Guidance for Industry and FDA Staff

Mammography Facility Surveys, Mammography Equipment Evaluations, and Medical Physicist Qualification Requirements under MQSA

Document issued on September 13, 2005

This document supersedes the “Mammography Facility Survey, Equipment Evaluation, and Medical Physicist Qualification Requirements under MQSA” document issued on November 6, 2000

For questions regarding this document contact Walid Mourad at 301-594-3332 or by email at wgm@cdrh.fda.gov.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health
Inspection and Compliance Branch
Division of Mammography Quality and Radiation Programs
Office of Communication, Education, and Radiation Programs
Contains Nonbinding Recommendations

Preface

Public Comment

Written comments and suggestions may be submitted at any time for Agency consideration to the Division of Dockets Management, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-305), Rockville, MD, 20852. When submitting comments, please refer to the exact title of this guidance document. Comments may not be acted upon by the Agency until the document is next revised or updated.

Additional Copies

Additional copies are available from the Internet at: http://www.fda.gov/cdrh/mammography, or to receive this document by fax, call the CDRH Facts-On-Demand system at 800-899-0381 or 301-827-0111 from a touch-tone telephone. Press 1 to enter the system. At the second voice prompt, press 1 to order a document. Enter the document number 6409 followed by the pound sign (#). Follow the remaining voice prompts to complete your request.
## Table of Contents

Introduction..................................................................................................................................... 4

The Least Burdensome Approach................................................................................................... 5

Background..................................................................................................................................... 5

MQSA Requirements for the Mammography Facility Survey ....................................................... 6

MQSA Requirements for the Mammography Equipment Evaluations (MEE) .............................. 12

MQSA Medical Physicists Qualification Requirements .............................................................. 15

Additional Guidance..................................................................................................................... 18

Alternative Initial Qualification.................................................................................................... 18

Inspection Questions Related to the Physicist’s Qualifications ................................................... 24

Requirement for the Medical Physicist’s Survey and Mammography Equipment Evaluations... 26

QC Tests - Annual ........................................................................................................................ 27

MQSA Personnel Requirements For Medical Physicists ............................................................. 31

Attestation Form ........................................................................................................................... 33
Guidance for Industry and FDA Staff

Mammography Facility Surveys,
Mammography Equipment Evaluations, and
Medical Physicist Qualification
Requirements under MQSA

This guidance represents the Food and Drug Administration's (FDA's) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the appropriate number listed on the title page of this guidance.

Introduction

This document is intended to provide guidance to mammography facilities, medical physicists, and FDA staff. It represents the Food and Drug Administration’s (FDA) current thinking on the final regulations implementing the Mammography Quality Standards Act (MQSA) (Public Law 102-539). This document revises the previous guidance document of the same title issued on November 6, 2000 and addresses:

1. The elements that make up the annual physics survey,
2. The elements that make up the mammography equipment evaluation (MEE), and
3. Medical physicist qualification requirements.

The regulations covering these three areas are included as Attachments A, B, and C for the convenience of the reader. Most of the citations referenced in this document may be found in one of those three attachments.

FDA's guidance documents, including this guidance, do not establish legally enforceable responsibilities. Instead, guidances describe the Agency's current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in Agency guidances means that something is suggested or recommended, but not required.
Under its own authority, a State may impose more stringent requirements beyond those specified under MQSA and its implementing regulations. A facility may want to check with its State or local authorities regarding their requirements.

The Least Burdensome Approach

We believe we should consider the least burdensome approach in all areas of medical device regulation. This guidance reflects our careful review of the relevant scientific and legal requirements and what we believe is the least burdensome way for you to comply with those requirements. However, if you believe that an alternative approach would be less burdensome, please contact us so we can consider your point of view. You may send your written comments to the contact person listed in the preface to this guidance or to the CDRH Ombudsman. Comprehensive information on CDRH’s Ombudsman, including ways to contact him, can be found on the Internet at http://www.fda.gov/cdrh/ombudsman/.

Background

MQSA was signed into law on October 27, 1992, to establish national quality standards for mammography. The MQSA required that to provide mammography services legally after October 1, 1994, all facilities, except facilities of the Department of Veterans Affairs, must be accredited by an approved accreditation body and certified by the Secretary of Health and Human Services (the Secretary) or by an approved State certification body. The authority to approve accreditation bodies, State certification bodies, and to certify facilities was delegated by the Secretary to the FDA. On October 28, 1997, the FDA published the MQSA final regulations in the Federal Register. The FDA compiled all final guidance related to MQSA into a computerized searchable Policy Guidance Help System (PGHS) in November 1998. The PGHS is available on the Internet at: www.fda.gov/cdrh/mammography/robohelp/start.htm

This guidance document serves to update the PGHS and the previous guidance document of the same title issued on November 6, 2000. Guidance information is periodically updated. Individuals wishing to get automatic notification of such updates may subscribe to our E-mail ListServ by visiting http://list.nih.gov/cgi-bin/wa?SUBED1=mammography_cdrh-l&A=1 and follow the directions there.

On October 28, 1997, the Food and Drug Administration (FDA) published the final regulations under the MQSA. These regulations require each certified mammography facility to utilize the services of a qualified medical physicist to survey the facility’s equipment and to oversee the equipment-related quality control (QC) program used by the facility (21 CFR 900.12(d),(e); see Attachment A). The facility is also required to have any equipment that is new to the facility, has been reassembled, or has undergone any major repair (including component replacement) evaluated by a medical physicist (21 CFR 900.12(e)(10); see Attachment A).

These regulations, and MQSA itself, require that each certified facility undergo an annual on-site physics consultation and evaluation survey performed by a qualified medical physicist. The
physicist’s survey must include several specific items and the physicist must provide the facility with a report outlining the testing and results of the survey (21 CFR 900.12(e)(9)).

The regulations also require that a medical physicist perform mammography equipment evaluations (MEE) on x-ray units and film processors, whenever such evaluations are necessary (21 CFR 900.12(e)(10)). This guidance includes a brief discussion of the requirements and scope of the survey and the MEE are included.

Before a medical physicist can independently conduct either the annual survey or the MEE, he or she must meet the initial and continuing education and experience requirements under the final regulations (21 CFR 900.12(a)(3)). This guidance reviews these requirements in the section dedicated to the physicist qualifications.

For more detailed information, please refer to the PGHS on the MQSA Internet site, [http://www.fda.gov/cdrh/mammography/](http://www.fda.gov/cdrh/mammography/)

**MQSA Requirements for the Mammography Facility Survey (see Attachments A and B)**

This section reviews the following:
- The completion and the content of the annual survey report, and
- Items the MQSA inspectors routinely look for when reviewing the annual survey report during inspections.

**Frequency of the Survey**

The medical physicist’s survey must be performed at least annually (21 CFR 900.12(d)(1)(iii) in Attachment A). MQSA inspectors are instructed that the facility meets this requirement if, at the time of the inspection, the most recent survey was conducted within 14 months of the previous survey and within 14 months of the current inspection. FDA selected this approach to provide facilities and physicists some flexibility in scheduling the surveys.

**What a Complete Survey Must Include**

The medical physicist is responsible for performing the facility’s annual survey and sending the survey report to the facility within 30 days after conducting the survey.

