	<u>(II)</u>	0.70	(56.0	Ξ(110	(61.0	Œ	86.0	(57.0)[1]
di-n-Butylphthalate	Q	(51.0	(11	710	0.96	[1](120	(61.0	[1]	QN	(57.0	(11)
di-n-Octylphthalate	Q.	(51.0	[1](QN	(56.0	(13)	QN	019)	(11	ND	(57.0	(E)

0 = Detection Limit [] = Dilution Factor N

Table 1
Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id		:						,
						3 *3	Sample Id								
							Log Date								
					ă	g. Depth	Beg. Depth - End Depth (in.)	h (tn.)							
			TRND			E	TRND			TRND			TRND		
		TT NA-TT	TRND-SO29 NA-TRND-SO29-02	8		TRN NA-TRN	TRND-SO30 NA-TRND-SO30-01	-		TRND-SO31 NA-TRND-SO31-01 17-MAB-08	331 331-01 68		TRND-SO32 NA-TRND-SO32-01 16-MAR-08	332 332-01 98	
Parameter			3-12				0-3			0-3	2		0-3	₹	
															I
OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)	ompounds, ca ND	ont. (ug/	3/kg)) III	Q	_	56.0)[[]	Q	(61.0	1111	QN	(57.0)[[]	
p-Cresol	e Q	<i>,</i>	51.0	E (Q	Ü	56.0	ΞΞ	Ð.	(61.0	ΞΞ	ND	(57.0)[1]	
SW8290 - Dioxins (nnt)															
1,2,3,4,6,7,8,9-0CDD	42.4	_	2.20)[i]	920	Ž	4.80	(E)	37.1	(4.20	(1)	565	(1.40	(11)	
1,2,3,4,6,7,8,9-OCDF	5.60) 1	1.80	(E) (73.1	Ü	3.80)EI	57.9	(3.40	(11)	78.7	(1.10	(1)	
1,2,3,4,6,7,8-HpCDD	6.90	Ŭ	1.60)[]]	107	Ü	2.80	(1)	69.3	(2.70	(11)	99.1	0060))[1]	
1,2,3,4,6,7,8-HpCDF	6.20	_	1.00)[1]	72.3	J	1.60)[1]	29.7	05:1	[1]	87.7	00900)	(E)	
1,2,3,4,7,8,9-HpCDF	QN	`	1.30	[1]	3.50) I	2.00	[i]	10.7	0.130	(11)	15.5	008:0)[1]	
1,2,3,4,7,8-HxCDD	QN O)	1.70)[1]	2.60) [2.20	[1]	4.00	J (220)[1]	Q	006:0)EI	
1,2,3,4,7,8-HxCDF	3.30) [1.00)[1]	7.00	Ü	1.20)[1]	29.7	(1.20)[1]	37.9	009'0		
1,2,3,6,7,8-HxCDD	R	<u> </u>	1.30	Ξ(5.10	:	1.70	[1]	720	0.1.70	Ξ	9.70	0.700		
1,2,3,6,7,8-HxCDF	120	· ·	0.800	三三	3.80		90.1	Ξ.	11.3	0.1.00	Ξ	15.3	0.500		
1,2,3,7,8,9-EXCDD 1,2,3,7,8,9-ExCDF	OC. CIN	- -,	9 5		R R	ک ک	1.90	E (1.90	1.40		16.2 2.50	1 (0.700		
1,2,3,7,8-PeCDD	1.30	-	1.10	ΞΞ	2:00	,	1.20	E (3.60	J (1.40	Ξ(4.10	J (0.600		•
1,2,3,7,8-PeCDF	0.950)	0.800)[1]	1.30) <u> </u>	0.800)[1]	7.30	0060)		6.90	(0.400		
2,3,4,6,7,8-HxCDF	2.00) [1.00	(1)	6.20	<u> </u>	1.30	(<u>E</u>]	22.0	(1.20		35.4	009'0)		
2,3,4,7,8-PeCDF	1.40) [0.800)[1]	2.10	ì	0.800	[1]	06.6	0060)		12.2	0.400		
2,3,7,8-TCDD	QN)	009:0	[1]	Q	J	0.500)[1]	Q	00.00		0.560	J (0.300		
2,3,7,8-TCDF	1.10	_	0.400)[1]	1.50	J	0.400	[1]	6.50	009:0	•	4.80	(2.20		
Total HpCDD	14.4	<u> </u>	1.60)[1]	201	Ü	2.80) <u>[1]</u>	152	(2.70	<u>[</u>]	195	0060)	, ,	
Total HpCDF	11.2	~	1.20	(11)	126	<u> </u>	1.80	<u>[]</u>	107	0.1.70)[1]	<u>2</u>	0.700	(E)	

	NA			NA			NA)[1]	(4070	90 K	77900	Total Organic Carbon
			•									
	080	Ξ	0.400	<u>5</u>	[1]	0.400	10.5	[](0.400		7.00	Total TCDF
	60.7	(1)	0.700	39.5)[1]	005:0	7.70)[1]	0.600		4.40	Total TCDID
(0.400) [1]	15	(11)	006'0)	134)[1]	0.800	31.4	<u>(</u>	0.800		10.6	Total PeCDF
	56.7	Ξ((1.40	57.2	(11)	(1.20	6.10	Ξ	(1.10		3.30	Total PeCDD
	202	Œ	120	132	[1]	0.120	07/)[1]	00.1		0.0	TOTAL HACUE
	143	Œ	95T)	771	7[7]	OK:1)	0.74	Ξ.	OF 1			100 min
				;		8	7.5	1111	7 1 40		200	Total HrCDD
												CW9360 Dicutes and
NA-TRND-SO32-01 16-MAR-98 0-3		1-01	NA-TRND-SO31-01 17-MAR-98 0-3		0-01	NA-TRND-SO30-01 17-MAR-98 0-3		20-6	NA-TRND-SO29-02 17-MAR-98 3-12	~	į	Parameter
TRND-SO32		; = ;	TRND TRND-SO31		.	TRND TRND-SO30		0.0	TRND TRND-SO29	~		
					epth (in.)	Beg. Depth - End Depth (in.)	7					
					ate	Log Date						
					Id	Sample						
					Ed	Location						
						Site Id						

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

Log Date Location Id Sample Id Site Id

Beg. Depth - End Depth (in.)

NA-TRND-S033-01 **TRND-S033** 16-MAR-98 TRND

OLM03.2 - Pesticides and PCBs (ug/kg)

Parameter

 Ξ Ξ)[1])[1] Ξ)[1] Ξ Ξ Ξ 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 0.330 S Ø S 2 包包 S Q 2 2 æ g Endosulfan sulfate Endrin aldehyde Endosulfan II Aroclor-1260 Endosulfan I Aroclor-1248 Aroclor-1254 Aroclor-1016 Aroclor-1232 Aroclor-1242 Aroclor-1221 4,4'-DDD 4,4'-DDE Dieldrin 4,4'-DDT Aldrin Endrin

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 07/01/98

 Ξ Ξ Ξ

0.330

Ð g g

Heptachlor epoxide

Endrin ketone

Heptachlor

Methoxychlor

Toxaphene alpha-BHC

9

0.330 0.330

)[1]

0.330

Site Id

Log Date Location Id Sample Id

Beg. Depth - End Depth (in.)

NA-TRND-S033-01 TRND-S033

16-MAR-98

0-3

Parameter

OLM03.2 - Pesticides and PCBs.

. (ug/kg)	(0.330		0330	ND (0.330)[1]	ND (0.330)
OLANOS.4 - Festicides and PCBs, cont. (ug/kg)	alpha-Chlordane	beta-BHC	delta-BHC	gamma-BHC(Lindane)	gamma-Chlordane

OLMO3.2 - Semi-Volatile Organic Com

(ug/kg)	(194)						[1](orm)		
Organic Compounds	ND ND	QX	2	9 8			2	2	
Committee of game Compounds (ug/kg)	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,2'-oxybis(1-chloropropane)	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2 A Dimental 1

ON ON ON ON ON ON ON ON ON ON ON ON ON O	2,4-Dichlorophenol	QN	(65.0	ΞΞ
ND (650 ND (650 ND (650 ND (650 ND (650 ND (650 ND (650	2,4-Dimethylphenol	S	(650	3 5
ND (650) ND (650) ND (650) ND (650) ND (650) ND (650) ND (650)	.,4-Dinitrophenol	Q	089	Ξ
ND (65.0 ND (65.0 ND (65.0 ND (65.0 ND (65.0	.,4-Dinitrotoluene	Q	(650)	Ξ
MD (65.0 ND (65.0 ND (65.0 ND (65.0	,6-Dinitrotoluene	QN	089	Ξ,
OCO) OCO OCO OCO OCO OCO OCO OCO OCO OC	-Chloronaphthalene	2	0.00	Ξ
thatene ND (65.0 ND (65.0	-Chlorophenol	2	0.00	Ξ
ND (650	-Methylnaphthalene	Q Q	0.50	
	-Nitroaniline	QN	0'99)	E (

0 = Detection Limit [] = Dilution Factor [

Not Detected NA = Not Applicable

Log Date Beg. Depth - End Depth (in.) Sample Id Location Id Site Id

> TRND-S033 TRND

NA-TRND-S033-01 16-MAR-98 3

Parameter

	(11))[1])[1])[1])[1]	(11	<u>[1]</u> ((11))[1]	(11))[1])[1])[1])[1]	(1))[]							[I](
it. (ug/kg)	(65.0	(65.0	(65.0	(65.0	(65.0	(65.0	(65.0	(65.0	(65.0	0.63.0	(65.0	(65.0	0.65.0	(65.0	(65.0	(65.0	(65.0	0.63.0	(65.0	0.59	(65.0	0.59	0897
Compounds, cor	QN.	QN	QN	Q	Ą	QN	QN	QN	QN	QN	QN	ND	QN	QN ON	QN	QN	ND	ON	Q	QN	QX	QN	5
Of MO3.2 - Semi-Volatile Organic Compounds, cont.	2-Nitrophenol	3.3Dichlorobenzidine	3-Nitroaniline	4.6-Dinitro-2-methylphenol	4-Bromophenyl-phenylether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl-phenylether	4-Nitroanaline	4-Nirrophenol	Acenaphthene	Acenaphthylene	Authracene	Renzo(a)anthracene	Renzo(a)nvrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Butylbenzylohthalate	Carbazole	Chrysene	Dibenz(a.h)anthracene	

Log Date Location Id Sample Id Site Id

Beg. Depth - End Depth (in.)

TRND-S033 TRND

NA-TRND-S033-01 16-MAR-98

Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/kg)

0.59 65.0 65.0 S Dimethylphthalate Diethylphthalate Fluoranthene Fluorene

 Ξ <u>=</u> 65.0 Hexachloro-1,3-butadiene Hexachlorobenzene

₽ ₽ **Hexachlorocyclopentadiene** Indeno(1,2,3-cd)pyrene Hexachloroethane

<u>(</u> Ξ

> 65.0 Isophorone

 Ξ Ξ

 Ξ

65.0 9999999 N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Naphthalene

(E) Ξ Ξ 65.0 65.0 65.0 Pentachlorophenol Nitrobenzene

 Ξ Ξ Ξ 65.0 65.0 65.0 Phenanthrene

Phenol

 Ξ 65.0 bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether di-n-Butylphthalate di-n-Octylphthalate Pyrene

0 = Detection Limit [] = Dilution Factor N

Not Detected NA = Not Applicable

Site Id

Location Id

Sample Id

Log Date Beg. Depth - End Depth (in.)

NA-TRND-S033-01 TRND-5033 16-MAR-98

0-3

Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont.	mic Compounds,		(ug/kg)	(g)	
o-Cresol	Ð		·	(65.0	<u>(E</u>
p-Cresol	QN)	65.0)[1]
•					
SW8290 - Dioxins (ppt)					
1,2,3,4,6,7,8,9-OCDD	769		V	2.70	Ξ
1,2,3,4,6,7,8,9-OCDF	115		$\overline{}$	2.10	<u>=</u>
1,2,3,4,6,7,8-HpCDD	153		¥	1.80) [1]
1,2,3,4,6,7,8-HpCDF	129		$\overline{}$	1.00	(1)
1,2,3,4,7,8,9-HpCDF	19.6		Ÿ	1.30	(II)
1,2,3,4,7,8-HxCDD	9.20)	1.40)[1]
1,2,3,4,7,8-HxCDF	47.3)	0.700) [.]
1,2,3,6,7,8-HxCDD	16.5		_	1.30)[1]
1,2,3,6,7,8-HxCDF	22.4		·	0.700	Ξ.
1,2,3,7,8,9-HxCDD	23.8	_	$\overline{}$	1.30)(E)
1,2,3,7,8,9-HxCDF	2.50	-	_	0.900)[1]
1,2,3,7,8-PeCDD	6.80		$\overline{}$	00:1)[[]
1,2,3,7,8-PeCDF	11.2		_	0.600	Ξ
2,3,4,6,7,8-HxCDF	42.6			0.800	Ξ
2,3,4,7,8-PeCDF	16.9		$\overline{}$	009'0) <u>(</u>
2,3,7,8-TCDD	0.920	_		0.500	<u>[</u>]
2.3.7.8-TCDF	9.70		_	0.700	Ξ
Total HoCDD	316		_	1.80) <u>[</u>
Total HpCDF	229		Ŭ	120) [1]

Compiled: 07/01/98

Results of Organic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 1

Location Id Sample Id Site Id

Log Date

Beg. Depth - End Depth (in.)

TRND-SO33 NA-TRND-SO33-01 TRND

16-MAR-98

Parameter

Ţ

	238	157	124	211	67.9	146
SW8290 - Dioxins, cont. (ppt)	Total HxCDD	Total HxCDF	Total PeCDD	Total PeCDF	Total TCDD	Total TCDF

00970)

0.500 0300

002:0

00:1

Table 2

1 abre 2 Results of Inorganic Analyses For Round 1 Soil Samples, Alsugi NAF, Japan

					, m	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Id Id ate epth (in.)							
		DVCT DVCT-SO01 NA-DVCT-SO01-31	CT -S001 -S001-31			DVCT DVCT-SO01 NA-DVCT-SO01-02	1 1-02		DVC NA-DVC	DVCT DVCT-SO02 NA-DVCT-SO02-01		-VA	DVCT DVCT-SO02 NA-DVCT-SO02-11 Dup of NA-DVCT-SO02-01	2 Dup of 2-01
Parameter		09-MAR-98 0-3	JR-98			09-MAR-98 3-12			W-60	09-MAR-98 0-3			09-MAR-98 0-3	_
E160.3 - Percent Moisture (percent) Percent moisture	19.3	0		[]	36.8	0	Ξ	90.6	0		[3]	7.40	0	<u>13</u>
ILM04.0 - Total Cyanide (mg/kg) Cyanide	0.790	(0.190		. [1](0.970	(0.270	[1]	0.560	Ü	(0.230	[1]	0.530	0.240)[1]
II MO4 0 - CLP Metals (mg/kg)											;	004	, .	187
Aluminum	29800	73	2.00	[1]	53700	(2.50	(E)	7240	_	 8	E 9	969 414	- ر	E 5
Antimony	0.800	. () ()	_	(1)	1.20	L (0.620)[1]	ΩN	_ H	0.440	E :	a e	UL (0.420	111
Amenio	3.30	0)		[1]	3.10	0.820	<u>E</u>	1.10	~	0.590	[]	DE:1	٠ 、	ΞΞ
Assenc	42.0	r (0)	0,160	ΞΞ	81.0	L (0.210	[1](13.7	_ _	0.150	<u> </u>	12.1	L (0.140	Ξ
Danilin	E		0.160	, [1] (g	(0210	<u>[ii]</u> (ND	Ţ	0.150	Ξ	ON I	٠	ΞΞ
Setyllidin	0.870	K (0)	0.160	E (1.30	K (0.210)[1]	0.270	×	0.150	EE (0.270	K (U.14U	
Calcium	11200	, 4	4.30	(11)	13400	(5.30	<u>(E</u>	4520		3.80		0015	0.60	
Chromium	191	0	0.160)[1]	25.4	(0.210	<u>=</u>	5.00	٠ ،	0.150		0.00	0.140	E E
Cobalt	10.9	0)	0.160	[1]	20.4	(0.210	Ξ	2.30	~ \	0.150		02.2 10.8	(0.140	Ξ(
Conner	50.9	0	0.160)[1]	011	0.210	[[]	911	<i>-</i> ٧	0.130	E 5	0009	(200	III
Tron	25700	(2	2.30	[1]	43600	(2.90	<u>(</u>	0130	<u> </u>	2.10	Ξ.	9690	0320	E
Los	23.8	0	0.330)[1]	19.1	(0.410)[<u>[</u>]	17.4	_	0.230	Ξ.	077	0770	
Maonesium	5360	1	1.50)[1]	9040	(1.80	(Ξ)	1420	~ ·	05.1 25.5	E S	1570	0.140	
Managnese	452	0	0.160)[1]	813	(0.210		89.7	_	0.150	Ξ.	70.4 CIV	047.0	
Marying	0.150		0.0200)[1]	0.120	0.0200		0.0300	~	0.0200	E :	Q s	0.0200	
Nickel	14.7	0	0.160)[1]	24.7	(0.210)[1]	4.20	<u> </u>	0.150	Ξ.	626	0.140	
Potassium	089	. ``	0.980)[1]	417	(1.20	[1]	309	<u> </u>	0.880	[<u>[</u>]	757	#6.U -)	·
			ļ											

Compiled: 06/29/98

	02 Dup of	.02-01 8		E
	DVCT DVCT-SO02 NA-DVCT-SO02-11 Dup of	NA-DVCT-SO02-01 09-MAR-98 0-3	(0.280 (0.140 (140 (0.560 (0.140	(0.0100
	NA-DVC	A	d d	
			ND ND 364 ND 19.1 97.3	525
	2 2-01	_		[1]
	DVCT DVCT-SO02 NA-DVCT-SO02-01	09-MAR-98 0-3	(0.290 (0.150 (14.7 (0.590 (0.150	0.0100
	ž		nr.	
			ND ND 340 ND 19.1 119	5.43
1 Id ate epth (in.)	1-02)[1]
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	DVCT DVCT-SO01 NA-DVCT-SO01-02	09-MAR-98 3-12	(0410 (0210 (20.5 (0.820 (0.210 (0210	0.01000
Beg. D	NA		n r	
			ND ND 2100 2.00 174 88.2	19:9
	1 1-31			[1]
	DVCT DVCT-SO01 NA-DVCT-SO01-31	09-MAR-98 0-3	(0.330 (0.160 (164 (0.560 (0.160	0.0100
	NA		UL	
			ng/kg) ND 0.190 1200 0.790 91.9	6.83
			ILMO4.0 - CLP Metals, cont. (mg/kg) Selenium Silver Sodium Thallium O Vanadium Zinc SW9045C - pH (pH units)	
		t s	UMO4.0 - CLP Metals, co Selenium Silver Sodium Thallium Vanadium Zinc	
		Parameter	ILMO4.0 - Selenium Silver Sodium Thallium Vanadium Zinc	Hd

(0.0100)[1]

525

Table 2 Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Parameter	D422 - Particle Size Distribution (%) %Clay %Gravel %Sand %Sand %Silt MA Mean Particle Size(mm) NA	E160.3 - Percent Moisture (percent) Percent moisture 6.30	ILM04.0 - Total Cyanide (mg/kg) Cyanide	ILMO4.0 - CLP Metals (mg/kg) 16200 Aluminum ND Arsenic 3.30 Barium 17.6 Beryllium ND Cadmium 0.430 Calcium 7.80 Chromium 7.80 Cobalt 4.50 Copper 14.2
DVCT DVCT-SO03 NA-DVCT-SO03-01 09-MAR-98 0-3		0	(0.160	(1.70 UL (0.420 (0.550 L (0.140 K (0.140 K (0.140 (0.140 (0.140 (0.140 (0.140 (0.140
03 03-01 8		Ξ	111) (
9 A	N N N N N N N N N N N N N N N N N N N	6.80	0.370	22700 ND 2.40 31.1 ND 0.520 27000 11.2 5.90
Site Id Location Id Sample Id Log Date Log Date DVCT DVCT DVCT-SO03 NA-DVCT-SO03 3-12		0	(0.170	(1.70 UL (0.430 (0.570 L (0.140 K (0.140 (0.140 (0.140 (0.140 (0.140 (0.140
d d d e:e pth (in.)		Ξ	[1](
	0.200 17.9 80.6 1.30	12.0	0.540	15600 ND 3.60 14.8 ND 0.370 12200 6.40 4.00 8.20
DVCT DVCT-SO04 NA-DVCT-SO04-01 09-MAR-98 0-3	0000	0	(0.220	(1.80 UL (0.450 (0.610 L (0.150 K (0.150 (0.150 (0.150 (0.150 (0.150
10-	2222	Ξ)[1]	
	A A A A A A A	20.4	0.700	35300 0.630 2.70 48.7 ND 1.10 7780 18.3 13.7 67.3
DVCT DVCT-SO05 NA-DVCT-SO05-01 09-MAR-98 0-3		0	(0260	(2.00 L (0.490 (0.660 L (0.160 K (0.160 (0.160 (0.160 (0.160 (0.160 (0.160
10			[1](

Table 2 Results of Inorganic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

	DVCT DVCT-SO05 NA-DVCT-SO05-01 09-MAR-98 0-3	(230)[1]
		30100
	4 4 10 4	E (
	DVCT DVCT-SO04 NA-DVCT-SO04-01 09-MAR-98 0-3	(2.10 (0.300
		14500
d 1 Id 2 Id 2 Id Depth (in.)	33 13-02	E) (
Ste Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	DVCT DVCT-S003 NA-DVCT-S003-02 09-MAR-98 3-12	(2.80
_		17200
	33-01	
	DVCT DVCT-S003 NA-DVCT-S003-01 09-MAR-98 0-3	(1.90 (0.280 (1.20
		nt. (mg/kg) 14400 3.80 2800
	Parameter	LMO4.0 - CLP Metals, cont. (mg/kg) Iron Lead Magnesium

)[1]
(2.30 (0.330 (1.50 (0.160 (0.160 (0.160 UL (0.330 UL (0.330 (0.160 (0.160 (0.160 (0.160	(0.0100
30100 14.5 6110 557 0.0300 18.1 456 ND 0.200 991 ND 117	97.9
	[E] (
(2.10 (0.300 (1.40 (0.150 (0.150 (0.150 UL (0.300 UL (0.300 (1.52 (0.150 (0.150 (0.150 (0.150	0.0100
14500 3.10 3050 167 167 ND 6.00 755 ND ND 1010 ND 40.8	9.14
	[1]
(2.00 (0.280 (1.30 (0.140 (0.0200 (0.140 (0.140 (1.42 (0.140 (0.140 (0.140 (0.140 (0.140	0.0100
17200 3.50 5210 283 ND 9.60 852 ND ND 1480 0.580 56.1	8.90
	(E)
(1.90 (0.280 (1.20 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140	0.0100
:: (mg/kg) 14400 3.80 2800 203 ND 6.30 669 ND ND ND 1430 ND 43.0	5.57
ILMO4.0 - CLP Metals, cont. (mg/kg) Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thalliam Vanadium Vanadium Sinc A33 SW9045C - pH (pH units)	Hď

Table 2 Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	3			(1)	EE (
	 •			(0.230	(0.500
					i l
N N N N N N N N N N N N N N N N N N N	22.0	NA NA NA	AN	0.600	43300
	Ξ			[1](E (
	0			(0.250	(1.70 UL (0.430
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.70	NA NA	NA	0.440	9490 ND L
22222	[1]	EE ((1)	[1](EE (
0000	0	(0.830 (0.410 (0.830	0.830	(0.340	(2.60 UL (0.660
4.80 1.30 84.6 9.30 0.514	39.8	1.15 2.04 7.28	6.36	0.970	28700 ND U
·	[1]			[1]) (I) (I) (
	0			0980)	(2.60
					8 1
NA NA NA NA	39.0	N N A N	AN	0.970	60300
2 - Particle Size Distribution (%) Clay Gravel Sand Stitt ean Particle Size(mm)	50.3 - Percent Moisture (percent)	00 - Anions (mg/kg) hloride huoride ulfate	53.2 - Nitrate (mg/kg) litrate	M04.0 - Total Cyanide (mg/kg) :yanide	ILMO4.0 - CLP Metals (mg/kg) Aluminum Antimony
	4.80 () [1] NA 1.30 () [1] NA 84.6 () [1] NA 9.30 () [1] NA 0.514 () [1] NA	NA	NA	NA NA NA NA N	NA NA NA NA N

Compiled: 06/29/98

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

007-02 98	
DVCT DVCT-SO07 NA-DVCT-SO07-02 09-MAR-98 3-12	(0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170
	J M P
	430 118 ND 12000 20.6 15.7 84.2 37000 13.9 7990 659 0.0800 21.8 1370 ND 0.180 1500 1500 1500
207 207-01 98	
DVCT DVCT-S007 NA-DVCT-S007-01 69-MAR-98 0-3	(0.570 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140 (0.140
	ı
	2.70 14.6 ND 7420 5.80 3.60 9.20 10700 3.30 2400 153 ND ND ND A59 0.600 26.8
Site Id Accation Id Sample Id Log Date - End Depth (in.) VCT T-SO06 T-SO06 53	
Site Id Location Id Sample Id Log Date Log Date DyCT DVCT DVCT-SO06 NA-DVCT-SO06 0-3	(0.880 (0.220 (0.220 (0.220 (0.220 (0.220 (0.0300 (0.220 (0.0300 (0.220 (0.220 (0.220 (0.220 (0.220 (0.220 (0.220 (0.220 (0.220 (0.220 (0.220
Beg	U K
	3.30 81.1 ND 0.870 7900 17.7 11.9 55.0 26400 13.6 6020 470 0.0500 17.0 ND ND ND 640 ND
205-02 208-02	
DVCT DVCT-SO05 NA-DVCT-SO05-02 '09-MAR-98 3-12	(0.870 (0.22
	J X II
	(mg/kg) 3.40 81.9 ND 1.60 10900 29.3 29.3 29.3 29.1 47.7 9810 9810 29.1 382 ND ND ND 207 70.6
	tals, cont.
Parameter	HLMO4.0 - CLP Metals, cont. (mg/kg) Arsenic Barium Cadmium Cadmium Calcium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Salcad Manganese 9 Mercury Nickel 29 Potassium Silver Sodium Thallium Zinc 70

Not Detected NA = Not Applicable () = Detection Limit [] = Dilution Factor N

Table 2Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					DVCT-S007 DVCT-S007 NA-DVCT-S007-02 09-MAR-98 3-12		(0.0100)
							7.52
					7-01		(1)
					DVCT DVCT-SO07 NA-DVCT-SO07-01 09-MAR-98 0-3		(0.0100
							8.61
	7 .	-	ej.	pth (in.)	10		[1](
Site Id	Location Id	Sample to	Log Date	Beg. Depth - End Depth (in.)	DVCT DVCT-SO06 NA-DVCT-SO06-01 09-MAR-98 0-3		0.0100
							7.28
					70-		[1](
			•		DVCT DVCT-S005 NA-DVCT-S005-02 09-MAR-98		00100
							6.72
						Parameter	SW9045C • pH (pH units) pH

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Beg. I	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	d 1 Id 3 Id 2 Id Depth (in.)								
Parameter		Ž	DVCT DVCT-SO08 NA-DVCT-SO08-01 09-MAR-98 0-3	908 708-01 78		Ž	ELEM ELEM-SO01 NA-ELEM-SO01-01 08-MAR-98 0-3	11-01		EJ NA-EJ 08	ELEM-SO01 NA-ELEM-SO01-02 08-MAR-98 3-12	59		L NA-1	ELEM ELEM-SO02 NA-ELEM-SO02-01 08-MAR-98 0-3	₽
D422 - Particle Size Distribution (%)	~															
%Clay	NA				Ž											
%Gravel	AN				V.				NA				O STO			
%Sand	NA				Y Y				NA				15.7		>	Ξ
%Silt	ΝĄ				NA .				NA						<u> </u>	Ξ
Mean Particle Size(mm)	NA				N A				YN ;				1.70		• •	ΞΞ
E166.3 - Percent Moisture (percent)									ď Z				0.610		0	ΞΞ
Percent moisture	25.2		0	Ξ	3.60		C	Ξ	8	•						
E300 - Anions (mg/kg)							.	Ξ	PC.0	0		Ξ	10.5	0		Ξ
Chloride	X															
Fluoride	Ϋ́				Y ;				NA				0.668	•		
Sulfate	NA				A N				NA :				QN	- -	0.270	ΞΞ
E353.2 - Nitrate (mo/kg)									K Z				Q.			ΞΞ
Nitrate	NA				NA				2							
ILM64.0 - Total Cyanide (mg/kg)									Ç				0.712	<u> </u>	(0.550))[1]
	0.690		0.310)[1]	QN		(0.250	(1)	Q	,	0360	111	!			
ILMO4.0 - CLP Metals (mg/kg)									!	•	3	7117	Q	<u> </u>	(0220)	[1]
	44000	_	(2.10	EE (15500	–	(1.60) (II)	15000)[1]	10200	J	(1.80	[1]
								E	OK+50	J (0.420		[]	Q.) In	(0.460)	ΞΞ

Compiled: 06/29

0 = Detection Limit [] = Dilution Factor 1

Not Detected NA = Not Applicable

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
						•	Location Id									
							Sample Id									
							Log Date									
						seg. Dep	Beg. Depth - End Depth (in.)	th (in.)								
			DVCT				ELEM			14	ELEM				ELEM	
		NA-	DVCT-SO08 NA-DVCT-SO08-01 09-MAR-98			NA-E	ELEM-SO01 NA-ELEM-SO01-01 08-MAR-98	18		EL) NA-EL 08-	ELEM-SO01 NA-ELEM-SO01-02 08-MAR-98			EL NA-EL 08-	ELEM-SO02 NA-ELEM-SO02-01 08-MAR-98	_
Parameter			[. 3				0-3			61	3-12					
					#											
ILMO4.0 - CLP Metals, cont. (mg/kg)	ing/kg)			3	•		0 5 5 0	E)	98	,	0.570	111	3.60	_	0.610	([]
Arsenic	3.70		0.690	Ξ.	9.10 6.20	2	0.000	ΞΞ	17.8	<u> </u>	0.140		13.5	. (0.150)E
Barium	79.6	¥	0.170	<u> </u>	707	4	0.140	E 5	Ş	:	0.140	E (QN)	0.150) [E]
Beryllium	0.210	:	0.170	<u>=</u> =	UN 062.0	A	0.140	ΞX	0.220		0.140	<u> </u>	0.160	Ж (0.150	E)(
Cadmium	0.720	¥	0.1.0	ΞΞ	10500	4	098	ΞΞ	7270		3.70	<u> </u>	9570	J	4.00	Ξ
Calcium	11600		0.4.5 0.5.4.0	E 5			0.140	Ξ Ξ	06:8		0.140	(E)(5.10	~	0.150)[1]
Chromium	7.07		0.170	ΞΞ	6.20		0.140	Ξ(6.80		0.140	[1]	3.10	_	0.150	Ξ
Cobalt	17.3		0.170	E E	20.9		(0.140	Ξ	34.8	~	0.140)[1]	7.10	_	0.150	Ξ
Copper	38700		(2.40	Ξ(16400		(1.90	(11)	16700)	2.00	[1]	10000	_	2.10	Ξ
Iron	214		0.350	E (E)	3.10		0.270	(1)	3.10	_	0.280)[1]	3.00	_	0.300	Ξ
Megnesium	7400		(1.60	Ξ	5040		(120)[1]	5220	_	1.30	[1]	2140	•	1.40	ΞΞ
Manganese	191		(0.170)[1]	255		(0.140	<u>(11)</u>	262	<u> </u>	0.140	Ξ,	162 CIN		0.000	
Mercury	0.0500		0.0200	EI (Q ç		0.0200	ΞΞ	ON ON	_ `	0.0200	H (4.90 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7		0300	Ξ
Nickel	24.0		0.350	Ξ,	€.	,	0/70	E (26.5	, _	0.850		553	Ī	0.910)[1]
Potassium	1000		80:I)	ΞΞ	8	Ш	0200		£) III	0.280	[H] (H)	S	nr	0300)[]
Selenium	0.400	٦.	065.0		3 5	3	0.140	E (Q		0.140	<u> </u>	Q.		0.150	Ξ
Silver	0.290		0.170	ΞΞ	£ 5		(13.7	ΞΞ	895		14.2)[1]	109	_	(15.2) []
Sodium	S E	Н	690	E	Q	ΩΓ	(0.550	<u> </u>	QN	nr (0.570	[1]	8	ď	019:0	Ξ
Thailium		3	0.170	E (47.4		0.140	[1](51.7	Ĭ	0.140)[1]	25.1		0.150	Ξ
Vanadium	125		(0.170	Ξ.	30.9		0.140	(1)	32.2	Ū	0.140	[1](22.2		0.150	(E) (

	ELEM-S002 NA-ELEM-S002-01 08-MAR-98 0-3
	ELEM-SO01 ELEM-SO01-02 08-MAR-98 3-12
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ELEM ELEM-SO01 NA-ELEM-SO01-01 08-MAR-98 0-3
	DVCT DVCT-SO08 NA-DVCT-SO08-01 09-MAR-98 0-3
	Parameter

(0.0100)[1] 8.66 (0.0100)[1] 8.48 Ξ 0.0100 8.43 (0.0100)[1]

6.97

SW9045C - pH (pH units)

Ηd

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Site Id	_						
				Beg	Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	 						
	Ž .	ELEM ELEM-SO02 NA-ELEM-SO02-11 Dup of NA-ELEM-SO02-01 08-MAR-98	.02 1 Dup of X02-01 18		ELEM-SO03 NA-ELEM-SO03-01 08-MAR-98 0-3	10-		ELEM ELEM-SO03 NA-ELEM-SO03-02 08-MAR-98 3-12	-03		ELEM-S004 NA-ELEM-S004-01 08-MAR-98 0-3	10
Parameter		3										
D422 - Particle Size Distribution (%) %Clay %Gravel %Sand %Silt Mean Particle Size(mm)	AN AN AN AN AN AN AN AN AN AN AN AN AN A			N N N N N N N N N N N N N N N N N N N			N N N N N N N N N N N N N N N N N N N			4.10 2.30 80.7 12.9 0.326	00000	22222
E160.3 - Percent Moisture (percent) Percent moisture	10.0	0	[3]	25.9	0	Ξ	27.5	0	[20]	21.5	0	Ξ
E306 - Anions (mg/kg) Chloride Fluoride Sulfate	NA NA NA			NA NA			NA NA			8.17 1.63 13.4	069.0) 069.0)	EE (EE (
E353.2 - Nitrate (mg/kg) Nitrate	NA			NA			N A			16.3	(127	[2](
ILM64.0 - Total Cyanide (mg/kg) Cyanide	QN	0500	0)[1]	QN	0.270	(1)	QN	0.340	(11)	Ö	0.300	[1](
ILMO4.0 - CLP Metals (mg/kg) Aluminum Antimony	8290 ND	(1.60 UL (0.400	(1)	38100	(2.10 J (0.520	ED (52000	(2.10 J (0.530	(1)	24500	(1.90 J (0.470	[1](

(0.620 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160 (0.160
di di
3.80 35.0 ND 0.380 10300 102 7.70 26.7 19600 7.50 5480 360 ND 1190 ND ND 1190 ND S6.4 51.5
(0.710 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180 (0.180
K K
3.40 101 0.270 0.900 10400 22.4 20.2 99.8 43200 25.0 862 0.0600 24.5 678 ND 0.270 816 1.10
(0.700 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.0200 (
K
3.90 63.2 0.240 0.590 13700 18.0 14.0 67.5 31700 16.0 6210 592 0.0400 17.3 890 ND 0.180 613 ND
(0.340 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130 (0.130
K K UL UL
ng/kg) 5.40 12.5 ND 0.140 18700 4.90 2.90 7.80 10400 2.70 2.160 128 ND 420 ND 252 ND 25.9
Court. (1
P Metals
ILMO4.0 - CLP Metals, cont. (mg/kg) Arsenic Barium Berylium Cadmium Calcium Chromium
ILMO4.0 Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganes Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc

2

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	4-01 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	[1](
	ELEM ELEM-SO04 NA-ELEM-SO04-01 08-MAR-98 0-3	00100)
		7.53
	7 0-	(1)
	ELEM-SO03 ELEM-SO03 NA-ELEM-SO03-02 08-MAR-98 3-12	00100
		7.58
d d e pth (in.)	10-	(1)
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ELEM-SO03 NA-ELEM-SO03-01 08-MAR-98 0-3	00100
		7.40
	Jup of	[1]
	ELEM ELEM-S002 NA-ELEM-S002-11 Dup of NA-ELEM-S002-01 08-MAR-98	(0.0100
	4	8.78
	Parameter	SW9045C - pH (pH units)

Compiled: 06/29/98

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 2

							Site									
						T	Location Id									
							Sample 1d									
							Log Date	. •								
						Beg. Depth - End Depth (in.)	- End Dep	th (ln.)	,	•						٠
Parameter		ž	ELEM-SO05 NA-ELEM-SO05-01 08-MAR-98 0-3	5-01		ELE NA-ELE 08-N	ELEM ELEM-SO0S NA-ELEM-SO0S-02 08-MAR-98	70		NA	ELEM-SO06 NA-ELEM-SO06-01 08-MAR-98	5		E ELE NA-ELE 08-N	ELEM ELEM-SO07 NA-ELEM-SO07-01 08-MAR-98	돧
											3				6-3	
E160.3 - Percent Moisture (percent)	æ															
Percent moisture	5.70		0	Ξ	9.90	0		Ξ	8.90		0	Ξ	50.2	C		Ξ
ILM04.0 - Total Cyanide (mg/kg)														>		Ξ
Cyanide	Ð		0.260)[1]	Q	0	0.270	(11)	QN		0.220	(1)	g	(0.480	§	E (
ILMO4.0 - CLP Metals (mg/kg)														•		[
Aluminum	19000		(1.60	(E) (17000	()	1.70)III	15400		9	5				
Antimony	0.460	-	0.410	(1)	QN	OT (0.440	E (g g	Ξ	970	ΞX	72600	. (2	2.80	<u>(E)</u>
Arsenic	1.80		0.550	[E] (2.80		0.580		3.40	3	0.540	ΞÉ	6.30	9		Ξ
Barium	18.8	×	0.140	(11)	39.4	()	0.150	ΞΞ	182	×	0.740	Ξ,	950	<u> </u>		<u>[]</u>
Beryllium 6 · ·	S		0.140	[1]	0.180	0)	0.150	ΞΞ	Q	:	(0.130			5 6 	·	Ξ
Calcium	0.250	×	0.140)[<u>1</u>]	0.220	K (0	0.150	E)(0.230	×	(0.130	ΞΞ		: :: :::::::::::::::::::::::::::::::::	0.240	ΞΞ
Chromism	11400		3.60	Ξ	20200		3.80	[1]	14300		(3.50	<u>(E)</u>	0	<i>-</i>		E (E)
Cobait	8.10		0.140		8. 8 8. 8	<u>ن</u> و د	0.150	Ξ	7.90		0.130)[1]	51.4	· 0	_	E (
Copper	29.1		(0.140	ΞΞ	9,60). [5]) (2,5		0.130	Ξ,	27.6	9)[1]
Iron	19800		(1.90	Ξ	14200	(2)	2.00	£ 5	15400		0.130	E :	152	<u>~</u>	_	(E)
Lead	3.70		0.280)[1]	3.20	0	0.290	E (330		0.70	E 5	54100	93		[1]
Magnesium	7790		07.1	(E)	3490		1.30	ΞΞ	4240		120	E (01.50	0 0		Ξ
Manganese	8		0.140	(11)	218	0)	0.150	Ξ	218		(0.130	E (3370	01.2)		Ξ
Mercury	Q ;		0.0200	[:](Q	· 0	0.0200	[1]	Q		0.0200	E (0.130	70	0.040	Ξ 5
Nickel	14.1		0.280) [<u>1</u>]	6.70	· ·	0.290	<u>(E)</u>	7.80		0.270		3.12	3 6		ΞΞ
Potassium	3		0.830)[i]	734	70)	0.870	[1]	612		(0.810	E (620	0.470	_	ΞΞ
												•		-	•	Ξ

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	ELEM ELEM-S005 NA-ELEM-S005-01 08-MAR-98 0-3	Parameter	ILMO4.0 - CLP Metals, cont. (mg/kg)	SW9045C - pH (pH units) PH 8.70 (0.
	M -SO05 -SO05-01 R-98		280)[1] (40)[1] .8)[1] 550)[1] 140)[1]	(0.0100)[1]
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ELEM-S005 ELEM-S005-02 NA-ELEM-S005-02 08-MAR-98 3-12		ND UL (0.290 ND (0.150 987 (14.5 ND UL (0.580 39.9 (0.150 27.3 (0.150	8.89 (0.0100
ch (in.)	03		(1) ND (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	8:98
	ELEM ELEM-SO06 NA-ELEM-SO06-01 08-MAR-98 0-3		ND UL (0270 ND (0.130 72 (13.5 ND UL (0.540 1.0 (0.130 0.0 (0.130	3 (0.0100
)[1] 0.910)[1] 0.500)[1] 569)[1] 1.60)[1] 263)[1] 263)[1] 6.76
WEITE	ELEM-SO67 NA-ELEM-SO07-01 08-MAR-98 0-3		L (0.470 (0.240 (23.6 L (0.940 (0.240	00100
•	16			[1](

Table 2 Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id	-							
							Location Id	, <u>T</u>							
							Sample 1d	PI:							
							Log Date	ate							
						Beg. De	Beg. Depth - End Depth (in.))epth (in.)							
Parameter		Ž	ELEM-SO07 NA-ELEM-SO07-02 08-MAR-98 3-12	207 207-02 38	,	NA-	ELEM ELEM-SO08 NA-ELEM-SO08-01 08-MAR-98 0-3	88-01		R NA-R 07	REF1 REF1-SO01 NA-REF1-SO01-31 07-MAR-98 0-3	31		REF1 REF1-SO02 NA-REF1-SO02-01 07-MAR-98 0-3	002 002-01
D422 - Particle Size Distribution (%)	ē														
%Clay	V.														
%Gravel	4 2				NA				3.60	<	_	Ę	,		
%Sand	¥ ;				NA				0.400	<i>،</i> د	_	<u> </u>	A A		
# No.	AN				NA				200)	_	Ξ	Ϋ́		
Moon Profession of	Ν				Ϋ́				0.27	0	_	Ξ	AN		
Mean Particle Size(mm)	NA				NA				24.0 0.259	00		Ξ	NA .		
E160.3 - Percent Moisture (percent)	_							-		>		Ī	Y Y		
Percent moisture	50.3		0	Ξ	36.1	·	(
			,	Ξ	796	-	>	Ξ	36.9	0		Ξ	31.0	¢	\$
E300 - Anions (mg/kg)													?	>	Ξ
Chloride	N				į										
Fluoride	NA				¥ ;				2.11	Ū	0620	E	306		
Sulfate	Ν				V Y				0.763	ت ا	0.390	E (S S	0.720	(E)
					¥N				17.9	Ĵ	0.790		5 5	086.0	Ξ
E353.2 - Nitrate (mg/kg)										,	• •	[·]	£4.3	0.720	(E)
Nitrate	NA		•		Ϋ́				:						
TI NACA A TRANSPORTED A PARTIE OF THE PARTIE					:				6.40	J	062'0))[i]	3.33	0.720	000
LLWIU9.0 - Total Cyanide (mg/kg)														•	3
Cyanide	Q.		(0.470	(11)	N)	0.360)[1]	0.600	0	(0.380	E .	į		
ILMO4.0 - CLP Metals (mg/kg)										•		E	QN	0.350	(1)
Aluminum	00916		(3.10	(1)	\$4100	,	3.40	:							
Antimony	2.20	-	0.770)	[1]	1.50	, ,	(0.590	E (E)	39900 1.50) (2)	(250)[I])[I]	49100	(2.10	[1](
										•		3	T	0.520	<u>[]</u>

Compiled: 06/29

0 = Detection Limit [] = Dilution Factor

Not Detected NA = Not Applicable

			REF1 REF1-SO02 NA-REF1-SO02-01 07-MAR-98 0-3	
			REF1 REF1-SO01 NA-REF1-SO01-31 07-MAR-98	
Site Id	Location Id Sample Id	Log Date Beg. Depth • End Depth (in.)	ELEM ELEM-SO08 NA-ELEM-SO08-01 08-MAR-98 0-3	
			ELEM ELEM-SO07 ELEM-SO07 NA-ELEM-SO07-02 08-MAR-98 3-12	
				Parameter

Arsente 530 (100 (111 3.10 (1780 (111) 550 (100 (111) 550 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 56.9 K (0.200 (111) 6.9 K (0.200 (111) 6.9 K (0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.200 (111) 0.	
3.50 (1.00 111 3.10 (0.780 111 3.70 (0.830 111 65.9 K (0.260 111 80.4 K (0.200 111 96.9 K (0.210 111 0.890 K (0.200 111 0.250 (0.210 111 0.890 K (0.200 111 0.250 (0.210 111 0.890 K (0.200 111 0.250 (0.210 111 0.890 K (0.200 111 0.250 (0.210 111 0.890 K (0.200 111 0.250 (0.210 111 0.890 K (0.200 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.210 111 0.890 (0.220 111 0.890 (0.220 111 0.890 (0.220 111 0.890 (0.220 111 0.890 (0.220 111 0.890 (0.220 111 0.890 (0.220 111 0.890 (0.220 111 0.890 (0.220 0.11 0.890 (0.220 111 0.890 (0.220 0.11 0.890 (0.220 0.11 0.890 (0.220 0.11 0.890 (0.220 0.11 0.890 (0.220 0.11 0.890 (0.220 0.11 0.290 (0.220 0.290 (0.220	(0.700 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170 (0.170
130 (100 111 310 (0.780 111 96.9 K (0.280 111 111 111 96.9 K (0.280 111 111 111 96.9 K (0.280 111 96.9 K (0.280 111 96.9 K (0.280 111 96.90 K (0.280 111 96.90 K (0.280 111 96.90 K (0.280 111 96.90 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 111 0.280 K (0.280 111 0.280 K (0.280 111 0.280 1	X X J J
330 (1,00 [1] 3.10 (0.780 [1] 3.70 (0.830 8.9 K (0.260 [1] 80.4 K (0.200 [1] 96.9 K (0.210 3.56 (0.260 [1] 80.4 K (0.200 [1] 0.250 (0.210 1.00 K (0.260 [1] 0.890 K (0.200 [1] 0.250 (0.210 5760 (6.70 [1] 0.890 K (0.200 [1] 1.2800 K (0.210 58.7 (0.260 [1] 2.59 (0.200 [1] 1.2800 (0.210 38.9 (0.260 [1] 2.29 (0.200 [1] 1.96 (0.210 38.9 (0.260 [1] 4740 (2.70 [1] 3800 (0.210 38.9 (0.260 [1] 4740 (2.70 [1] 39.7 (0.210 1180 (0.260 [1] 4740 (2.70 [1] 39.7 (0.410 <tr< td=""><td>3.50 65.9 ND 0.6800 11500 25.4 21.7 100 43400 27.8 11300 767 0.0900 30.5 37.2 0.610 0.270 1990 0.930 176 78.4</td></tr<>	3.50 65.9 ND 0.6800 11500 25.4 21.7 100 43400 27.8 11300 767 0.0900 30.5 37.2 0.610 0.270 1990 0.930 176 78.4
(3.30) (100) [1] 3.10 (0.780) [1] 3.70 (8.9) K (8.90) K (0.260) [1] 80.4 K (0.200) [1] 96.9 K (1.00) K (0.260) [1] 80.4 K (0.200) [1] 96.9 K (1.00) K (0.260) [1] 0.890 K (0.200) [1] 0.760 K (1.00) K (0.260) [1] 9890 (5.10) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 12800 K (0.200) [1] 1300 K (0.200) [1] 11300 K (0.200) [1] 11300 K (0.200) [1] 11	
(3.30) (100) (111) 3.10 (0.780) (111) 3.70 K (8.5) (8.60) (111) 80.4 K (0.200) (111) 96.9 K (1360) (111) 80.4 K (0.200) (111) 0.550 (111) 0.550 (111) 0.550 (111) 0.550 (111) 0.550 (111) 0.550 (111) 0.550 (111) 1.5800 (0.550) (111) 0.550 (111) 1.5800 (0.550) (111) 1.5800 (0.550) (111) 1.5800 (0.550) (111) 1.5800 (0.550) (111) 1.5900 (0.550) (111) 1.5900 (0.550) (0.510)	(0.830 (0.210
30	X X
130 (1100 [1] 3.10 (0.780 89 (0.260 [1] 80.4 K (0.200 1360 (0.260 [1] 80.4 K (0.200 1360 (0.260 [1] 0.890 K (0.200 5360 (0.260 [1] 9890 (5.10 58.7 (0.260 [1] 9890 (5.10 58.7 (0.260 [1] 26.7 (0.200 36.9 (0.260 [1] 4740 (0.200 36.9 (0.260 [1] 4740 (0.200 31.9 (0.510 [1] 4740 (0.200 31.9 (0.510 [1] 4740 (0.200 31.9 (0.510 [1] 4740 (0.200 11800 (0.510 [1] 4740 (0.200 11800 (0.260 [1] 4740 (0.200 11800 (0.260 [1] 871 (0.200	3.70 96.9 0.250 0.760 12800 30.3 19.6 90.0 38.000 39.7 11300 682 0.120 33.9 525 0.610 0.300 1670 1.30
130	
130 (100 [1] 3.10 K 89 K (0.260 [1] 80.4 K 1360 (0.260 [1] 80.9 K 1360 (0.260 [1] 0.890 K 5760 (6.70 [1] 0.890 K 58.7 (0.260 [1] 26.7 36.9 (0.260 [1] 22.9 36.9 (0.260 [1] 47400 80900 (3.60 [1] 47400 31.9 (0.510 [1] 47400 31.9 (0.510 [1] 47400 46.9 (0.510 [1] 47400 46.9 (0.510 [1] 47400 46.9 (0.510 [1] 9770 46.9 (0.510 [1] 554 ND UL (0.510 [1] 0.510 500 (0.520 [1] 1.40 300 L (1.00 [1] 1.40 350 (0.260 [1] 1.40	(0.780 (0.200 (0.200 (0.200 (0.200 (0.200 (0.200 (0.39
130 (1.00) [1] 89 K (0.260) [1] 1360 (0.260) [1] 1500 K (0.260) [1] 58.7 (0.260) [1] 58.7 (0.260) [1] 36.9 (0.260) [1] 31.9 (0.260) [1] 80900 (3.50) [1] 11800 (0.250) [1] 46.9 (0.250) [1] 46.9 (0.510) [1] 520 (1.50) [1] 60470 (0.260) [1] 530 (2.56) [1] 350 (0.260) [1] 359 (0.260) [1] 359 (0.260) [1] 350 (0.260) [1] 359 (0.260) [1]	ж ж л л
130 (100) 89 K (0260) 1360 (0260) 1360 (0260) 1360 (0260) 1360 (0260) 1383 (0260) 1483 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1560 (0260) 1570 (0260) 1580 (0260)	3.10 80.4 ND 0.890 9890 26.7 22.9 117 47400 145 9970 871 6.0700 0.0700 0.290 1210 140 140
5.30 () () () () () () () () () (
5.30 K 88.9 K 1.00 K 5.760 S8.7 36.9 1183 80900 31.9 11800 11800 1360 0.0600 0.0600 330 330 330 330	(1.00 (0.260 (0.260 (0.260 (0.260 (0.260 (0.260 (0.510
MO4.0 - CLP Metals, cont. (mg/kg) 5.30 rsenic 68.9 arium 0.360 eryllium 1.00 'admium 5760 'alcium 58.7 'bromium 58.7 'cobalt 38.7 'cobalt 1133 'copper 80900 ron 31.9 -ead 11800 Magnesium 1360 Nickel 520 Selenium 520 Selenium 64.9 Silver 530 Cidium 330 Vanadium 359 Zinc 93.6 Zinc 93.6	
MO4.0 - CLP Metals, cont. rsenic arium eryllium alcium bromium chronium chr	(mg/kg) 5.30 68.9 0.360 1.00 5760 58.7 36.9 11800 11800 1360 0.0600 46.9 520 ND 0.470 530 3359
	404.0 - CLP Metals, cont. rsenic arium admium admium alcium hromium obatt obper ron .ead dagnesium danganese Vercury Nickel Potassium Selenium Selenium Thallium Vanadium Zinc

	REF1 REF1-SO02 NA-REF1-SO02-01 07-MAR-98 0-3
	REF1 REF1-SO01 NA-REF1-SO01-31 07-MAR-98 0-3
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ELEM ELEM-SO08 NA-ELEM-SO08-01 08-MAR-98 0-3
	ELEM ELEM-SO07 NA-ELEM-SO07-02 .08-MAR-98 3-12
	Parameter

(0.0100)[1]

6.25

(0.0100) [1]

6.32

(0.010.0)[1]

6.74

(0.0100)[1]

7.03

SW9045C - pH (pH units)

펁

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

NA-REF1-50024 NA-REF1-5004-12 bag of colored NA-REF1-5004-12			REFI	set Cr.		B.	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.) REF1	Site Id reation Id ismple Id Log Date End Depth (in	æ		REF1 REF1-SO03	9		REF1 REF1-S004	26	•
345 0 (1) 400 0 (20) 38.4 0 (1) 400 0 (20) 38.4 0 (1) 400 0 (20) (2	Parameter		REF1 NA-REF1 07-M 3-1	-SO02 -SO02-02 4R-98		-VA-	REF1-5002-1 NA-REF1-5C 07-MAR 3-12	.2 Dup of 2 Dup of 302-02 -98			NA-REF1-SO 07-MAR-5 0-3	3-01		NA-REF1-S 07-MAR 0-3	-98	
4.30 (0.760)[1] 3.10 (0.730)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.410)[1] ND (0.830)[1] ND	E160.3 - Percent Moisture (percent) Percent moisture		0		[1]	33.9	0		I.	40.0	0	[20]	38.4	o	<u> </u>	11
(mg/kg) (0.350 (111) 724 (0.750 (111) ND (0.830 (111) 5.39 (0.810) (mg/kg) ND (0.350 (111) ND (0.350 (111) 46400 (2.50 (111) 48400 (2.40 (0.380 1.00 1 (0.350 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (111) 1.50 1 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500 (0.500	E300 - Anions (mg/kg) Chloride Fluoride Sulfate	4.30 ND 118	000		E E E	3.10 ND 119) (0.75() (0.37() (0.75(11 11	3.76 ND 11.9	. (0.830 (0.410 (0.830	E) (1.56 ND 19.6	(0.81 (0.40 (0.83		三三三
ND (0.350)[I] ND (0.350)[I] ND (0.350)[I] ND (0.350)[I] 0.440 (0.350)[I]	E353.2 - Nitrate (mg/kg) Nitrate	3.50	0)		fil(7.24	(0.75		Ξ	QN	(0.830		5.39	8.0)		Ξ
52300 (2.30 [1] 51800 (2.40 [1] 46400 (2.50 [1] 48400 (2.40 1.00 J (0.580) [1] 1.50 J (0.620) [1] 1.50 J (0.610 2.20 (0.780) [1] 1.50 J (0.820) [1] 3.50 (0.820) [1] 3.50 (0.820) [1] 3.50 (0.820) [1] 3.50 (0.820) [1] 3.50 (0.820) [1] 3.50 (0.820) [1] 3.50 (0.820) [1] 3.50 (0.820) [1] 3.50 (0.200) [1] ND (0.200) [1] ND (0.200) [1] ND (0.200) [1] ND (0.200) [1] ND (0.200) [1] 0.620) [1] 0.750 K (0.200) [1] 0.750 K (0.200) [1] 0.750 (0.200) [1] 0.750 (0.200) [1]	ILM04.0 - Total Cyanide (mg/kg) Cyanide	N))		(1)	Q.	(035		[1]	Š	(0350		0.440	(0.3		E
	ILMO4.0 - CLP Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobatt	52300 1.00 2.20 72.3 ND 0.470 11600 24.9		2.30 0.580 0.780 0.190 0.190 0.190 0.190		51800 1.20 2.40 72.3 ND 0.460 10800 24.9				46400 1.50 3.90 79.0 ND 1.00 11300 30.5 21.9			48400 11.50 3.50 88.3 ND 0.750 9420 29.1 22.1			

Compiled: 06/29/98

					12	ni aire								
					Location Id Sampke Id Log Date Beg. Depth - End Depth (in.)	Location Id Sample Id Log Date 1 - End Depth (ju;)							
Parameter		REF1 REF1-S002 NA-REF1-S002-02 07-MAR-98 3-12	02-02 78		REF1 REF1-SO02 NA-REF1-SO02-12 Dup of NA-REF1-SO02-02 07-MAR-98 3-12	11 SO02 -12 Dup of SO02-02 R-98		F-4	REF1 REF1-SO03 NA-REF1-SO03-01 07-MAR-98	33 33-01 8		NA-	REF1 REF1-SO04 NA-REF1-SO04-01 07-MAR-98 0-3	1 0
ILMO4.0 - CLP Metals, cont. (mg/kg) Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Sodium Thallium Vanadium	(mg/kg) 104 45100 5.40 10900 800 0.0300 28.5 272 272 0.600 ND 2030 11.70 185	(0.190 (2.70 (0.390 (1.80 (0.190 (0.390 L (0.390 L (0.190 (0.190 (0.190 (0.190 (0.190		105 45400 6.50 10600 797 0.0300 27.9 246 0.600 ND 1750 0.930 187	(0.200 (2.80 (2.80 (0.400 (0.200 (0.400 (0.200 (0.200 (0.200 (0.200 (0.200			92.4 42500 57.3 11700 787 0.140 35.4 400 0.560 L 0.380 1790 0.850 L	(0210 (2.90 (0.410 (0.410 (0.410 (0.410 (0.410 (0.820 (0.820 (0.820 (0.820		102 43600 50.0 11000 837 0.120 33.2 435 0.520 0.610 1470 1.10	1 1	(2.20 (2.20 (2.20 (0.410 0.410 0.410 0.200 0.200 0.200	

8

Ξ

0.0100

6.18

)E

0.0100

6.26

 Ξ

0.0100

6.38

)[1]

0.0100

6.40

SW9045C - pH (pH units)

떮

Table 2 Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	REF1-SO06 NA-REF1-SO06-02 07-MAR-98 3-12	0 [1]	[1] (0.760) [1] (0.380) [1] (0.760)	(0.760)	(0.280)[1]	(2.40)[1] J (0.590)[1] (0.790)[1] K (0.200)[1] K (0.200)[1] K (0.200)[1] (5.10)[1] (5.10)[1] (0.200)[1]
		34.4	9.64 ND 164	6.74	0.390	57700 1.50 2.60 69.4 ND 0.530 9380 30.8 25.0
	=	£	E1 (E2 ()[1]	(13)	
	REF1 REF1-SO06 NA-REF1-SO06-01 07-MAR-98 0-3	0	(0.780 (0.390 (0.780	0.780	(0.350	(2.40 J (0.600 K (0.790 K (0.200 K (0.200 (0.200 (0.200
-		36.3	1.72 ND 14.1	8.33	0.560	56800 2.40 5.20 60.2 ND 0.870 11100 30.1
th (in.)	=	豆	E (E ([1]()[1]	
Site Id Location Id Sample Id Log Date Log Date Beg, Depth - End Depth (in.)	REF1 REF1-SO05 NA-REF1-SO05-01 07-MAR-98 0-3	0	(0.810 (0.400 (0.810	(0.810	086.0)	(2.50 J (0.620 (0.830 K (0.210 (0.210 K (0.210 (0.210 (0.210
Beg		38.3	2.12 ND 40.1	6.51	0.430	57200 1.50 2.90 64.8 ND 0.650 9980 34.5 24.9
	8	E1	E)[1]	[1]	
	4 4 ×		8 2 8	92	(0.360	2.40 0.600 0.800 0.200 0.200 (5.20 (0.200
	REF1 REF1-S004 NA-REF1-S004-02 67-MAR-98 3-12	0	(0.760 (0.380 (0.760	0920)	0 >	M W U
	REF1 REF1-SO0 NA-REF1-SOC 67-MAR-9 3-12	34.4 0	2.25 (0.79 ND (0.37 44.4 (0.77	4.09 (0.7	O) QN	

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	REF1 REF1-SO06 NA-REF1-SO06-02 07-MAR-98 3-12
	REF1 REF1-S066 NA-REF1-S06-01 07-MAR-98 0-3
Site Id Location Id Sample Id Log Date Beg. Depth - End Deptin (in.)	REF1 REF1-SO05 NA-REF1-SO05-01 07-MAR-98 0-3
	REF1 REF1-SO04 NA-REF1-SO04-02 07-MAR-98 3-12
	Parameter

	(11)
(0200 (2.80 (0.390 (0.390 (0.390 UL (0.390 (1.20 (1.20 (1.20 (0.200 (0.200 (0.200 (0.200	00100)
116 51800 7.90 12000 890 0.0400 32.9 285 ND ND 1750 1750 219 48.6	6.04
	ED (
(0.200 (2.80 (0.400 (1.80 (0.200 (0.400 (0.400 (0.400 (0.400 (0.200 (0.790 (0.200	0.0100
105 47800 38.2 11400 832 0.140 34.1 362 0.430 0.370 1900 1.30 200	5.80
	[1]
(0210 (2.90 (0.420 (1.90 (0.210 (0.420 (0.420 (0.420 (0.420 (0.210 (0.210 (0.210	0.0100
ם נ	
115 50600 13.8 11700 875 0.0600 33.5 363 0.520 0.270 1730 120 215 71.0	6.40
	(1)
(0200 (2.80 (0.400 (1.80 (0.200 (0.400 (0.400 (0.400 (0.400 (0.400 (0.400 (0.400 (0.200 (0.200 (0.200	0.0100
T Tr	
mg/kg) 103 46100 8.70 12200 802 0.0200 30.9 263 0.580 ND 1890 189	6.53
ILMO4.0 - CLP Metals, cont. (mg/kg) Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Thallium Vanadium Thallium Vanadium Zinc SW9045C - pH (pH units)	Н

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

REF2 REF2-SO03 NA-REF2-SO03-01 07-MAR-98	0-3	[1]	(0.520)[1]	(3.50) [1] (0.880) [1] (1.20) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1] (0.290) [1]
RE NA-RE		54.4 ()	1.60	84200 J (820 66.1 ND ND 1.10 K 3030 54.4 33.9 158 73300 1300 0.190 648.5 449
u d		[1] \$4	1. [1]	
REF2 REF2-SO02 NA-REF2-SO02-01 07-MAR-98	0-3	0	0.470	(320 J (0810 (1.10 (0.270 (0.2
		50.6	1.70	76400 2.00 6.70 80.6 ND 1.10 4540 49.7 30.7 150 67400 49.9 10200 1200 0.170 56.1
d d te pth (in.)		[1]	[1](
Site Id Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.) REF2 REF2-SO01 NA-REF2-SO01-02	3-12	0	(0.480	(3.20 J (0.800 (1.10 (0.270 (0
ž		51.1	1.40	85800 2.20 5.90 96.1 ND 1.00 50.6 34.2 189 74600 48.1 11500 1350 0.220 ·
=		[]	(11)	
REF2 REF2-SO01 NA-REF2-SO01-01	07-MAR-98 0-3	0	0.520	(3.50 (1.20 (1.20 (0.290 K (0.290 (7.50 (0.290 (0.290 (0.290 (0.290 (0.3
		55.5	0.940	66000 2.70 6.40 76.6 ND 0.900 42.10 41.9 25.9 131 57400 51.8 7680 1060 0.180 35.9
	Parameter	E160.3 - Percent Moisture (percent) Percent moisture	ILM04.0 - Total Cyanide (mg/kg) Cyanide	ILMO4.0 - CLP Metals (mg/kg) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium

	REF2 REF2-S003 NA-REF2-S003-01 07-MAR-98 0-3
	REF2 REF2-SO02 NA-REF2-SO02-01 07-MAR-98
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	REF2 REF2-SO01 NA-REF2-SO01-02 07-MAR-98 3-12
	REF2 REF2-SO01 NA-REF2-SO01-01 07-MAR-98 0-3
	Parameter

	(1)
(0.580 (0.290 (29.2 (1.20 (0.290	0.0100
UL I	
ND 0.450 235 4.30 327 152	625
	(1)
(0270 (27.0 (1.10 (0270 (0270	0.0100
in 1	
ND 0.530 367 5.40 299 155	6.20
)[1]
(0.530 (0.270 (26.7 (1.10 (0.270	(0.0100
r al	
ND 1.30 326 5.60 326 190	629
	[1]
(0.580 (0.290 (28.8 (1.20 (0.290	(0.0100
T OF	
ng/kg) ND 0.540 303 4.00 257	6.10
ILMO4.0 - CLP Metals, cont. (mg/kg) Selenium Silver Sodium Thallium Vanadium Zinc	SW9045C - pH (pH units) pH

Compiled: 06/29

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

70-7	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	REF2 REF2 REF2 REF2-SO03 REF2-SO04 REF2-SO05 REF2-SO05 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-01 NA-REF2-SO05-02 NA-REF2-SO03-02 NA-REF2-SO05-03 NA-REF2-SO05-03 NA-REF2-SO03-02 NA-REF2-SO05-03 NA-REF2-SO05-03 NA-REF2-SO03-02 NA-REF2-SO05-03 NA-REF2-SO05-03 NA-REF2-SO03-02 NA-REF2-SO05-03 NA-REF2-SO05-03 NA-REF2-SO03-02 NA-REF2-SO05-03 NA-REF2-SO05-03 NA-REF2-SO03-02 NA-REF2-		0 000	NA 65.7 (1)	0 274 O [1]	NA 210 0 121	NA NA	49.1	NA ND (0410	NA	NA NA 7.16 (0.830) [1]	QN	(3.20
NA NA NA NA NA NA NA NA NA NA NA NA NA N		REF2 REF2-SO NA-REF2-SO 07-MAR-	3-12	AA	NA	NA	NA	NA	49.1	NA ::	na NA	NA		

	REF2 REF2-SO05 NA-REF2-SO05-02 07-MAR-98 3-12
	REF2 REF2-SO05 NA-REF2-SO05-01 07-MAR-98 0-3
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	REF2 REF2-SO04 NA-REF2-SO04-01 07-MAR-98 0-3
	REF2 REF2-SO03 NA-REF2-SO03-02 07-MAR-98 3-12
	Parameter

(0.830 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210 (0.210
L L
3.60 73.7 ND 1.00 8180 29.7 25.5 1125 51400 11200 933 0.100 33.2 290 0.880 0.390 1.30 1.30
(1.10 (0.270 (0.270 (0.270 (0.270 (0.270 (0.270 (0.250 (0.250 (0.250 (0.250 (0.250 (0.270 (0.270 (0.270 (0.270 (0.270 (0.270
r k k
4.50 81.2 ND 1.20 8670 32.5 23.7 121 49600 40.5 945 0.220 31.8 624 1.20 0.330 1040 ND
(0.930 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230
K K
4.60 69.4 0.230 1.10 9640 39.2 30.2 149 62900 22.5 9980 1170 0.0700 39.9 435 1.10 0.630 497
(1.00 (0.260 (0.260 (0.260 (0.260 (0.330 (0.260 (0.530
ב ל
11. (mg/kg) 4.80 1.98 0.260 1.40 3890 49.4 42.4 1.79 87500 1530 0.0800 47.9 292 ND 0.570 422 320 3355
HMO4.0 - CLP Metals, cont. (mg/kg) Arsenic Barium Beryllium Cadmium Cadmium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Manganese Mercury Manganese Mercury Manganese Mercury Manganese Mercury Manganese Mercury Manganese Mercury Manganese Manga
HLMO4.0 - C Arsenic Barium Beryllium Calcium Chromium Chromium Chromium Choper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium Zinc

70

Table 2

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

d d e e pth (in.)	REF2 REF2-S005 REF2-S005 01 NA-REF2-S005-01 07-MAR-98 07-MAR-98 3-12)[1] 6.38 (0.0100)[1] 6.48 (0.0100
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	REF2 REF2-SO04 NA-REF2-SO04-01 07-MAR-98 0-3	6.64 (0.0100
	REF2 REF2-SO03 NA-REF2-SO03-02 07-MAR-98 3-12	6.57 (0.0100)[1]
	Parameter	SW9045C - pH (pH units)

							Site Id									
							Location Id	Į								
							Sample Id	PI								
							Log Date	ate								
						Beg. De	Beg. Depth - End Depth (in.)	epth (in.)								
			DPEN-COOK				REF2				TOWR			•	TOWR	
		Ž	NA-REF2-S006-01	. <u>5</u>		NA-REF	REF2-SO06 NA-REF2-SO06-11 Dup of	up of		Ž	TOWR-SO01 NA-TOWR-SO01-01	_ =		01	TOWR-SO02	;
			00 5111			NA-	NA-REF2-SO06-01	10						OA-TO	NA-10WK-SO02-01	5
Parameter			0,-MAK-98	_		_	07-MAR-98				08-MAR-98			80	08-MAR-98	
							3				0-3				0-3	
E160.3 - Percent Moisture (percent)	•															
Percent moisture	56.1		0	Ξ	56.1		0	[]	41.1		0	Ξ	34.5	C		Ξ
ILM04.0 - Total Cyanide (mg/kg)													<u>}</u>	>		Ξ
Cyanide	QN		0.490	(1)	1.30		0.470	[H]	0.810		0.260) III	1 30		9	Š
ILMO4.0 - CLP Metals (mg/kg)												E		-	0070	[H] (
Aluminum	78400		3.70	(11)	81500		960	111	0000			;				
Antimony	2.00	-	0.940	Ξ	2.30	-	080	E 5	0.850	-	0/.7	E ;	36900	Ü	2.40	[1]
Arsenic	6.20		021)	(1)	7.20		(1.20	ΞΞ	0.6.0	1	0.090	<u>=</u>	2,30))]	0.600	(E) (
Barium	105	M	0.310	Ξ(105	×	0300	E E	20:7	-	0.19.10	Ξ.	2.70	<u> </u>	0.800	(11)
Beryllium	S		0310	ΞΞ	Q.	1	0000)	ΞΞ.	7:00 CIV	٦.	0.230	Ξ;	56.6	r (0	0.200	(11)
Cadmium	1.80	K	0.310	E (1.90	¥	0300	E E	ΔN (4.1)	×	0.730	Ξ	Q ;	$\overline{}$		Ξ(
Calcium	5270		(8.10)[1]	5470		07.7	E =	086	4	0070	E 5	901) W	_	[]
Chromium	42.1		0.310	[1](45.5		0.300	ΞΞ.	37.4		0.030	ΞΞ	1000	S (Ξ
Cobalt	30.0		0.310)[1]	30.8		0.300	Ξ	28.9		0230	Ξ.	1.12	0 (
Copper	<u> </u>		0.310	[1]	155	_	0.300	(1)	139		(0.230	E				<u> </u>
Lead	00879		6.40	Ξ	00999	_	(4.10)[I]	29900		320	E (33300) C	0.000	Ξ.
Magnesium	22.3		0.020	Ξ.	55.7		0.590	(Ξ)	7.70		0.450	Ξ	26.2	i		
Manoanese	0100		D877)	Ξ.	10100	_	2.70	Ξ	11700		(2.00	Ξ(0616			35
Mersity	0.100		0.310	Ξ	1230	Ī	0000	[1](1110		0.230	Ξ	613	; c		3 5
Nickel	0.130 2.130		0.0400	Ξ;	0700	•	0.0400	(11)	0.0300		00000)	Ξ Ξ Ξ	00600	-		ΞΞ
Potaecium	4.70		0.510	Ξ	38.0	Ŭ	0.300	<u>[i]</u> (37.4		0.230	<u> </u>	24.1			ΞΞ
Tomos de la companya	8		06:1	(E)	975	•	1.80	(11)	2		(1.40		155	 		E 5
							j		İ			! •	I '	:		ī