The regulations (21 CFR 900.12(e)(9)) contain a listing of the required testing and evaluation. The medical physicist performing or supervising the survey must date and sign the survey report, and identify other individual(s) who participated in the survey under the direct supervision of the medical physicist. If the survey is done over a period of time, the physicist must indicate in the report the dates of completion of the individual parts. While a report may contain both the survey and report dates, the survey date(s) must be clearly identified (21 CFR 900.12(e)(9)(v)). As discussed above, the physicist must perform the survey at least annually, and no part of the
survey can be more than 14 months old at the time of the inspection or more than 14 months from the date it was conducted during the previous survey.

The survey must contain the following (21 CFR 900.12(e)(5) in Attachment B):

1. All testing specified in the list of the annual QC tests:
   - Automatic exposure control (AEC) performance,
   - Kilovoltage peak (kVp) accuracy and reproducibility,
   - System resolution test,
   - Half-value layer (HVL) test,
   - Coefficient of variation (COV) for the breast entrance air kerma,
   - COV for the AEC reproducibility,
   - Average glandular dose calculation,
   - X-ray/light-field (where applicable)/image receptor alignment and image receptor/compression paddle alignment,
   - Screen speed uniformity,
   - System artifacts,
   - Radiation output,
   - Decompression (compression release),

The quality assurance program for non screen-film units (such as full field digital mammography (FFDM) systems) must be substantially the same as the one specified by the image receptor manufacturer.

2. The phantom image quality test described under the weekly quality control requirements (the physicist must perform the phantom image test for each unit evaluated during the survey) (21 CFR 900.12(e)(9) in Attachment A).

3. An evaluation of the facility quality control testing performed since the last survey and any written documentation regarding corrective actions taken, including the results of any such corrective actions.

The survey report must contain the following:

- A summary of the annual test results listed above, which should include pass/fail designations and numerical results, where applicable,
- A summary of the evaluation of the facility QC testing (other than annual) with any recommendations for necessary improvements and/or corrective actions, as needed,
- The date of the survey,
- The name(s) of the medical physicist performing or supervising the survey, as well as any other individual(s) participating in the survey under the direct supervision of the medical physicist.

The survey report must contain sufficient information to document that each test was conducted according to the requirements (21 CFR 900.12(e)(9)(iii)). For example, when reporting the dose calculations, the report should contain information regarding the phantom used and the kVp at which the HVL and the dose were obtained. If such information is not included, then copies of
the data collected during the survey showing all measurement parameters should be provided along with the report.

Table 1 lists the required testing that must be addressed in the survey. Each item is listed by its common name and the subpart of 21 CFR 900.12(e) where the requirement is listed. This table is adapted from one included in the “The Mammography Quality Standards Act Policy Guidance Help System (PGHS),” referenced above.

Timeliness of the Survey Report

The physicist’s survey report must be sent to the facility within 30 days of the survey (21 CFR 900.12(e)(9)(iv) in Attachment A). However, it is imperative that the medical physicist notifies the facility immediately of any test failures or problems. Failures or problems concerning QC tests referenced in 21 CFR 900.12(e)(8)(ii)(B) must be corrected within 30 days of the test date. However, facilities are required to correct all problems in the tests listed below (see 21 CFR 900.12(e)(8)(ii)(A)) “before any further examinations are performed or any films are processed using the component of the mammography system that failed the test....”

- Daily QC tests (e)(1),
  - Base plus fog
  - Mid-density
  - Density difference
- Weekly QC tests (e)(2),
  - Phantom image quality (also performed as a part of the physicist survey)
- Semiannual QC tests (e)(4)
  - Darkroom fog (e)(4)(i),
  - Screen-film contact (e)(4)(ii),
  - Compression device performance (e)(4)(iii),
- Annual QC tests (e)(5)
  - Dose (e)(5)(vi),
- Other modalities (e)(6), and
- Mobile units (e)(7)

If the physicist becomes aware of problems requiring immediate attention during the course of the survey (whether these problems are encountered in the annual tests or not), it is imperative that the physicist notifies the facility immediately. If the violations require repair within 30 days, the physicist should inform the facility about these problems in a timely fashion. The physicist is encouraged to work with the facility to ensure that any problems found are corrected. One mechanism to aid in this process would be for the physicist, immediately after the completion of the survey to provide the facility with a list of the tests that failed and any additional problems found, since the time limit begins from the test date (or discovery of the problem) and not from the facility receipt of the survey report.

Calibration of Air Kerma Measuring Instruments

The air kerma measuring instruments used by the medical physicist must be calibrated at least once every two years and each time the instrument is repaired (21 CFR 900.12(e)(12)). The
instrument must be calibrated to an accuracy of ± 6 percent (95 percent confidence level) in the mammography energy range. The calibration must be traceable to a national standard, and occur at the National Institute for Science and Technology (NIST) or a calibration laboratory that participates in a proficiency program with NIST (21 CFR 900.2(xx)). The calibration of the physicist’s instrument should have been completed within 12 months of the completion of the calibration laboratory proficiency test and that test should show the laboratory to be within ± 3% of the national standard in the mammography energy range. We recommend that the medical physicist provide information regarding the calibration of his/her air kerma measuring instruments in the survey (and MEE) reports.
## Contains Nonbinding Recommendations