0 = Detection Limit [] = Dilution Factor N

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugt NAF, Japan

	15		[1](
	TOWR-SO02 NA-TOWR-SO02-01 08-MAR-98 0-3	UL (0.400 (0.200 (0.200 (0.200 (0.200	00100)
		ND 0.300 1740 ND 124 94.3	6.02
	10		[1]
	TOWR TOWR-SO01 NA-TOWR-SO01-01 08-MAR-98	UL (0.450 (0.230 (22.6 (0.910 (0.230 (0.230	0.0100
		ND 0.240 1500 2.50 255 58.8	6.51
th (in.)	1 of		[1]
Site Id Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.)	REF2 REF2-SO06 NA-REF2-SO06-11 Dup of NA-REF2-SO06-01 07-MAR-98 0-3	L (0.590 (0.300 (29.6 L (1.20 (0.300	00100)
m	Ž	0.960 0.530 482 1.60 292 186	6.32
	-		[1]
	REF2 REF2-SO06 NA-REF2-SO06-01 07-MAR-98 0-3	L (0.620 (0.310 (31.2 L (1.20 (0.310	(0.0100
		(mg/kg) 1.10 0.520 491 1.40 276	6.33
		ILMO4.6 - CLP Metals, cont. (mg/kg) Selenium Silver Sodium Thallium Vanadium Zinc	SW904SC - pH (pH units) pH

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 2

							Site Li								
							Location Id	멸							
							Sample Id	P							
						1	Log Date	ite							
						Beg. D.	Beg. Depth - End Depth (in.)	epth (in.)							
		Ž	TOWR-SO02 TOWR-SO02-32	02 02-32		NA	TOWR-SO03 NA-TOWR-SO03-01	3-01		TOWR TOWR-SO03 NA-TOWR-SO03-11 Dup of	/R SO03 I-11 Dup of		ž	TOWR TOWR-SO04	24 2 2
Parameter			08-MAR-98 3-12	an.		-	08-MAR-98 6-3			NA-TOWR-SO03-01 08-MAR-98 0-3	-SO03-01 1-98			08-MAR-98	.
D422 - Particle Size Distribution (%)	(9														
%Clay	NA NA				630		<	Ē	,						
%Gravel	NA				90		> (Ξ, ;	0.01	0	Ξ	NA			
%Sand	X				000		0 ,	Ξ	4.80	0	Ξ	NA			
%Silt	Ą				28.9		0	Ξ	61.1	0	Ξ	A'N			
Mean Particle Gize(mm)					34.9		0	Ξ	24.1	C	Ξ	V V			
Arcan range Stee(min)	V V				0.137		0	[1]	0.219	, 0	ΞΞ	NA NA			
E160.3 - Percent Moisture (percent)	_														
Percent moisture	30.5		0	Ξ	43.3		0	Ξ	45.6	0	Ξ	31.2		<	Ī
E300 - Anions (mg/kg)										ı	2			5	=
Chloride	2														
Fluoride	G V				11.4		0.880) [1]	8.93	0.910)[1]	Ϋ́			
Sulfate	NA				S3.1	_	(0.440 (0.880	(E) (E)	1.65 44.9	(0.460		NA :			
E353.2 - Nitrate (mo/ko)								.				NA			
Nitrate	N				23.1	•	(1.76	121	8 50	,	į				
ILM04.0 - Total Cyanide (mg/kg)								Ę		101	[7] (N A			
Cyanide	0.830		0.270)[1]	1.70	J	(0.310)[1]	1.90	0.380	Ħ	000		3	;
ILMO4.0 - CLP Metals (mg/kg)											Ξ,		•	0700	Ξ
Aluminum	46000		(230	111	55100	,	3.00	100	000						
Antimony	0.770	L)	0.570	Ξ	2.70	1	0.700	E (E)	2.50	(2.90 L (0.740	EE	45500 1.20		(2.30	E)(

Table 2 Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Location Id									
							Sample Id									
							Log Date						,			
						eg. De	Beg. Depth - End Depth (in.)	th (in.)								
		•	TOWR				TOWR				TOWR				TOWR	
		. 5	TOWR-SO02			•	TOWR-SO03			Ē	TOWR-SO03			F	TOWR-SO04	
		NA-TO	NA-TOWR-SO02-32	22		NA	NA-TOWR-SO03-01	-01	Ž	TOWF	NA-TOWR-SO03-11 Dup of NA-TOWR-SO03-01	р of 11		NA-T	NA-TOWR-S004-01	=
		-80	08-MAR-98				08-MAR-98			8	08-MAR-98			8	08-MAR-98	
Parameter		.,	3-12				6-3				6-3				5	
(afficial) to a state of the st																
LIMO4.0 - CLF metals, com: (ing/n)	2.50	,	0.760)[[]]	3.90		0.930)[1]	4.10		0860)[1]	3.40		092:0	Ξ(
Alscine Bering			0.190	ΞΞ	96.2	٦	(0.230	Ξ	111	L1	(0.250)[1]	57.6	J	0.190)[1]
Beryllin	_		0.190	111	Q.		0.230) [E]	Q		0.250	(11)	Ð		0.190	<u>[i]</u>
Cadmin		,) K	0.190	E (2:00	X	0230)[1]	2.30	¥	0220)[<u>i</u>]	1.00	¥	0.190	<u>(</u>
Calcium	13200	_	5.00	[1]	11600		00'9)	[1](12100		(6.40	<u>=</u>	10400		6.490	E
Chromium	21.7		0.190	(E)	40.6		0230	<u>[I]</u> (36.5		0.250	E)(23.8		0.190	Ξ:
Cobalt	18.2	· •	0.190	(11)	21.9		(0.230	(1)	21.9		0.250)[<u>1</u>]	0.61		0.190	Ξ.
Copper	98.3	_	0.190	[I]	101		0.230)[1]	106		(0.250)[1]	94.8		0.190	Ξ;
Iron	39400	_	2.70)[1]	49800		(320	(11)	22200		(3.40)[1]	39000		(2.70	Ξ,
Lead	8.80	_	0380	(11)	57.6		0.460)[I]	86.2		(0.490	[i]	18.1		0380	Ξ,
Magnesium	9240	<u> </u>	1.70)[1]	8540		(2.10	[1](8980		(2.20	[1]	0668		0.170	ΞΞ
Manganese	705	_	0.190	[1]	884		0.230) [<u>1</u>]	891		0.250	<u> </u>	737		061:0)	Ξ,
Mercury	0.0400	_	0.0200)[1]	0.140		0.0300)[<u>i</u>]	0.120		0.0300	Ξ.	0.0700		0.0200	
Nickel	23.5	Ť	0.190	[1]	31.4		(0.230)[1]	32.4		(0.250	(E)	24.1		0.150 0.150	E .
Potassium	2130	_	1.10	<u>[i]</u> (686		0 1.40	(11)	1110		1.50	<u>(E)</u>	312	ļ	01.1	<u> </u>
Selenium	Q	OL.	0.380)[1]	Q.	ΩΓ	0.460	(11	S	ΩΓ	0.490	Ξ	2	Ħ	0880	Ξ,
Silver	0.200	_	0.190)[I]	0.360		(0.230)[1]	0.400		(0.250	<u>(II</u>	0200		0.130	Ξ.
Sodium	2300	<u> </u>	19.1)[1]	1350		(232)[1]	1430		(24.5) [<u>=</u>]	1970		0.61	Ξ.
Thallium	1.40	_	0.760)[I]	1.20		0.930)[1]	2.20		0860)	<u>[</u>]	1.30		0.760	Ξ,
Vanadium	147	_	0.190	(E)	961		0.230)[1]	186		0.250	<u>(1</u>	149		0.190	Ξ;
Zinc	51.7	_	0.190	<u> </u>	223		(0.230	(E)	246		(0.250)[1]	64.4		0.190	(<u>II</u>)

	TOWR TOWR-SO04 NA-TOWR-SO04-01	08-MAR-98 0-3	6.43 (0.0100)[1]
	TOWR TOWR-SO03 NA-TOWR-SO03-11 Dup of	NA-TOWR-SO03-01 08-MAR-98 0-3	[1](0.0100)
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TOWR TOWR-SO03 NA-TOWR-SO03-01	08-MAR-98 0-3	(0.0100)[1] 6.34
	TOWR TOWR-SO02 NA-TOWR-SO02-32	08-MAR-98 3-12	4 (0.0100) [1] 6.26
		Parameter	SW9045C - pH (pH uaits) ' pH

32

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					Beg	Sa Sa I Depth - 1	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	(in,)						
		TOWR-SO NA-TOWR-SC 08-MAR-9	TOWR TOWR-SO04 NA-TOWR-SO04-02 08-MAR-98		NA-T	TOW TOWR-SO NA-TOW	TOWR TOWR-SO04 NA-TOWR-SO04-12 Dup of NA-TOWR-SO04-02 08-MAR-98	Jo 2		TOWR TOWR-SO05 NA-TOWR-SO05-01 08-MAR-98	10		TOWR-SO06 TOWR-SO06-01 08-MAR-98 0-3	6 6-01
Parameter		3-12	7			3-1-c	4							
D422 - Particle Size Distribution (%) %Clay %Gravel %Sand %Silt Mean Particle Size(mm)	N N N N N N N N N N N N N N N N N N N				A N N N N N N N N N N N N N N N N N N N				5.20 0.00 85.7 9.10 0.486	00000	88232	N N N N N N N N N N N N N N N N N N N		
E160.3 - Percent Moisture (percent) Percent moisture	41.4	0		Ξ	41.2	0		Ξ	9.80	0	[5]	51.8	0	Ξ
E300 - Anions (mg/kg) Chloride Fluoride Sulfate	NA NA				N N N N N N N N N N N N N N N N N N N				2.29 ND 33.3	(0.550 (0.270 (0.550	ED (AN AN AN		
E353.2 - Nitrate (mg/kg) Nitrate	N A				NA				4.24	0.550	[i](Ν		
ILM04.0 - Total Cyanide (mg/kg) Cyanide	0:930	J	0.300)[1]	1.00	~	(0.260	[1]	0.450	(0.190)[1]	N Q	0.500)[1]
ILMO4.0 - CLP Metals (mg/kg) Aluminum Antimony	97500 UD	OL C	(2.60	EE (0.7500		(2.70	151	13500 ND	(1.80 UL (0.440	(1) (1) (1)	78800	(3.10 J (0.780	E C .

Compiled: 06/29/98

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 2

₩R -\$006 -\$006-01	R-98	
TOWR TOWR-SO66 NA-TOWR-SO66-01	08-MAR-98 0-3	(100 K (0260 L (0260 (0260 (0260 (0300 (0300 (0300 (0400 (0520 (0
		5.70 96.3 0.360 1.10 18300 47.9 29.0 150 64400 29.3 8650 1200 0.380 928 920 0.340 18
465 405-01	~	
TOWR TOWR-SO05 NA-TOWR-SO05-01	08-MAR-98 0-3	(0.590 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150 (0.150
		8.30 15.2 L ND 0.330 K 3520 8.60 4.80 23.3 11100 4.40 2480 183 ND 7.70 198 ND VIL ND 40.4 34.8
d 1 Id 2 Id 3 Epth (in.) Dup of 04-02		
Site Id Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.) TOWR TOWR-SO04 NA-TOWR-SO04-12 Dup of NA-TOWR-SO04-02	3-12	(0.900 (0.220 (0.220 (5.80 (0.220
Bei		2.50 107 L ND 1.40 K 11200 28.6 225.2 126 50800 4.10 10900 983 ND ND 31.3 276 ND UL ND 1760 197
74 74 75		
TOWR TOWR-SO64 NA-TOWR-SO64-02 08-MAR-98	3-12	(0.280 (0.220
		105 L ND 130 K 1130 K 11800 28.0 24.2 124 50100 4.00 10700 949 ND 30.1 277 ND ND 1830 220 194 46.7
		als, cont. (mg/l
į.	Farameter	Arsenic Barium Beryilium Cadmium Chromi

Not Detected NA = Not Applicable 0 = Detection Limit [] = Dilution Factor N

	TOWR TOWR-SO06 NA-TOWR-SO06-01	08-MAR-98 0-3	[1](00100)
			7.56
	5		111
,	TOWR TOWR-SO05 NA-TOWR-SO05-01	08-MAR-98 0-3	001000
			6.20
th (in.)	jo dn	!	(1)
Site Id Location Id Sample Id Log Date Beg, Depth - End Depth (in.)	TOWR TOWR-SO04 NA-TOWR-SO04-12 Dup of NA-TOWR-SO04-02	08-MAR-98 3-12	(0.0100
	Z.		19:9
	703		101(
	TOWR TOWR-S004 NA-TOWR-S004-02	08-MAR-98 3-12	001000)
			\$99
		Parameter	SW9045C - pH (pH units)

					Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Site Id Location Id Sample Id Log Date	(u						
Parameter		TOWR TOWR-SO06 NA-TOWR-SO06-02 08-MAR-98 3-12	7 006 006-02 98		TOWR-SOG NA-TOWR-SOG 08-MAR-98	TOWR TOWR-SO07 NA-TOWR-SO07-01 08-MAR-98 0-3		ΝĀ	TOWR TOWR-SO08 NA-TOWR-SO06-01 08-MAR-98 0-3	88-01		TOWR TOWR-SO09 NA-TOWR-SO09-01 08-MAR-98 0-3	909 8
E160.3 - Percent Moisture (percent) Percent moisture	52.8	0	Ξ	02.9	0	Ξ	38.1		0	Ξ	32.9		
ILM04.0 - Total Cyanide (mg/kg) Cyanide	QN QN	0.480)[1]	Š	0.170	[1](0	QN		0.400	: 117	£		Ξ
ILMO4.0 - CLP Metals (mg/kg)									•		2	0.350	(11)
Aluminum	104000	3.20	(1)	14200	(1.80	1011	00000		9				
Antimony	1.90 L	0.810)[1]	0.770	L (0.440		_	-	(2.40	Ξ.	01600	(220	[1](
Barium	67.4	(1.10	E) (3.50	_		420	•	0.800	F1 (9. 9. E.	0.560	E (
Beryllium	W QN	020		13.8	K (0.150		89.4	×	0.200	ΞΞ	91.5 K	0./40	E
Cadmium	1.20 K	0.270		2 5	0.150		0.300	;	0.200) [E]		0.190	
Calcium	15400	00'/	ΞΞ	10800	3.80		096:0	×	0.200	[1]	0.920 K	$\overline{}$	<u> </u>
Chromium	57.4	0.270)[1]	7.80	(0.150		42.0		520	Ξ	27600	(4.80	<u>(E)</u>
Copper	40.2 194	0.270	Ξ	4.30	(0.150		27.8		0700	E (34.5 24.7	0.190	(1)
Iron	86000	380	Ξ,	7.50	(0.150		139		0.200	(1)	146	0.190	Ξ,
Lead	14.9	0.540	E (3.46	(2.00		29900	_	2.80	[1]	22700	(2.60	E (
Magnesium	18500	(2.40	(E)	2450	067:0)		23.4		0.400	(E)	27.3	0.370	Ξ
Manganese	1500	0.270	E)(175	0.150		11500		8 : 5	Ξ	10000	0.1.70	<u>(E)</u>
Mercury	0.0300	0.0300	(11)	8	0.0200		00800		0.200	Ξ	978	0.190	(11)
Nokel Primi	44.3	0.540	(1)	5.70	0.290	, ,	340	•	0.000	₹ !	0.0500	0.0200	(11)
rotassium	642	0971)	<u>(E)</u>	919	0.870	. , ,	674	<i>-</i>	1.20	<u> </u>	30.9	0.370)[<u>1</u>]
								•		[-]/	9	01.10	Ξ

Not Detected NA = Not Applicable () = Detection Limit [] = Dilution Factor N

Table 2 Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

		ratiktet	ILMO4.0 - CLP Metals, cont. (mg/kg) Selenium Silver Sodium Thallium Vanadium Zinc	SW9045C - pH (pH units) pH
			g/kg) ND 0.420 650 2.50 362 125	7.83
	TOWR-SO06 NA-TOWR-SO06-02 08-MAR-98 3-12		UL (0.540 (0.270 (27.0 L (1.10 (0.270 (0.270	0.0100
	6-02 6-02			[1](
			ND ND 929 ND 43.1 32.8	88.88
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TOWR TOWR-SO07 NA-TOWR-SO07-01 08-MAR-98 0-3		UL (0.290 (0.150 (14.6 UL (0.580 (0.150	(0.0100
1 I Id I Id Date Depth (in.)	907 907-01 18			0)[1]
			0.400 0.430 1240 2.00 254 114	7.54
	TOWR-SO08 NA-TOWR-SO08-01 08-MAR-98 0-3		L (0.400 (0.200 (19.9 L (0.800 (0.200	(0.0100
	3 5008 5008-01 -98		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	[1] (00
			ND 0.300 1240 2.00 223 126	7.95
	T		d a	Ü
	TOWR TOWR-S009 NA-TOWR-S009-01 08-MAR-98 0-3		0.370 0.190 18.5 0.740 0.190	0.0100
	=			(H)

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	Site Id Location Id Sample Id Log Date	h (in.)								
Parameter		T TOV TOV NA-TOV 0	TOWR TOWR-SO10 NA-TOWR-SO10-01 08-MAR-98 0-3	00		TOWR TOWR NA-TOWR 08-MAI	TOWR-SO10 NA-TOWR-SO10-02 08-MAR-98 3-12	8		T-AN T-80	TOWR TOWR-SO11 NA-TOWR-SO11-01 08-MAR-98 0-3	-0 1		TOW TOW NA-TOW 08-M	TOWR TOWR-SO12 NA-TOWR-SO12-01 08-MAR-98 6-3	_
E160.3 - Percent Moisture (percent) Percent moisture	37.6	0		[2]	42.9	0		Ξ	103	0		=	37.9			
ILM64.0 - Total Cyanide (mg/kg) Cyanide	Q.	00:00	300	(1)	QN Q	0.440		[1]	£	_	(0.330	: 5	. !	>		Ξ
ILMO4.0 - CLP Metals (mg/kg)								i I	•	•	000	<u> </u>	Ž	(0.380		<u>(E)</u>
Aluminum Antimony	60400	(2.50	2.50	111	71400	(2.90		[1]	14200	Ų	1.90	1111	00289	,		į
Arsenic	5.50			<u> </u>	09.1 09.4	J (0.710 (0.950		<u> </u>	S S) In	0.470	ΞŒ	1.90	J (0.580	, , , ,	ΞΞ
Beryllium	0230	K (02	0.210	(I) (II)	74.2	K (0.240		ΞΞ	3. 4 0 14.1) K	0.620 0.160	<u> </u>	4.50 76.5	(0.780 X		ΞΞ
Cadmium Calcium	0.760	K (02			0.870	(0.240 K (0.240	,	E (E	ND 0.180	, (0.160		0.270			<u> </u>
Chromium Cobalt	43.7	0210		<u> </u>	18300 45.0	(620 (0240		[] (11600	,	4.00		15500	(5.00		<u>=</u> (=
Copper	132	(0210 (0210		Ξ (Ξ (Ξ)	28.7 150	(0.240		Ξ.	3.50	, Ū	0.160	<u>=</u> (=)	41.6 27.3	(0.190 (0.190		ΞΞ
Iron Lead	53900 24.1	(3.00		[H] (62100	(3.30	·	E (5.00 12500	Ŭ Ü	0.160 2.20	<u>=</u> =	134	(0.190	_	ΞΞ.
Magnesium Manganese	10100	061)		E (E)	21.8 11700	(0.480 (2.10		<u> </u>	3.00	Ĉ.	0.310		18.5	(0.390		<u> </u>
	0.0400	(0.210		ΞΞ	1110	0.240		1]	173)	0.160	E (1060	(1.80		Ξ:
	33.2	(0.420		E (E) (37.2	(0.0300	E (= =	QN 8	Ξ.	0.0200	(1)	0.0400	00300		= =
rotassium	938	(1.30		<u>=</u>	735	(1.40	•		8. 2 .		0.310 0.940	ΞΞ	34.0	0.390	_	· ·
												ξ.	2	RT)	[](-

0 = Detection Limit [] = Dilution Factor 1

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	Parameter	ILMO4.6 - CLP Metals, cont. (mg/kg) Selenium Silver Sodium Thallium Vanadium Zinc	SW9045C - pH (pH units) pH
		. (mg/kg) ND 0.380 533 1.00 222	7.98
	TOWR- TOWR- NA-TOWR 08-MAK	UL (0) () () () () () () () () (0)
	TOWR-SO10 NA-TOWR-SO10-01 08-MAR-98 0-3	0.420) 0.210) 21.1) 0.840) 0.210)	(0.0100)
			[1]
		ND 0.290 778 2.80 269 109	7.91
1 leg. Depth	TC NA-TC 08-	ii 1	J
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TOWR-SO10 NA-TOWR-SO10-02 08-MAR-98 3-12	(0.480 (0.240 (23.8 (0.240 (0.240	. 0.0100
th (fir.)	-02		(1)
		ND ND 884 ND 34.8 25.5	88.88
	T-AN D	OL.	
TOWR	TOWR-S011-01 08-MAR-98 0-3	(0.310 (0.160 (15.6 (0.620 (0.160	0.0100
	10-)[1]
		ND 0.330 745 2.00 252 94.0	7.83
	T.AN	UL L	
TOWR	TOWR-SO12 NA-TOWR-SO12-01 08-MAR-98 0-3	(0.390 (0.190 (19.4 (0.190 (0.190	0.0100
	16		(1)

Compiled: 06/29/98

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

() = Detection Limit [] = Dilution Factor N Not Detected NA = Not Applicable

	TRND TRND-SO02 NA-TRND-SO02-02 15-MAR-98 3-12
	TRND TRND-SO02 NA-TRND-SO02-01 15-MAR-98 0-3
Site Id Location Id Sample Id Log Date Beg. Depth • End Depth (in.)	TRND-SO01 NA-TRND-SO01-02 15-MAR-98 3-12
	TRND-SO01 NA-TRND-SO01-01 15-MAR-98 0-3
	Parameter

(1.10 (0.270 (0.270 (0.270 (0.270 (0.270 (0.270 (0.230
r r
220 712 0.330 0.630 9250 364 274 143 63500 51.5 9800 1100 0.0600 34.1 172 172 172 ND
(0.970 (0.24
K CIT CIT
4.10 80.1 0.540 1.00 6650 59.6 34.7 179 74700 225 11400 1300 0.0900 0.380 659 ND
(0.780 (0.200 (0.200 (0.200 (0.200 (0.200 (0.200 (0.390
K I I
1.70 88.0 ND 0.350 9450 20.6 118.8 103 40300 9.80 8290 771 0.0700 0.670 ND 152 152
(0.890 (0.220
L L
1370 3.70 93.9 0.240 0.810 9580 24.6 18.1 103 39000 120 7380 7380 7380 120 0.120 0.230 0.280 1.30 ND
letals, cont. (r
ILMO4.0 - CLP Metals, cont. (mg/kg) Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Selenium Silver Sodium Thallium Vanadium Zinc

2 - 41

	TRND TRND-SO02 NA-TRND-SO02-02 15-MAR-98 3-12
	TRND-SO02 NA-TRND-SO02-01 15-MAR-98 0-3
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TRND TRND-SO01 NA-TRND-SO01-02 15-MAR-98 3-12
	TRND TRND-SO01 NA-TRND-SO01-01 15-MAR-98 0-3
	Parameter

(0.0100)[1]

6.42

(0.010.0) [1]

6.50

)[<u>1</u>]

0.0100

6.50

(0.0100)[1]

5.83

SW9045C - pH (pH units)

Hd

0 = Detection Limit [] = Dilution Factor | Wat Detected | NA = Not Applicable

rance 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
						1	Tocation Id									
						1	Sample 1d									
							Log Date									
					Be	g. Depth	Beg. Depth - End Depth (in.)	h (in.)								
						F	TRND			TRND	₽			TRND	_	
		L	TRND-S003			TR	TRND-SO03			TRND-S004	TRND-S004		7.42	TRND-SO04 NA-TRND-SO04-11 Duo of	.004 11 Duo of	•
		NA-1	NA-TRND-SO03-01	=		NA-TR	NA-TRND-SO03-02			IAN-I MI	TC-LOOK-1			NA-TRND-S004-31	3004-31	
		-	15-MAR-98			15-1	15-MAR-98 3-12			10-MAR-98 0-3	\R-98 3			10-MAR-98 0-3	86-1	
Parameter			3													
E160.3 - Percent Moisture (percent)								;	`	(Ξ	45.7	c	_	=======================================
Percent moisture	30.0		0	<u>=</u>	38.2	0		Ξ	44.6	>		(T)	7.0		•	Ξ
ILM04.0 - Total Cyanide (mg/kg) Cyanide	0.550		(0.350	[1](Q.	J	(0.340	111(1.30	(0.430		[1]	1.20	(0.460		(1)
m MOA 0 . CT D Metele (ma/kg)													,	•	·	Ę
LIMO4.0 - CLF INTERAIS (ING. n.g.)	49300		(2.20)[1]	75900	<u> </u>	2.60)[1]	47100	, ,	•	[1]	9	•		Ξ3
Atumental	4		0.560	ΞΞ	ON	OF (0.640	[1](57.6	r (0;		[1]		L (0.740		ΞΞ
Anumony	330		0.750	ΞΞ	2.80	_	0.850	[1]	10.7	·0	0.930	Ξ	11.7	0660)		[1]
Arsenc	85.1		0.190	ΞΞ	99.1	· _	0.210)[1]	1380	(0)		(E)	1350	(0.250		ΞΞ
Dardin	0.330		(0.190) [E]	0.450	<u> </u>	0.210)[I]	Q	O	•	<u>=</u>	2	0.250	, ,	
Cadmium	0.800	X	0.190)[1]	0.890	×	0.210)[<u>F]</u>	23.0	0		E :	24.3	0.07.0		ΞΞ
Calcium	9550		(4.90)[1]	12600)	5.50)[1]	16500	.		<u> </u>	16500	0500		3 5
Chromium	33.1		0.190	(1)	41.0	<u> </u>	0.210	<u>=</u>	95.9))		E 5	25.1	0.50		Z = -
Cobalt	19.3		0.190	[1]	27.7)	0.210	Œ	22.6	o (0.230	E 6	1.57	0520		3 =
Conner	98.1		0.190	<u>(II)</u>	145	~	0.210	Ξ	291	o '	0.230	E S	900	3.50		E
Iron	44400		(2.60)[1]	62200	<u> </u>	3.00)[<u>1</u>]	48600	e)	3.30	<u> </u>	49500	3.30		E (
1 esd	43.6		0.370	(1)	28.2	$\overline{}$	0.430	<u>=</u>	1420	0	0.470	Ξ	1530	***		ΞΞ
Monnecium	7950		(1.70	(1)	11200	<u> </u>	1.90	[](7570	(5	2.10	(E)	0178	07.7		ΞΞ
Magnesium	£.		0.190	E (1240)	0.210)[1]	1200	0	0.230	Ξ	1340	0670		Ξ.
Mariganese	00000		00000	<u>(</u>	0.0700)	0.0200)[1]	2.50	3 >	0.0000) [2]	2.40	70 S	_	<u> </u>
Michel	28.9		0.370	(E)	35.3	J	0.430) <u>[i]</u>	68.3)	0.230	Ξ.	76.8	05.0		3 5
Potaecium	783		(1.10	[1]	200	<u> </u>	(1.30)[1]	1840	-	1.40	[<u>[]</u>	06/1	KI)		111
1																

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

	¥ Dup of	94-31 8		[1](
	TRND TRND-S004 NA-TRND-S004-11 Dup of	NA-TRND-SO04-31 10-MAR-98 0-3	(0.490 (0.250 (0.990 (0.250 (0.250	0.0100
	NA-TR	Ž	ן ז	
			1.00 1.31 469 3.30 1.68 3.180	6.75
	04 04-31	6 0		[1]
	TRND TRND-SO04 NA-TRND-SO04-31	10-MAR-98 0-3	(0.470 (0.230 (23.3 (0.930 (0.230	0.0100
	Z		1 1	
			1.40 123 467 3.10 160 3010	0 ./4
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	03 03-02	8		111
Site Id Location Id Sample Id Log Date h - End Dept	TRND TRND-SO03 NA-TRND-SO03-02	15-MAR-98 3-12	(0.430 (0.210 (21.3 (0.850 (0.210 (0.210	377
Beg. Dep	T-AN	31		-
		·	0.850 0.330 1160 ND 254 97.7	!
	3 3-01			
	TRND TRND-SO03 NA-TRND-SO03-01	15-MAR-98 0-3	(0.370 (0.190 (18.7 (0.750 (0.190 (0.190	
	TI-WA-TI	15)))))	r
			ng/kg) 0.940 0.290 737 ND 165 191	
			ILMO4.0 - CLP Metals, cont. (mg/kg) Selenium Silver Sodium Thallium Vanadium Zinc PH The Control of the control	
		*	- CLP M.	
		Parameter	ILMO4.0 - CLP Metals, co Selenium Silver Sodium Thallium Vanadium Zinc SW9045C - pH (pH units)	

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					leg. Dept	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	1 - 							*	
Parameter		TRND TRND-SO04 NA-TRND-SO04-02 10-MAR-98 3-12	# 4-02		T NA-T	TRND TRND-SO05 NA-TRND-SO05-01 10-MAR-98 0-3	10		NA.	TRND TRND-SO06 NA-TRND-SO06-01 15-MAR-98 0-3	펕		TRND TRND-SO97 NA-TRND-SO07-01 10-MAR-98 0-3	967 507-01 98	
E160.3 - Percent Moisture (percent) Percent moisture	28.4	0	[1]	43.8		•	Ξ	33.9		0	Ξ	44.2	0	Ξ	_
ILM04.0 - Total Cyanide (mg/kg) Cyanide	ND	(0.330)[1]	0.480		(0.440	111	1.50	-	(0.370)[1]	0.540	(0.410	(1)(_
ILMO4.0 - CLP Metals (mg/kg)		;	;				į			<u> </u>	5	Ç	8	į	-
Aluminum	41900	(220	<u>=</u> = (49500	<u>,</u>	(2.80 (0.700		3.90 3.90	-	(2.40 (0.610	<u> </u>	40800 1.50 J	(2.80		
Arsenic	8.90	<i>,</i>	ΞΞ	3.90	l	(0.930	ΞΞ	3.70		(0.810	ΞΞ	4.00	0.950		_
Barium	909	(0.180	EE (148		(0230	EE (73.7		0.200)[1]	76.0 AN	(0.240	ΞΞ	
Beryllium Cadmium	ND 10.4	0.180	E E	1.40 U	×	(0.230 (0.230	E (E)	2.90	×	0.200	三三		K (0.240		
Calcium	13900	(4.70		10700		(6.00		9340		5.20	EE (6040	(620		
Chromium	<i>57.7</i> 19.8	0.180	<u>=</u> =	36.7 24.6		(0.230 (0.230	E E	30.8 20.8		0.200	ΞΞ	20.6 18.4	0.240	<u> </u>	-
Copper	1290	(0.180	<u>=</u> (=)	159		(0.230	(1)	181		0.200	[1]	101	0.240		_
Iron	45800	(2.60	(1)	20100		(330	(11)	43400		(2.80	(1)	36800	(330		_
Lead	698	0.370)[1]	72.4		0.470	(11)	83.1		0.400)[1]	42.4	(0.470		=
Magnesium	10900	(1.60	(1)	0906		(2.10)[<u>1</u>]	8230		(1.80)[1]	0767	(2.10		==
Manganese	1150	(0.180)[1]	830		0.230	<u>[i]</u>	\$		0.200	(11)	733	0.240		_ :
Mercury	1.20	(0.0500	[2]	0.170		0.0300	[1]	0.330		0.0300	Ξ.	0.150	0.0300		<u>-</u> :
Nickel	72.0	(0.180)[1]	34.6		0.230	[][29.8		0.400	(E)	25.4	0.240		- :
Potassium	1080	(1.10	<u>(</u>	1030		(1.40	(11)	336		(1.20	[<u>E</u>]	324	(1.40	[1] (

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 2

							PI etiS									
							Location Id	Ð								
							Sample 1d	P								
							Log Date	æ								
						Beg. De	Beg. Depth - End Depth (in.)	pth (in.)								
		NA	TRND TRND-SO04 NA-TRND-SO04-02	4-02		X	TRND TRND-SO05 NA-TRND-SO05-01	Ę		XA.	TRND TRND-SO66 NA-TRND-SO66-01	5		ž	TRND TRND-SO07	5
Parameter			10-MAR-98 3-12				10-MAR-98 0-3	!			15-MAR-98 0-3	;			10-MAR-98 0-3	5
																ļ
ILMO4.0 - CLP Metals, cont. (mg/kg)	(mg/kg)															
Selenium	Q	ď	0.370	(E) (Q	ď	0.470	<u>[1]</u> (1.30	1	0.400)[1]	0.520	٦.	0.470)[1]
Silver	53.3		0.180	<u>(;;</u>	1.10		0.230)[1]	0.440		0200	Œ	0.280		0.240	Ξ
Sodium	473		(18.3	(11)	358		(23.3)[1]	1630		(20.2	Ξ(869		(23.7	Ξ Ξ
Thallium	3.30	1	0.730	(11)	3.80	L	0660))[1]	Œ	ΩΓ	0.810	Ξ(2.40	7	0.950	ΞΞ
Vanadium	143		0.180	(11)	202		0.230)[1]	174		0.200	Ξ(141		0.240	Ξ
Zinc	1710		0.180)[1]	784		(0.230	[1](186		0.200)[1]	116		(0.240	Ξ(
SW9045C - pH (pH units)																
Н	5.88		0.0100)[1]	7.20		0.0100	[1](4.89		0.0100	[1](6.12		0.0100)[1]

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugl NAF, Japan

							Site Id Location Id Sample Id Loo Date									
					ğ	g. Dept	Beg. Depth - End Depth (in.)	h (in.)								
		T LAN	TRND TRND-SO68 NA-TRND-SO08-01 10-MAR-98			TT NA-TI 10	TRND TRND-SO09 NA-TRND-SO09-01 10-MAR-98	****		L NA-1	TRND TRND-SO10 NA-TRND-SO10-01 10-MAR-98			TR NA-TH	TRND TRND-SO10 NA-TRND-SO10-02 10-MAR-98	
Parameter		1	0-3				0-3		1		0-3				3-12	
E160.3 - Percent Moisture (percent) Percent moisture	52.3		0	[1]	48.2)	0	Ξ	47.2		0	Ξ	43.9	.0		Ξ
ILM04.6 - Total Cyanide (mg/kg) Cyanide	Ð		0.510	[1]	Q.	Č	0.460)[1]	0.840		(0.470	(1)	0.520	J	(0.400	[1](
II.MO4.0 - CLP Metals (mg/kg)																
Aluminum	97000		(3.30)[1]	65700	_	3.00)[1]	64300		(2.90	[1]	9979	_	2.80)[1]
Antimony	7.20	1	0.830)[1]	7.50	<u> </u>	092.0	[1]	4.30	L	0.710)[1]			0.700	(11)
Arsenic	02'9		(1.10)[1]	4.90	_	(1.00	[1]	5.30		0.950)[1]	4.10	_	0.940)[I]
Barium	115		0.280	[1]	129	_	0.250)[1]	141		0.240)[1]	5	•	0.230	三
Beryllium	Q.		(0.280	[1](- 1	(0.250	Ξ,	g,	\$	(0.240	Ξ.	_	<i>,</i>	0.230	E E
Cadmium	1.90	M	(0.280		0200 6200	¥	(0250 (6.60	E (2.10 11800	4	(0.240 (6.20		1.40	 4	6.10	ΞΞ
Chromium	48.0		0280	E (42.8	_	(0.250	[1]	43.5		(0.240)[1]	42.6	<u> </u>	0.230	(11)
Cobalt	26.7		0280)[1]	26.8	_	0220)[1]	25.4		0.240	[1]	25.6	_	0.230) <u>[1]</u>
Copper	163		0.280)[1]	163	-	0.250) [1]	172		(0.240)[1]	151	~	0.230	<u>E</u>
Iron	54100		(3.90	(11)	22000	_	(3.50	[1]	24600		(3.30)[1]	22700	_	3.30)[1]
Lead	100		0.560	(1)	7.76		0.500)[<u>1</u>]	137		0.480)[1]	6.68	_	0.470	(E)
Magnesium	8630		(2.50	(1)	8550		(2.30)[1]	9040		(2.10)[1]	8400	_	2.10	[<u>]</u>
Manganese	1070		0.280)[1]	1060		(0.250)[1]	1050		(0.240	Ξ(1020	_	0.230	Ξ
Mercury	0.200		0.0300)[1]	0.190		0.0300	(11)	0.210		0.0300)[1]	0.130	_	0.0300	Ξ
Nickel	46.6		0.280	111	42.3		(0.250	[1]	38.3		0.240)[ii]	36.0	Ĭ	0.230	<u>=</u>
Potassium	653		0.1.70	(11)	848		(1.50	[1]	1570		(1.40) [<u>1</u>]	672	•	1.40	<u>=</u>