Table 1: Tests Required for the Annual Survey

<table>
<thead>
<tr>
<th>Test</th>
<th>Regulatory Action Levels</th>
<th>Scope *</th>
<th>Timing of required corrective action**</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC performance capability (e)(5)(i)</td>
<td>OD exceeds the mean by more than ± 0.15 (over 2-6 cm homogeneous material thickness range), or the phantom image density at center is less than 1.20</td>
<td>All machines, all clinically used target/filter combinations, AEC modes and individually selectable detectors; kVp/Thickness tracking (2-6 cm, at appropriate kVp’s). - required in contact mode only. - mag. mode testing is required only for mammography equipment evaluations (MEE)</td>
<td>Within 30 days of the date of the test.</td>
</tr>
<tr>
<td>KVP accuracy and reproducibility (e)(5)(ii)</td>
<td>Exceeds ± 5% of indicated or selected kVp COV exceeds 0.02</td>
<td>All machines at 3 kVp’s (for accuracy) – lowest measurable clinical, most frequently used clinically, and highest clinical obtainable. (For reproducibility; at the most commonly used kVp).</td>
<td>&quot;</td>
</tr>
<tr>
<td>Focal spot (e)(5)(iii)</td>
<td>Resolution requirement: 13 lp/mm in the direction parallel to chest wall. 11 lp/mm in the direction of the anode – cathode axis.</td>
<td>All machines, all target materials, focal spots, and screen/film combinations used clinically - Contact mode: Most used SID - Mag mode: for SID w/mag value closest to 1.5</td>
<td>&quot;</td>
</tr>
<tr>
<td>HVL (e)(5)(iv)</td>
<td>See table in regulations</td>
<td>All machines, all clinically used target-filter combinations</td>
<td>&quot;</td>
</tr>
<tr>
<td>Air kerma and AEC reproducibility (e)(5)(v)</td>
<td>Reproducibility COV exceeds 0.05</td>
<td>All machines</td>
<td>&quot;</td>
</tr>
<tr>
<td>Dose (e)(5)(vi)</td>
<td>Exceeds 3.0 mGy (0.3 rad) per exposure</td>
<td>All machines, all clinically used screen/film combinations, targets, &amp; filters used for the standard breast</td>
<td>Before further examinations are performed with unit</td>
</tr>
<tr>
<td>X-ray field / light field / compression device alignment (e)(5)(vii)</td>
<td>Exceeds 2% SID at chest wall Paddle visible on image or paddle outside IR &gt; 1%</td>
<td>All machines, all combinations of collimators, image receptor sizes, targets, and focal spots clinically used for full-field imaging in the contact mode</td>
<td>Within 30 days of the date of the test</td>
</tr>
<tr>
<td>Screen speed uniformity (e)(5)(viii)</td>
<td>OD variation exceeds 0.30 from the maximum to the minimum</td>
<td>All cassettes – may be grouped by size and speed – limit holds within groups – groups must be identifiable to the technologist</td>
<td>&quot;</td>
</tr>
<tr>
<td>System artifacts (e)(5)(ix)</td>
<td>Determined by physicist</td>
<td>All machines, all clinically used cassette sizes, focal spots &amp; targets and filters (See Approved Alt. Std., July 2005). All processors (including those at remote sites)</td>
<td>&quot;</td>
</tr>
<tr>
<td>Radiation output (e)(5)(x)</td>
<td>Less than 7.0 mGy/sec</td>
<td>All machines</td>
<td>&quot;</td>
</tr>
<tr>
<td>Automatic decompression control (e)(5)(xi)</td>
<td>Failure of override or manual release or status indication</td>
<td>All machines (if auto is provided)</td>
<td>&quot;</td>
</tr>
<tr>
<td>Any applicable tests for other modalities (e)(6)</td>
<td>Action levels not substantially the same as those specified by equipment manufacturers</td>
<td>All machines</td>
<td>Before further examinations are performed with unit</td>
</tr>
<tr>
<td>Phantom image quality test (e)(9) see (e)(2)</td>
<td>As specified by the facility’s accreditation body (21 CFR 900.4(d)(2))</td>
<td>All machines, all target-filter combinations, all screen-film combinations used clinically for the average breast</td>
<td>Before further examinations are performed with unit</td>
</tr>
</tbody>
</table>

* Many of the items in this column are discussed in more detail in the Policy Guidance Help System (PGHS) currently on FDA’s web site.

** Refer to 21 CFR 900.12(e)(8)(ii)(A) or (B) as applicable
Evaluation of the Survey Report by the MQSA Inspector

Inspection Questions Related to the Survey

We have generated the following checklist from questions covering the physicist survey that will normally be addressed during the annual MQSA inspection. Included are items relevant to the inspector’s evaluation of the survey, the physicist’s qualifications, and the facility response to any physicist recommendations.

- Survey report available?
- Date of previous survey
- Date of current survey
- Dose value (mrad) reported
- C/A taken before resuming clinical use?
- Survey conducted, assisted, or supervised by (names)
- Survey complete?
  - Pass/fail list
  - Recommendations for failed items
  - Physicist’s evaluation of technologist’s QC tests
    ♦ Processor QC? [for each processor]
    ♦ Phantom image? [for each x-ray unit]
    ♦ Repeat analysis?
    ♦ Analysis of fixer retention? [for each processor]
    ♦ Darkroom fog? [for each darkroom]
    ♦ Screen-film contact? [for all cassettes]
    ♦ Compression? [for each x-ray unit]
  - Collimation
    ♦ X-ray field - light field alignment
    ♦ X-ray field - image receptor alignment
    ♦ Compression device/image receptor edge alignment (chest wall)
  - Focal spot size/resolution measurement
    ♦ Done for all clinically used focal spots?
      - Numerical Results Given?
  - kVp Accuracy
    ♦ Done at the lowest clinical value measurable, most often used clinically, and highest available clinical kVp?
      - Numerical results given?
  - kVp Reproducibility
    ♦ Done at the kVp most commonly used clinically? [Regulations specify additional kVp’s.]
      - Numerical results given?
  - Beam quality (HVL) measurement
    ♦ Done at the kVp most commonly used clinically?
      - Numerical results given?
  - AEC performance
    ♦ Reproducibility
MQSA Requirements for the Mammography Equipment Evaluations (MEE) (see Attachment A)

When a mammography facility installs new radiographic equipment (x-ray units or processors), the new equipment must be evaluated by a qualified medical physicist and the accreditation requirements of the facility’s accreditation body must be met before the unit is placed into service (21 CFR 900.12(e)(10)). In this context, “new” means “new to the facility” and, therefore, includes used equipment. Mammography equipment evaluations must also be
performed whenever equipment is disassembled and then reassembled at the same or a new location or whenever a major component is changed or repaired. The MEE is required even if a full survey has recently been completed to verify that all functions, which may have been affected by the change or repair, have been successfully restored.

**Scope of the MEE**

With respect to testing of the equipment, the MEE is more extensive than the survey. It may be regarded as an “acceptance” test for the equipment and an annual survey alone is not sufficient to meet this requirement. The MEE must address all applicable requirements under the equipment section of the regulations (21 CFR 900.12(b)) as well as all applicable QC requirements and testing under 21 CFR 900.12(e), including applicable daily, weekly, quarterly, semiannual, and annual QC tests. Such testing is only applicable to the specific equipment that is repaired, replaced, re-assembled, or added and it is not applicable to other equipment in the facility that has not been affected.

**A. For a newly installed or re-assembled x-ray unit,** the medical physicist must:

1. Perform all the annual tests listed in section (e)(5) [except (e)(5)(viii), which need not be included if the new unit is not the first one to be accredited in the facility unless new cassettes are being added], the “other modality” tests listed in section (e)(6) (if applicable), the phantom image test listed in section (e)(2), the compression force test test listed in section (e)(4)(iii); and

2. Verify that the new x-ray unit meets the equipment standards listed in sections (b)(1-10). Furthermore, if the new unit is the first and/or the only one at the facility, then Sections (b)(11), (b)(12), (b)(14), and (b)(15), which relate to the screen-film combination and the lighting and viewing conditions used at the facility, respectively, must also be verified.

**B. For a newly installed or reassembled processor,** the medical physicist must perform the following tests/tasks:

1. Sensitometric strip as described in 21 CFR 900.12(e)(1)
2. Phantom image quality as described in 21 CFR 900.12(e)(2)
3. System artifact evaluation as described in 21 CFR 900.12(e)(5)(ix)
4. Dose determination as described in 21 CFR 900.12(e)(5)(vi) – if clinical techniques increase significantly
5. Verification of the appropriate processing solutions as described in 21 CFR 900.12(b)(13).

We also recommend that the medical physicist conduct the “Darkroom Fog” test if the integrity of the darkroom is compromised, and to conduct the fixer retention analysis test, if deemed necessary.

Each processor used clinically must have an MEE, even those at remote sites (if any).
C. For a newly installed or reassembled laser printer, the medical physicist needs to follow the applicable FFDM QC manual.

Examples of major changes or repairs that would call for an MEE include, but are not limited to:
- Replacement of an x-ray tube, collimator, filter, AEC, or AEC sensor.
- A total overhaul of the processor.

Routine processor preventive maintenance, pump replacement, replacement of the developer or fixer racks, replacement of the control board or changes in chemistry brand are not considered to be major changes or repairs and, consequently, would not require evaluation by a medical physicist.

These evaluations are used by the facility, its accreditation body, and the MQSA inspector to determine whether the new or changed equipment meet the requirements of applicable standards in 21 CFR 900.12(b) and (e). Consequently, the physicist should provide the facility with sufficient documentation that clarifies both the testing performed and the test results. The medical physicist (after consultation with the FDA, if necessary) should decide which tests need to be performed following a particular repair, and should be prepared to explain the rationale behind his or her decision. Before the new or changed equipment is put into service for patient examinations or processing mammograms, the facility must correct all problems relating to the regulations (21 CFR 900.12(e)(10)). There is no provision for a 30-day correction period such as with some QC and physics survey test results.

To get a more detailed list of items/tests that are defined as major repairs and or other tests that require the physicist to conduct in person, consult our PGHS, which also provides guidance on many related topics.

Note also that the 1999 ACR QC manual provides Equipment Evaluation forms for the physicists to use. These forms list all the MQSA requirements in a table format that is easy to review and evaluate.

For More Information

FDA maintains an MQSA Internet site at http://www.fda.gov/cdrh/mammography/. The site contains many useful items, including current information about the mammography program and the on-line Policy Guidance Help System. If you have questions on how to prepare for inspections, call FDA's Facility Hotline at (800) 838-7715, or FAX your request to (410) 290-6351.
MQSA Medical Physicists Qualification Requirements (see Attachment C)

During the annual MQSA inspection, the inspector will evaluate the medical physicist’s qualifications against the requirements in the MQSA and its implementing regulations (see 21 CFR 900.12(a)(3) in Attachment C). All medical physicists, including those who were board certified, State licensed, or State approved prior to April 28, 1999, will be evaluated.

The qualifications for the medical physicist are relatively complicated because the initial requirements may vary depending upon qualification date. As an aid to understanding them, we have separated the medical physicist section into three parts.

A. The requirements for those physicists who are qualifying through the “master’s degree or higher” route
B. The requirements for those who are qualifying through the “alternative initial requirements” approach covering education, training, and experience
C. The continuing qualification requirements applicable to all physicists

All qualifying medical physicists must demonstrate compliance with either “A” or “B” below. The continuing education and experience requirements covered in “C” are applicable to all physicists.

A. All medical physicists qualifying under the “master’s degree or higher” route must demonstrate:

1. a. **Licensure or approval:** Be licensed or approved by a State to perform mammography surveys.

    **OR**

    b. **Board Certification:** Be certified in diagnostic medical physics or medical physics by one of the following:

       i. The American Board of Radiology (ABR)
       ii. The American Board of Medical Physics (ABMP)

    **AND**

2. Education, training, and experience:

   a. **Degree:** Have a Master’s degree or higher in a physical science with at least 20 semester hours (30 quarter hours) of graduate or undergraduate physics.

   **AND**
b. **Survey Training:** Have at least 20 contact hours of mammography facility survey training.

**AND**

c. **Initial Experience:** Have the experience of conducting surveys of at least one mammography facility and a total of at least 10 mammography units.

B. Certain medical physicists may have qualified under the interim regulations before April 28, 1999, through the State approval or licensing mechanism or through the professional certification route without having the appropriate degree to meet the final regulations as described above. Such medical physicists may qualify under the “**Alternative Initial Qualifications**” route. Such individuals must demonstrate that, by April 28, 1999, they had achieved compliance with the following:

1. a. **Licensure or approval:** Be licensed or approved by a State to perform mammography surveys.

**OR**

b. **Board Certification:** Be certified in diagnostic medical physics or medical physics by one of the following:

i. The American Board of Radiology (ABR)

ii. The American Board of Medical Physics (ABMP)

**AND**

2. Education, training, and experience:

   a. **Degree:** Have a bachelor’s degree in a physical science with at least 10 semester hours (15 quarter hours) of graduate or undergraduate physics. (This would include individuals having advanced degrees in non-physical science fields.)

   **AND**

   b. **Survey Training:** Have at least 40 contact hours of mammography facility survey training. This training must have occurred after fulfilling the degree requirement in 2.a.

   **AND**

   c. **Initial Experience:** Have the experience of conducting surveys of at least one mammography facility and a total of at least 20 mammography units. This initial experience must have occurred after fulfilling the degree requirement in 2.a.
C. All medical physicists must meet the following requirements:

1. **New Mammographic Modality:** Before a physicist may begin independently performing surveys or equipment evaluations on any mammographic modality in which the physicist was not previously trained (e.g., xeromammography, digital mammography, screen-film mammography), the physicist must have at least 8 hours of training in the modality.

AND

2. **Continuing Experience:** The physicist must have conducted a minimum of two mammography facility surveys and a total of six mammography unit surveys (or equipment evaluations which cover all of the equipment survey items) during the 24 months immediately preceding the date of the facility's annual MQSA inspection, or the last day of the calendar quarter preceding the inspection, or any date in between the two.

   *The starting date for this requirement is the date on which the physicist initially qualifies to work independently. Failure to meet the physicist’s continuing experience requirement will not be considered a noncompliance until 24 months after the physicist’s starting date.*

AND

3. **Continuing Education:** Have taught or completed at least 15 continuing education units in medical physics or mammography during the 36 months immediately preceding the date of the facility's annual MQSA inspection, or the last day of the calendar quarter preceding the inspection, or any date in between the two. CEUs earned through teaching a course can be counted only once toward meeting the 15 units required in any 36-month period. While the regulations state that the continuing education must include training appropriate to each mammographic modality evaluated by the medical physicist, FDA will delay enforcement of the mammography modality specific continuing education requirement indefinitely.

   *The starting date for this requirement is the date on which the physicist initially qualifies to work independently. Failure to meet the physicist’s continuing education requirement will not be considered a noncompliance until 36 months after the physicist’s starting date.*

NOTE: For meeting the requirements in items A.2.b., A.2.c., B.2.b., B.2.c., and C.2., FDA allows multiple testing of the same mammography unit. However, no more than one survey of a specific facility within a 10-month period can be counted toward the total requirement, and tests of the same unit cannot be counted more than once in any consecutive 60-day period. It is important enough to repeat that, for the alternative initial qualifications route, the training and experience in items B.2.b. and B.2.c. must have been obtained after the qualifying degree requirements are satisfied and before April 28, 1999.
Additional Guidance

Alternative Initial Qualification

This area is of particular concern for some medical physicists. Those who qualified under the interim regulations using only the state licensure or approval mechanism and those using the professional certification provision who do not meet the degree requirements under the April 28, 1999, regulations must meet the requirements of the “Alternative Initial Qualifications.” This provision specifies that, before these individuals can perform MQSA facility surveys, they must meet the following requirements:

- Have a bachelor’s degree or higher, in a physical science
- Have a minimum of 10 semester hours (or equivalent) of college level physics
- Have 40 contact hours of documented specialized training in conducting mammography facility surveys
- Have performed surveys on at least one mammography facility and a total of at least 20 mammography units
- Have obtained the initial survey training and experience after meeting the degree requirement

All of the above must have been completed by the April 28, 1999, deadline.

Qualifying Degree

All qualifying degrees must be from the physical sciences. In this context, a physical science degree means a degree in one of the specialties or subspecialties of physics, chemistry, radiation science, or engineering. A degree in all subspecialties in radiation science that involve the study or use of radiation may be considered as a radiation science degree.