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

) E

0.0100

7.42

)[1]

0.0100

96.9

)<u>[</u>

0.0100

5.92

 Ξ

0.0100

5.77

SW9045C - pH (pH units) pH

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id			:						
							Location Id									
							Sample Id									
					Beg	z. Depth	Log Date Beg. Deuth - End Deuth (in.)	h (in.)								
)	•	•									
		•	TRND			_	TRND				TRND			E E	TRND	
		NA-7	TRND-SOLL NA-TRND-SOLL-01	10		I'R NA-TR	IRND-SOIZ NA-TRND-SOI2-01		NA	TRND-SO VA-TRN	TRND-SOL2 NA-TRND-SOL2-11 Dup of NA-TRND-SOL2-01	of		I KNI NA-TRNI	TRND-SOL3 NA-TRND-SO13-01	
		_	10-MAR-98			10	10-MAR-98			15-M	15-MAR-98			15-M	15-MAR-98	
Parameter			0-3				0-3			•	0-3			0-3	8	
D422 - Particle Size Distribution (%)																
%Clay	NA				6.20	0		Ξ	7.30	0		Ξ	NA			
%Gravel	NA				0.00	0		Ξ	0.00	0		Ξ	NA			
%Sand	NA				52.3	0		[1]	54.4	0		(E)	NA			
%Silt	NA				41.5	0		Ξ	38.3	0		Ξ	ΝΑ			
Mean Particle Size(mm)	NA				0.0910	0		[1]	0.110	0		[1]	NA			
E160.3 - Percent Moisture (percent)													•			. •
Percent moisture	31.0		0	Ξ	50.4	0		Ξ	49.7	0		[1]	46.2	0		Ξ
E300 - Anions (mg/kg)																
Chloride	NA				4.70	\smile	2.02)[1]	5.18		1.99	[1]	5.00	(1.		[1]
Fluoride	NA				2.24	<u> </u>	2.02)[1]	2.71	•	1.99)[1]	2.67	((1:	1.86	<u>(E</u>
Sulfate	NA				99.4	•	(2.02)[1]	108	-	1.99	(1)	102	(1.86		[1]
E353.2 - Nitrate (mg/kg)																
Nitrate	Ϋ́				QN QN)	(1.01)[1]	QN	0	0.660)	(1)	Q.	(0.920		(1)
ILM04.0 - Total Cyanide (mg/kg)																
Cyanide	Q.		(0.350	<u>(E)</u>	1.00	Ŭ	0.460)[1]	1.10	<u> </u>	0.470	(1)	1.00	0.460		(1)
ILMO4.0 - CLP Metals (mg/kg)																
Aluminum	49400		(2.20)[1]	88100	~	(320)[1]	87500	<u>.</u>	(3.10	[1]	00529	(2.90		<u>(II)</u>
Antimony	1.80	-	0.540	(11)	3.10	· ·	062.0	(1)	3.20) f		[1]	3.70 J	0.710)[1]

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id										1
							Location Id	7									
							Sample Id	! <u>.</u>									
							Log Date	fe									
					•	Beg. De	Beg. Depth - End Depth (in.)	epth (in.)									
		F	TRND				TRND				TRND				TRND	٠	
		N.	TRND-SO11			-	TRND-S012				TRND-S012				TRND-S013		
		NA-TR	NA-TRND-SO11-01	91		ŊĄ	NA-TRND-SO12-01	7 07	Z	A-TRN NA	NA-TRND-SO12-11 Dup of NA-TRND-SO12-01	Oup of		NA.	NA-TRND-S013-01	1 0	
		10-1∕-	10-MAR-98			. *	10-MAR-98				15-MAR-98				15-MAR-98		
Parameter		-	0 .3				0-3				2				0-3		
ILMO4.0 - CLP Metals, cont. (mg/kg)	_																ŀ
Arsenic	3.40	0	0.720	(11)	9009		(1.10	(E)	5.70		001	(II)	3.80		(0.950	100	
Barium	69.4)	0.180)[1]	68.2		0.260)[1]	62.0		0.250	<u> </u>	96.3		0.240	Ξ	
		Ų	0.180)[1]	0.450		0.260)[<u>[</u>]	0.490		0220	(1)	0.310		0.240	(1)	
_		K (0	0.180	(E)	1.60	×	0.260	<u>[1]</u> (1.60	×	0220	(1)	1.40	×	0.240	(E) (
	11800	,	6.70	(E)	2710		06'9)	(1)	2460		(6.60	<u>[I]</u> (7680		(620	(E) (
mn.	26.3	0	0.180) [I]	61.0		0.260	Ξ(72.1		0220	<u>=</u>	41.0		0.240	Ξí	
	20.2	0	0.180	三(34.6		0.260	(1)	32.9		(0250	<u>(II)</u>	25.4		0.240) [E]	
Xet.	115	0)	0.180)[1]	180		0.260	[][179		0.250	<u>(E</u>)	158		0.240	(E)	
	42600	(5	2.50	[1]	75400		3.70	(II)	72600		3.60	(1)	56100		(3.30)[1]	
	28.4	0)	0360	<u>(E)</u>	63.6		0.530	(11)	979		0.510	[][117		0.480) [II]	
	9 <u>5</u>	(1	1.60	<u>(</u>	10600		(2.40	<u>(</u>	8430		(230	[1]	8300		(2.10)[1]	
Se	986	0	0.180	<u>(E</u>	1250		0.260) <u>[1]</u>	1220		0.250	[1]	1000		0.240)[1]	
-	0.0700	0)	0.0200	[][0.140		0.0300	[[]	0.120		00000)	<u>[1]</u> (0.160		0.0300)[1]	
	26.0	0	0.180	[]	55.7		0.530)[1]	011		0.510	(1]	36.9		0.480)[<u>1</u>]	
=		_	01.10	Ξ	431		097) [<u>1</u>]	398		(1.50)[1]	171		04.1	[I](
	_	nr (o	0.360	EI (2:00	1	0.530	[]]	2.40	_	0.510)[1]	1.30		0.480)[1]	
	0.370	0)	0.180	<u>=</u>	0.500		0.260) [E]	0.500		0220)[1]	0.620		0.240)[1]	
		_	18.1	(11)	403		(26.4	<u>[i]</u>	381		(25.5)[1]	769		(23.8)[1]	
6		0) 1	0.720	[1]	Q	ď	(1.10	EI (Q	ď	00.1)[<u>1</u>]	ΩN	Π	0380) E	
dium	189	0	0.180)[i]	351		0.200)[1]	34		0.250)[I]	232		0240)[1]	
Zinc	101	0	0.180)[1]	152		0.260)[1]	143		(0.250	(1)	184		0.240	Ξ	

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 2

						S	Site Id								
						Loci	Location Id								
						Saı	Sample Id								
						ĭ	Log Date								
					F	Beg. Depth - End Depth (in.)	ad Depth (i	n.)							
		Æ	TRND			TRND	ē			TRND			TRND	2	
		TRNE	TRND-S014	_		TRND-SO15	SO15			TRND-SO15	015	į	TRND-SO15	SO15	
	•	NA-1KND-5014-01	0-9014-0	-		NA-IKND-SOIS-01	-8015-01			NA-TRND-SO15-02	015-02	Z	NA-TRND-SO15-12 Dup of NA-TRND-SO15-02	5-12 Dup SO15-02	.
Parameter		15-MAJ 0-3	15-MAR-98 0-3			15-MAR-98 0-3	.R-98			15-MAR-98 3-12	8 6.		15-MAR-98 3-12	R-98	
E160.3 - Percent Moisture (percent)															
Percent moisture	45.7	0		Ξ	43.4	0		, [1]	42.8	0	(1)	43.7	0		Ξ
ILM04.0 - Total Cyanide (mg/kg)															
Cyanide	0.910	0.410		[1]	0.580	(0.430	30)[1]		0.510	0.370	(1)	0.620	0380		(1)
LIMO4.0 - CLP Metals (mg/kg)															
Aluminum	75600	(2.90	æ)[1]	68200	(2.80	[1](0	_	72300	(2.70	(11)	74400	(2.80		[1]
Antimony	1.50 J	(0.)	0.740)[1]	2.40	0690) f		_	Q.	UL (0.680	(11)	QN	UL (0.690		ΞΞ
Arsenic	4.10	50)	0.980)[1]	4.00	(0.920			2.50	0.010	(11)	2.30	0.920	•)[1]
Barium	90.1	70)	0.250)[1]	82.3	(0.230	30)[1]		9.67	(0.230	(E)	596.5	(0.230		(1)
Beryllium		J		[1]	0.350	U			0.360	0.230		0.440	(0.230)[1]
Cadmium		K (02)[1]	1.10	K (0.230			0.680	K (0.230		0.770	K (0.230		[1]
Calcium	11400	6.40		(1)	10700	00:9			8650	(5.90	- 1	8870	00'9)		[1]
Chromium	39.7			<u>(E)</u>	37.7	(0.230			39.5	0.230	•	37.6	J (0.230		[1]
Cobalt	27.5	70)		<u>(</u>	26.6	(0.230			27.4	(0.230		28.6	0.230		[1]
Copper	144	70)		(1)	133	(0.230			138	0.230		141	(0.230	•	<u>(E)</u>
Iron	61300	3.40		[1]	28200	(320			61400	(3.20	(1)	62300	(320)[1]
Lead	17.2	0.4	_	<u>=</u>	48.3	0.460			8.70	(0.450		9.00	0.460)[I]
Magnesium	9300	(2.20		[1]	9300	(2.10		_	8260	(2.00)[1]	8640	(2.10		111
Мапдапсѕе	1120	(07		[1]	1140	(0.230			1100	(0230)[1]	1170	(0.230		[1]
Mercury	0.050.0	yo)	_	[1]	0.130	(0.0300			0.0400	0.0300	[1]((0.0300	00000)		[1]
Nickel	33.8	0.	_	[1]	38.2	0.460	[1] (09		46.4	(0.230)[1]	36.0	J (0.230		[1]
Potassium	959	(1.50	9	<u> </u>	595	(1.40	(E) (224	(1.40)[1]	242	(1.40		[1](

Not Detected NA = Not Applicable 0 = Detection Limit [] = Dilution Factor h

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

	1.30 0.460 1330 ND 245		NA-'
TRND TRND-SO15 TRND-SO15-02 TRND-SO15-02 15-MAR-98 3-12 3-12 150 L (0450 ND (0230 1400 J (22.7 ND UL (0910 264 (0230 560 (0230	Site 1d Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.) TRND TRND TRND TRND TRND-SO15 NA-TRND-SO15 NA-TRND-SO15 15-MAR-98 0-3 15-MAR-98 15-	Site Id Location Id Sample Id Log Date Log Date Log Date Log Date Log Date Log Date Log Date Log Date TRND	Site Id Location Id Sample Id Log Date Log Da
190 I ND I400 J ND U	Site 1d Location Id Sample Id Log Date Log Date Log Date TRND	Site Id Location Id Sample Id Log Date Log Date Log Date TRND TRND-SO15 TRND-SO15 TRND-SO15-01 TRND-SO15-02 TRND-	Site Id Location Id Sample Id Log Date
1.90 I ND 1400 J ND 17	Site 1d Location Id Sample Id Log Date Log Date Deg. Depth - End Depth (in.) TRND TRND TRND TRND-SO15 NA-TRND-SO15 15-MAR-98 0-3 L (0.460) [1] 1.90 1 (0.230) [1] ND 1 UL (0.920) [1] ND 1 (0.230) [1] ND 1 (0.230) [1] ND 1 (0.230) [1] S60	Site Id Location Id Sample Id Log Date Log Date Depth - End Depth (in.) TRND	Site 1d Location Id Sample Id Location Id Sample Id Log Date Lo
1.90 I ND 1400 J ND 0.564	Site 1d Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.) TRND TRND TRND-SO15 NA-TRND-SO15-01 15-MAR-98 0-3 L (0.460) [1] 1.90 I (0.230) [1] ND I (22.9) [1] ND I (0.200) [1] ND I (0.200) [1] ND I (0.230) [1] ND I (0.230) [1] S60	Site Id Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.) TRND TRND-SO15 NA-TRND-SO15-01 15-MAR-98 0-3 L (0.460)[1] 1.90 I (0.230)[1] ND (22.9)[1] ND (22.9)[1] ND (22.9)[1] ND (22.9)[1] ND (22.9)[1] ND (22.9)[1] ND (22.9)[1] ND (22.9)[1] S6.0	Site 1d Location Id Sample Id Log Date Log Date Beg. Depth - End Depth (in.) TRND TRND TRND TRND-SO15 NA-TRND-SO15-01 15-MAR-98 0-3 0[1]
1 7 %	Site 1d Location Id Sample Id Log Date Deg. Depth - End Depth (in.) TRND TRND TRND-SO15 NA-TRND-SO15-01 15-MAR-98 0-3 0-3 (0.230) [1] 1.5 (2.2.9) [1] 1 (2.2.9) [1] 1 (2.2.9) [1] 1 (0.230) [1] 1 (0.230) [1] 1 (0.230) [1] 1 (0.230) [1] 2 (Site 1d	Site 1d Location Id Sample Id Log Date Beg. Depth - End Depth (in.) TRND TRND TRND TRND-SO15 NA-TRND-SO15 15-MAR-98 0-3 0[1] 1.30 L (0.460) [1] 1:5 [1] 0.460 (0.230) [1] 1 [1] 130 UL (0.920) [1] [1] ND UL (0.920) [1] [1] 245 (0.230) [1] 2 [1] 132 (0.230) [1] 56
Site 1d Location Id Sample Id Log Date pth - End Depth (in.) TRND-SO15 TRND-SO15-01 15-MAR-98 0-3 (0.230) [1] (22.9) [1] (0.220) [1] (0.230) [1] (0.230) [1] (0.230) [1] (0.230) [1] (0.230) [1])[1] 1.30)[1] 1.30)[1] 0.460)[1] 1330)[1] ND)[1] 245
Site 14 Location Sample Log I Log I Log I TRND-SO TRND-SO TRND-SO (0.30 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230 (0.230)[1] 1.30)[1] 0.460)[1] 1330)[1] 1330)[1] 245)[1] 245
1 43 1)[1] 1.30)[1] 1.30)[1] 0.460)[1] 1330)[1] 245)[1] 245
(E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	5 E E E E C		
TRND TRND-SO14 A-TRND-SO14-01 15-MAR-98 0-3 (0.250) [1] 1.3 (0.250) [1] 1.3 (0.250) [1] 2 (0.250) [1] 2 (0.250) [1] 1 (0.250) [1] 1	TRND TRND-S014 A-TRND-S014-01 15-MAR-98 0-3 0-3 (0.250 (0.250 (0.250 (0.250 (0.250 (0.250	TRND TRND-S014 NA-TRND-S014 NA-TRND-S014 15-MAR-98 0-3 0-3 (0.250 (0.250 (0.250 (0.250 (0.250 (0.250 (0.250	
TRND TRND-SO14 TRND-SO14-01 15-MAR-98 0-3 0-3 0-3 0-1 1020 1	TRND TRND-S014 TRND-S014 NA-TRND-S014-01 15-MAR-98 0-3 0-3 1500 L (0.490 ND (0.250 1020 (246 ND UL (0.980 260 (0.250 113 (0.250	ND 1020 1 260 113	
TRND TRND-S014 NA-TRND-S014 15-MAR-98 0-3 0-3 L (0.490)[1] 1.2 D (0.250)[1] 0.4 D UL (0.980)[1] 1 D UL (0.980)[1] 2 (0.250)[1] 2 (0.250)[1] 1	TRND TRND-S014 TRND-S014 15-MAR-98 0-3 150 150 100 100 100 100 100 10	1.50 I ND 1.020 ND 1.020 ND 1.020 ND 1.020 ND 1.020 ND 1.030 ND 1.	

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Location Id	Φ.								
							Sample Id	70								
							Log Date	ě								
					#	leg. De	Beg. Depth - End Depth (in.)	pth (in.)								
			TRND				TRND				TRND				TRND	
		;	TRND-SO16	į		-	TRND-SO17	;			TRND-SO18			•	TRND-SO19	
		S Z	NA-1 KND-5016-01 15-MAR-98			ė –	NA-TRND-SO17-01 17-MAR-98	Ę		¥	NA-TRND-SO18-01 17-MAR-98	Į.		-W	NA-TRND-SO19-01 17-MAP-08	=
Parameter			0-3				6. 3				0-3			•	0-3	
And the second s					-											
E160.3 - Percent Moisture (percent)	_															
Percent moisture	45.2		0	Ξ	30.1		0	Ξ	38.3		0	Ξ	40.6		0	Ξ
ILM04.0 - Total Cyanide (mg/kg)																
Cyanide	1.50		0.350	[1]	0.340		(0.300	(1)	0.410		0.360	(11)	1.20		(0.410	(1)
ILMO4.0 - CLP Metals (mg/kg)																
Aluminum	76100		(2.90	(1)	25500		(2.30	[1](57000		(2.50)[1]	87500		(2.70)[1]
Antimony	S	Π	0.730	(11)	S	ΠΓ	0.570	[1](N Q	ΩΓ	0.640) [I]	2.60	-1	0.670	Ξ(
Arsenic	4.10		0.970	<u>(1</u>	3.00		0920)	[1]	2.60		0.820	(11)	5.20		0.890	ΞΞ
Barium	89.3		0.240	<u>[H</u>	26.7		0.190	(1)	72.9		0.210	(1)	66.3		0.220)[1]
Beryllium	0.400		0.240	Ξ	0.340		0.190)(II)	0.280		(0.210)[<u>[</u>]	0.490		0.220	(E)
Cadmium	120	×	0.240	ΞΞ	0.870	×	0.190	三	0.950	¥	0.210	EI (1.50	¥	0220	[1]
Chromium	36.5	1-4	0.240		31.1		0.190	E E	9530 30.1		955 505 505 505 505 505 505 505 505 505		4970	-	(5.80	Ξ,
Cobait	26.9		(0.240	<u> </u>	21.4		(0.190	ΞΞ	21.9	,	0210	Ξ(33.6	•	0230	
Copper	116		0.240)(I)	112		0.190) [<u>1</u>]	117		0.210	[1](173		0220	ΞΞ
Iron	00809		3.40	(1)	49900		(2.70)[1]	48100		3:00	[1](78500		(3.10	ΞΞ
Lead	48.8		0.480	(1)	30.3		0.380)[I]	29.3		0.420	E1 (36.7		(0.450	(E)
Magnesium	11300		(2.20	(1)	0226		0.1.70)[i]	9150		(1.90	[1]	10600		(2.00	(11)
Manganese	1090		0.240	(1)	863		0.190	[1]	863		(0.210	(11)	1270		0220)[II]
Mercury	0.180		0.0300)[1]	0.0800		0.0200)[ii]	0.0700		0.0200)[1]	0.110		0.0300	Ξ(
Nickel	36.1	_	0.240	(E)	29.9	_	0.190	[1]	30.1	_	0.210	<u>(E)</u>	49.2	-	0.220	[1]
Potassium	1220		1.50	<u>[I]</u>	461		01.10)[1]	315		0.130	Ξ	442		(1.30	[E](

() = Detection Limit [] = Dilution Factor | Not Detect

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Parameter		X.	TRND TRND-SO16 NA-TRND-SO16-01 15-MAR-98 0-3	-		Beg. Del	Location Id Sample Id Log Date Log Date TRND TRND TRND-SO17 NA-TRND-SO17 17-MAR-98 6-3	d d d d d d d d d d d d d d d d d d d		ZA-Z	TRND TRND-SO18 NA-TRND-SO18-01 17-MAR-98 0-3	2		- V	TRND TRND-SO19 NA-TRND-SO19-01 17-MAR-98 0-3	16
ILMO4.0 - CLP Metals, cont. (mg/kg) Selenium Silver Sodium Thallium Vanadium Zinc SW9045C - pH (pH units) PH	(mg/kg) 1.20 ND 630 ND 235 251	ı în	(0.480 (0.240 (24.2 (0.970 (0.240 (0.240		1.20 ND 997 ND 199 90.3	ur ur	(0.380 (0.190 (19.1 (0.760 (0.190 (0.190		1.20 ND 1410 ND 194 84.8	ul.	(0.420 (0.210 (21.2 (0.850 (0.210 (0.210		1.80 ND 541 ND 330 303	ur ur	(0.450 (0.220 (0.23 (0.890 (0.220 (0.220	

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							1										,
							Sire Id									•	
							Location Id	7									
							Sample 1d	-									
							Log Date	a									
						eg. Dep	Beg. Depth - End Depth (in.)	pth (in.)									
			TRND				TRND			F	TRND			-	TRND		
			TRND-S020			I	TRND-S021			TE	TRND-S021			E	TRND-SO22		
		NA-	NA-TRND-SO20-01	<u> </u>		NA-T	NA-TRND-SO21-01	1 0		NA-TRN	NA-TRND-SO21-02			NA-TR	NA-TRND-S022-01	-	
		•	16-MAR-98			-	16-MAR-98			16-N	16-MAR-98			19.	16-MAR-98		
Parameter			0-3				6-3			Ģ	3-12				F3		
D422 · Particle Size Distribution (%)	_																•
%Clay	9.80		0	Ξ	NA				NA				NA				
%Gravel	0.00		0	Ξ	NA				NA				NA				
%Sand	63.2		0	Ξ	NA				NA				NA				
%Sit	27.0		0	Ξ	NA				ΝΑ				ΝA				
Mean Particle Size(mm)	0.205		0	Ξ	N				NA				NA				
E160.3 - Percent Moisture (percent)																	
Percent moisture	46.5		0	Ξ	35.8		0	Ξ	39.2	0		[1]	33.2	0		[1]	
E306 - Anions (mg/kg)																	
Chloride	3.96		(1.87	[1]	NA				NA				NA				
Fluoride	8		(1.87	[E] (ΥN				VΑ				Ϋ́				
Sulfate	37.5		(1.87)[1]	N				Ϋ́				NA				
E353.2 - Nitrate (mg/kg)																	
Nitrate	10.9		(0.930	[1]	NA				NA				NA				•
ILM04.0 - Total Cyanide (mg/kg) Cyanide	0.920	•	(0.390)[1]	0.390		(0.340	[1](Ð	Č	(0.410	[][0.730	J	0360	[1]	
										,		Ę		•		Ξ	
ILMO4.0 - CLP Metals (mg/kg) Aluminum Antimony	47400	r	(2.90 (0.720	EE) (06200	1	(2.40 (0.610	E) (84200) (3	(2.60	E) (E) (53800 1.90 L		(230	E (

() = Detection Limit [] = Dilution Factor b

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					a	eg. Dep	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	th (in.)								
		T T-AN	TRND TRND-SO20 NA-TRND-SO20-01 16-MAR-98			T NA-1	TRND TRND-SO21 NA-TRND-SO21-01 16-MAR-98	10		T NA-T	TRND TRND-SO21 NA-TRND-SO21-02 16-MAR-98			TRN TRN NA-TRN 16-N	TRND TRND-SO22 NA-TRND-SO22-01 16-MAR-98	
Parameter			0-3				6.3				3-12				0-3	
ILMO4.0 - CLP Metals, cont. (mg/kg)	_				!		! !	;	,			į	5	,	•	:
Arsenic Barium	3.80 84.9		(0.960 (0.240	= = (4.10 72.9		(0.810 (0.200	ΞĆ	5.50 78.5		(0.880 (0.22 0	<u> </u>	4.30 115		0.780	ΞΞ
Beryllium	0.300		(0.240	(1)	0.470		0.200	· [<u>T]</u> (QN Q		0.220	[1]	<u>N</u>	J	0.200	Ξ
Cadmium	2.20	×	(0.240	(11)	1.30	K	0.200	[1]	1.50	¥	0220)[1]	3.80	К (()[1]
Calcium	9040		(6.20)[1]	7730		(5.30	(11)	7260		5.70	(11)	14000	Ü		Ξ
Chromium	31.4	-	0.240	[1]	40.4	_	0.200)(11)	55.3		0.220)(1]	44.5	J	•	[]
Cobalt	18.3		0.240) <u>[1]</u>	25.1		0.200)[1]	34.2	٠	0.220	[I]	21.7	Į.		Ξ
Copper	97.8		(0.240		129		0.200	ΞΞ	171		(0.220		114	J (0.200	ΞΞ
Iron Tend	40400 654		(3.40	<u>[]</u>	57/00 80.5		(2.90	<u> </u>	42.8		(3.10 (0.440	[E](48200 135	jī		ΞΞ
Leau Magnesium	7650		(2:20	E (E	10600		(1.80	ΞΞ	15100		(2.00	E (9540		• • •	ΞΞ
Manganese	757		0.240)[1]	966		0.200	[1](1280	,	0.220	(11)	21.1	J		Ξ
Mercury	0.160		0.0300	[1]	0.0900		0.0300)[1]	0.0500		0.0300)[1]	0.0800	J	_	Ξ
Nickel	26.9	- -	0.240) [1]	48.8	-	0.200	[1](48.2		0.220	<u>[i]</u>	31.3	J		Ξ
Potassium	643		(1.40	[1]	695		(120	[1]	619		(130)[1]	879	<u> </u>		Ξ
Selenium	1.30	IJ	0.480	(11)	1.10	_	0.410	<u>=</u>	Q	ΩΓ	(0.440	(11)	Q) In		Ξ
Silver	2.10		0.240	<u>(E)</u>	Q		0.200	<u>=</u>	0.380		0220)EI	0.320	Ū	•	Ξ
Sodium	1180	r	(24.0	(E)	805	_	(20.4	[1]	897		(21.9)[1]	1200)	•	Ξ
Thallium	QN	ΩΓ	0960))[1]	<u>Q</u>	nF	0.810)[]	5.20		0.880)[1]	2.20	Ū		(11)
Vanadium	160		0.240	[1]	233		0.200	[1]	301		0220))[<u>H</u>]	196	J		Ξ
Zinc	224		0.240	111	176		0.200	(1)	117		0.220	<u>E</u>	254	Ū	0.200	Ξ

	TRND TRND-SO22 NA-TRND-SO22-01 16-MAR-98 0-3
	TRND-SO21 NA-TRND-SO21-02 16-MAR-98 3-12
Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	TRND TRND-SO21 NA-TRND-SO21-01 16-MAR-98 0-3
	TRND TRND-SO20 NA-TRND-SO20-01 16-MAR-98 0-3
	Parameter

(0.0100)[1]

6.78

)[<u>E</u>]

0.0100

6.57

Ξ(

0.0100

6.31

)[1]

0.0100

6.10

SW9045C - pH (pH units) pH 0 = Detection Limit [] = Dilution Factor 1/

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site 1d								
						-	Location Id								
							Sample Id								
							Log Date								
						leg. Deptl	Beg. Depth - End Depth (in.)	th (in.)							
			TRND			•	TRND			T	TRND			TRND	
		-	TRND-S022			Ħ	TRND-S023			TRNI	TRND-SO23			TRND-S024	3 t
	Ž	A-TRN NA-	NA-TRND-SO22-11 Dup of NA-TRND-SO22-01	ap of M		NA-TF	NA-TRND-S023-01	14		NA-TRN	NA-TRND-SO23-02			NA-TRND-SO24-31	14-31
			16-MAR-98			16	16-MAR-98			16-M	16-MAR-98			17-MAR-98	•
Parameter			£				Z			71-6				3	
E160.3 - Percent Moisture (percent)	-1-														
Percent moisture	31.0		0	Ξ	47.6	0	_	[1]	58.9	0		Ξ	36.7	0	[1]
ILM04.0 - Total Cyanide (mg/kg)															
Cyanide	QN QN		0.350	[1]	Q.	<u> </u>	(0.470	[1]	QN	0.580)[1]	120	0.330	(11)
ILMO4.6 - CLP Metals (mg/kg)															
Aluminum	52100		(2.30)[1]	83800	Ŭ	3.00	[1](116000	(3.	•	[1]	00829	(2.50)[1]
Antimony	1.80	ı	0.580)[1]	2.60) T	0.750)[1]	1.10	r (0)	, .	. [1]	0.900 L	_)[I]
Arsenic	4.70		0.780	(11)	5.70	V	1.00)[<u>[</u>]	4.40	(1.		[1]	3.90	0.830)[1]
Barium	188		0.190)[1]	75.0	<u> </u>	0250	[1]	55.0	0		(E)	92.2	(0.210)[1]
Beryllium	QN Q		0.190)[1]	Q.		0.250)[1]	_)		[<u>-</u>]	_	_	<u>=</u>
Cadmium	3.60	×	0.190	<u>(</u>	1.80	Ж (0.250)[I]		К (0.	_	Ξ	1.50 K	~	(<u>1</u>
Calcium	12700		5.10	Ξ;	3290	<u> </u>	6.50	Ξ.	3090	ού ο 		ΞΞ	_	<u> </u>	Ξ
Chromium	41.6		0.190	ΞE	32.3 4.05		0.250	<u> </u>	76.5 42.3	5 6 -	0.320		33.8 25.4	(0.210	E (
Copper	119		(0.190	E (E)	171	<i>,</i>	0.250	ΞΞ	202	0 -		ΞΞ	134	(0.210	Ξ(
Iron	48900		0.270)[1]	72000	V	3.50)[1]	97100	<u>,</u>	4.50	Ξ	57100	(2.90)[1]
Lead	125		0.390)[1]	57.9)	0.500	(11)	6.70	0		[]]	40.5	0.420	[][
Magnesium	908		(1.70)[<u>1</u>]	7900	<u> </u>	2.30	(1)	9640	(2	, ,	[1]	9590	06:1)[1]
Manganese	875		0.190	<u>(II)</u>	1230)	0.250)[1]	1540	0)	,	[1]	1040	0.210	<u>(</u>
Mercury	0.0800		0.0200)[1]	0.160)	0.0300	<u>[1]</u>	0.0400	0	_	<u> </u>	0.130	0.0200	Ξ:
Nickel	30.6		0.190	Ξ	46.6	_	0.250	<u>=</u>	27.7) ,	_	[1]	0.4.0	0.210	(11)
Potassium	853		(120	<u>[1]</u>	550)	1.50) <u>[1]</u>	241	(1	06:1	E)	611	(120	Ξ

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 2

Nys Inn (Inn mats)
System (this units)
(vijim He) III - SYMURIS
228 (0.190)[1] 150 (0.250)[1] 61.6 (0.320)[1] 114
228 (0.190) [1] 150 (0.250) [1] 61.6 (0.320) [1] 114
206 (0.190)[1] 344 (0.250)[1] 474 (0.320)[1] 234 228 (0.190)[1] 150 (0.250)[1] 61.6 (0.320)[1] 114
2.20 (0.780)[1] 3.70 (1.00)[1] ND UL (1.30)[1] ND UL (2.30)[1] OL UL (2.30)[1] 134 (0.250)[1] 474 (0.320)[1] 234 (0.250)[1] 61.6 (0.320)[1] 114
1120 (194) [1] 344 (25.1) [1] 137 J (32.4) [1] 1140 J L 220 (0.780) [1] 3.70 (1.00) [1] ND UL (1.30) [1] ND UL (206 (0.190) [1] 344 (0.250) [1] 474 (0.320) [1] 234 (228 (0.190) [1] 150 (0.250) [1] 61.6 (0.320) [1] 114
0290 (0.190)[1] 0.440 (0.250)[1] ND (0.320)[1] ND (120 (194)[1] 344 (25.1)[1] 137 J (32.4)[1] 1140 J (220 (0.190)[1] 3.70 (1.00)[1] ND UL (1.30)[1] ND UL (2.30)[1] ND UL (2.30)[1] ND UL (2.30)[1] ND UL (2.30)[1] ND UL (2.30)[1] ND UL (2.30)[1] (2.30)[1] ND UL (2.30)[1] (2.30)[1] ND UL (2.30)[1] (2.3
ND UL (0.390) [1] 0.850 L (0.500) [1] 3.00 L (0.650) [1] 1.60 0.290 (0.190) [1] 0.440 (0.250) [1] ND (0.320) [1] ND 1120 (0.194) [1] 344 (25.1) [1] 137 1 (3.24) [1] 1140 220 (0.780) [1] 3.70 (1.00) [1] 474 (0.320) [1] ND 206 (0.190) [1] 150 (0.250) [1] 474 (0.320) [1] 114 228 (0.190) [1] 150 (0.250) [1] 61.6 (0.320) [1] 114
mt. (mg/kg) ND UL (0.390) [1] 0.850 L (0.500) [1] 3.09 L (0.650) [1] 1.60 L 0.290 (0.190) [1] 0.440 (0.250) [1] ND (0.320) [1] ND 1120 (194) [1] 344 (25.1) [1] ND UL (1.30) [1] ND UL 220 (0.780) [1] 370 (1.00) [1] 474 (0.320) [1] ND UL 206 (0.190) [1] 150 (0.250) [1] 474 (0.320) [1] 114 228 (0.190) [1] 150 (0.250) [1] 61.6 (0.320) [1] 114
mt. (mg/kg) ND UL (0.390)[1] 0.850 L (0.500)[1] 3.00 L (0.650)[1] 1.60 L 1120 (1.94)[1] 3.44 (2.51)[1] ND (0.324)[1] ND (1.24)[1] 1140 J 2.20 (0.780)[1] 3.70 (1.00)[1] ND UL (1.30)[1] ND UL 2.20 (0.780)[1] 3.44 (0.250)[1] ND UL (1.30)[1] ND UL 2.20 (0.780)[1] 3.70 (1.00)[1] 4.74 (0.320)[1] ND UL 2.20 (0.190)[1] 150 (0.250)[1] 4.74 (0.320)[1] 114 1.14
16-MAR-98
nA-TRND-SO22-01 IG-MAR-98 IG-MAR-98 IG-MAR-98 IG-MAR-98 NA-TRND-SO23-02 NA-TRND-SO23-02 NA-TRND-SO23-02 NA-TRND-SO23-02 NA-TRND-SO22-01 NA-TRND-SO22-01 NA-TRND-SO22-01 NA-TRND-SO22-01 NA-TRND-SO22-02 N
TRND-SO22
TRND
TRND
TRND
Pag. Depth (in) Page Pag
TRND

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Site Id									
						Location Id	.								
						Sample Id	-								
						Log Date	te								
					Beg	Beg. Depth - End Depth (in.)	pth (in.)								
			TRAID			TRND				TRND				TRND	
			TRND-S025			TRND-S025				TRND-S026				TRND-SO26	
		NA-	NA-TRND-S025-01	Ħ		NA-TRND-S025-02	70:		N.	NA-TRND-SO26-01	01	NA	TRN	NA-TRND-SO26-11 Dup of	p of
						!				1 1 1			Ä	NA-TRND-SO26-01	=
Parameter		_	17-MAR-98 0-3			17-MAK-98 3-12				16-MAK-98 0-3				16-MAK-98 0-3	
E160.3 - Percent Moisture (percent)															
Percent moisture	41.2		0	<u></u>	60.4	0	E	39.1		0	[1]	38.9		0	Ξ
ILM04.0 - Total Cyanide (mg/kg)															
Cyanide	0.440		0.380	[1]	0.860	0.620)[1]	0.690		0.370)[1]	0.520		0.370) <u>[1]</u>
ILMO4.0 - CLP Metals (mg/kg)															
Atuminum	86200		(2.60)[1]	115000	(4.00)[1]	54500		(2.60)[1]	57200		(2.50	(1)
Antimony	N N	ΩΓ	0.650) [I]	1.10	L (0.990	(11)	1.00	u	0.640)[1]	0.810	u	0.620	(11)
Arsenic	4.40		0.870	[1]	4.80	(1.30	[1](4.00		0.850)[i]	3.60		0.830	[1]
Barium	86.3		(0220)[1]	642	(0.330	<u>[i]</u> (88.8		0.210)[1]	91.3		0.210)[1]
Beryllium	0.630		0.220)[1]	0.710	(0.330)[1]	0.360		0.210)[1]	0.380		0210)[1]
Cadmium	1.20	×	0220)[1]		К (0.330	[1]	1.20	×	0.210	<u>(II)</u>	1.20	¥	0210	<u>=</u>
Calcium	6850		(5.60)[]]	3410	09'8)	<u>[]</u>	10800		(5.50)[1]	11200		5.40	Ξ
Chromium	543	-	0.220	[]]	77.5	I (0.330)[1]	343	-	0.210	<u>(E</u>	34.1	_	0.210	Ξ
Cobalt	32.7		(0.220	<u>E</u>	41.7	0.330)[1]	20:0		0.210	Ξ	21.5		0.210	Ξ
Copper	165		0220	[1]	208	0.330)[1]	116		0.210	<u>(II)</u>	117		0210	Ξ
Iron	74700		3.00) [E]	95200	(4.60	[](46200		3.00	(11)	48900		(2.90	Ξ
Lead	15.1		(0.430	[1]	5.50	099'0)	[1]	64.5		(0.430	(11)	50.3		0.410	<u>=</u>
Magnesium	9780		(1.90)[<u>1</u>]	9740	(3.00)[1]	8010		(1.90	[1]	9190		(1.90	<u>[</u>]
Manganese	1260		0220)[1]	1510	(0.330)[1]	836		0.210) <u>[</u>	808		0210	(1)
Mercury	0.0400		0.0300	[1]	ON	0.0400	(1)	0.120		0.0300	<u>(E</u>)	0.160		0.0300	Ξ
Nickel	46.1	-	0220	(11)		J (0.330)[1]	29.4	<u>-</u>	0.210	(<u>E</u>)	31.3	-	0.210	Ξ
Potassium	395		(1.30) <u>[i]</u>	259	(2:00)[i]	286		. 130	(13)	238		077)[1]

meter 4.0 - CLP Metals, cont. (mg/kg) ium 1.70 L ND m 713 J um ND Um ND	TRND TRND-SO25 NA-TRND-SO25-01 17-MAR-98 0-3 0-3 (0.220) (0.220) J (21.7) UL (0.870) (0.220)	E E C C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C	2.60 ND 116 ND 484	Site Id	Site Id	(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	1.00 0.440 1.390 ND 191	TR NA-TR NA-TR 16-	TRND TRND-SO26 NA-TRND-SO26-01 16-MAR-98 6-3 (0.210) (21.3) (21.3) (0.850) (0.210)	E E E E	1.10 0.550 1460 ND	NA-TRN NA I UL	TRND TRND-SO26 NA-TRND-SO26-01 16-MAR-98 0-3 0-3 1 (0.410) [1] 1 (0.210) [1] 1 (0.207) [1] UL (0.830) [1]	66 Dup of Dup of (12) (13) (13) (13) (14) (15) (15) (15) (15) (15) (15) (15) (15
Zinc 142	0.220	[1]	55.6	(0.330		Ξ	146	Ŭ	0.210	Ξ(Ξ(127		0210	3 (5)

(E)

0.0100

5.80

Ξ(

0.0100

\$

(0.0100)[1]

6.44

)(

0.0100

6.30

SW9045C - pH (pH units)

μd

Compiled: 06/29.