Again, for those physicists qualifying with a bachelor’s degree, both the 40 hours of training and the experience requirements must have been met after completing the degree requirements.

Specialized Training

Physicists may use various types of training to meet the requirement for specialized training in conducting surveys, including continuing education units (CEU), formal academic training, or other types of training programs.

For meeting the continuing education requirement for physicists, FDA accepts CEU credits or units related either to the diagnosis and/or treatment of breast disease or to areas that will aid medical physicists in improving the quality of the survey. To satisfy the specialized survey training requirements, CEUs must be specifically related to technical or quality assurance topics pertinent to mammography facility surveys. Therefore, not all CEUs acceptable as continuing education units will satisfy the requirement for specialized training.
Physicists who qualified and obtained their survey training prior to April 28, 1999, may count the survey training for both CEUs and the "specialized training in conducting surveys" requirement. However, physicists who completed their qualifications after April 28, 1999, may only use the survey training to meet their initial requirements and may not use the training as CEUs.

Physicists who originally qualified using the education, training, and experience route under the interim regulations will meet the final regulations requirements if their experience included at least 10 mammography unit surveys and one complete facility survey, including the evaluation of technologist QC records.

**Direct Supervision**

After April 28, 1999, the regulations require that the initial survey experience be under the direct supervision of a medical physicist who qualified under 21 CFR 900.12(a)(3)(i) and (iii) (see Attachment C). This means that after that date, physicists who qualified under the “alternate initial qualifications” (21 CFR 900.12(a)(ii)) will no longer be able to provide the direct supervision required for the initial or requalification experience requirement. Physicists who initially qualify under the alternative route, and who subsequently upgrade their educational background and/or their professional certification status so that they now qualify under the requirements of 21 CFR 900.12(a)(3)(i) and (iii), may provide this required supervision. The qualifications of such individuals are equal to those who initially qualify under 21 CFR 900.12(a)(3)(i) and (iii). However, the initial qualification date for these physicists will remain unchanged.

MQSA requires that the survey (or mammography equipment evaluation) be conducted by or under the direct supervision of a medical physicist. The goal of direct supervision is to provide reasonable assurance that any mistakes made by the supervisee are corrected before program reviews or tests are completed.

For the physics survey and/or mammography equipment evaluation, direct supervision means that the supervisor (if the supervision occurs after 4/28/99, the supervising medical physicist must have qualified under the master’s or higher route) is present to observe and correct, as needed, the performance of the supervisee (21 CFR 900.2(o)(2)). This means that the supervisor needs to be in the room during the performance of the individual equipment tests to assure that any mistakes made by the supervisee are corrected before the test is completed.

Furthermore, when conducting a survey, the supervisor and supervisee must jointly review the QC program records. The supervisor does not have to be present when the supervisee initially reviews the QC program records. However, the supervisor must review, discuss, confirm, and if necessary, correct the findings made by the supervisee prior to either the initial or final survey report being issued.

**New Mammographic Modality Training**
After April 28, 1999, before a medical physicist may begin independently surveying or performing equipment evaluations on a new mammographic modality for radiography of the breast, he or she must obtain 8 hours of training in surveying that new mammographic modality (21 CFR 900.12(a)(3)(iii)(C)). FDA defines a new modality as a technology for which the physicist has not been previously trained. If the physicist started using this mammographic modality before April 28, 1999, the 8-hour training requirement does not apply. The physicist can obtain the required training from many sources, including special training courses, continuing education, and training provided by the manufacturer of the mammographic modality.

**Initial and Continuing Experience**

FDA recognizes that some physicists may be unable to visit multiple facilities to meet the experience requirements. FDA, therefore, allows the survey of the same facility and the same mammography units to count towards the total requirements for initial, continuing, and re-qualification (21 CFR 900.12(a)(3)(iv)) requirements. However, there are restrictions on the frequency under which such re-surveying will be allowed. For the unit survey requirements in each of these categories, physicists can count no more than one survey of any single unit in any 60-day period towards the total. For both the continuing experience and re-qualification requirements, the physicist can count no more than one survey of a specific facility in any 10-month period.

**Continuing Education**

The medical physicist must also meet specific continuing education requirements. The medical physicist must have completed at least 15 CEUs in the 36 months preceding the inspection (or the last day of the calendar quarter preceding the inspection or any date in between the two). As discussed above, all CEUs related to the diagnosis or treatment of breast disease or other areas that will aid facility personnel in improving the quality of mammography may be acceptable toward meeting the continuing education requirement. Diagnostic medical physics continuing education that is not directly related to mammography or general continuing education in mammography that is unrelated to medical physics may also be acceptable. While the regulations state that the continuing education must include training appropriate to each mammographic modality evaluated by the medical physicist, FDA will delay enforcement of the mammography modality specific continuing education requirement indefinitely.
Documentation

It is the responsibility of the facility to have adequate documentation available to establish the physicist’s qualifications. This documentation must include information covering the initial qualifications, continuing experience, and continuing education for the medical physicist (21 CFR 900.12(a)(4)). The physicist should assist in this process by providing the necessary materials to each facility where the physicist provides professional services. At the time of the inspection, the continuing education and experience for the medical physicist must include 15 CEUs in the previous 36 months and the survey of at least two facilities and six units in the previous 24 months, respectively. The medical physicist should be aware that each facility may elect to maintain its personnel continuing experience and continuing education records on different time schedules and should attempt to provide the necessary information to each facility in a timely manner. Table 2 lists examples of acceptable documentation for the medical physicist.
## Contains Nonbinding Recommendations

### Table 2: Acceptable Documentation for the Medical Physicist’s Qualifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State Licensure or Approval</td>
<td>1. State license or approval/copy with expiration date</td>
<td>1. State license and/or training/copy with expiration date</td>
<td>1. State license and/or training/copy with expiration date</td>
</tr>
<tr>
<td></td>
<td>2. Confirming letter from State licensing board</td>
<td>2. Confirming letter from State licensing board</td>
<td>2. Confirming letter from State licensing board</td>
</tr>
<tr>
<td></td>
<td>3. FDA Approval Letter</td>
<td>3. FDA Approval Letter</td>
<td>3. FDA Approval Letter</td>
</tr>
<tr>
<td>Board Certification (ABR or ABMP)</td>
<td>1. Original/copy of certificate</td>
<td>1. Original/copy of certificate</td>
<td>1. Original/copy of certificate</td>
</tr>
<tr>
<td></td>
<td>2. Confirming letter from certifying board</td>
<td>2. Confirming letter from certifying board</td>
<td>2. Confirming letter from certifying board</td>
</tr>
<tr>
<td></td>
<td>5. FDA Approval Letter</td>
<td>5. FDA Approval Letter</td>
<td>5. FDA Approval Letter</td>
</tr>
<tr>
<td>Degree in a physical science-final regs (Master’s path)</td>
<td>1. Original/copy of diploma</td>
<td>1. Original/copy of diploma</td>
<td>1. Original/copy of diploma</td>
</tr>
<tr>
<td>(Bachelor’s pathway -alternative)</td>
<td>2. Confirming letter from college or university</td>
<td>2. Confirming letter from college or university</td>
<td>2. Confirming letter from college or university</td>
</tr>
<tr>
<td></td>
<td>3. FDA Approval Letter</td>
<td>3. FDA Approval Letter</td>
<td>3. FDA Approval Letter</td>
</tr>
<tr>
<td>Initial physics education-final regs (10 semester hours -alternative)</td>
<td>1. College or university transcripts</td>
<td>1. College or university transcripts</td>
<td>1. College or university transcripts</td>
</tr>
<tr>
<td></td>
<td>2. Confirming letter from college or university</td>
<td>2. Confirming letter from college or university</td>
<td>2. Confirming letter from college or university</td>
</tr>
<tr>
<td></td>
<td>3. Master or Bachelor degree specifically in physics</td>
<td>3. Master or Bachelor degree specifically in physics</td>
<td>3. Master or Bachelor degree specifically in physics</td>
</tr>
<tr>
<td></td>
<td>4. FDA Approval Letter</td>
<td>4. FDA Approval Letter</td>
<td>4. FDA Approval Letter</td>
</tr>
<tr>
<td>Survey Training-final regs (20 contact hours)</td>
<td>1. Attestation</td>
<td>1. Letter or other document from training program</td>
<td>1. Letter or other document from training program</td>
</tr>
<tr>
<td>(40 contact hours -alternative)</td>
<td>2. Letter or other document from training program</td>
<td>2. CME/CEU in mammography or medical physics</td>
<td>2. CME/CEU in mammography or medical physics</td>
</tr>
<tr>
<td></td>
<td>3. CME/CEU in mammography or medical physics</td>
<td>3. Letter or other document confirming in-house or formal training</td>
<td>3. Letter or other document confirming in-house or formal training</td>
</tr>
<tr>
<td></td>
<td>4. Letter or other document confirming in-house or formal training</td>
<td>4. Training gained performing surveys</td>
<td>4. Training gained performing surveys</td>
</tr>
<tr>
<td></td>
<td>5. Training gained performing surveys</td>
<td>5. FDA Approval Letter</td>
<td>5. FDA Approval Letter</td>
</tr>
<tr>
<td></td>
<td>6. FDA Approval Letter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Experience-final regs (1 facility-10 units)</td>
<td>1. Attestation</td>
<td>1. Copy or coversheet of survey</td>
<td>1. Copy or coversheet of survey</td>
</tr>
<tr>
<td>(1 facility-20 units -alternative)</td>
<td>2. Copy or coversheet of survey</td>
<td>2. Letter from facility or listing from company providing the physics survey services documenting performance of survey done</td>
<td>2. Letter from facility or listing from company providing the physics survey services documenting performance of survey done</td>
</tr>
<tr>
<td></td>
<td>3. Letter from facility or listing from company providing the physics survey services documenting performance of survey done</td>
<td>3. FDA Approval Letter</td>
<td>3. FDA Approval Letter</td>
</tr>
<tr>
<td></td>
<td>4. FDA Approval Letter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Mammography Modality Specific training (8 hours-final regs)</td>
<td>1. Attestation</td>
<td>1. Mammography modality specific CME/CEU certificates</td>
<td>1. Mammography modality specific CME/CEU certificates</td>
</tr>
<tr>
<td></td>
<td>2. Mammography modality specific CME/CEU certificates</td>
<td>2. CME/CEU certificates plus agenda, course outline, or syllabus</td>
<td>2. CME/CEU certificates plus agenda, course outline, or syllabus</td>
</tr>
<tr>
<td></td>
<td>3. CME/CEU certificates plus agenda, course outline, or syllabus</td>
<td>3. Confirming letters from CME/CEU granting organizations</td>
<td>3. Confirming letters from CME/CEU granting organizations</td>
</tr>
<tr>
<td></td>
<td>4. Confirming letters from CME/CEU granting organizations</td>
<td>4. Letters, certificates, or other documents from manufacturers’ or other formal training courses</td>
<td>4. Letters, certificates, or other documents from manufacturers’ or other formal training courses</td>
</tr>
<tr>
<td></td>
<td>5. Letters, certificates, or other documents from manufacturers’ or other formal training courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuing Experience (2 facilities-6 units/24 months-final regs)</td>
<td>N/A</td>
<td>N/A</td>
<td>1. Copy or coversheet of survey</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Letter from facility or listing from company providing the physics survey services documenting performance of survey done</td>
</tr>
<tr>
<td>Continuing Education (15 CME/36 months)</td>
<td>N/A</td>
<td>N/A</td>
<td>1. CME/CEU certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Confirming letters from CME/CEU granting organizations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Letters, certificates, or other documents from manufacturers’ or other formal training courses</td>
</tr>
<tr>
<td>Continuing Mammographic Modality Specific Education-final regs (Enforcement delayed indefinitely)</td>
<td>N/A</td>
<td>N/A</td>
<td>1. Mammography Modality Specific CME/CEU certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. CME/CEU certificates plus agenda, course outline, or syllabus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Confirming letters from CME/CEU granting organizations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Letters, certificates, or other documents from manufacturers’ or other formal training courses</td>
</tr>
<tr>
<td>Requalification-Experience-final regs-done under direct supervision</td>
<td>N/A</td>
<td>N/A</td>
<td>1. Copy or coversheet of survey</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Letter from facility or listing from company providing the physics survey services documenting performance of survey done</td>
</tr>
</tbody>
</table>

Contains Nonbinding Recommendations

---

Table 2: Acceptable Documentation for the Medical Physicist’s Qualifications
## Contains Nonbinding Recommendations

<table>
<thead>
<tr>
<th>Requalification- Education</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>direct supervision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CME/CEU certificates</td>
</tr>
<tr>
<td>2. Confirming letters from CME/CEU granting organizations</td>
</tr>
<tr>
<td>3. Letters, certificates, or other documents from manufacturers’ or other formal training courses</td>
</tr>
</tbody>
</table>
Attestation

Individuals attempting to establish their qualifications as medical physicists may attest to certain training and experience requirements that were obtained prior to October 1, 1994. In addition, FDA will also accept attestation from medical physicists in situations where a continuing education provider does not specifically document the applicability of their CEUs to mammography. The attestation should include documentation showing the total number of CEUs earned in the program and documentation showing the total number of CEUs specific to mammography that were available. FDA will not accept attestation for establishing any qualifying degree requirements, including the required number of hours in physics, even if these conditions were satisfied prior to October 1, 1994. All attestations should be in the proper format. We have included a sample as Attachment D.

Inspection

Both MQSA and the regulations require that the survey be conducted by a medical physicist who meets specific qualification requirements. MQSA inspectors are required to confirm that the report of the annual survey is signed by (or contains the identification of) the qualified medical physicist who actually conducted or directly supervised the conduct of the survey. It is not a requirement that the report contain a handwritten signature; rather, the report must indicate the name of the fully qualified medical physicist who conducted or directly supervised the conduct of the survey. If other personnel assisted in the survey (an assistant, a trainee, or person attempting to meet the experience requirements) their name(s) must be included. In the case of such training surveys, FDA will assess only the qualifications of the supervising medical physicist during the inspection.

Inspection Questions Related to the Physicist’s Qualifications

The following items are adapted from questions the inspector will routinely complete during the annual MQSA inspection.