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

							Site Id									
							Location 1d	_								
							Sample 1d									
					ě	2	Log Date	, 44. (m.)								
					5	** ***	יוו - דיוונו דיכל	en (mr.)								
			TRND				TRND			-	TRND				TRND	
		T	TRND-SO27			E	TRND-S027			Ĕ	TRND-S028				TRND-SO29	
		L-AN	NA-TRND-S027-01	31		NA-T	NA-TRND-S027-02	22		NA-TR	NA-TRND-SO28-01	11		NA-T	NA-TRND-SO29-01	1
		1	17-MAR-98			=	16-MAR-98			16	16-MAR-98			12	17-MAR-98	
Parameter			0-3				3-12				0-3				6-3	
D422 - Particle Size Distribution (%)																
%Clay	NA				NA				NA				09'9	Ĭ	0	Ξ
%Gravel	NA				NA				NA				000	•	0	Ξ
%Sand	NA			-	NA				N A				97.9	_	0	Ξ
%Silt	NA				Ϋ́Α				NA				27.8	_	0	Ξ
Mean Particle Size(mm)	NA				NA				NA				0.232	_	0	Ξ
E160.3 - Percent Moisture (percent)																
Percent moisture	43.7		0	[1]	43.7		0	Ξ	35.0	0	_	[]	38.3	_	Q	Ξ
E360 - Anions (mg/kg)																
Chloride	NA				NA				NA				3.91		(1.62)[1]
Fluoride	NA				Ϋ́Z				NA				1.80		(1.62	[1]
Sulfate	NA				NA				NA				65.5		(1.62	[E]
E353.2 - Nitrate (mg/kg)																
Nitrate	AN				NA				NA				6.65		0.810	(H)
ILM04.0 - Total Cyanide (mg/kg)	ij			5	£		900		9	`	9330	5	8		97.0	Ę
Cyanide	0.470		(0.410)[1]	2		0.380	111	0.780	_	0.330	[1]	0.920		0.330	[]
ILMO4.0 - CLP Metals (mg/kg) Abunimum	00668		(2.80	1111	89800		(2.80)[]]	45900	_	2.40)[[]	20800		(2.60)[1]
Antimony	0.730	L	0.710	ΞΞ	120	1	0.710	ΞΞ	QN QN) In	009:0)	E (QN QN	Π	0.640	(E)

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

						Beg. D	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ld id te spih (in.)								
		Ž	TRND TRND-SO27 NA-TRND-SO27-01 17-MAR-98	7-01		AN	TRND TRND-SO27 NA-TRND-SO27-02 16-MAR-98	59		X	TRND-SO28 TRND-SO28-01 14-MA P-08	10		NĀ	TRND-SO29 TRND-SO29 NA-TRND-SO29-01	z
Parameter			0-3				3-12				0-3				1MAK-98 0-3	
ILMO4.0 - CLP Metals, cont. (mg/kg)	mg/kg)															:
Arsenic	4.50		0360)	[[]	4.20		0.940	(1)	14.7		008'0)	(11)	3.40		0980	Ξ(
Barium	76.6		0.240	<u>[i]</u>	101		0.240)[1]	84.9		0700)[1]	79.0		(0210	ΞΞ
Beryllium	0.560		0.240	<u>(I</u>	0.600		0.240)[]]	0.280		0.200)[1]	0.270		0210	Ξ
Cadmium	1.10	×	0.240	(E)	120	×	0.240	[]	0.740	×	0.200	(11)	0960	×	0.210	(E) (
Calcium	7750		079)	[1]	0226		(6.10	<u>[I]</u>	11200		(520)[<u>1</u>]	10000		(5.60) [E]
Chromium	57.2	-	0.240	[1]	297	_	0.240	[]	22.9	_	0.200)[1]	28.0	-	0.210	(E)
Cobalt	34.4		0.240	(E)	32.7		0.240	[1]	17.8		0.200)[11]	202		0.210	<u>(E)</u>
Copper	<u>2</u>		0.240	[]]	991		0.240	Ξ(95.3		0.200)[1]	105		0210	(E]
Iron	77100		330	<u>=</u>	74600		3.30) [<u>H</u>]	40400		(2.80)[1]	44700		(3.00	(Ξ)
Lead	97.9		0.470	Ξ.	157		0.470) <u>[1]</u>	56.0		0.400	([]	32.5		(0.430	Ξ(
Magnesium	12900		(2.10	Ξ:	11200		2.10	<u>=</u>	7900		(1.80)[1]	8870		0671	[1](
Manganese	1330		0.240	Ξ,	1320		0.240	Ξ.	ž		0.200	<u>(</u>	815		0210	<u>[]</u>
Mercury	0.0700	-	00000	Ξ	0.0800	-	0.0300	Ξ,	0.0700		0.0300	Ξ	0.120		0.0200	(E)
Person	6.63	-				-	0.240	Ē	23.3	-	0770	[1]	27.9	-	0.210	(E)
Polassium	ž,		₽: .	[1](IIS		1.40	Ξ	88 88		(130	Ξ	&		(1.30	<u>(E)</u>
Selenium	38 .	_	0.470	Ξ:	1.10	_	0.470	Ξ	<u>5</u>	ı	0.400)[1]	1.10	_	(0.430)[1]
Silver	Q Z		0.240) <u>[]</u>	Q Z		0.240) [<u>1</u>]	Q Q		0.200	<u>[E]</u> (Ŕ		0.210	<u>(</u>
Sodium	₹	-	(23.7)[1]	716	-	(23.5) [H]	1130	-	(20.1	<u>(</u>	1270	-	(215	(E)
Thallium	Ð	'n	0.950)[<u>1</u>]	Ð	ΩΓ	0.940	[1](Ð	П	0.800	Ξ(Ð	'n	0.860	(E) (
Vanadium	332		0.240	(E)	321		0.240	(11)	155		0.200	(E)	17.1		0210	Ξ
Zinc	1		0.240	[1]	253		0.240	(1)	88.0		0.200)[1]	200.7		0.210	Ξ

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

								Parameter	SW9045C - pH (pH units)	hH
										6.37
					TRND	TRND-SO27 NA-TRND-SO27-01	17-MAR-98	0-3		(0.0100
						-01)[1]
										6.49
Site 1d	Location Id	Sample Id	Log Date	Beg. Depth - End Depth (in.)	TRND	IKND-SO27 NA-TRND-SO27-02	16-MAR-98	3-12		(0.0100)
				(in.))[1]
						<i>A</i> .				6.62
					TRND	I KND-SO28 NA-TRND-SO28-01	16-MAR-98	6-3		(0.0100)
)[1] 6.34
					TRND	NA-TRND-SO29-01	17-MAR-98	0-3		0.0100
					_	1)[1]

Compiled: 06/29/98

Results of Inorganic Analyses For Round 1 Soll Samples, Atsugi NAF, Japan Table 2

							Site Id									
							Location Id	_								
							Sample Id									
					1		Log Date	du du								
						Beg. Deptl	Beg. Depth - End Depth (in.)	oth (in.)								
			TRND			-	TRND	•		T.	TRND			-	TRND	
		Ē	TRND-S029			T.	TRND-SO30			TRN	TRND-SO31			Ë	TRND-S032	
		NA-TF	NA-TRND-S029-02 17-MAR-98	2		NA-TE	NA-TRND-SO30-01 17-MAR-98	5		NA-TRN 17-M	NA-TRND-SO31-01 17-MAR-98			NA-TE	NA-TRND-SO32-01	=
Parameter		•	3-12				0-3			Ó	0-3				0-3	
D422 - Particle Size Distribution (%)																
	8.20	0		[1]	NA				NA				NA			
ı	000	0		Ξ	NA				NA				NA			
-	64.2	0		Ξ	NA				NA				NA			
%Silt	27.6	0		Ξ	NA				NA				NA			
Mean Particle Size(mm)	0.220	0		[1]	NA				NA				ΝΑ			
E160.3 - Percent Moisture (percent)																
	34.4	0		Ξ	39.5	0		Ξ	45.1	0		[1]	41.6	0		Ξ
E300 - Anions (mg/kg)																
	7.68	V	(1.52)[1]	NA				NA				Ϋ́			
Fluoride	ΩN	J	(1.52)[1]	NA				AN				NA NA			
Sulfate	29.2)	3.05	[2]	NA				NA				NA			
E353.2 - Nitrate (mg/kg)																
Nitrate	8.38)	(1.52	[2]	NA				NA				N A			
ILM04.0 - Total Cyanide (mg/kg) Cyanide	1.30	Ų	(0.370	[1]	1.20	_	(0.370)[1]	001	(0.410		1111	0.750		0.0430	5
		•				•			}	; -		Ξ	8	-	0.420	11.
ILMO4.0 - CLP Metals (mg/kg) Aluminum Antimony	51700 ND) j	(2.30	E (80500	<u>,</u>	(2.60	ED (68100	(2.90)[1]) [1]	80300	<u> </u>	(2.70	E
•				Į.	Ì		2	[-] /	2			Ξ			0.090	<u></u>

Compiled: 06/29

() = Detection Limit [] = Dilution Factor | Not Detected | NA = Not Applicable |

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

					a	eg. De	Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	oth (in.)							į	
		NA-	TRND TRND-S029 NA-TRND-S029-02	27		NA	TRND-SO30 TRND-SO30-01 NA-TRND-SO30-01	10		N A	TRND TRND-SO31 NA-TRND-SO31-01	=		T NA-T	TRND TRND-SO32 NA-TRND-SO32-01	=
Parameter			3-12				0-3				0-3				0-3	- MARIE SALVE - TE
ILMO4.8 - CLP Metals, cont. (mg/kg)	a															
Arsenic	2.10		0.780	[1]	4.20		0.850)[1]	4.70		0.970	[1](5.20		0.910	Ξ(
Barium	78.1		0.200	Ξ,	6		(0210	Ξ,	0:06		0.240	Ξ.	61.3		0.230	Ξ :
Beryllium	0.280	;	0.200	Ξ.	0.590	;	0.210	E :	2	1	0.240	Ξ,	2	:	0230	Ξ
Cadmium	0.670	×	(0.200		1.30	⊻	(0.210		1.60 73.40	× 4	(0.240	E (1.40	×	0.230	
Chromium	25.3	-	0200	ΞΞ	52.8	-	(0.210	E (40.7		(0.240	E (50.5		(0.230	ΞΞ
Cobalt	20.9		0.200)[1]	30.5		0.210)[1]	26.3		0.240)[1]	29.8		0.230	[1]
Copper	105		0.200)[1]	<u>2</u>		0.210	(1)	140		0.240)[<u>[]</u>	146		0.230	<u>[i]</u>
Iron	44900		0.270)[1]	70700		3.00	[1]	26700		(3.40)[<u>[</u>]	00289		3.20)[I]
Lead	11.1		(0.390	ΞΞ	28.0		(0.430	Ξ,	44.0		(0.480	EE (20.7		0.460	三三
Magnesium Manganese	1000 816		0200	ΞΞ	1210		(1.50 (0.210	E (3630 1050		(0.240	E) (1130		(2.10 (0.230	ΞΞ
Mercury	0.080.0		0.0200)[1]	0.0400		0.0200)[1]	0.130		0.0300)[1]	0.070.0		000000)	<u>(</u>
Nickel	27.8	-	0.200	[1]	4 .	-	0.210)[1]	35.4		0.240	[1]	40.5		0.230	(11)
Potassium	373		(120	[1]	979		(130	(3)	792		(1.40)[1]	869		1.40)[1]
Selenium	1.20	L	0.330	[E]	5 .	_	0.430	(11)	0.900	-1	0.480	(11)	Q.	Π	0.460)[1]
Silver	ND ND		0.200	<u>(E)</u>	9		0.210) [1]	0.450		0.240)[1]	0.250		0230	<u>(E)</u>
Sodium	1700	-	(19.5	<u> </u>	989	_	(21.3	<u>[i]</u>	3 62		(24.1	([]	320		(22.8)[1]
Thallium	QN Q	ΩŢΩ	0320)	<u> </u>	R	Π	0.850)[1]	2.60		0.600))(II)	3.30		0.910) [.]
Vanadium	171		0.200	[1]	307		0.210)[i]	250		0.240)[1]	270		0.230)[1]
Zinc	502		0.200) <u>[I]</u>	110		0210	<u>=</u>	125		0.240	[1]	122		0.230	Ξ

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Site Id Location Id Sample Id Log Date Beg. Depth - End Depth (in.)	ID TRND TRND TRND-SO31 TRND-SO32 SO29 TRND-SO36 TRND-SO31 TRND-SO32 SO29-02 NA-TRND-SO31-01 NA-TRND-SO32-01 R-98 17-MAR-98 NA-TRND-SO32-01 0-3 0-3	(00)[1] 7.08 (0.0100)[1] 6.94 (0.0100)[1] 6.31 (0.0100
	TRND TRND-SO29 NA-TRND-SO29-02 17-MAR-98 3-12	6.61 (0.0100
	Parameter	SW9045C - pH (pH units) pH

Compiled: 06/29

Table 2
Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan

Site Id
Location Id
Sample Id
Log Date
Beg. Depth - End Depth (in.)

TRND TRND-SO33 NA-TRND-SO33-01

Parameter

3

0.490 0.790 0200 1.00 0 90700 1.70 4.60 58.8 ND 0.670 49.2 E160.3 - Percent Moisture (percent) ILM04.0 - Total Cyanide (mg/kg) ILMO4.0 - CLP Metals (mg/kg) Percent moisture Aluminum Antimony Arsenic Cyanide

 Ξ

Ξ

 Ξ Ξ <u>(</u> <u>E</u> Ξ(Ξ 0.0300 0.260 0.260 0.260 0.260 0.260 0.520 0.260 0.260 3.70 2.40 6.80 1.80 4430 59.0 36.4 199 78500 42.8 0.110 51.3 718 Magnesium Manganese Chromium Beryllium Cadmium Potassium Calcium Метситу Barium Cobalt Copper Nickel Lead Iron

Results of Inorganic Analyses For Round 1 Soil Samples, Atsugi NAF, Japan Table 2

Location 1d Sample 1d Log Date Site Id

Beg. Depth - End Depth (in.)

TRND-SO33 NA-TRND-SO33-01

Ţ

Parameter

II MO4.0 - CLP Metale

ILMO4.0 - CLP Metals, cont. (mg/kg)	mg/kg)				
Selenium	Q	Π	$\overline{}$	0.520	<u>(</u>
Silver	0.380		$\overline{}$	0.260)[3]
Sodium	384		$\overline{}$	26.2)[1]
Thallium	4.20		_	1.00) [E]
Vanadium	333		$\overline{}$	0.260)[1]
Zinc	150		$\overline{}$	0.260)[1]
SW904SC - pH (pH units) pH	6.15		Ų	(0.0100)[1]

Table 3

.

CAMPIEID	Donth (In)	Location Comment	SOILCLA	SSIFICATION	10 PM 10 PM	SOIL COLOR	COMMENTS AND A STATE OF THE STA
NA.DWCT.SO01.31	8-0	1_	. ł	Sand/Silt	10YR2/2	Very Dark Brown	Approx 1 * of sand cover, rootlets, low plasticity
NA. DWCT.SOOL S	2.13	7	O	Siit	10YR2/2	Very Dark Brown	Similar to 1-3" interval, organic
20-1000-1040-W	4	I	Cition	4)(C) para C	2 EV4/3 and 10VB9/9	Olive Brown Very Dark Brown	Mixed together under rain gutter. Moist, wet, loose. Mainly medium grained sand.
NA-DVCI-SO02-01	7	15' S of fance on NW side of	OW/OL	odilorolli	E.O. Taro dillo 10 1 1 1 1 1		Mixed together under rain gutter. Moist, wet, loose.
NA-DVCT-SO02-11	6.0		SW/OL	Sand/Silt	2.5Y4/3 and 10YR2/2	Olive Brown/Very Dark Brown	- 1
NA-DVCT-S003-01	0-3	of Bidg	SW/OL	Sand/Silt	2.5Y4/3 and 10YR2/2	Olive Brown/Very Dark Brown	Sand overlying silt. Moist, loose. Silt is tow plasticity. Sand is mainly medium grained.
NA-DVCT-SO03-02	3-19	er tire swing W of Bldg	 	is	10YR2/2	Very Dark Brown	as for SO03-01, with minor sand (imported)
TO TOTAL		Near SW side/corner of Bldg	MU	Sand	2 5V4/3	Olive Brown	Moist. Very fine to very coarse grained. Mainly medium grained, 5% fine gravel, foose, subangular.
10-4-DVC1-3004-01	3	NE side of Bidg 291, 8' S of	5			Z	Olive sand 1/2-1" cover. Loose, almost coffeelike
NA-DVCT-S005-01	 	MW side of Bidg 291, 8' S of	SW/OL	Sand/Silt	104 KØ1	Diack	texture, for passicity moist organics
NA-DVCT-S005-02	3-12	matted area	<u>ا</u>	Silt	10YR2/1	Black	Same as t-3' interval
NA-DVCT-SO06-01	60	Sandbox (w/little sand) on E side of Bido 291	SW/OL	Sand/Silt	10YR2/2	Very Dark Brown	Moist, minor sand (medium grained) on surface, low to medium plasticity, organic.
NA-DVCT-SO07-01	0.53	At end of slide (fill sand 0-3")	MS	Sand	2.5Y4/3	Olive Brown	Loose, poorly sorted
NA-DVCT-SO07-02	3.12	At end of slide	<u>10</u>	Sign	10YR2/1	Black	Moist, low plasticity, organic
NA-DVCT-SO08-01	0.3	SE of Bldg 291, native soil	OL.	Silt	10YR2/1	Black	Moist, low plasticity, organic
	Ġ	Sandy area under chin-up	SIN.	T C C C C C C C C C C C C C C C C C C C	9 5V4/3	Olive Brown	Moist, poorty sorted, v.i. grained intough sinall graver (granuties), minor silt. Sand is quartz, subangular. Gravel is darker, subrounded, loose.
NA-ELEM-SOUT-OF	3	Sandy area under chin-up		2120	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	o c	Same as 0-3", less than 2% gravel, mainly medium
NA-ELEM-SO01-02	3-12	bars	NS.	Sand	2.514/3	Cilve Diowi	Woist, poorly sorted, v.f. through coarse grained,
NA-FI FM-S002-01	6.0	Sandy area under swing set	SW	Sand	2.574/3	Olive Brown	mainly medium grained, minor silt, 5 % fine gravel.
NA CI EM. SO09 11	6	Sandy area under swing set	M'S	Sand	2.574/3	Olive Brown	Moist, poorly sorted, v.f. through coarse grained, mainly medium grained, minor silt, 5 % fine gravel
ואיבררווויסססביוו	S	In playground, thin sand cover			40000		Moist, minor (<5%) sand and fine gravel, nonplastic,
NA-ELEM-S003-01	60	over native soil	SW/OL	Sand/Silt	10YHZ/2	Very Dark Brown	Moist, nonplastic, not very cohesive. Refusal at 9".
NA-ELEM-SOUS-UZ	5	III) DIAYBIOUTIU, HALIYE SUII	3	5			Moist, 10-20% poorly sorted sand and fine gravel,
NA-ELEM-S004-01	6-9	In playground, native soil	SW/OL	Siit	10Y H2/2	Very Dark Brown	Moist poorly sorted v f -v c sand minor fine gravel.
NA-EI EM-S005-01	6.9	in slide area	MS.	Sand	2.5Y3/2	Very Dark Grayish Brown	minor sift, loose.
NA ELEM-SOOF 02	3.15	in slide area	MS.	Sand	2.574/2	Dark Grayish Brown	Sand - as in 0-3" except slightly lighter color, less to no gravet (mainly surficial).
NA EL EM CODE OF		Monkey bar area in	MS	Sand	2.574/3	Olive Brown	Moist, poorly sorted, loose, v.fv.c. grained, 5% fine gravel, minor silt, mainly subangular quartz.
NA-EFEM-SO07-01	5 %	Ditch to NE of school, Bldg	50	#S	10YR2/2	Very Dark Brown	Moist, fairly noncohesive, slightly plastic, rootlets, slightly more clayey than other native soils in area.
NA-FIEM-S007-02	3-12	to NE of school, Bldg	OT.	Silt	10YR2/2	Very Dark Brown	OL as 0-3", becoming dark yellowish brown (10YH4/6) at 111.
NA-ELEM-SO08-01	03	ss covered, S of Bidg 989	O.	Silt	10YR2/2	Very Dark Brown	Moist, loose, slightly conesive, rootlets.

SAMPLEID	Depth (In)	Location Comment	SOILCLA	ASSIFICATION	and the second s		
NA-REF1-S001-31	6-3	No grass cover	ار ا	Sit	10YR2/2 to 10YR2/1	Very Dark Brown to Black	Moist, soft, noncohestve, loamy, nonplastic to low nasticity
NA-REF1-S002-01	0-3	No grass cover	Q.	Sit	10YR2/2 to 10YR2/1	Very Dark Brown to Black	Motest, soft, low plasticity, loamy, roottets, noncohesive.
NA-REF1-S002-02	3-12		ō	Sit	10YR2/2 to 10YR2/1	Very Dark Brown to Black	Moist, soft, low plasticity, loamy, rootlets, noncohesive
NA-REF1-S002-12	3-12	dupficate	Q.	Sift	10YR2/2 to 10YR2/1	Very Dark Brown to Black	Moist, soft, low plasticity, loamy, rooflets, noncohesive.
NA-REF1-S003-01	6-3	Grass covered	5	Silt	10YR2/2	Very Dark Brown	Molst, soft, noncohesive, loamy, nonplastic to low tolasticity.
NA-REF1-S004-01	0-3	Grass covered	5	Salt	10YR2/2	Very Dark Brown	Moist, soft, noncohesive, loamy, nonplastic to low
NA-REF1-S004-02	3-12		ار ا	Silt	10YR2/2	Very Dark Brown	Moles, 30th noncohesive, loamy, nonplastic to low
NA-REF1-S005-01	0-3	Grass covered	ថ	Silt	10YR2/2	Very Dark Brown	More to the composition of the c
NA-REF1-S006-01	0-3	Grass covered	O.	J.E.	10YR2/2	Very Dark Brown	Motis, soft, noncohesive, loamy, nonplastic to low plasticity.
NA-REF1-S006-02	3-12		OL.	Silt	10YR4/6	Dark Yellowish Brown	Moist, soft, noncohesive, loamy, nonplastic to low plasticity.
NA-REF2-S001-01	0-3	62' NW of Bidg 527	Or.	#S	10YR2/2	Very Dark Brown	Moist, soft, nonplastic, subrounded gravel to 2"
144-1151-500 1-05	2 -5	62 NW Of BIOG 527	OI.	Silt	10YR2/2 to 10YR4/6	V Dark Brown to Dark Yellow/Brown	As above, color change to dark vellowish brown at 8"
NA-REF2-S002-01	6-0	130' NW of Bldg 527	OL.	3	10YR2/2	Very Dark Brown	Moist, soft, foamy, spongy, nonplastic, numerous nootlets.
NA-REF2-S003-01	0-3	120' NW of Bidg 527	6	Silt	10YR2/2	Very Dark Brown	Moist, soft, toarry, spongy, nonplastic, numerous profilets.
NA-REF2-S003-02				Sis	10YR4/6	Dark Yellowish Brown	Moist, soft, loarny, spongy, nonplastic, numerous models, slight color change
NA-PEF2-SOME 01	700	9			10YR2/2	Very Dark Brown	Moist, nonplastic, loamy/snongy: no grass cover
NA-REF2-S005-02	Τ		J C		10YR2/2	Very Dark Brown	Moist, soft, loamy, minor (<2%) granules.
NA-REF2-S006-01	П	44' NW of Bldg 527			10YR2/2	Very Dark Brown	No color change with depth.
NA-REF2-SO06-11	T				10YR2/2	Very Dark Brown	Moist soft loamy, minor (<2%) granules.
NA-TOWR-SO01-01						Very Dark Brown	Moist, fow plasticity, loamy, some iron/oxidation staining.
D-2005-HILL TOTAL	3	E OI TOUTHS COULTS	5	Sit	10YR2/2	Very Dark Brown	Moist, low plasticity, loarry, rootlets.
NA-TOWR-SO02-32	3-12	E of tennis courts	9	Sit	10YR2/2	Very Dark Brown	Becoming gravelly at 4", subrounded gravels to 2" diameter.
NA-TOWR-S003-01	0-3		6	Silt	10YR2/2	Very Dark Brown	Moist, foamy, numerous rootiets, low plasticity, noncohesive.
NA-TOWR-S003-11	0-3	S pair of pichic area (duplicate)	<u>ار</u>	Silt	10YR2/2	Very Dark Brown	Moist, loamy, numerous rootlets, low plasticity, noncohesive.
NA-TOWR-S004-01						Very Dark Brown	Moist, dense, low plasticity, less clay content than similar samples. This cond.
NA-TOWR-SO04-02	3-12	Under the swing in playscape (700	Silt			As 0-3", no change physically (no sand cover).
	Τ	nd swings in picnic			10YR2/2	Very Dark Brown	As 0-3", no change physically (no sand cover).
NA-TOWR-S005-01	0-3		SW/OL S	- E	10YR2/2	Very Dark Brown	Moist, sand on surface, low to medium plasticity.

Table 3 Field Observations for Soil Samptes, Atsugi NAF, Japan

SAMPLEID	Depth (in)	Location Comment	SOIL CLAS	ASSIFICATION		SOIL COLOR	
NA-TOWR-SO06-01	6-0		<u>ن</u>	Z. I	10YR2/1	Black	Moist, roots, low plasticity.
NA-TOWR-SO06-02	3-12	rea,	or.	Silt	5YR3/4	Dark Reddish Brown	Black to 4", dark reddish brown below 4", low to medium plasticity, very molst, slightly cohesive.
NA-TOWR-SO07-01	6.0	swingset N of Bldg	MS.	Sand	573/2	Dark Olive Grav	Moist, poorly sorted, v.f. to v.c. grained, 10% fine gravef, loose.
NA-TOWR-S008-01	0-3	rted sod under see-saw	OF.	Sit	10YR2/1	Black	Moist, low plasticity, medium cohesiveness.
NA-TOWR-S009-01	E-0		OL,	Silt	10YR2/1	Black	Moist, low plasticity.
NA-TOWR-SO10-01	0-3	er swing NE of Bldg 3102, orted sod	Ю	Silt	10YR2/1	Black	Moist, tow plasticity, rootlets, minor gravel.
NA-TOWR-SO 10-02	3-12	Under swing NE of Bldg 3102, native	70	Silt	10YR2/1 and 5YR3/4	Black/Dark reddish Brown	Black with 20% dark reddish brown nodules, moist, slightly cohesive, fow plasticity. Nodules are slightly sandy, harder.
NA-TOWR-SO11-01	0-3	ape N-NE of Bldg 3102	SW	Sand	573/2	Dark Olive Gray	Moist, poorly sorted, minor fine gravel, mainly medium grained, loose.
NA-TOWR-SO12-01	0-3		or.	Silt	10YR2/1	Black	Moist, < 5% fine gravel, low plasticity.
NA-TRND-S001-01	6-0 8-0	Co-located w/upwind criteria site	O.	Silt	10YR2/2	Very Dark Brown	Moist, loamy, low plasticity.
NA-TRND-SO01-02	3.12		OF.	Silt	10YR2/2	Very Dark Brown	No color change with depth.
NA-TRND-S002-01	8.0	Co-located w/Golf Course air site	Q.	Silt	10YR2/2	Very Dark Brown	Low plasticity, some iron oxidation staining.
NA-TRND-S002-02	3-12	Co-located w/Gotf Course air site	OL.	Silt	10YR2/2	Very Dark Brown	Low plasticity, some iron oxidation staining.
NA-TRND-SO03-01	6-0	Co-located with GEM site	ಕ	is	10YR2/1	Black	Possibly fill to 2", rocks to 1" present throughout, some debris present.
NA-TRND-S003-02	3-12	Co-located with GEM site	Or.	Silt	10YR2/1	Black	As above without fill/debris
NA-TRND-S004-31	6-0	Near incinerator, 25' N of fence and blue tanks	OI.	Silt	10YR2/1	8lack	Moist, loamy, numerous roots.
NA-TRND-S004-11	ဗိ	Near incinerator, 25' N of fence and blue tanks (duplicate)	<u>5</u>	ii.	10YR2/1	Black	Moist, loamy, numerous roots.
NA-TBND-SO04-02	9.15	Near incinerator, 25' N of fence and blue tanks	ē	ŧis	10YR2/1	Black	Gravelly below 4* (up to 4* diameter), nonplastic, debris (nails, brick pieces), slightly moist.
NA-TRND-S005-01	0-3	cinerator	OL.	Silt	10YR2/2	Very Dark Brown	Moist, numerous roots, tow plasticity, soft.
NA-TRND-S006-01	6-9		O.	Silt	10YR2/2	Very Dark Brown	Low plasticity, loamy.
NA-TRND-S007-01	6-9 0	Near golf course drainage, NE of incinerator, grassed.	占	Silt	10YR2/2	Very Dark Brown	Signtly moist, numerous roots, tow to medium plasticity, loamy.
NA-TRND-SO08-01	0-3	****	2	Silt	10VR2/2	Very Dark Brown	Moist, loamy, low to medium plasticity.
NA-TRND-S009-01		Golf course 25' W/kiW of Ride 959 grace	70	Silt	10YHZ/Z	Very Dark Brown	Silgniy moist, toarmy. Moist, loamy, medium plasticity, 10% grayel to 2*
NA-TRND-SO10-01		covered.	ō	Silt	5R2.5/1	Reddish Black	diameter.
NA-TRND-SO10-02	3-12	25' W of Bldg 959	7	Silt	5R2.5/1	Reddish Black	OL as 0-3", interspersed subrounded gravel.
NA-TRND-SO11-01	0-3	Outside fence NE of Bidg 3101	<u>م</u>	Silt	10YR2/2	Very Dark Brown	Moist, loamy, low to medium plasticity, 10% subrounded gravel.
NA-TRND-S012-01	0-3	Course	7	Sit.	10VR2/1	Black	Low plasticity, loamy.
NA-TRND-SO12-11	6-0	duplicate	<u>6</u>) is	10YR2/1	Black	Low plasticity, loamy.
NA-TRND-SO13-01	6-3	By driving range	<u>ح</u>	Silt	10YR2/1	Black	glass cover, low plasticity, roality, flee of (pebbles/grave).
NA-TRND-SO14-01	H	her of Bidg 3064	占	is.	10YR2/1	Black	Low plasticity, loamy, numerous roots to 3".
NA-TRND-SO15-01	0-3	In park area	<u></u>	100	10YR2/2	Very Dark Brown Black	Low plasticity, loamy. Same as SO15-01, but smaller (1/4") gravel, black.
30 CO CO CO CO CO CO CO CO CO CO CO CO CO				15			

fieldSS2 7/29/982:43 PM

SAMPLEID	Depth (In)	SAMPLE ID Depth (In) Location Comment	SOIL CLAS	SSIFICATION	Control of the contro	SOILICOLOR	SINE WIND
NA-TRND-SO15-12	3-12	dupficate	OL.	Silt	10YF2/1	Black	Same as SO15-01, but smaller (1/4") gravet and black color.
NA-TRND-SO16-01	6-0	In park area	70	Silt	10YR2/1	Black	Low plasticity, loamy, free of gravel.
NA-TRND-S017-01	6-0	East of runway	70	alit Silt	10YR2/2	Very Dark Brown	Loamy, grass cover,
NA-TRND-SO18-01	6-0	W of runway	OL.	Silt	10YR2/2	Very Dark Brown	Loamy, grass cover.
NA-TRND-SO19-01	6-0	W of runway, S of Taxiway B		Silt	10YR2/2	Very Dark Brown	Loamy, grass cover, some gravel at 1/2".
NA-TRND-S020-01	6-9	Near Bidg 969		Silt	10YR2/1	Black	Loamy, grass cover, nonplastic, well drained.
NA-TRND-S021-01	0-3	E of Bldg 150A	OL.	Silt	10YR2/1	Black	Loamy, minor gravel.
NA-TRND-S021-02	3-12	E of Bldg 150A	QL.	Silt	10YR2/2	Very Dark Brown	Same as SO21-01, but with increased gravel.
NA-TRIND-S022-01	0-3	Between Bldgs 81 & 987		Silt	10YR2/1	Black	Loamy, nonplastic.
NA-TRND-S022-11	0-3	duplicate		Sit	10YPl2/1	Biack	Loamy, nonplastic.
NA-TRND-SO23-01	0-3	Southern end of Base	OL.	S:It	10YR2/2	Very Dark Brown	Loamy, numerous roots, poorly sorted.
NA-TRND-SO23-02	3-12	Southern end of Base		Sit	10YR2/2	Very Dark Brown	Loamy, poorly sorted.
NA-TRND-S024-31	0-3	E of nurway	OF.	ぎ	10YR2/2	Very Dark Brown	Poorly graded, moist, some gravel up to 1/2".
NA-TRND-S025-01	0-3	W of runway		Silt	10YR2/2	Very Dark Brown	Loamy
NA-TRND-SO25-02	3-12	W of runway	OL.	Sit	10YR2/2	Very Dark Brown	Loamy
		50' W/SW of Bldg 174, SW					
NA-TRND-SO26-01	0-3	comer	<u>ዐ</u> .	Silt	10YR2/2	Very Dark Brown	Loamy, no grass cover.
		50' W/SW of Bldg 174, SW					
NA-TRND-S026-11	0-3	corner (duplicate)	Q.	Silt	10YR2/2	Very Dark Brown	Loamy, no grass cover.
NA. TOND COST OF		Near woods, 50 yds E of Bldg	č	40	WORKS From GODINGS		
וויייסטפיםאיוייאו	3	Noor woods 60 also E of Blan	3	OII.	101 HZZ and 51 H3/4	very Dark Brown/Dark reddish Brown	Gravel to 1" in diameter with sity clay nodules.
NA-TRND-S027-02	3-12	Neal moods, 30 yes E of Blug 153	5		10YR2/2 and 5YR3/4	Very Dark Brown/Dark reddish Brown	Gravel to 1" in diameter with eith view notates
NA-TRND-SO28-01	0-3	Near Bldg J-46			10YR2/2	Т	Loamy, nonplastic, collected near woods.
NA-TRND-SO29-01	0-3	S of Taxiway C, E of runway		Silt	10YR2/2	Very Dark Brown	Loamy
NA-TRND-SO29-02			გ	Silt	10YR2/2	Very Dark Brown	Loamy
		100' S of SW corner of Bldg					Lighter particles of rust colored clay (possibly fill), no
NA-TRND-SO30-01	6-3		Q.	Sat	10YR2/2	Very Dark Brown	grass at surface.
		faxiway D1, W of					
NA-TRND-S031-01				Silt	10YR2/2	Very Dark Brown	Loamy
NA-TRND-S032-01				S.	10YR2/2	Jark Brown	Loamy, low plasticity, much grass on surface.
NA-TRIND-SO33-01	ဇ္	Northern tip of Base	OL.	SE.	10YR2/1	Black	Loamy with numerous roots.