- **Evaluation**
  - Qualifying Degree
    - Master’s (or higher)
    - Bachelor’s
    - No Degree
  - *If you checked Master’s or higher:*
    - Initial Qualification Requirements met?
      - Certified (OR)
      - State licensed or approved
      - Master’s degree in a physical science (w/20 semester hours in physics)
      - 20 contact hours training
      - experience in conducting surveys (1 facility & 10 units)
**Contains Nonbinding Recommendations**

- **If you checked Bachelor’s:**
  - Qualified under interim rules? (prior to 4/28/99)
    - Certified (OR)
    - State licensed or approved
    - Bachelor’s degree in a physical science (w/10 semester hours in physics), (physical science: physics, chemistry, engineering, radiation science)
    - 40 contact hours training in surveys (after Bachelor’s)
    - experience in conducting surveys (after Bachelor’s), (1 facility & 20 units)

- **Date completed initial requirements**  mm/dd/yyyy

- **New Modality Training** [8 hours] (if applicable)

- **Continuing Experience adequate?** (2 facilities & 6 units/24 months)

- **Continuing Education**
  - CME/CEU Credits/year adequate? (15/36 months)
  - If “n”, then:
  - Number of CME/CEU’s in 36 months

You are reminded that all of the survey requirements in both MQSA and the regulations are applicable to each annual survey and the responsible physicist at the mammography facility. The preceding questions represent only what the inspectors will be evaluating on a routine basis. If the inspectors believe that it would be beneficial to their understanding of the performance of the facility or of the physicist, they may look for information not listed above.
**Requirement for the Medical Physicist’s Survey and Mammography Equipment Evaluations**

**21 CFR 900.12(d)(1)(iii)**

*Medical physicist. Each facility shall have the services of a medical physicist available to survey mammography equipment and oversee the equipment-related quality assurance practices of the facility. At a minimum, the medical physicist(s) shall be responsible for performing the surveys and mammography equipment evaluations and providing the facility with the reports described in paragraphs (e)(9) and (e)(10) of this section.*

**21 CFR 900.12(e)(9)**

*Surveys.*

(i) At least once a year, each facility shall undergo a survey by a medical physicist or by an individual under the direct supervision of a medical physicist. At a minimum, this survey shall include the performance of tests to ensure that the facility meets the quality assurance requirements of the annual tests described in paragraphs (e)(5) and (e)(6) of this section and the weekly phantom image quality test described in paragraph (e)(2) of this section.

(ii) The results of all tests conducted by the facility in accordance with paragraphs (e)(1) through (e)(7) of this section, as well as written documentation of any corrective actions taken and their results, shall be evaluated for adequacy by the medical physicist performing the survey.

(iii) The medical physicist shall prepare a survey report that includes a summary of this review and recommendations for necessary improvements.

(iv) The survey report shall be sent to the facility within 30 days of the date of the survey.

(v) The survey report shall be dated and signed by the medical physicist performing or supervising the survey. If the survey was performed entirely or in part by another individual under the direct supervision of the medical physicist, that individual and the part of the survey that individual performed shall also be identified in the survey report.

**21 CFR 900.12(e)(10)**

*Mammography equipment evaluations.* Additional evaluations of mammography units or image processors shall be conducted whenever a new unit or processor is installed, a unit or processor is disassembled and reassembled at the same or a new location, or major components of a mammography unit or processor equipment are changed or repaired. These evaluations shall be used to determine whether the new or changed equipment meets the requirements of applicable standards in paragraphs (b) and (e) of this section. All problems shall be corrected before the new or changed equipment is put into service for examinations or film processing. The mammography equipment evaluation shall be performed by a medical physicist or by an individual under the direct supervision of a medical physicist.
Annual quality control tests. Facilities with screen-film systems shall perform the following quality control tests at least annually:

(i) Automatic exposure control performance.
   (A) The AEC shall be capable of maintaining film optical density within $\pm 0.30$ of the mean optical density when thickness of a homogeneous material is varied over a range of 2 to 6 cm and the kVp is varied appropriately for such thicknesses over the kVp range used clinically in the facility. If this requirement cannot be met, a technique chart shall be developed showing appropriate techniques (kVp and density control settings) for different breast thicknesses and compositions that must be used so that optical densities within $\pm 0.30$ of the average under phototimed conditions can be produced.
   (B) After October 28, 2002, the AEC shall be capable of maintaining film optical density (OD) within $\pm 0.15$ of the mean optical density when thickness of a homogeneous material is varied over a range of 2 to 6 cm and the kVp is varied appropriately for such thicknesses over the kVp range used clinically in the facility.
   (C) The optical density of the film in the center of the phantom image shall not be less than 1.20.

(ii) Kilovoltage peak (kVp) accuracy and reproducibility.
   (A) The kVp shall be accurate within $\pm 5\%$ of the indicated or selected kVp at:
      (1) The lowest clinical kVp that can be measured by a kVp test device;
      (2) The most commonly used clinical kVp;
      (3) The highest available clinical kVp, and
   (B) At the most commonly used clinical settings of kVp, the coefficient of variation of reproducibility of the kVp shall be equal to or less than 0.02.

(iii) Focal spot condition. Until October 28, 2002, focal spot condition shall be evaluated either by determining system resolution or by measuring focal spot dimensions. After October 28, 2002, facilities shall evaluate focal spot condition only by determining the system resolution.
   (A) System Resolution.
      (1) Each X-ray system used for mammography, in combination with the mammography screen-film combination used in the facility, shall provide a minimum resolution of 11 Cycles/millimeters (mm) (line-pairs/mm) when a high contrast resolution bar test pattern is oriented with the bars perpendicular to the anode-cathode axis, and a minimum resolution of 13 line-pairs/mm when the bars are parallel to that axis.
      (2) The bar pattern shall be placed 4.5 cm above the breast support surface, centered with respect to the chest wall edge of the image receptor, and with the edge of the pattern within 1 cm of the chest wall edge of the image receptor.
      (3) When more than one target material is provided, the measurement in paragraph (e)(5)(iii)(A) of this section shall be made using the appropriate focal spot for each target material.
(4) When more than one SID is provided, the test shall be performed at SID most commonly used clinically.

(5) Test kVp shall be set at the value used clinically by the facility for a standard breast and shall be performed in the AEC mode, if available. If necessary, a suitable absorber may be placed in the beam to increase exposure times. The screen-film cassette combination used by the facility shall be used to test for this requirement and shall be placed in the normal location used for clinical procedures.

(B) Focal spot dimensions. Measured values of the focal spot length (dimension parallel to the anode cathode axis) and width (dimension perpendicular to the anode cathode axis) shall be within the tolerance limits specified in Table 1 [for the table, see the Code of Federal Regulations or Federal Register (Vol. 62, No. 208, page 55990)].

(iv) Beam quality and half-value layer (HVL). The HVL shall meet the specifications of Sec. 1020.30(m)(1) of this chapter for the minimum HVL. These values, extrapolated to the mammographic range, are shown in Table 2 [for the table see the Code of Federal Regulations or the Federal Register (Vol. 62, No. 208, page 55990)]. Values not shown in Table 2 may be determined by linear interpolation or extrapolation.

(v) Breast entrance air kerma and AEC reproducibility. The coefficient of variation for both air kerma and mA's shall not exceed 0.05.