Table 4

Table 4
Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

				Site Id Location Id Sample Id Log Date	Id Id							
	DVCT			ELEM.	4		ELEM FIEM-SOM	M 2003		•	REF2 REF2-SO02	
	NA-DVCT-SO04-51 09-MAR-98	.	NA-F	NA-ELEM-SO04-51(1005) 08-MAR-98	1(1005)	ž	NA-ELEM-SO64-51(1300) 08-MAR-98	4-51(1300) 1-98		NA-	NA-REFZ-S002-51 07-MAR-98	īč.
Parameter												•
OLM03.2 - Pesticides and PCBs (ug/L) 4,4'-DDD	000) Q	E (D S	000) m	E)	Q :	000) IN	Ξ.	S :	Ħ:	000) m	

OLM03.2 - Pesticides and PCBs (ug/L)	/L)														
4,4'-DDD	Q.	0000	111	Q.	5	00:0	(1)	S	3	00:0)EI	Q	5	000) <u>[1]</u>
4,4'-DDE	ND	0000)[1]	Q	5	00.00	(1)	Q	Ð	0.00)[1]	Q	5	0000	<u>[</u>]
4,4'-DDT	QN QN	0000)[1]	Ø	5	00'0) [1]	QN O	n	0.00)[1]	Q	5	0000	Ξ(
Aldrin	ND	00'0)[1]	9	5	0000))[1]	Ð	n	0000)[1]	Q	5	00:00	(Ξ)
Aroclor-1016	QX	00'0)[1]	QN	ħ	00.0	[1]	Ð	n	0000)[1]	S	n	0000)[1]
Aroclor-1221	ND	00.0)[1]	QN	ħ	00:0	[1](QN	S	00.0)[1]	N N	₽	00:0	[1](
Aroclor-1232	N QN	000))[1]	Q N	n	00'0))[1]	QN	n	00:0)[1]	2	5	00:0	<u>[1]</u> (
Aroclor-1242	QN	0000)[1]	Q.	5	00:0)[1]	QN	m	000))[1]	QN	5	0.00	<u>[1]</u> (
Aroclor-1248	QN	00:0	(11)	QN	5	00:0	(11)	2	5	00:0)[1]	Q	∋	00.0)[1]
Aroclor-1254	ND QN	0000)[I]	N N	'n	00:0)[1]	Q	n	0000))[1]	Q.	5	00.0	(11)
Aroclor-1260	ND	0000	[E](QN	n	00.0)[1]	QN	5	0000	EI(Ð	Ξ	00:0)[[]
Dieldrin	ON	00'0	(1)	Q	5	0000	[1](Q	5	0000))[1]	ND	3	0.00)[1]
Endosulfan I	QN	00'0	[1](Q	n	00'0))[1]	Q	n	000)) <u>[11]</u>	Q	5	0000)[]
Endosulfan II	QN	00'0	(11)	Q	5	0000)[1]	QN N	n	000)	(1)	S	3	0000	(E)
Endosusfan sulfate	QN QN	00:0	(1)	Ą	n	00:0	(11)	Q.	'n	0000	111	N	Ħ	00:0	<u>(</u>
Endrin	QN	0000	[1](S	Ð	00:0	111	æ	n	0000))[1]	QN	∄	0.00	Ξ
Endrin aldehyde	Q	00:0	<u>[i]</u> (Q	3	00:0	[1]	Q	B	0000)[1]	æ	5	0000	(13
Endrin ketone	QN ON	0000	[1]	Q	∄	00:0)[1]	Q.	5	0000)[1]	Ð	Ħ	0000	(1)
Heptachlor	QN	00:0	(1)	S	₽	000)	(11)	QN N	n	0000))[1]	N	5	00.0	Ξ(
Heptachlor epoxide	S	000))[1]	S	Ħ	00:0	(11)	Q.	n	0000))[1]	Q	5	0000	EE (
Methoxychlor	Q.	00:0	(11)	Ð	5	00'0)(11)	N	n	0000))[1]	Q	5	0000	<u>[1]</u>
Toxaphene	QN QN	00:0)[1]	æ	m	0000)[I]	Ð	5	0000))[1]	S	5	0000	Ξ
alpha-BHC	ND QN	0000	(11)	æ	ħ	0000)[1]	Ą	5	00:0)[1]	S	5	000))[1]

Table 4
Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

(60) NA-ELJ							Site Id Location Id Sample Id	9 9 4					ı			
DVCT-SO04 ELEM-SO04-51(1005) O9-MAR-98 O9-MAR-							8	į								
DVCT-SO04-51			DVCT				ELEM				ELEM				REP2	
(100)[1] ND UJ (100)[1] ND U			DVCT-SON NA-DVCT-SOC	4 4-51		RA-ELE	ELEM-S004 :M-S004-51	t (1005)		NA-ELI	ELEM-S004 EM-S004-51(ы 1(1300)		NA	REF2-S002 NA-REF2-S002-51	~ 3
O	Parameter		09-MAR-96				38-MAR-98				08-MAR-98	_			07-MAR-98	66
1																ı
11	LM03.2 - Pesticides and PCBs, co	ont. (ug/L)		5	•	:	8		;	;	,	;	!	;		
0.00 (10) (0.00)	aipha-Chiordane	Ž	orn)	111	N N	3	00'00))[1]	S	3	00'0 -	[H]	S	€	0000	
(100 (1)) (1) (1) (1) (1) (1) (1) (1) (1) (1	beta-BHC	2	0000) <u>[</u>]	Ð	3	000)[1]	2	3	000	(1)	S.	3	0.00	
0	lelta-BHC	QN	00:0) <u>[</u>]	Ê	5	000))[1]	g	Ħ	0000)[]]	8	3	0000)	
11	gamma-BHC(Lindane)	Q	0000))[1]	æ	5	0000) [<u>1</u>]	Q	Ħ	0000	[1]	S	3	0000)	
100 101 100 101	gamma-Chlordane	Q	0000)[I]	Q.	5	0000)[I]	Q	5	0000	[1](QN QN	5	000)	
(100 (1)) (1) (1) (1) (1) (1) (1) (1) (1) (1	LMO3.2 - Semi-Volatile Organic	Compounds (ug/L)													
ND	,2,4-Trichlorobenzene	S)	Ξ(Q.	n	001)) <u>[i]</u>	ΘŽ	ħ	001	(1)	Q	5	001	
ND	,2-Dichlorobenzene	Q	007	Ξ	Q	5	00'1)[1]	QN Q	5	007)[1]	Q.	5	001)	
ND (100 [1] ND UI (100	,3-Dichlorobenzene	ND	(1.00) <u>[</u>]	Q.	Ħ	(1.00)[1]	£	ħ	00.1	[1](æ	5	001	
Opane) ND (1,00) [1] ND UI (1,00)	,4-Dichlorobenzene	NO	00'1	Ξ	QN QN	5	00'1	<u>(II</u>	S	n	00'1	ΞŒ	QN	n	007	
ND (100 (1)0 (1)0 (1)0 (1)0 (1)0 (1)0 (1)0	2,2'-oxybis(1-chloropropane)	QN	007	(11)	Q	Ħ	(1.00	Ξ	2	5	00'1	<u>[I](</u>	S	3	001	
MO (11) (100) (11) (110	,4,5-Trichlorophenol	ND	0.10) [I]	Q.	m	001)	(E)	Q	n	00:1)(II)	S	B	007	
ND	,4,6-Trichlorophenol	ND QN	(1.00) [II]	QN	5	00.1)[1]	Q	'n	00.1	(11)	Q	n	00.1	
ND (100)[1] ND (1 (100)[1] N	4-Dichlorophenol	QN	001)) <u>[I]</u>	Q.	3	00.1)[]]	Q.	∄	00.1	[1](Q	'n	001	
ND C LOO	.,4-Dimethylphenol	QN	001)[1]	Q.	B	00.1	Ξ(Q.	ħ	00.1)[I]	æ	5	0071	
ND	,4-Dinitrophenol	ND	(1.00)(11)	QN	3	00.1)[1]	æ	5	001	<u>(II)</u>	Ð	'n	00.1	
ON (11) ON (11	,4-Dinitrotoluene	ND	001))EI	Q	5	00.1)[1]	ê	5	001	<u>(H</u>	Q.	m	0.1	
ON (11) ON (11	;,6-Dinitrotoluene	ND	(1.00	<u>(E)</u>	Q	5	(1.00)[]]	æ	ā	(1.00	(1)	R	n	00.1	
ON [1](001) TO QN [1](001) TO QN [1](001) QN (II)(001)	-Chloronaphthalene	ND	0.1)[1]	Q.	Ħ	(1.00)[1]	æ	n	00.1) <u>[1]</u>	Q	Ħ	0.10	
) IN QN [1](001) IN QN [1](001) QN ON (II) (100) QN	2-Chlorophenol	ΩN	00.1)[1]	æ	5	00.1)[1]	Ð	5	00.1)[]]	Ą	3	00.1	
) IN QN [1](001) IN QN [1](001) QN	2-Methylnaphthalene	N Q	001)) []]	Q	Ħ	. 1.00)[1]	£	5	00.1	111	S	3	00'1	
	2-Nitroaniline	2	(1,00	H)(Ω	5	001))[1]	S	3	007	E)(S	5	(1.00	

Table 4
Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

Site Id
Location Id
Sample Id
Log Date

DVCT

DVCT-S004

NA-DVCT-S004-51

09-MAR-98

ELEM ELEM-SO04 NA-ELEM-SO04-51(1005) 08-MAR-98

ELEM ELEM-SO04 NA-ELEM-SO04-51(1300) 08-MAR-98

REF2 REF2-SO02 NA-REF2-SO02-51 07-MAR-98

_	
ımete	
Para	

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/L)	ompounds, con	t. (ug/L)													
2-Nitrophenol	S	00'1)[1]	Q	'n	(1.00)[1]	g	ħ	(1.00)[1]	S	ā	00'1	Ξ
3.3'-Dichlorobenzidine	Q.	00'1	(1)	Q	3	0.10)[1]	<u>R</u>	Ħ	0071)[1]	Q	n	00:1	Ξ
3-Nitroaniline	QN	001)[1]	Q	5	007)[1]	R	n	(1.00	(11)	Q	5	00.1	Ξ
4.6-Dinitro-2-methylphenol	QN QN	(1,00)[1]	S	Ħ	(1.00)[1]	S	5	00.1)[1]	Q	n	00.1	[][
4-Bromophenyl-phenylether	QN QN	(1.00	[1](Q	n	(1.00)[1]	S	Б	00.1)[1]	QN	m	00.1) [i]
4-Chloro-3-methylphenol	QN QN	(1.00	(E)	Ð	₿	00.1	[1]	ΩN	Ħ	00.1	[1]	ND	∄	00.1	<u>(E</u>
4-Chloroaniline	ND	0071)[1]	Q	3	00.1)[1]	QN.	Ħ	00.1	(11)	ΩN	5	00.1	<u> </u>
4-Chlorophenyl-phenylether	QN	001)(1)	Q	Ħ	(1.00)[I]	R	m	(1.00)[1]	Q.	Ħ	00.1	(E)
4-Nitroanaline	QX	(1.00)[1]	Q	5	00.1)[1]	Q.	n	(1.00	[1](Ð	5	00:1	<u>(</u>
4-Nitrophenol	QX QX	01:00	(11)	Q.	Ħ	007)[1]	QN	ħ	(1.00	[1]	QN	₽	00:1) [E]
Acenaphthene	QN QN	(1.00	[1](Ð	Б	(1.00	[1](QN	5	00:1	(E)	Q	5	00.1	<u>=</u>
Acenaphthylene	QN	(1.00	E)(Q	Ħ	00:1)[1]	<u>N</u>	∄	0.1.00)[1]	QN	3	00'1)) <u>[</u>
Anthracene	QN	001)	(1)	QN	Ħ	00.1)[1]	N	B	00.1	(1)	Š	∄	0071)[:]
Benzofalanthracene	QX QX	00'1	(1)	Ð	a	00.1)[1]	Q	5	00.1)[1]	QN	5	00.1	(11)
Benzo(a)pyrene	S	(1.00		QN	n	00.1)[1]	Q	5	00.1) [I]	S	ħ	00'1)	[](
Benzo(h)fluoranthene	Q.	(1.00	(E) (Q.	n	00.1)[1]	Q	3	00.1)[1]	Q.	5	00:1	<u>[1]</u> (
Benzo(g,h,i)perylene	ND	(1.00)[1]	Ð	5	00.1	<u>[E]</u> (Q	∄	00.1)[1]	Q	Ħ	00.1)[1]
Benzo(k)fluoranthene	QN	(1.00)[1]	Q	ħ	00.1	[1]	Q N	∄	(1.00)[1]	Ð	n	00.1	Ξ(
Butylbenzylphthalate	ND ON	001)	(1)	S	≘	00.1)[1]	QN QN	5	007)(II)	QN	n	00.1) []
Carbazole	QN QN	(1.00	[1]	S	'n	00.1)[1]	Ω̈́	5	007)[1]	Q	5	00.1)[<u>[</u>]
Chrysene	QN	(1.00	(H)	R	3	00'1))[1]	Q	5	007)[1]	S	5	00.1	<u>=</u>
Dibenz(a,h)anthracene	QN	00.1)[1]	QN Q	3	00'1)[1]	Q	5	007	(11)	Q	5	071	Ξ
Dibenzofuran	QN QN	0.1)[1]	S	n	007)[1]	S	3	007) [<u>1</u>]	Q	∄	07.0	=

Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

		D NA-D'	DVCT DVCT-SO94 NA-DVCT-SO94-51	£		NA-ELI	Site Id Location Id Sample Id Log Date Log Date ELEM-S004 NA-ELEM-S004-51(1005)	d an I		NA-EI	ELEM ELEM-SO04 NA-ELEM-SO04-51(1300)	l 004 -51(1300)		. 2	REF	REF2 REF2-SO02 NA-REF2-SO02-51	
Parameter		8	09-MAR-98				08-MAR-98	&			08-MAR-98	8 6,			07-N	07-MAR-98	
OLMO3.2 - Semi-Volatile Organic Compounds, conf. (ug/L)	ompounds, c	ont, (ng	3														
Diethylphthalate	2		1.00	[1](Q	Ħ	(1.00	[1](Æ	5	001	(H)	Q	m	_	90	101
Dimethylphthalate	ND	J	1.00	[1]	ND	3	007	E)(QN	5	00.1	Ξ	Q.		, <u> </u>	1.00	ΞΞ
Fluoranthene	S	J	1.00	Ξ	Ð	3	00.1)[]]	Q	5	00.1	(II)	<u>R</u>			1.00	ΞΞ
Fluorene	Ð	_	1.00	<u>[I]</u> (Ð	3	00.1	[](QN	5	007	(11)	QX		· •	1.00	Ξ
Hexachloro-1,3-butadiene	S	Ŭ	1.00	(E)	2	m	007	(Ξ)	Q	n	007	(1)	QN	m	· •	1.00	ΞΞ
Hexachlorobenzene	8)	1.00)[1]	S	5	00.1	<u>[i]</u>	Ð	Ħ	00.1	Ξ(QN	m	Ú	1.00	Ξ
Hexachlorocyclopentadiene	Q.	_	1.00	Ξ	Q	5	001	(E)	æ	Ħ	00.1	(1)	QN	m	_	00.1	ΞΞ
Hexachloroethane	Q	<u> </u>	1.00)[I]	Q	₿	007	(E)	Ð	5	00.1	(11)	QN	m c	·	1.00	Ξ
Indeno(1,2,3-cd)pyrene	Q.	J	1.00	<u>[]</u>	Ð	5	(1.00	[1]	g	3	00.1	Ξ(QN ON	ū	Ų	1.00	Ξ
Isophorone	Ð	Ŭ	00.1	Ξ	S	5	007	<u>(</u>	Ð	3	00:1	Ξ(ΩN	m	J	1.00	Ξ
N-Nitroso-di-n-propylamine	æ	J	1.00	<u>(II)</u>	S	5	00.1	<u>[i]</u>	Q.	5	00.1	(E)	Đ.	m	J	1.00	Ξ
N-Nitrosodiphenylamine	2	_	90:	Ξ	S	5	007	Ξĺ	Ð	ħ	(1.00)[Ξ]	8	m	U	1.00	Ξ
Naphthalene	2 9	<u> </u>	90;	Ξ	2 !	5	97	Ξ	£	5	(1.00	Ξ	S		J	1.00	Ξ
Nitrobenzene	2 9	<u> </u>	90:1 1:00	Ξ	2 !	5 ;	81. 3	=	£	3	00'1	Ξ(QN QN		J	1,00	Ξ(
Fentachlorophenol	€ !	•	90:T	Ξ	2	5	9. : •	Ξ	2	5	00.1	Ξ(QN	n	J	1.00	Ξ
Phenanthrene	2 9	•	00.1	Ξį	2	5	90:1	==	£	3	(1.00	(E)	QN		J	1.00	Ξ(
Phenoi	Ê	~	1.00	Ξ	£	5	00.1) []	Š	5	(1.00	Ξ(QN	3	J	1.00	[1]
Pyrene	£	_	90:	Ξ	S	5	00.1	Ξ	Q	n	0.1	<u>(II</u>	ON ON	Ħ.	Ü	1.00	Ξ
bis(2-Chloroethoxy)methane	2	J	99:	<u>(</u>	Ê	⋾	00:1	<u>(</u>	9	5	001	(E)	QN	ħ	<u> </u>	1.00	Ξ
bis(2-Chloroethyl)ether	윤	J	1.00	Ξ	9	5	00:1	Ξ	Q	5	007	EΞ(N.	5	Ų	1.00	[]
bis(2-Ethylhexyl)phthalate	2	<u> </u>	00.1	Ξ	S	5	007	Ξ	R	5	(1.00	Ξ(N N	5	J	1.00	Ξ
di-n-Butylphthalate	200) E	90:1	Ξ	3.00	2	(1.00	Ξ	QN	3	00.1	Ξ	Ð	Ħ	J	00.1) E3
di-n-Octy/phthalate	2	_	1.00	Ξ	Q N	5	07	EE (Ω	3	001	(11)	S	5	(1	00.1	[]

Table 4 Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

							Site Id Location Id Sample Id Log Date	7.0				·				
		DVC NA-DVC 09-Iv	DVCT DVCT-SO04 NA-DVCT-SO04-51 09-MAR-98	-	-	FA-ELE	ELEM-S004 ELEM-S004 NA-ELEM-S004-51(1005)	1005)	2	I (A-ELE	ELEM ELEM-SO04 NA-ELEM-SO04-51(1300) 08-MAR-98	(1300)		NA-	REF2 REF2-SO02 NA-REF2-SO02-51 07-MAR-98	75
Parameter																
OLMO3.2 - Semi-Volatile Organic Compounds, cent. (ug/L)	Compounds, co	nt. (ug/L	•		·									;		;
o-Cresol	ND	J	(1.00)[1]	Q.	3	00.1	<u>=</u>	ã	5	90:1	Ξ.	2	5 :	907	Ξ,
p-Cresol	8	J	(1.00)[I]	Q.	5	0 1:00	<u>(11)</u>	9	5	(1.00	[E] (Q Z	3	0.100	[1]
SW8298 - Dioxins (ppq)																;
1,2,3,4,6,7,8,9-OCDD	7.60	·)	4.60	(11)	Ŗ		(4.70)[1]	Y.				2		(2.50	Ξ:
1,2,3,4,6,7,8,9-OCDF	QN	Ü	3.70	Ξ(S		(4.00)[1]	NA				2		0.700	Ξ
1,2,3,4,6,7,8-HpCDD	QN	Ü	3.70)[1]	Q		(420	Ξ(NA				Ŝ		(2.30	Ξ
1,2,3,4,6,7,8-HpCDF	ND	Ü	2.70)[1]	ND		(2.90	E](NA				æ) 97:1	Ξ
1,2,3,4,7,8,9-HpCDF	QN ON	Ü	3.50	[1]	QN		3.70	E)(N A				Q.		2.20	Ξ
1,2,3,4,7,8-HxCDD	QN	Ü	3.50	[1]	QN		(4.40	<u>=</u>	Ν				2		3.10	Ξ,
1,2,3,4,7,8-HxCDF	Q	Ü	2.30	Έ(2.90	-	(2.40	Ξ.	Ϋ́				2		09:1	E :
1,2,3,6,7,8-HxCDD	QN	Ü	2.80)[1]	Q.		3.40	Ξ	¥Z				2 !		2.40	Ξ
1,2,3,6,7,8-HxCDF	QN	¥	1.80)[1]	Ð		(2.10	Ξ	Y.				2 !		9:1-3: 	Ξ.
1,2,3,7,8,9-HxCDD	ND	Ü	2.90	E)(2		3.40	Ξ	¥ :				2		R 2	EX
1,2,3,7,8,9-HxCDF	QN	Ü	2.70	<u>=</u>	g		2.70	EE (Y :				Q S		R: 1	E S
1,2,3,7,8-PeCDD	Q	Ü	2.20) <u>[1]</u>	S		3.60	=	Y Y				2 :		0.1.3 0.1.3	Ξ
1,2,3,7,8-PeCDF	QN	_	1.80) <u>[1]</u>	3.10	_	2.50) <u>[1]</u>	¥.				2 !		<u> </u>	Ξ
2,3,4,6,7,8-HxCDF	QN QN	V	2.30)[1]	Q		(2.60)[1]	Ϋ́				2) 1.3	Ξį
2,3,4,7,8-PeCDF	Ð	J	1.90)[1]	Ð		(2.50) <u>[1]</u>	ΑN				Ê		S	Ξ ;
2,3,7,8-TCDD	QN	Ų	1.50)[1]	Ð		(2.50	<u>[1]</u> (NA VA				2		05.1	Ξ ;
2,3,7,8-TCDF	QN	J	1.10	[[]	Q		(2.00	(1)	Ϋ́N				2		01.10	Ξ,
Total HpCDD	S	<u> </u>	3.70	<u>(</u>	Q.		(420	Ξ	Ϋ́				S		2.30	Ξ
Total HpCDF	9	J	3.00)[1]	QN		(330	[1]	Y V				Q N		(2:00	ΞĆ

Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

	REF2 REF2-SO02 NA-REF2-SO02-51 07-MAR-98	
	ELEM ELEM-SO04 NA-ELEM-SO04-51(1300) 08-MAR-98	
Site Id Location Id Sample Id Log Date	ELEM ELEM-SO04 NA-ELEM-SO04-51(1005) 08-MAR-98	
	DVCT-SO04 NA-DVCT-SO04-51 09-MAR-98	
	Parameter	

SW8290 - Dioxins, cont. (ppq)										•
Total HxCDD	QN	3.00) [1]	QN	3.70)[1]	NA	QN	(2.70	. 617
Total HxCDF	N	(220	<u>(II)</u>	2:90	(2.50)[1]	NA	QX	991	ΞΞ
Total PeCDD	Ą	(2.20	[1](ND QN	3.60	[1]	NA	QX	Q. T	ΞΞ
Total PeCDF	QN QN	(1.90	[1]	3.10	(2.50	(1)	NA	9	\$	ΞΞ
Total TCDD	QN Q	(1.50	<u>[H]</u> (ND	(2.50	<u>(</u>	NA	2	S 57	3 5
Total TCDF	QN	(1.10	(11)	QN Q	(2.00)[1]	NA	Q.	(1.10	ΞΞ

Table 4
Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

						Site Id Location Id Sample Id Log Date	fd fd	•							
		TRND TRND-SO11 NA-TRND-SO11-51 10-MAR-98	l 1-51		NA-	TRND TRND-SO16 NA-TRND-SO16-51 15-MAR-98			NA.	TRND TRND-SO27 NA-TRND-SO27-51 16-MAR-98	15-		T NA-T	TRND TRND-SO31 NA-TRND-SO31-51 17-MAR-98	=
Parameter															
OLM03.2 - Pesticides and PCBs (ug/L)	•											!	;		
4,4'-DDD	QN	0000	(11)	Q	5	00:0) <u>[1]</u>	9	5	0000	Ξ	<u>2</u> !	3 :	0000	Ξ
4,4'-DDE	N Q	0000	(1)	Ø	5	00:0	<u>=</u>	Ð	ħ	0000	Ξ	2	3	000	Ξ
4,4'-DDT	N	0000)[<u>[</u>]	ON ON	5	0000	<u>(E</u>	Q	5	0000)[1]	2	5 :	0000	Ξ
Aldrin	ND	0000)[1]	QN	5	0000)[1]	Q	5	0000	(1)	2	5	0000	Ξ
Aroclor-1016	Ø	00:00)[1]	Q.	5	0000	ΞŢ	Ð	Ħ	00:0)[1]	R	5	0000	Ξ
Aroctor-1221	Q	00:0	[1](<u>R</u>	5	0.00)[1]	Q	5	00:0)[1]	S	5	0000	Ξ,
Aroclor-1232	Q.	0000)[1]	2	ā	0000)[1]	Ð	5	0000	(ii)	2	5	000	Ξ ;
Aroclor-1242	ON.	0000)[1]	Ð	3	0000) [<u>1</u>]	Ð	⋽	0000	(<u>[</u>]	2	5 :	90:0	Ξ,
Aroclor-1248	N N	00'0	(1)	Q	Ħ	0:00)[1]	Ð	5	000) <u>[1]</u>	2	5 :	0000	
Aroclor-1254	QN	00.0	(1)	Q	5	00:0	[](g	3	0.00	(E) (2 9	3 :	000)	Ξ,
Aroclor-1260	QN	00'0	Ξ.	QN	3	0000	Ξ:	9	3	0000	Ξ.	2 8	3 3	000	
Dieldrin	Q	00:0	Ξ	Q	3	0000	Ξ(2 :	3 :	000)	Ξ	2 £	3 3	0000	
Endosulfan I	Q :	0.00	Ξ	2 9	3 5	0000	E	2 2	3 5	B) (1	111	2 5	3 🗏	900	
Endosulfan II	2 9	000	Ξ,	2 5	3 5	800	Ξ.	2 2	3 =	980		2	5 5	00:0	ΞΞ
Endosultan sultate	3 9	000	E (2 5	3 5	88	E	É	3 =	900	1111	2	ñ	0.00	Ξ(
Endrin	2 5	900	ΞΞ	Ê	3 3	000	E (Q.	=	0000	EE (Q	3	00:0	ΞĆ
Endin retone	2	000	ΞΞ	Q	B	000	[1]	QN.	n	00:0	(1)	QN	Ħ	0000	<u>(E</u>
Hentachlor	Q	00:0	[1]	Q	₽	000)	[1]	QN	5	00:0)[1]	Q	5	000)	<u>=</u>
Heptachlor epoxide	Q	0000	<u>[1]</u> (QN	5	0.00	[1](QN	Ħ	0000))[1]	Q	3	0.00	(E)
Methoxychlor	QN Q	0000)[1]	QN QN	5	0000	[:](ON	5	00:0)[1]	Q	5 :	0.00	Ξ
Toxaphene	Q	00:0	(1)	QN	Ħ	000)	(11)	2	3	000	[1]	2	B :	0000	ΞĘ
alpha-BHC	Q.	0000	Ξ(Q.	Ħ	0000	[1]	2	5	0.00	[1]	2	3	000	111

Compiled: 06/29/98

Table 4
Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

							Site Id									İ
							Location Id Sample Id	pi Pi								
							Log Date	ate								
		TR NA-TR	TRND TRND-SO11 NA-TRND-SO11-51	य		NA	TRND TRND-SO16 NA-TRND-SO16-51	6 6-51		X.	TRND TRND-SO27 NA-TRND-SO27-51	-51		X	TRND TRND-SO31 NA-TRND-SO31-51	īŞ
Parameter		01	10-MAR-98				15-MAR-98				16-MAR-98				17-MAR-98	
OLM03.2 - Pesticides and PCBs, cont. (ug/L)	ng/L)															
alpha-Chlordane	S.	J	00.0	(11)	2	∄	000)	(E)	S	3	000))[1]	Q	=	wo)	Ш
beta-BHC	Q.	J	0000) [E]	2	Ħ	0000	Ξ(Q.	B	000	(E) (Q	3 3	000	Ē
delta-BHC	Q.	U	000	[I](S	5	0000))[1]	æ	5	000	(1)	Q	5	000	
gamma-BHC(Lindane)	<u>R</u>	J	000	Ξ(S	5	0000	[E](Q	n	000)	(E) (S	5	000	ΞΞ
gamma-Chlordane	QN Q	Ų	0.00	[1]	S	m	00:00	[1](N	n	0000)	Ξ	Q	5	0000)	ΞΞ
OLMO3.2 - Semi-Volatile Organic Compounds (ug/L)	poumds (uş	VL)														
1,2,4-Trichlorobenzene	N Q	•	1.00)[1]	S	Ħ	00.1	[1](S	Ħ	001)[1]	Q		(100	E
1,2-Dichlorobenzene	Q	_	1.00	[1]	S	Ħ	00.1	<u>(</u>	Q.	5	. 100	Ξ	£		901	ΞΞ
1,3-Dichlorobenzene	ND	Ų	1.00	EE) (2	5	00.1	(E)	Q.	ā	00.1	Ξ	Q		00 1)	E (
1,4-Dichlorobenzene	Ð	J	99.	Ξ	QN N	5	00.1	(E)	Q.	S	00.1)[1]	QN		(1.00	ΞΞ
2,2'-oxybis(1-chloropropane)	2	_	1.00	<u>(E)</u>	Ð	5	(1.00	(1)	9	3	(1.00	(E)	Q		(1.00	Ξ
2,4,5-Trichlorophenol	2 2	<u> </u>	8 8	ΞΞ	9 9	3 5	87.5	Ξ	9 9	в:	(1.00	Ξ(QN :		0071) E
2,4-Dichlorophenol	2 2		1.00		2 2	3 3	87		2 2	3 E	8 5		2 9		007	Ξ
2,4-Dimethylphenol	QN QN	· _	1.00	Ξ	Q	5	(1:00	ΞΞ	2	3	901	ΞΞ.	2 2		97 T	ΞΞ
2,4-Dinitrophenol) m	1.00)[1]	Q.	5	(1.00	(1)	Ð	3	(1.00	ΞΞ	£		801	E (
2,4-Dinitrotoluene	Q.	U	1.00	<u>(II)</u>	QN	3	00'1)	(11)	S	3	007) [I]	Ð		901	ΞΞ
2,6-Dinitrotoluene	Q Q	Ú	00:1	<u> </u>	Q	n	007	[<u>[</u>]	Q	5	0071	(11)	QN		1.00	ΞΞ
2-Chloronaphthalene	QN	Ų	1.00	Ξ	S	Ħ	(1.00	[<u>[</u>](Q.	∄	0071)[1]	S		001	ΞΞ
2-Chlorophenol	Q	Ü	1.00	E)(S	3	0071	[[](QN	3	00.1)[1]	S		90:1	ΞΞ
2-Methyinaphthalene	£	Ü	1.00	Ξ	2	5	00.1) <u>[]</u>	Ð	5	00.1) [I]	Q.		001	Ξ
2-Nitroaniline	<u>e</u>	Ü	90.)[I]	<u>R</u>	5	00.1	[1]	Š.	5	(1.00	[1]	Q		(1.00	Ξ.

Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

	TRND TRND-SO31 NA-TRND-SO31-51 17-MAR-98
	TRND TRND-SO27 NA-TRND-SO27-51 16-MAR-98
Site 1d Location 1d Sample 1d Log Date	TRND-SO16 TRND-SO16 NA-TRND-SO16-51 15-MAR-98
	TRND TRND-SO11 NA-TRND-SO11-51 10-MAR-98
	Parameter

JLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/L)	: Compounds, co	nt. (ug/L)											
2-Nitrophenol	Q.	(1.00)[1]	Q	n	00:1	<u> </u>	9	5	00.1)[1]	QN	0.100
3.3'-Dichlorobenzidine	QN	(1.00)[1]	Q.	5	00.1)[1]	Q	n	00.1)[]]	ΩN	007
3-Nitroaniline	QN	00'1)[1]	Ð	n	007	<u>[i]</u> (S	5	(1.00)[1]	ΩN	00.1
4.6-Dinitro-2-methylphenol	QX	001)[1]	QN	5	00.1) <u>[1]</u>	Q	m	(1.00)[1]	QN	(1.00
1-Bromophenyl-phenylether	æ	00:1)[1]	Q	5	00.1	<u>[i]</u> (æ	5	(1.00)[1]	QN	0 1.00
4-Chloro-3-methylphenol	QN QN	(1.00)[1]	Ð	5	(1.00	[1](æ	∄	(1.00	[1](QN	0.100
4-Chloroaniline	ND	00'1)[1]	8	n	00.1)[1]	Q	5	00.1)[1]	Q	007
4-Chlorophenyl-phenylether	ND	00'1	(11)	Q	ħ	00'1)	[1]	QX	5	00.1)[1]	QN ON	(1.00
		8	181	S	Ξ	13) III	S	111	001	E	QN	001

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/L)	Compounds, cont.	. (ug/L)												
2-Nitrophenol	S	0.10)[1]	Q	5	00:1)EI	g	5	1.00)[<u>]</u>]	S Q	00:1	===
3.3'-Dichlorobenzidine	QN QN	0.10)[1]	S	5	00.1	111	æ	5	1.00)(E]	ND	(1.00	Ξ
3-Nitroaniline	QN	001)	(1)	S	n	007	[i]	S	5	1.00)[1]	QN	(1.00)[]
4.6-Dinitro-2-methylphenol	QN	001)[1]	ΩN	n	00.1)[1]	Ø	n	1.00)[1]	QN	(1.00	Ξ(
4-Bromophenyl-phenylether	Q.	(1.00)[1]	Q	S	001)	<u>[1]</u> (Q.	5	1.00)[1]	ND	00'1)[1]
4-Chloro-3-methylphenol	Q.	(1.00)[1]	S	5	(1.00	[1](Ð	5	(1.00) [E]	QN	(1.00	<u>[i]</u>
4-Chloroaniline	ND	00'1	(1)	Ð	5	00.1)[1]	ND	n	(1.00)[1]	ND Q	(1.00)[1]
4-Chlorophenyl-phenylether	QN	00'1)(11)	Ð	m	00.1	[1]	QX	5	(1.00)[1]	QN Q	00'1	(Ξ)
4-Nitroanaline	S	00'1)(11)	Ð	n	00.1	[1]	Q.	ñ	1.00	EI(ND	(1.00	<u>=</u>
4-Nitrophenol	N QN	001)[I]	Q	5	00'1)[1]	S N	Б	00.1)[1]	Q	00.1	Ξ
Acenaphthene	QN ON	(1.00	(1)	QN	5	(1.00	111	æ	5	00.1	(11)	ND QN	00:1	Ξ
Acenaphthylene	QN	(1.00	(11)	QN QN	5	00'1)[1]	Q	n	(1.00)[1]	QN Q	(1.00	ΞŒ
Anthracene	Q	001)	111	S	m	00'1) [i]	æ	n	007)[1]	QN	(1.00	Ξ(
Benzo(a)anthracene	QN	(1.00	(1)	ND	5	00.1)[1]	Q.	'n	(1.00)[1]	QN QN	0.10	<u>(</u>
Benzo(a)pyrene	QN	(1.00)[1]	QN	Б	(1.00)[1]	æ	n	(1.00)[1]	Q	00.1	<u>=</u>
Benzo(b)fluoranthene	QN	(1.00	[1]	Q.	n	00.1)[1]	QN	n	(1.00)[1]	QN	001	Ξ
Benzo(g,h,i)perylene	QN	(1.00) [1]	QN	n	00.1)[1]	ND	n	(1.00)[1]	QN QN	1.00	=
Benzo(k)fluoranthene	Q	(1.00	101	Q	5	(1.00)[1]	Ð	5	(1.00)[1]	Q.	(1.00	Ξ
Butylbenzylphthalate	QN	(1.00)[1]	Q	B	00.1)[1]	Q.	'n	00:1)[I]	Q	(1.00	Ξ
Carbazole	ND	(1.00)[1]	Q	n	00.1)[1]	R	Ħ	1.00)[I]	Q.	00.1	Ξ
Chrysene	QN	(1.00)[1]	Q	'n	(1.00	(11)	N	n	00.1)[1]	Ą	0.10	Ξ
Dibenz(a,h)anthracene	QN	0.10)[1]	2	5	00.1)[1]	Q	5	(1.00)[1]	δ	0071) <u>[</u>
Dibenzofuran	NO ON	(1.00)[1]	8	5	00'1	[1](Q	3	(1.00	(H)	Q Q	00.1	[]

	TRND TRND-SO31 NA-TRND-SO31-51 17-MAR-98
	TRND TRND-SO27 NA-TRND-SO27-51 16-MAR-98
Site Id Location Id Sample Id Log Date	TRND TRND-SO16 NA-TRND-SO16-51 15-MAR-98
	TRND TRND-SO11 NA-TRND-SO11-51 10-MAR-98
	Parameter

OLMO3.2 - Semi-Volatile Organic Compounds, cont. (ug/L)	Compounds, cont	. (ug/L)												
Diethylphthalate	Q.	001))(11)	S	5	00.1	111	Q	ħ	001) [1]	QN	1.00	100
Dimethylphthalate	Š	001	111	Q.	Б	00.1)[1]	QN	5	(1.00) <u> </u>	1.89	ΞΞ
Fluoranthene	N O	00'1)[1]	S	5	00.1)[1]	Q	5	007	E C	e S	9 1	ΞΞ
Fluorene	NO	00.1)[1]	Ð	5	00.1	101	Ð	∄	(1.00	Ξ	Q	8	ΞΞ
Hexachloro-1,3-butadiene	Q.	001)[1]	R	n	00'1)[1]	8	B	007	<u> </u>	Q	8	ΞΞ
Hexachlorobenzene	Q.	(1.00)[1]	Q	5	001)[1]	S	ß	001) H	2	9	3
Hexachtorocyclopentadiene	Q.	0.1)[1]	Q.	a	00.1	(11)	S	Ħ	0.10	(E) (Q.		ΞΞ
Hexachloroethane	ND	(1.00)[1]	Š	m	00.1)[I]	S	∄	1.00		2	91	ΞΞ
Indeno(1,2,3-cd)pyrene	Q.	007)[1]	S	n	00.1	1:10	Q	5	001)	Ξ(Q	901	3 5
Isophorone	QN	(1.00)[1]	Q	5	00'1)[I]	S	5	007	(H)	QN	9	
N-Nitroso-di-n-propylamine	ND	007)E3	S	ñ	077)[1]	Q	≘	00.1)111	Ê	81	ΞΞ
N-Nitrosodiphenylamine	ND	(1.00) <u>[1]</u>	Q	5	00.1)[i]	QN Q	n	001	: III (2	8 5	ΞΞ
Naphthalene	Ω	001	111	Ŝ	5	00'1	[1]	Ð	5	001) E1 (2	8 5	ΞΞ.
Nitrobenzene	QN	0.1)[1]	Q	Б	00.1)[1]	S	5	1.00	E (2	8	Ξ
Pentachlorophenol	N Q	0.10)[1]	£	'n	00.1)[1]	S	5	001	(1)	2	8 5	Ę
Phenanthrene	Q.	007)[11]	Ð	n	00.1)[1]	Q.	₽	001	EI (2	90.	ΞΞ
Phenol	Q.	(1,00)[1]	Ð	5	(1.00)[1]	Ð	5	001)[1]	A Q	901	
Pyrene	Ş	0.10)[1]	S	5	00:1)[1]	æ	n	00.1)[1]	QN	97	
bis(2-Chloroethoxy)methane	Z	00.1	<u>[]</u>	Q	5	007	<u>(E</u>	S	m	00.1)[1]	QN	(F)	ΞΞ
bis(2-Chloroethyl)ether	Q N	00'1)[1]	Q	n	00.1)[1]	Q	3	001	Ξ	Q	81.	3 5
bis(2-Ethylhexyl)phthalate	QN	00'1) [E]	Q.	5	00.1)[1]	9	5	001)[1]		8 5	3 5
di-n-Butyiphthalate	QN	00'1	(11)	S	S	007)[1]	Q	5	(1.00	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Q	81	ΞΞ
di-n-Octylphthalate	ND	00'1	(1)	Q.	3	00'1)[1]	S	n	007	Ξ	QN QN	97	E

Table 4
Results of Organic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

						Site Id Location Id Sample Id Log Date	- I - I							
	_	TRND TRND-SO11 NA-TRND-SO11-51	11 11-51 8		T NA-T	TRND TRND-SO16 NA-TRND-SO16-51 15-MAR-98	51		NA.	TRND TRND-SO27 NA-TRND-SO27-51 16-MAR-98	51	Ž	TRND TRND-SO31 NA-TRND-SO31-51 17-MAR-98	15
Parameter														
	•	(1)												
OLMO3.2 - Senu-Votatue Organic Compounds, cont. (ug/1.)	ompounas, con ND	ii. (ug/t.) (1.00)[1]	QN	В	001))[1]	QN	₽	(1.00	(11)	QN	(1.00) [ii]
p-Cresol	ND	(1.00	111(ND	5	007)[1]	Q.	Ħ	(1.00	[][ΩN	(1.00)[1]
SW8290 - Dioxins (ppg)														,
1,2,3,4,6,7,8,9-0CDD	6.70 J	(4.40	(11)	Q		(20.7	[1](8		(18.3)[1]	NO O	(10.8)[[]
1,2,3,4,6,7,8,9-OCDF	QN	(3.50	(1)	Ð		(18.5) [E]	N		(16.4) <u>[]]</u>	ND	0.70	Ξ
1,2,3,4,6,7,8-HpCDD	Q.	(3.60)[1]	9		(11.5)[1]	9		(11.1)[1]	QN	(6.80	ΞΞ
1,2,3,4,6,7,8-HpCDF	Q.	(2.50	(11)	Ð		(7.10)[1]	7.10	-	09:9))[1]	Q I	(4.20	Ξ;
1,2,3,4,7,8,9-HpCDF	QN	(330)[1]	Q		(10.0	<u>=</u>	g	-	08'6)	E) (2	009)	Ξ
1,2,3,4,7,8-HxCDD	ND	(3.80)[1]	Ð		(720)[3]	8:60	-	7.40	=	ON !	5.00	E :
1,2,3,4,7,8-HxCDF	QN	(2.50)[1]	2		(4.70	[1]	9.60	- ,	4.50	Ξ	Q !	3.10	Ξ,
1,2,3,6,7,8-HxCDD	Q	03.00)[1]	Q		(7.10	Ξ	7.80	~ ·	7.30	E 5	2 9	B.4.	ΞΞ
1,2,3,6,7,8-HxCDF	Q !	(2.00	E (2 9		0.4.60	ΞΞ	∞. 5-8-	- -	0.4.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	E (2 5	0.00	Ξ,
1,2,3,7,8,9-HxCDD	2 2	3.10		2 2		OF'4	ΞĘ	8.28	• -	9 09 	E (Q	(4.20	ΞΞ
1,2,3,7,0,9-TIACDE 1,2,3,7,0,0-CDD	2 2	(250	E)(2		5.70	ΞΞ	9.70	-	(6.00	Ξ	ND	(4.30)[1]
1,2,3,7,8-PeCDF	2	(1.90	E) (QN		(4.40	(1)	13.0	-	(430	(11)	ND	(3.00)[1]
2,3,4,6,7,8-HxCDF	ND	(2.50	(1)	QN		09'5)	[1]	6.90	 ,	(5.30)[1]	<u>R</u>	0.3.70	Ξ
2,3,4,7,8-PeCDF	QN	(2.00	[1](:	QN.		(4.50	[1]	9.50	-	(4.40)[1]	Q.	320	Ξ
2,3,7,8-TCDD	N Q	(1.80)[1]	Ð		3.60	[<u>H</u>]	4.50	-	3.70)[1]	Q :	(2.70	Ξ
2,3,7,8-TCDF	N Q	(150)[1]	Q		(2.90	Ξ	Q		3.00)[1]	<u>Q</u> !	(220	Ξ,
Total HpCDD	Q.	(3.60)E3	Q		(11.5	Ξ	S		(11.1)[1]	Q :	08.9)	Ξ
Total HpCDF	QN	(2.80	E)(Ð		(8.30	Ξ	£		07.7	Ξ	Ð	200	[-][

					Site Ic							
					Location Id Sample Id							
					Log D	ate						
		TRND			TRND			TRND			TRND	
		TRND-SO11 NA-TRND-SO11-51	i.1 i.1-51		TRND-SO16 NA-TRND-SO16-51	6 6-51		TRND-S027 NA-TRND-S027-51	, 7-51		TRND-SO31 NA-TRND-SO31-51	1-51
		10-MAR-98	-		15-MAR-98			16-MAR-98			17-MAR-98	<u>.</u>
Parameter												
			-									
SW8290 - Dioxins, cont. (ppq)												
Total HxCDD	ND	(320	(11)	QN	(7.20	<u>(</u>	25.2	(7.30)[1]	NO	(4.90)[[]
Total HxCDF	ND	(2.40	[1](N Q	(5.20	[](9.60	(5.00)[1]	N	(3.50	Ξ
Total PeCDD	QN	(2.50	[1](QN Q	(.5.70	Ξ(9.70	00'9))[1]	N	(4.30	Ξ
Total PeCDF	ΩN	(190	(1)	QN	04.40	[](22.5	(4.40)[1]	N	(3.10	Ξ
Total TCDD	Q	(1.80) <u>[]</u>	QN Q	(3.60	<u>(E)</u>	4.50	3.70)[1]	N QN	(2.70	Ξ
Total TCDF	Q	(150	(11)	Ð	(2.90	(11)	QN	(3.00	[1](Q.	(220	ΞΞ

Compiled: 06/23

Table 5

Table 5
Results of Inorganic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

							Site Id Location Id	751				-				
							Sample Id Log Date	- ·								
		NA.	DVCT DVCT-SO04 NA-DVCT-SO04-51 09-MAR-98	51	Z	A-ELE	ELEM ELEM-SO64 NA-ELEM-SO64-51(1605) 08-MAR-98	1005)		NA.	REF2 REF2-SO02 NA-REF2-SO02-51 07-MAR-98	II.		T T-AN 16	TRND TRND-SO11 NA-TRND-SO11-51 10-MAR-98	15
Parameter																
E306 - Anions (mg/L)	ğ		00500 /		¢ Z				Ϋ́				NA			
Chloride	2 2		0.0200	ΞΞ	VA				NA				N.			
Sulfate	ND		0.0500	111	ΝΑ				NA				Ϋ́			
E353.2 - Nitrate (mg/L) Nitrate	3.66		(2.50) [1]	N A				NA				NA			
ILM64.0 - Total Cyanide (ug/L) Cyanide	QN		(5.00)[1]	QN		(5.00	(1)	11.4		(5.00	[1]	Q.		(5.00)[1]
ILMO4.0 - CLP Metals (ug/L)		t	961	5	48 4	a	021)	E C	17.7	œ	(12.0	111	QN		(12.0	Ξ
Aluminum	CC/	٠	3.00	E (Q	1	3.00	ΞΞ	Q.		(3.00	(11)	Ø		(3.00) [E]
Antuniony	S		(4.00	ΞΞ	ND		(4.00	(1)	Q.		(4.00	(E) (QN S	ı	4.00	ΞΞ
Barium	1.60	В	00.1	E) (0971	B	001	Ξ	1.50 ch	c	071	E 5	<u>8</u>	Ď	8 8	
Beryllium	2 9		0.1.0	Ξ	2 2		B 5	ΞΞ	2 2		97	E (9 Q		00.1	Ξ
Cadmium	ND 255	æ	26.0		786 286	М	(26.0	ΞΞ	336	B	(26.0	EI(280	æ	(26.0	Ξ
Chromium	2		007	Ξ	Q		00.1	[1](Q	Π	00'1	(11)	2 !	ď	90 7	Ξ
Cobalt	Q		(1.00	(E)	Q		(1.00	[1]	S	i	00.1	E :	Q į	£	81.5	ΞΞ
Copper	2.30	œ	00.1	[][2.10	æ	00.1	Ξ,	2.70	m	0.1.0		2:70 19.4	n,	(140	ΞΞ
Iron	34.4 5		. 14.0	E :	31.5 UN		(14.0 (2.00		g S		(2.00	E (C	QN.		(2.00	Ξ
Lead	Š		00.7	(FI)	2											

Compiled: 06/29/98

	TRND TRND-SO11 NA-TRND-SO11-51 10-MAR-98
	REF2 REF2-SO02 NA-REF2-SO02-51 07-MAR-98
Site Id Location Id Sample Id Log Date	ELEM-SO04 NA-ELEM-SO04-51(1005) 08-MAR-98
	DVCT DVCT-SO04 NA-DVCT-SO04-51 09-MAR-98
	Parameter

LIVECA: U - CLAT IVICIAIS, COIRT. (UB/L.)															
Magnesium	62.4	m	00'6)	<u>(E)</u>	120	B	00.6	(E)	68.2	83	00'6)	(E)	53.6	æ	00.6
Manganese	AN ND		00.1	(E)	1.00		00.1	[E](1.90		001	Ξ	Q		901
Mercury	QN.		0.100	[](ΩN		0.100	<u>(E)</u>	QN ON		0.100	Ξ	Q		0.100
Nickel	QN		00.1	[I](Q.		00.1	(E)	Q		(1.00	Ξ(2		001
Potassium	58.6	A	00'9)	(3)	95.0	В	009)	(E)	56.0	æ	009)	Ξ	38.1	æ	009
Selenium	S. C.		0.20	Ξ(Q	Π	(2.00	(E) (QX		(2.00	<u> </u>	Q	l	(2.00
Silver	AN		001)	(E)	QN		00.1	(1)	N ON		001	Ξ(2		9
Sodium	468	В	991	<u>(1</u>	5	c	001	(E)	24	Д	901	Ξ	683	æ	99
Thallium	QN.		(4.00)[1]	Ø		(4.00	Ξ	Q		(4.00	E (£	1	(400
Vanadium	Q.		001	<u>(</u>	Q.		00'1	(E)	ND		0.10	<u> </u>	2		901
Zinc	2.50	æ	001	EI (8.	æ	001	1111	210		. 13		130	¢	8

Table 5
Results of Inorganic Analyses For Round 1 Equipment Blank Samples, Atsugi NAF, Japan

			TRND				Site Id Location Id Sample Id Log Date	452			TRND	
Parameter		ž	TRND-SO16 NA-TRND-SO16-51 15-MAR-98	-51		X	TRND-SO27 NA-TRND-SO27-51 16-MAR-98	-51		XX	TRND-SO31 NA-TRND-SO31-51 17-MAR-98	S1
ILM04.0 - Total Cyanide (ug/L) Cyanide	QN		00'\$)	[1]	QN		(5.00	(1)	N Q		(5.00	137
ILMO4.0 - CLP Metals (ug/L)												
Aluminum	234	æ	(12.0) <u>E</u>	92.1	æ	(12.0	<u>=</u>	24.4	Ø	(12.0	Ξ.
Antimony	QN		3.00	Œ	Q		3.00)[1]	QN Q		(3.00) <u>[</u> []
Arsenic	Q.		(4.00	<u>(II)</u>	Ð		(4.00	<u>[E]</u> (Q		(4.00) <u>[</u>](
Barium	3.10	æ	00.1	(1)	QN		(1.00	Ξ(1.10	m	07.1) <u>[</u>]
Beryllium	S		00.1	<u>[1]</u> (QN		00.1	<u>(II)</u>	S		001	Ξ
Cadmium	QN		(1.00	(1)	ON		(1.00)[1]	R		00.1	Ξ
Calcium	375	B	(26.0	[1]	762	m .	(26.0	<u>=</u>	237	m	0.56.0	Ξ
Chromium	N N		00.1	Ξ	<u>Q</u> :		001	Ξ.	2 8		01.00	Ξ,
Cobalt	Ø §	6	9 <u>1</u> 5	ΞΞ	ON OF	a	8 5	Ξį	2 2 -	æ	87	ΞΞ
Copper	9.05 191	0 00	14.0	ΞΞ	14.0	<u> </u>	(14.0	ΞΞ	67.0	•	(14.0	Ξ
Lead	35.5		(2.00	Ξ(QN		0.20	(11)	Q.		(2.00	<u>(ii)</u>
Magnesium	149	я	00'6)	(1)	53.3	æ	00.6)	[1]	54.4	B	00'6))[1]
Manganese	1.80	æ	(1.00	<u>(II)</u>	Ð		00.1	<u>(</u>	170	æ	001	Ξ(
Mercury	Ð		0.100	[1]	Ð		0.100	<u>=</u>	Ð		0.100	Ξ
Nickel	Ð		(2.00	<u>[E]</u> (QN		(2.00	<u>=</u>	9.90	æ	(2.00	<u>=</u>
Potassium	85.9	æ	00.9)[1]	22.3	m	00.9	Ξ	90	æ	00'9)	=
Selenium	R		(2.00)[1]	Ø		(2.00	[1]	Q		(2.00	Ξ
Silver	Ø		00.1)[1]	QN		0.10	(1)	Ð		0.1	<u>[]</u>
Sodium	405	æ	001)	(11)	183	m	001)[<u>1</u>]	480	œ	<u>9</u> 01	Ξ

olice 10	Location Id	Sample Id
----------	-------------	-----------

Log Date

TRND TRND-SO16 NA-TRND-SO16-51 15-MAR-98

TRND TRND-SO27 NA-TRND-SO27-51 16-MAR-98

TRND TRND-SO31 NA-TRND-SO31-51 17-MAR-98

Parameter

ILMO4.0 - CLP Metals, cont. (ug/L)	3											
Thallium	<u>R</u>		(4.00	ΞĆ	QX		(4.00	(1)	QN QN		4.00	
Vanadium	£		00.1	<u>[1]</u> (ND		00.1	Ξ	S		901	Ē
Zinc	16.4	æ	00.1)[1]	2.30	8	00.1	Ξ	320	æ	(1.00	ΞΞ

APPENDIX I

Geotechnical Plots

Particle Size Distribution by Mechanical and Hydrometer Methods

Particle Size Distribution by incomme		T	
Project NAF Absub	Sample ID	NA-REFI-SO01-31	
B.B.C. C. C. C. C. C. C. C. C. C. C. C. C.	Date	4/2/98	
Analyst	Dete	1 11 11 11 11 11 11 11 11 11 11 11 11 1	

	Mechar	rical (Sieve) Method	
Wt. of wet sa		State State	53.98	the state of the state of
Moisture conte	ent (%), wet will	besis .	33.33	
VVt. of dry sam	ple. Ws (q)	9890030001334	35.99	4 127 - 4
	Dearn (mm)	Wt retd	% ret'd	% passing
0.75	19.000	0.00	0.00	100.0
0.375	9,500	0.00	0.00	100.0
4	4,750	0.14	0.39	99.6
10	2.000	0.53	1.47	98.1
25	0.710	4.98	13.84	84.3
50	0.300	10.98	30.51	53.8
100	0.150	5.05	14.03	39.8
200	0.075	4.36	12.11	27.6
T-4-1345	ined (g)	26.04		:37

Summary	
Mean particle size (mm)	0.259
Grevel (%) - retained on No. 4	0.4
Sand (%) - pass No. 4 & retained No. 200	72.0
Silt (%) - 0.074 to 0.005 mm	24.0
Clay (%) - smaller than 0.005 mm	3.6
and the second of the second o	

					Specific gravity		2.65			
	Hvd	rometer M	ethod		a, corr. factor			Zero correctio		5.0
	1194	101110201 141			Wt of sample to)	35 99	Meniscus corr	ection	0.5
Date mm/dd/vv	Time hh:mm	Elapsed Time minutes	Temperature **C	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	% Finer		Ut	K	Diameter mn
04/01/98	09:17		20.5				Start			0.054
04/01/98	09:18	1	20.5	13	8	22.2	14.1	14.08	0.0136	0.051
04/01/98	09:19	2		11	6	16.7	14.4		0.0136	0.0366
04/01/98	09:20	3	20.5	10	5	13.9	14.6	4.86	0.0136	
	09:21		20.5	10	5	13.9	14.6	3.64	0.0136	
04/01/98	09:25	8	20.5	9		11,1	14.7	1.84	0.0136	0.018
04/01/98		15	20.5	8.5		9.7	14.8	0.99	0.0136	0.013
04/01/98	09:32	30		7.5		7.5	15.0	0.50	0.0135	0.009
04/01/98	09:47		21	7	2.2	6.1	15.1	0.25	0.0135	
04/01/98	10:17	60		6	1.2	3.3	15.2		0.0135	0.004
04/01/98	11:17	120	21.5			2.5	15.3		0.0133	0.003
04/01/98	13:17	240		5.5		1.4	15.5		0.0130	
04/01/98	16:50	453		4.5		1.4	15.3		0.0136	
04/02/98	06:53	1416	20	5.5	0.5	1.4	13.3	<u> </u>	0.0.00	
								 	 -	
				<u></u>					 	
								 	 	
		Γ		<u> </u>				<u> </u>		
				L				 	<u> </u>	+
				T	<u> </u>			<u>1</u>	<u>. </u>	<u> </u>

Particle Size Distribution by Mechanical and Hydrometer Methods

Project NAF Atsugi	Sample ID NA-REF2-S005-02
Anelyst	Deta de la companya della companya d

Vt. of wet sa	mple (a)		53.38		
foisture contr	ent (%), wet wt. I	37.35			
VL of dry san	ple YVs (g)		33.44	% passing	
Sieve no.	Diam. (mm)	Wt refd	% refd		
0.75	19.000	0.00	0.00	100.0	
0.375	9.500	0.00	0.00	100.0	
4	4.750	0.00	0.00	100.0	
10	2.000	0.93	2.78	97.2	
25	0.710	4.68	13.99	83.2	
50	0.300	8.56	25.60	57.6	
100	0.150	4.28	12.80	44.8	
200	0.075	3.51	10.50	34.3	

Summary						
Mean particle size (mm)	0.210					
Gravel (%) - retained on No. 4	0.0					
Sand (%) - pass No. 4 & retained No. 200	65.7					
Silt (%) - 0.074 to 0.005 mm	27.4					
Clay (%) - smaller than 0.005 mm	6.9					

	1.5				Specific gravity		2.65	***************************************		**************************************	
	Hydrometer Method				a, corr. factor		1.00	₹Zero correction		5.0	
·····			7:		Wt. of sample (c	2)	33.44 Meniscus correction			0.5	
Date mm/kkl/yy	Time bh:mm	Elepsed Time minutes	Temperature	Actual Hyd. Reading Ra	Corrected Hyd Reading Ro	% Finer				Diameter	
04/02/98	09:06	****************	21				Stort				
04/02/98	09:07	1	21	12	7.2	21.5	14.2	14.25	0.0135	0.0509	
04/02/98	09:08	2	21	11	6.2	18.5	14.4	7.21	0.0135	0.0362	
04/02/98	09:09	3	21	10.5	5.7	17.0	14.5	4.83	0.0135	0.0396	
04/02/98	09:10	4	21	10	5.2	15.5	14.6	3.64	0.0135	0.0257	
04/02/98	09:14	8	21	9.5	4.7	14,1	14.7	1.83	0.0135	0.0257	
04/02/98	09:21	15	21	9	4.2	12.6	14.7	0.98	0.0135	0.0134	
04/02/98	09:36	30	21	8.5	3.7	11.1	14.8	0.49	0.0135	0.0095	
04/02/98	10:06	60	21	8	3.2	9.6	14.9	0.25	0.0135		
04/02/98	11:06	120	21.5	7	2.2	6.6	15.1	0.23		0.0067	
04/02/98	13:06	240	22	6	1.4	4.2	15.2		0.0135	0.0048	
04/02/98	16:35	450	24	5.5	1.5	4.5	15.3	0.06	0.0133	0.0034	
04/03/96	09:06	1440	21	5.5	0.7	2.1	15.3	0.03	0.0130	0.0024	
						Z. 1	10.3	0.01	0.0135	0.0014	
				····							
				·							
					···						

Particle Size Distribution by Mechanical and Hydrometer Methods

Taltion City Distribution		
Project NAF Atsugi	Sample ID	NA-DVCT-SO04-01
Project (NAF Atsugi		
: Ameliant : EIDO	≷ Date	· 4/1/98
Analyst (JBO		***************************************

At of wet sa	mole (a)	·····	91.41 }	•••••
Moisture conte	ent (%), wet with	5.34		
Mt. of dry san	pie, Ws (g)		86.53	
Sieve no	Diam. (mm)	Wt. ret'd	% refd	% passing
0.75	19.000	0.00	0.00	100.0
0.375	9.500	0.00	0.00	100.0
4	4.750	15.45	17.86	82.1
10	2.000	9.84	11.37	70.6
25	0.710	11.84	13.68	57.1
50	0.300	23.28	26.90	30.2
100	0.150	20.76	23.99	6.2
200	0.075	4.07	4.70	1,5
Total Wt. reta	ined (a)	85.24		

Summary						
Mean particle size (mm)	0.600					
Gravel (%) - retained on No. 4	17 <u>.9</u> 8					
Sand (%) - pass No. 4 & retained No. 200	80.6					
Silt (%) - 0.074 to 0.005 mm	1.3 }					
Clay (%) - smaller than 0.005 mm	0.2					
	ş					

Hydrometer Method					Specific gravity a, corr. factor		2.65	Zero correction		5.03
	1190	Officier iv			Wt. of sample (g)	86.53	Meniscus corr	ection	0.5
Date mm/dd/yy	Time hh:mm	Elapsed Time minutes	Temperature *C	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	% Finer			K	Diameter mm
03/31/98	08:42		19				Start	45.45	0,0138	0.0538
03/31/98	08:43	1	19	6.5	1.2	1.4	15.1	15.15		0.0381
03/31/98	08:44	2	19	6	0.7	0.8	15.2	7.62	0.0138	0.0311
03/31/98	08:45	3	19	6	0.7	0.8	15.2	5.08	0.0138	0.0270
03/31/98	08:46	4	19	6	0.7	0.8	15.2	3.81	0.0138	0.0191
03/31/98	08:50	8	19	6	0.7	0.8	15.2	1.90	0.0138	
03/31/98	08:57	15	19	5.5	0.2	0.2	15.3	1.02	0.0138	0.0140
03/31/98	09:12	30	19.5	5.5	0.2	0.2	15.3	0.51	0.0138	0.0099
03/31/98	09:42	60	19.5	5.5	0.2	0.2	15.3	0.26	0.0138	0.0070
03/31/98	10:42	120	19.5	5.5	0.2	0.2	15.3	0.13	0.0138	0.0049
03/31/98	13:30	288	21	5	0.2	0.2	15.4	0.05	0.0135	0.0031
03/31/98	16:00	438	21	5	0.2	0.2	15.4	0.04	0.0135	0.002
04/01/98	09:42	1500	21	5	0.2	0.2	15.4	0.01	0.0135	0.0014
1										
								 		!

Project NAF Atsugi	Sample (D)	NA-DVCT-SO06-01
	COMPRE NO	
Analyst IGAT	I Charles	44400
Atena	Late	19/1/98

	Mechan	ical (Sieve)	Method	
Wt. of wel sa	mple (g)		77.30	
Moisture contr	ent (%), wet wit it	18.14		
Wt. of dry san	iple, Ws (g)	or e finogalija alagea	63.28	
Sieve na.	Dem. (mm)	Wt. retd	% retd	% passing
0.75	19.000	0.00	0.00	100.0
0.375	9.500	0.00	0.00	100.0
4	4.750	0.81	1.28	98.7
10	2.000	2.97	4.69	94.0
25	0.710	17.42	27.53	66.5
50	0.300	21.86	34.55	32.0
100	0.150	7.67	12.12	19.8
200	0.075	3.65	5.77	14.1
				···
Cotal With contain	ned (g)	54.38		

Summary						
Mean particle size (mm)	0.514					
Gravel (%) - retained on No. 4	1.3					
Sand (%) - pass No. 4 & retained No. 200	84.6					
Silt (%) - 0.074 to 0.005 mm	9.3					
Clay (%) - smaller than 0.005 mm	4.8					
0.0°						

	11						2.65			
	Hyd	rometer M	Specific gravity 2.65 sthool a, corr. factor 1.00 Zero correction						5.0	
					Wt. of sample (a) 63 28 Meniscus correction		ction	0.5		
Date mm/dd/vv	Time No.mm	Elepsed Time _minutes	Temperature	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	% Finer	L	LA	к	Diameter mm
03/31/98	09:26		19.5				Start			
03/31/98	09:27	1	19.5	14	8.7	13.7	13.9	13.92	0.0138	0.0516
03/31/98	09:28	2	19.5	13	7.7	12.2	14.1	7.04	0.0138	0.0367
03/31/98	09:29	3	19.5	12	6.7	10.6	14.2	4.75	0.0138	0.0301
03/31/98	09:30	4	19.5	12	6.7	10.6	14.2	3.56	0.0138	0.0261
03/31/98	09:34	8	19.5	11	5.7	9.0	14.4	1.80	0.0138	0.0185
03/31/98	09:41	15	19.5	10	4.7	7.4	14.6	0.97	0.0138	0.0136
03/31/98	09:56	30	19.5	9	3.7	5.8	14.7	0.49	0.0138	0.0097
03/31/98	10:26	60	20	8.5	3.5	5.5	14.8	0.25	0.0136	0.0068
03/31/98	11:26	120	20.5	8	3	4.7	14,9	0.12	0.0136	0.0048
03/31/98	13:40	254	21	7	2.2	3.5	15.1	0.06	0.0135	0.0033
03/31/98	16:50	444	23	6		2.7	15.2	0.03	0.0132	0.0024
04/01/98	09:00	1414	21	6	1,2	1.9	15.2	0.01	0.0135	0.0014
t										

Particle Size Dist	LIDUCION DA MICCHAING			********
		Sample ID	NA-ELEM-SO02-01	
Project NAF Atsu	<u> </u>		4/1/98	
Analyst JBO			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***************************************

	Mechan	ical (Sieve)	Method			
Vt of wet san	nple (a)		91,11			
Anisture conte	nt (%), wet will b	9.24				
Vt. of dry sam	ole, Ws (g)		82.69			
Sieve no	Diam. (mm)	Wt. ret'd	% ret'd	% passing		
0.75	19.000	0.00	0.00	100.0		
0.375	9.500	0.00	0.00	100.0		
4	4.750	13.00	15.72	84 <u>.3</u>		
10	2,000	10.21	12.35	71.9		
25	0.710	12.50	15.12	56.8		
50	0.300	22.25	26.91	29.9		
100	0.150	18.75	22.67	7.2		
200	0.075	3.92	4,74	2.5		
Total Wt. reta	ned (n)	80.63				

Summary	
Mean particle size (mm)	0.610
Gravel (%) - retained on No. 4	15.7
Sand (%) - pass No. 4 & retained No. 200	81.8
Silt (%) - 0.074 to 0.005 mm	1.7
Clay (%) - smaller than 0.005 mm	0.8

·····					Specific gravity	<u></u>	2.60:			6.0
	Hydrometer Method				a, corr. factor			Zero correction		0.5
	-			Wt. of sample (c	1	82.69	Meniscus com	ection		
Date mm/kk/yy	Time hh:mm	Elapsed Time minutes	Temperature *C	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	% Finer		<u> </u>	K	Diameter mm
03/31/98	08:44	***************************************	19				Start 14.8	14.82	0.0138	0.0532
03/31/98	08:45	1	19	8.5	2.2	2.7	14.9	7.45	0.0138	0.0377
03/31/98	08:46	2	19	8	1,7	2.1	15.0	5.00	0.0138	0.0309
03/31/98	08:47	3	19	7.5	1.2	1.5	15.0	3.75	0.0138	0.0267
03/31/98	08:48	4	19	7.5	1.2	1.5	15.0	1,87	0.0138	0.0189
03/31/98	08:52	8	19	7.5	1.2	0.8	15.1	1.00	0.0138	0.0138
03/31/98	08:59	15		7		0.81	15.1	0.50	0.0138	0.0098
03/31/98	09:14	30	19.5	7	0.7	0.8	15.1	0.25	0.0138	0.0069
03/31/98	09:44	60	19.5	<u> </u>	0.7	0.8	15.1	0.13	0.0138	
03/31/98	10:44	120	19.5	7	0.7	1.5	15.1	0.05	0.0135	0.003
03/31/98	13:30	286			1.2	0.8	15.1	0.03	0.0135	0.002
03/31/98	16:00	436		6.5	0.7	0.2	15.2		0.0135	0.0014
04/01/98	06:44	1440	21	6	0.2	0.2				
			· · · · · · · · · · · · · · · · · · ·							

The state of the s	
Project NAF Atsupi Sample ID NA-ELEM-S	
CANAL TO THE PARTY OF THE PARTY	004-01
Analysi JBO Date 4/3/98	

Vt. of wet sa	mpie (g)		69.79	·····		
foisture conte	ent (%), west we	COSIG	20.40			
VI. of dry san	ple Ws (g)	55.55				
Sieve no.	Diam. (mm)	Wt. refd	% ret'd	% passing		
0.75	19.000	0.00	0.00	100.0		
0.375	9.500	0.00	0.00	100.0		
4	4.750	1.25	2.25	97.7		
10	2,000	4.18	7,52	90.2		
25	0.710	7.36	13.25	77.0		
50	0.300	16.00	28.80	48.2		
100	0.150	12.67	22.81	25.4		
200	0.075	4.67	8.41	17.0		

Summary						
Mean particle size (mm)	0.326					
Gravel (%) - retained on No. 4	2.3					
Sand (%) - pass No. 4 & retained No. 200	80.7					
Six (%) - 0.074 to 0.005 mm	12.9					
Clay (%) - smaller than 0.005 mm	4.1					

	امدداسا				Specific gravity		2.65	······································		
	пуц	rometer M	etnoa		a corr. factor		1.00	Zero correction	***********	4.5
				•	Wt. of sample (c	l .	55.55	Meniscus corre	ction	0.5
Date	Time	Elepsed Time	Temperature	Actual	Corrected				***************************************	
mm/dd/vv	bh ma	MOVES	.c.	Hyd	Hyd.					Diameter
04/02/98	09:02		21	Reading Ra	Reading Rc	% Finer	Start	ta	K	<i></i>
04/02/98	09:03	4	21	45						
04/02/98	09:04			13	8.7	15.7	14.1	14.08	0.0135	0.0506
04/02/98	09:05	3	21	12	7.7	13.9	14.2	7.12	0.0135	0.0360
04/02/98	09:06		21	11	6.7	12.1	14.4	4.80	0.0135	0.0296
04/02/98		- 4	21	10	5.7	10.3	14.6	3.64	0.0135	0.0257
04/02/98	09:10		21	9	4.7	8.5	14,7	1.84	0.0135	0.0183
	09:17	15	21	8	3.7	6.7	14.9	0.99	0.0135	0.0134
04/02/98	09:32	30	21	7.5	3.2	5.8	15.0	0.50	0.0135	0.0095
04/02/96	10:02	60	21	7	2.7	4.9	15,1	0.25	0.0135	0.0068
04/02/98	11:02	120	21,5	6.5	2.2	4.0	15.1	0.13	0.0135	0.0048
04/02/98	13:02	240	22	6	1.9	3.4	15.2	0.06	0.0133	
04/02/98	16:32	450	24	. 5	1.5	2.7	15.4	0.03		0.0034
04/03/98	09:02	1440	21	5	0.7	1,3	15.4	0.01	0.0130	0.0024
							13.4	0.01	0.0135	0.0014
				"- "						
			i							
				 -						

Project NAF Atsugi	Sample ID NA-TOWR-S003-01
Ansiyat JBO	Oate 4/3/98

Vt. of wet say	nole (a)	Mason ann 1986 🕻	53.04	
faisture conte	nt (%), wet will b	43.46 }		
Vt. of dry sam	ole, Ws (g)	29.99 }		
Sieve no.	Diam. (mm)	Wt.refd	% ret'd	% passing
0.75	19.000	0.00	0.00	100.0
0.375	9.500	0.00	0.00	100.0
4	4.750	0.00	0.00	100.0
10	2.000	0.75	2.50	97.5
25	0.710	3.21	10.70	86.8
50	0.300	7.01	23.38	63.4
100	0.150	3.44	11.47	51.9
200	0.075	3.25	10.84	41.1

Summary	
Mean particle size (mm)	0.137
Gravel (%) - retained on No. 4	0.0
Sand (%) - pass No. 4 & retained No. 200	58.9
Silt (%) - 0.074 to 0.005 mm	34.9
Clay (%) - smaller than 0.005 mm	6.2

***************************************		***************************************		Specific gravity					, <u>.</u>	
Hvdi	rometer M	ethod							6.0	
,					0	29.99	Meniscus corre	ction	0.5	
Time hb:mm	Elepsed Time mexites	Temperature	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	% Finer	L	и	K	Diameter (1977	
09:04				hayer at 10 hater			40.701	0.0425	0.0500	
09:05	1								0.0358	
09:06	2								0.0294	
09:07	3								0.0255	
09:08	4	21	11.5							
09:12	. 8	21	11						0.0181	
	15	21	10.5	4.7					0.0133	
	30	21	10	4.2					0.0094	
		21	9	3.2	10.7					
		21.5	7.5	1.7	5.7				0.0048	
			7	1.4	4.7	15.1				
			6.5	1.5	5.0	15.1			0.0024	
		21		0.2	0.7	15.2	0.01	0.0135	0.0014	
							ļ			
							 			
			ļ	-	-					
		 								
	Hyd hb.rem 09:04 09:05 09:05 09:07	Hydrometer M Elepsed Time mendes	Hydrometer Method Time Temperature Time Million Temperature	Column	Hydrometer Method 2, corr. factor Wt. of sample (corr. facto	Hydrometer Method 2, corr. factor Wt. of sample (g)	Hydrometer Method 2, corr. factor 1.00 29.99	Hydrometer Method Specing Gravity 2,005 29,99 Meniscus correction 1,00 Zero correction 29,99 Meniscus correction 29,99 Meniscus correction 29,99 Meniscus correction 29,99 Meniscus correction 29,99 Meniscus correction 29,99 Meniscus correction 29,00 29,99 Meniscus correction 29,00 29,99 Meniscus correction 29,00 29,00 29,00 20,00	Hydrometer Method 2, corr. factor 1.00 Zero correction WT of sample (g) 29.99 Meniscus correction Meniscus correctio	

Project NAF Atsuci	Sample ID NA-TOWR-S003-11
Analyst GAT	Date 3/31/98

M. of wet sa	mple (g)	2002-000 (CO)	50.68	
	erit (%), wat will	44.40	11.1	
Mt. of dry san	nole: Ws (a)	28.18		
Sieve no.	Diam. (mm)	Wt. refd	% retd	% passing
0.75	19.000	0.00	0.00	100.0
0.375	9.500	0.00	0.00	100.0
4	4.750	1.35	4.79	95.2
10	2.000	0.64	2.27	92.9
25	0.710	3.14	11,14	81.8
50	0.300	7.24	25.69	56.1
100	0.150	3.19	11,32	44.8
200	0.075	3.01	10.68	34.1

Summary						
Mean particle size (mm)	0.219					
Gravel (%) - retained on No. 4	4.8					
Sand (%) - pass No. 4 & retained No. 200	61.1					
Sik (%) - 0.074 to 0.005 mm	24.1					
Clay (%) - smaller than 0.005 mm	10.0					
Was an action to be seen that the contract of the						

					Specific gravity	4.	2.65			y m. skopačarek	
	Hyd	Irometer M	ethod		s, corr. factor	4. 24. 4		Zero correctio	in .	5.0	
					Wt. of sample (d	g) ·		Meniscus con		0.5	
Dete mm/dxl//v	Time hh:mm	Elapsed Time minutes	Temperature	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	election Region de la Palejo		Lip	K	Diameter	
03/30/98	09:31	seesalt to the	22.5		30 No. 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Start			10000000000	
03/30/98	09:32	1	22.5	13	8.4	29.8	14.1	14.08	0.0133	0.0500	
03/30/98	09:33	2	22.5	11,5	6.9	24.5	14.3	7.16	0.0133	0.0357	
03/30/98	09:34	3	22.5	10.5	5.9	20.9	14.5	4.83	0.0133	0,0293	
03/30/98	09:35	4	22.5	10	5.4	19.2	14.6	3.64	0.0133	0.0254	
03/30/98	09:39	8	22.5	10	5.4	19.2	14.6	1.82	0.0133	0.0180	
03/30/98	09:46	15	22.5	9.5	4.9	17.4	14.7	0.98	0.0133	0.0132	
03/30/98	10:01	30	22.5	8.5	3.9	13.8	14.8	0.49	0.0133	0.0094	
03/30/98	10:31	60	22.5	8	3.4	12.1	14.9	0.25	0.0133	0.0086	
03/30/96	11:31	120	23	7	2.7	9.6	15.1	0.13	0.0132	0.0047	
03/30/98	13:31	240	23	6.5	2.2	7.8	15.1	0.06	0.0132	0.0033	
03/30/96	16:30	419	23.5	6	1.7	6.0	15.2	0.04	0.0132	0.0025	
03/31/98	09:00	1409	20	5.5	0.5	1.8	15.3	0.01	0.0136	0.0014	

Particle :	SIXE DISKINGHON F	A MCCHAINCE			**********
	NAF Atsugi		Sample ID	NA-TOWR-S005-01	
			Date	2/24/02	
Analyst	JBO		J	***************************************	***************************************

nple (a)	54.18 }	2.00	
est (%), west wit b	BSIS .	15.20	W
ple, Ws (g)	3	45.94 }	
Diam. (mm)	Wt. retd	% ret'd	% passing
19.000	0.00	0.00	100.0
9.500	0.00	0.00	100.0
4,750	0.00	0.00	100.0
2.000	0.14	0.30	99.7
0.710	10.30	22.42	77.3
0.300	22.95	49.95	27.3
0.150	4.44	9.66	17.7
0.075	1.56	3.40	14.3
	nt (%), wet wt. b ple Ws (g) Diam. (mm) 19.000 9.500 4.750 2.000 0.710 0.300 0.150	rit (%); wet with basis ple. We (g) Diam. (mm) With ret'd 19,000 0,00 9,500 0,00 4,750 0,00 2,000 0,14 0,710 10,30 0,300 22,95 0,150 4,44	nt (%), wet wt. beais 15.20 ple Ws (g) 45.94 ple Ws (g) 45.94 ple Ws (g) 45.94 ple Ws (g) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.

Summary	
Mean particle size (mm)	0.486
Gravel (%) - retained on No. 4	0.0
Sand (%) - pass No. 4 & retained No. 200	85.7
Silt (%) - 0.074 to 0.005 mm	9.1
Clay (%) - smaller than 0.005 mm	5.2
a e de la companya de la companya de la companya de la companya de la companya de la companya de la companya d	

	***************************************	~~~~	******	***************************************	Specific gravity		2.65		······		
	Hvd	rometer M	ethod		a, corr. factor	3	1.00	Zero correction		4.5	
	,-				Wt. of sample (c	1)	45.94	Meniscus con	ection	0.5	
Date mm/dd/yy	Time hh:ma	Elepsed Time minutes	Temperature *C	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	% Finer		u	К	Diameter (1977)	
03/30/98	08:48	11.14 (4.44 <u></u>)	22.5		- 1 460 A66 A1		Start	14.58	0.0133	0.0509	
03/30/98	08:49	1	22.5	10	5.9	12.8	14.6	7.33	0.0133		
03/30/98	08:50	2	22.5	9.5	5.4	11.8	14.7		0.0133	0.0295	
03/30/98	08:51	3	22.5	9	4.9	10.7	14.7	4.91	0.0133	0.0256	
03/30/98	08:52	4	22.5	9	4.9	10,7	14.7	3.68	0.0133		
03/30/98	08:56	8	22.5	8	3.9	8.5	14.9	1.86	0.0133	0.0133	
03/30/98	09:03	15	22.5	7.5		7.4	15.0				
03/30/96	09:18	30	22.5	7	2.9	6.3	15.1	0.50	0.0133		
03/30/98	09:48	60	22.5	6.5		5.2	15.1		0.0133		
03/30/98	10:48	120	22.5	6.5		5.2	15.1		0.0133		
03/30/98	13:00	252	23	6	2.2	4.8	15.2		0.0132		
03/30/98	16:30	462	23.5	5	1.2	2.6	15.4		0.0132		
03/31/98	08:48	1440		5	0.5	1.1	15.4	0.01	0.0136	0.0014	
					<u> </u>	. 101		ļ			
<u> </u>				-							
								1	<u> </u>	<u></u>	

	- and ilyaronnelor methods
Project NAF Atsuci	Sample ID NA-TRND-S001-01
Analyst GAT	Date 4/1/98
	12346: 14/1/36

	Mechanical (Sieve) Method									
Wt. of wet sa	mple (g)	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	52.89	F: 1						
	ent (%), wet wt. I		40.59							
Wt. of dry san	nple Ws (a)	31.42	<u>. 1. 1</u> 111 — 8.1							
Sieve no.	Diam. (mm)	Wt retd	% ret'd	% pessing						
0.75	19.000	0.00	0.00	100.0						
0.375	9.500	0.00	0.00	100.0						
4	4.750	0.00	0.00	100.0						
10	2.000	0.70	2.23	97.8						
25	0.710	3.89	12.38	85.4						
50	0.300	7.94	25.27	60.1						
100	0.150	2.85	9.07	51.1						
200	0.075	2.47	7.86	43.2						
Total Wt. netai	ned (g)	17.85	right aregue at the							

Summary	
Mean particle size (mm)	0.140
Gravel (%) - retained on No. 4	0.0
Sand (%) - page No. 4 & retained No. 200	56.8
Silt (%) - 0.074 to 0.005 mm	31 8
Clay (%) - smaller than 0.005 mm	11.4
	* ***

					Specific gravity		2.65		Lotte a succession and a	
	пуа	rometer M	etnoa		# corr. factor		1.00	Zero correction		5.5
		Wt. of sample (a)		31.42	Meniscus corr	ection	0.5			
Date mm/kkl/vv	Time No:ma	Elapsed Tithe minutes	Temperature *C	Actual Hyd. Reading Ra	Corrected Hyd. Reeding Ro	% Finer		•	K	Diameter
03/31/98	09:28	statistics and color	19.5		oran Reserva di Jawa da	n talah da jagara	Start			in a section of
03/31/98	09:29	1	19.5	17	11.2	35.6	13.4	13,43	0.0138	0.0505
03/31/98	09:30	2	19.5	15	9.2	29.3	13.8		0.0138	0.0362
03/31/98	09:31	3	19.5	14	8.2	26.1	13.9		0.0138	0.0298
03/31/98	09:32	4	19.5	13.5	7.7	24.5	14.0	3.50	0.0138	0.0259
03/31/96	09:36	8	19.5	12.5	6.7	21.3	14.2	1.77	0.0138	
03/31/98	09:43	15	19.5	11.5	5.7	18.1	14.3	0.96		0.0184
03/31/98	09:58	30	19.5	10.5	4.7	15.0	14.5	0.48	0.0138	0.0135
03/31/98	10:28	60	20	10	4.5	14.3	14.6		0.0138	0.0096
03/31/98	11:28	120	20.5	9		11.1	14.7	0.24	0.0136	0.0067
03/31/98	13:40	252	21	8	2.7	8.6		0.12	0.0136	0.0048
03/31/98	16:50	442	23	6.5	1.7		14.9	0.06	0.0135	0.0033
04/01/98	09:00	1412	21	6.5		5.4	15.1	0.03	0.0132	0.0024
1				0.3	1.2	3.8	15.1	0.01	0.0135	0.0014
						_				

·										

Particle Size Distribution by	Mechanical and 137010111101
Omiget NAF Atsuci	Sample ID NA-TRND-SO12-01
Productions	3/31/98
Analyst	

Wit of wet sal	mple (g)		51.47	and the second	
Moisture conte	ent (%), wet wt. b	54.17			
Wt. of dry sam	rple, Ws (g)	23.59			
Sieve no.	Diam. (mm)	Wt retd	% ret'd	% passing	
0.75	19.000	0.00	0.00	100.0	
0.375	9.500	0.00	0.00	100.0	
4	4.750	0.00	0.00	100.0	
10	2.000	0.21	0.89	99.1	
25	0.710	1.47	6.23	92.9	
50	0.300	3.87	16.41	76.5	
100	0.150	4.18	17,72	58.8	
200	0.075	2.60	11.02	47.7	
				,	
Total Wt. reta	inad (a)	12.33		: .	

Summary						
Mean particle size (mm)	0.091					
Gravel (%) - retained on No. 4	0.0					
Sand (%) pass No. 4 & retained No. 200	52.3					
Sitt (%) - 0.074 to 0.005 mm	41.5					
Clay (%) - smaller than 0.005 mm	6.2					

·····		··········	·····	***************************************	Specific gravity		2.65				
	Hydi	rometer M	ethod		a con factor)	1.00	Zero correction		<u> 5.0</u>	
	11901	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		:Wt of sample (g)				23.59	Meniscus correction		0.5
Date mm/kk//y	Time hh:mm	Elapsed Time minutes	Temperature *C	Actual Hyd. Reading Ra	Corrected Hyd	% Finer			K	Diameter 897	
03/30/98	08:50		22.5				Start	4405	0.0133	0.050	
03/30/98	08:51	1	22.5	12	7.4	31.4	14.2	14.25		0.0360	
03/30/98	08:52	2	22.5	10	5.4	22.9	14.6	7.29	0.0133	0.029	
03/30/98	08:53	3	22.5	9	4.4	18.7	14.7	4.91	0.0133	0.025	
03/30/98	08:54	4	22.5	8	3.4	14.4	14.9	3.73	0,0133		
03/30/98	08:58	8	22.5	7.5	2.9	12.3	15.0	1.87	0.0133	0.018	
03/30/98	09:05	15	22.5	7	2.4	10.2	15.1	1.00	0.0133	0.013	
03/30/98	09:20	30	22.5	6.5	1.9	8.1	15.1	0,50	0.0133	0.009	
03/30/98	09:50	60	22.5	6.5	1.9	8.1	15.1	0.25	0.0133	0.006	
03/30/96	10:50	120	22.5	6	1.4	5.9	15.2	0.13	0.0133	0.004	
03/30/98	13:00	250	23	5.5	1.2	5.1	15.3	0.08	0.0132	0.003	
03/30/96	16:30	460	23.5	5.5	1.2	5.1	15.3	0.03	0.0132	0.002	
03/31/98	08:50	1440		5.5	0.5	2.1	15.3	0.01	0.0136	0.001	

								J	·····	<u></u>	

2. (7	
Project NAF Atsugi	Sample ID NA-TRND-SO12-11
3 A mark made and 5 promises	
2.10110	10ate 14/2/98

mole (n)	·······/	***************************************	·····
		74. E.	
noie Ws (a)	23.95		
Diam. (mm)	Wit ret'd	% refd	% passing
19.000	0.00	0.00	100.1
9.500	0.00	0.00	100.
4.750	0.00	0.00	100.0
2.000	0.00	0.00	100.0
0.710	1.94	8,10	91.9
0.300	6.15	25.68	66.2
0.150	2.64	11.02	55.
0.075	2.29	9.56	45.0
			
	mple (g) ent (%), wat wt. b pole. Ws. (g) Diam. (mm) 19.000 9.500 4.750 2.000 0.710 0.300 0.150	mple (g) erit (%), wet wt. basis 10le: V/s (g): Diam. (mm) Wt. ret'd: 19,000 0.00 9,500 0.00 4,750 0.00 2,000 0.00 0,710 1.94 0,300 6.15 0,150 2.64	ent (%), wet wt. basis 54.16 pole. Ws. (g) 23.95 Diam. (mm) Wt. ret'd % ret'd 19.000 0.00 0.00 9.500 0.00 0.00 4.750 0.00 0.00 2.000 0.00 0.00 0.710 1.94 8.10 0.300 6.15 25.68 0.150 2.64 11.02

Summary	***************************************
Mean particle size (mm)	0.110
Gravel (%) - retained on No. 4	0.0
Send (%) - pess No. 4 & retained No. 200	54.4
Sitt (%) - 0.074 to 0.005 mm	38.3
Clay (%) - smaller than 0.005 mm	7.3

	11				Specific gravity		2.65		***************************************	***************************************
	нуа	rometer M	ethod		a com factor Wt of sample (g)		1.00	Zero correction Meniscus correction		5.0 0.5
	*****		T	.						
Date mm/bb/yy	Time bit:mm	Elapsed Time <i>minut</i> es	Temperature *C	Actual Hyd. Reading Ra	Corrected Hyd. Reading Ro	% Finer	1	Į,	£	Diameter
04/01/98	08:40	Martiga Kal	21	100	*****	-	Start	h		(99)
04/01/98	08:41	1	21	. 15	10.2	42.6	13.8	13.76	0.0135	0.0500
04/01/98	08:42	2	21	12	7.2	30.1	14.2	7.12	0.0135	0.0360
04/01/98	08:43	3	21	10	5.2	21.7	14.6	4.86	0.0135	0.0390
04/01/98	08:44	4	21	9	4.2	17.5	14.7	3.68	0.0135	0.0259
04/01/98	08:48	8	21	8.5	3.7	15.4	14.8	1.85	0.0135	
04/01/98	08:55	15	21	8	3.2	13.4	14.9	0.99	0.0135	0.0184
04/01/98	09:10	30	21	7.5	2.7	11.3	15.0	0.50	0.0135	0.0134
04/01/98	09:40	. 60	21	7	2.2	9.2	15.1	0.25		0.0095
04/01/98	10:40	120	21	6.5	1.7	7.1	15.1		0.0135	0,0068
04/01/98	12:40	240	22	6.0	1,4	5.8		0.13	0.0135	0.0048
04/01/96	16:40	460	24	5.5	1.5	6.3	15.2	0.06	0.0133	0,0034
04/02/98	08:40	1440	20	5.5	0.5		15.3	0.03	0.0130	0.0023
		, , , , ,		3.3	0.5	2.1	15.3	0.01	0.0136	0.0014

Particle Size Distribution by Meditalines	
	Sample ID NA-TRND-SO20-01
Project NAF Atsudi	
Analyst	Date 4/2/98

mple (a)		71.7	
ent (%), wet will b	esis		
ple Ws (g)	28.85	% passing 100 100 100 97 89 57	
Diam (mm)	Wt refid	% retd	% passing
19.000	0.00	0.00	100.0
9.500	0.00	0.00	100.0
4,750	0.00	0.00	100.0
2.000	0.77	2.67	97.3
0.710	2.23	7.73	89.6
0.300	9.26	32.10	57.5
0.150	3.39	11.75	45.7
0.075	2.58	8.94	36.8
	mple (g) ant (%), wet wit is inte (%), wet wit is inte (wit in inte (g)) 19.000 9.500 4.750 2.000 0.710 0.300 0.150	mple (g) prt (%), wet wit besis ple (Ws (g) Diam: (mm)	ret (%), wet wt besis 45.22 ple; Ws (g) 28.85 Diam: (mm) Wt retd % retd 19.000 0.00 0.00 9.500 0.00 0.00 4.750 0.00 0.00 2.000 0.77 2.67 0.710 2.23 7.73 0.300 9.26 32.10 0.150 3.39 11.75

Summary					
Mean particle size (mm)	fta	()	0.205		
Gravel (%) - retained on	No. 4	145 F. 155	0.0		
Sand (%) - pass No. 4 8	retained N	o. 200	63.2		
Sift (%) - 0.074 to 0.005	mm	1000	27.0		
Clay (%) - smaller than	0.005 mm		9.8		
	assistant for a	reveal of			

					Specific gravity		2.65	17		un en la colonia de la colonia
	Hyd	rometer M	ethod		a. corr. factor			Zero correction		5.0 0.5
	1190	IOITIBLE: IV			Wt: of sample (o)	28 85	28 85 Meniscus correction		
Date mm/dd//vv	Time hh:mm	Elapsed Time minutes	Temperature	Actual Hyd. Reading Ra	Corrected Hyd. Reading Rc	% Finer	1	UA	к	Diameter mm
04/01/98	09:19		20.5		and the second second		Stert	40.70	0.0136	0.0500
04/01/98	09:20	_ 1	20.5	15	10	34.7	13.8	13.76		0.036
04/01/98	09:21	2	20.5	13	8	27.7	14.1	7.04	0.0136	
04/01/98	09:22	3	20.5	11.5	6.5	22.5	14.3		0.0136	0.029
04/01/98	09:23	4	20.5	11	6	20.8	14.4	3.60	0.0136	0.025
04/01/98	09:27	8	20.5	10.5	5.5	19.1	14.5	1.81	0.0136	0.018
04/01/98	09:34	15	20.5	9.5	4.5	15.6	14.7	0.98	0.0136	0.013
04/01/98	09:49	30	21	9	4.2	14.6	14.7	0.49	0.0135	0.009
04/01/98	10:19	60		8.5	3.7	12.8	14.8		0.0135	0.006
	11:19	120		7.5	2.7	9.4	15.0	0.12	0.0135	
04/01/98	13:19	240		6.5	1.9	6.6	15.1	0.06	0.0133	
04/01/98		451	24	6	2	6.9	15.2	0.03	0.0130	
04/01/98	16:50			6		3.5	15.2		0.0136	0.001
04/02/98	08:53	1414			<u>'</u>					
		<u> </u>	ļ							
										
			 	ļ				 	1	
		<u> </u>					···	1		
		<u></u>	<u> </u>		 			 		1
		ł	l	!	J					

	and try tronicier inferred
Project NAF Atsuci	Sample ID NA-TRND-S029-01
Analyst	Date 3/31/98

	Mechar	nical (Sieve)	Method	
Wit of wet se	mple (g)	eropakero inchine	53.44	21
	ork (%), wat wi	Desia	36.86	
Wt. of dry san	role. Ws (g)		33.74	
Sieve na	Diam. (mm)	Wt ret'd	% ret'd	% passing
0.75	19.000	0.00	0.00	100.0
0.375	9.500	0.00	0.00	100.0
4	4.750	0.00	0.00	100.0
10	2.000	0.99	2.93	97.1
25	0.710	4.33	12.83	84.2
50	0.300	9.77	28,95	55.3
100	0.150	3.92	11.62	43.7
200	0.075	3,14	9.31	34.4
				-
	-			
Total Wt: retain	ned (g)	22.15		

Summary							
Mean particle size (mm)	0.232						
Grevel (%) - retained on No. 4	0.0						
Sand (%) - pass No. 4 & retained No. 20	00 65.6						
Sitt (%) - 0.074 to 0.005 mm	27.8						
Clay (%) - smaller than 0.005 mm	6.6						
AND A CAR BOOK OF THE PARTY OF							

					Specific gravity		2.65	N			
	Hydrometer Method				a, corr. factor			Zero correction	n	5.5	
					Wt. of sample (a	<u> </u>		Meniscus com		tion 0.5	
Date mm/dd/vv	Time bh:mm	Elepsed Time minutes	Temperature	Actual Hyd. Reading Ra	Corrected Hyd. Reading Rc	% Finer				Clamater	
03/30/98	09:33	5.69.8). Juhang pag	22.5	1.6%	 With her declaration. 	98 · . · .	Stort			2	
03/30/98	09:34	. 1	22.5	14	8.9	26.4	13.9	13.92	0.0133	0.0497	
03/30/98	09:35	2	22.5	12	6.9	20.4	14.2	7.12	0.0133	0.0356	
03/30/98	09:36	3	22.5	11	5.9	17.5	14.4	4.80	0.0133	0.0292	
03/30/98	09:37	4	22.5	10.5	5.4	16.0	14.5	3.62	0.0133	0.0254	
03/30/98	09:41	8	22.5	10	4.9	14.5	14.6	1,82	0.0133	0.0180	
03/30/98	09:48	15	22.5	9	3.9	11.6	14.7	0.98	0.0133	0.0132	
03/30/98	10:03	30	22.5	8.5	3.4	10.1	14.8	0.49	0.0133	0.0094	
03/30/98	10:33	- 60	22.5	7.5	2.4	7.1	15.0	0.25	0.0133	0.0067	
03/30/98	11:33	120	23	7	2.2	6.5	15.1	0.13	0.0132	0.0007	
03/30/96	13:33	240	23	7	2,2	6.5	15.1	0.06	0.0132	0.0033	
03/30/96	16:30	417	23.5	6.	1.2	3.6	15.2	0.04	0.0132	0.0025	
03/31/96	00:00	1407	20	6	0.5	1.5	15.2	0.01	0.0136	0.0014	

THE COLOR DISCOURSE OF THE COLOR OF THE COLO		
Devloct NAF Atsure	Sample ID	NA-TRND-SO29-02
Project NAF Atsugi		24556
Anaivet JBO	:Cate	£4/2/98
ADMINIST CODE		

	49.23	VI. of wet sample (g)							
	31.74	3845	loisture content (%), wet wt. besis						
	33.60}		ple Ws (g)	Vt. of dry san					
% passing	% refd	Wt. ret'd	Diam. (mm)	Sieve no.					
100	0.00	0.00	19,000	0.75					
100	0.00	0.00	9.500	0.375					
100	0.00	0.00	4.750	4					
98	1.31	0.44	2.000	10					
84	14.55	4.89	0.710	25					
55	29.16	9.80	0.300	50					
45	9,52	3.20	0.150	100					
35	9.61	3.23	0.075	200					

Summary	***************************************
Mean particle size (mm)	0.220
Gravel (%) - retained on No. 4	0.0
Sand (%) - pass No. 4 & retained No. 200	64.2
Silt (%) - 0.074 to 0.005 mm	27.6
Clay (%) - smaller than 0.005 mm	8.2

·····	********		***************************************		Specific gravity		2.65			
	Hvds	rometer M	ethod		a corr factor		1.00	Zero correction	tur turn	4.0 0.5
	11, 4.4				Wt of sample (c)	33.60	Meniscus corre	Meniscus correction	
Dete mm/std/yy	Time bh:mm	Elapsed Time mexiss	Temperature *C	Actual Hyd Reading Ra	Corrected Hyd. Reading Rc	% Finer		V	K	Diameter (1971
04/01/98	08:42				ikonsátai mayasi.		Start		0.00.00	A 0505
04/01/98	08:43	1	21	15		33.3	13.8		0.0135	0.0500 0.0358
04/01/96	06:44	2	21	13	9.2	27.4	14.1	7.04	0.0135	
04/01/98	08:45	3	21	12	8.2	24.4	14.2	4.75	0.0135	0.0294
04/01/98	08:46	4	21	11	7.2	21.4	14.4	3.60	0.0135	0.0256
04/01/98	08:50	8	21	10	6.2	18.4	14.6	1.82	0.0135	0.0182
04/01/98	08:57	15	21	9	5.2	15.5	14.7	0.98	0.0135	0.0134
04/01/98	09:12	30		8	4.2	12.5	14.9	0.50	0.0 <u>135</u>	0.0095
04/01/98	09:42	60		7	3.2	9.5	15.1	0.25	0.0135	0.0068
04/01/98	10:42	120		6.5	2.7	8.0	15:1	0.13	0.0135	0.0048
04/01/98	12:42	240	22	5.5		5.7	15.3	0.06	0.0133	0.0034
04/01/98	16:42	480	24	4.5		4.5	15.5	0.03	0.0130	9,002
04/02/98	08:42	1440		4.5	0.5	1.5	15 .5	0.01	0.0136	0.0014
				<u> </u>						

		,	

APPENDIX J

Statistical Basis of Recommendations

Statistical Basis of Recommendations

The following discussion explains how the recommended number of additional samples contained in Table 5-1 of the report were obtained.

In general, the AOC and Reference Area 1 recommendations reflect the minimum number of additional samples that are required to achieve a power of at least 80% to detect a difference of 100%. The "power" is the chance that the statistical means comparison will lead to a "statistically significant" conclusion that the site mean really exceeds the reference mean by a certain amount. A requirement of "80% power to detect a 100% difference" means that if the site mean is twice the reference mean (100% greater), investigators must be 80% certain that the test will lead to the correct conclusion. The computations performed to determine the required sample size assumed that the significance level of the test is 0.05.

Note that the power requirements used for recommendations are slightly relaxed from those stated in the sampling plan (i.e., in the sampling plan, sufficient power to detect a difference of 50% was the stated goal). However, the number of samples required to achieve sufficient power for a 50% difference was considered unreasonable for most areas, so the requirements were relaxed somewhat.

Power is a function of the variability in the data, the sample size, and the difference to be detected. Tables J-1 and J-2 show power calculations under various scenarios for surface soil and subsurface soil, respectively. For each AOC and depth, the relative standard deviations (RSD=standard deviation relative to the mean) for inorganic compounds that exceeded RBSLs were examined. A representative RSD was used as the variability estimate in all power calculations for a given AOC and depth. Power calculations are shown for various combinations of reference and AOC sample sizes. The power to detect an increase of 50%, 100%, and 150% above the reference mean was computed for each sample size combination. For example, for surface soil at the Child Development Center, if 6 reference samples and 8 site samples are available, then the power to detect an increase of 50% is 0.15. The power to detect an increase of 100% is 0.33, and the power to detect an increase of 150% is 0.49.

Table J-1
Recommended Surface Soil Sample Sizes

N for Refere	6			12					
	N for AOC	8	12	16	8	12	16		
	Percent					*****			
AOC	Increase ^a	Power ^b							
Child Development	50%	0.15	0.17	0.18	0.20	0.24	19:27/		
Center	100%	0.33	0.39	0.42	0.45	0.55	-0,61		
	150%	0.49	0.57	0.62	0.66	0.76	30.82		
Elementary School	50%	0.15	0.17	0.18	0.20	0.24	30,727		
	100%	0.33	0.39	0.42	0.45	0.55	0.61		
	150%	0.49	0.57	0.62	0.66	0.76	11.00		
Tower Housing Area	50%	0.28	0.32	0.36		0.47	0.52		
	100%	0.62	0.71	0.75	19:70	0.88	0.92		
	150%	0.83	0.90	0.93	0.94	0.98	0.99		

Table J-2
Recommended Subsurface Soil Sample Sizes

	j	1 3				6			12				
N for Reference N for AOC		J				•							
		4	8	12	16	4	8	12	16	4	8	12	16
AOC	Percent Increase ^a			"			I	Power ^b		-			
Child	50%	0.14	0.18	0.21	0.22	0.19	0.28	0.32	0.36	0.25	0.38	0.47	0.52
Development Center	100%	0.29	0.42	0.48	0.52	0.44	0.62	0.71	0.75	0.58	0.79	0.88	0.92
	150%	0.44	0.62	0.69	0.73	0.64	0.83	0.90	0.93	0.79	0.94	0.98	0.99
Elementary	50%	0.06	0.08	0.08	0.09	0.08	0.10	0.11	0.12	0.09	0.13	0.15	0.17
School	100%	0.11	0.14	0.16	0.17	0.15	0.21	0.24	0.26	0.19	0.28	0.35	0.39
	150%	0.15	0.20	0.23	0.25	0.22	0.31	0.36	0.40	0.28	0.43	0.52	0.58
Tower Housing Area	50%	0.14	0.18	0.21	0.22	0.19	0.28	0.32	0.36	0.25	0.38	0.47	0.52
	100%	0.29	0.42	0.48	0.52	0.44	0.62	0.71	0.75	0.58	0.79	0.88	0.92
	150%	0.44	0.62	0.69	0.73	0.64	0.83	0.90	0.93	0.79	0.94	0.98	0.99

a The Percent Increase is the percent by which the AOC mean is assumed to exceed the reference mean (e.g., for percent increase of 50%, the AOC mean is 1.5 times the reference mean).

b Assuming that the AOC mean exceeds the reference mean by the amount indicated in the Percent Increase column, the power is the probability that the means comparison will produce the correct conclusion (i.e., that the AOC mean is significantly greater than the reference mean). A one-sided t-test at the 0.05 significance level is assumed. For each AOC, a representative variability for the metals was used in the power calculation.

The lightly shaded blocks indicate the number of samples available after the first soil sampling round. The more darkly shaded blocks indicate the recommended total numbers of samples. The recommendations are: 6 more surface and 9 more subsurface samples from the reference area; 8 more surface and 4 more subsurface samples from the Child Development Center; 8 more surface and 12 more subsurface samples from the Elementary School; and 4 more subsurface samples from the Residential Towers.