(vi) Dosimetry. The average glandular dose delivered during a single cranio-caudal view of an FDA-accepted phantom simulating a standard breast shall not exceed 3.0 milligray (mGy) (0.3 rad) per exposure. The dose shall be determined with technique factors and conditions used clinically for a standard breast.

(vii) X-ray field/light field/image receptor/compression paddle alignment.

(A) All systems shall have beam-limiting devices that allow the entire chest wall edge of the x-ray field to extend to the chest wall edge of the image receptor and provide means to assure that the x-ray field does not extend beyond any edge of the image receptor by more than 2 percent of the SID.

(B) If a light field that passes through the X-ray beam limitation device is provided, it shall be aligned with the X-ray field so that the total of any misalignment of the edges of the light field and the X-ray field along either the length or the width of the visually defined field at the plane of the breast support surface shall not exceed 2 percent of the SID.

(C) The chest wall edge of the compression paddle shall not extend beyond the chest wall edge of the image receptor by more than one percent of the SID when tested with the compression paddle placed above the breast support surface at a distance equivalent to standard breast thickness. The shadow of the vertical edge of the compression paddle shall not be visible on the image.

(viii) Uniformity of screen speed. Uniformity of screen speed of all the cassettes in the facility shall be tested and the difference between the maximum and minimum optical densities shall not exceed 0.30. Screen artifacts shall also be evaluated during this test.

(ix) System artifacts. System artifacts shall be evaluated with a high-grade, defect-free sheet of homogeneous material large enough to cover the mammography cassette and shall be performed for all cassette sizes used in the facility using a grid appropriate for the cassette size being tested. System artifacts shall also be evaluated for all available focal spot sizes and target filter combinations used clinically.
Contains Nonbinding Recommendations

(x) Radiation output.
   (A) The system shall be capable of producing a minimum output of 4.5 mGy air kerma per second (513 milli Roentgen (mR) per second) when operating at 28 kVp in the standard mammography (moly/moly) mode at any SID where the system is designed to operate and when measured by a detector with its center located 4.5 cm above the breast support surface with the compression paddle in place between the source and the detector. After October 28, 2002, the system, under the same measuring conditions shall be capable of producing a minimum output of 7.0 mGy air kerma per second (800 mR per second) when operating at 28 kVp in the standard (moly/moly) mammography mode at any SID where the system is designed to operate.

(B) The system shall be capable of maintaining the required minimum radiation output averaged over a 3.0 second period.

(xi) Decompression. If the system is equipped with a provision for automatic decompression after completion of an exposure or interruption of power to the system, the system shall be tested to confirm that it provides:
   (A) An override capability to allow maintenance of compression;
   (B) A continuous display of the override status; and
   (C) A manual emergency compression release that can be activated in the event of power or automatic release failure.

21 CFR 900.12(e)(6)
Quality control tests—other modalities. For systems with image receptor modalities other than screen-film, the quality assurance program shall be substantially the same as the quality assurance program recommended by the image receptor manufacturer, except that the maximum allowable dose shall not exceed the maximum allowable dose for screen-film systems in paragraph (e)(5)(vi) of this section.

21 CFR 900.12(e)(7)
Mobile Units. The facility shall verify that mammography units used to produce mammograms at more than one location meet the requirements in paragraphs (e)(1) through (e)(6) of this section. In addition, at each examination location, before any examinations are conducted, the facility shall verify satisfactory performance of such units using a test method that establishes the adequacy of the image quality produced by the unit.

21 CFR 900.12(e)(8)
Use of test results.
(i) After completion of the tests specified in paragraphs (e)(1) through (e)(7) of this section, the facility shall compare the test results to the corresponding specified action limits; or, for nonscreen-film modalities, to the manufacturer's recommended action limits; or, for post-move, preexamination testing of mobile units, to the limits established in the test method used by the facility.

(ii) If the test results fall outside of the action limits, the source of the problem shall be identified and corrective actions shall be taken:
   (A) Before any further examinations are performed or any films are processed using the component of the mammography system that failed the test, if the failed test was that
Contains Nonbinding Recommendations

described in paragraphs (e)(1), (e)(2), (e)(4)(i), (e)(4)(ii), (e)(4)(iii), (e)(5)(vi), (e)(6), or (e)(7) of this section;

(B) Within 30 days of the test date for all other tests described in paragraph (e) of this section.
MQSA Personnel Requirements For Medical Physicists

21 CFR 900.12(a)(3)
All medical physicists conducting surveys of mammography facilities and providing oversight of the facility quality assurance program under paragraph (e) of this section shall meet the following:

21 CFR 900.12(a)(3)(i)
Initial Qualifications
(A) Be State licensed or approved or have certification in an appropriate specialty area by one of the bodies determined by FDA to have procedures and requirements to ensure that medical physicists certified by the body are competent to perform physics survey; and

(B) (1) Have a masters degree or higher in a physical science from an accredited institution, with no less than 20 semester hours or equivalent (e.g., 30 quarter hours) of college undergraduate or graduate level physics.
(2) Have 20 contact hours of documented specialized training in conducting surveys of mammography facilities.
(3) Have the experience of conducting surveys of at least 1 mammography facility and a total of at least 10 mammography units. No more than one survey of a specific unit within a period of 60 days can be counted towards the total mammography unit survey requirement. After April 28, 1999, experience conducting surveys must be acquired under the direct supervision of a medical physicist who meets all the requirements of paragraphs (a)(3)(i) and (a)(3)(iii) of this section; or

(A) Have qualified as a medical physicist under paragraph (a)(3) of this section of FDA’s interim regulations and retained that qualification by maintenance of the active status of any licensure, approval, or certification required under the interim regulations; and

(B) Prior to the April 28, 1999, have:
(1) A bachelor’s degree or higher in a physical science from an accredited institution with no less than 10 semester hours or equivalent of college undergraduate or graduate level physics,
(2) Forty contact hours of documented specialized training in conducting surveys of mammography facilities, and
(3) Have the experience of conducting surveys of at least 1 mammography facility and a total of at least 20 mammography units. No more than one survey of a specific unit within a period of 60 days can be counted towards the total mammography unit survey requirement. The training and experience requirements must be met after fulfilling the degree requirement.
Contains Nonbinding Recommendations

21 CFR 900.12(a)(3)(iii)

(A) Continuing education. Following the third anniversary date of the end of the calendar quarter in which the requirements of paragraph (a)(3)(i) or (a)(3)(ii) of this section were completed, the medical physicist shall have taught or completed at least 15 continuing education units in mammography during the 36 months immediately preceding the date of the facility’s annual inspection or the last day of the calendar quarter preceding the inspection or any date in between the two. The facility shall choose one of these dates to determine the 36-month period. This continuing education shall include hours of training appropriate to each mammographic modality evaluated by the medical physicist during his or her surveys or oversight of quality assurance programs. Units earned through teaching a specific course can be counted only once towards the required 15 units in a 36-month period, even if the course is taught multiple times during the 36 months.

21 CFR 900.12(a)(3)(iii)

(B) Continuing experience. Following the second anniversary date of the end of the calendar quarter in which the requirements of paragraph (a)(3)(i) or (a)(3)(ii) of this section were completed or of April 28, 1999, whichever is later, the medical physicist shall have surveyed at least two mammography facilities and a total of at least six mammography units during the 24 months immediately preceding the date of the facility’s annual MQSA inspection or the last day of the calendar quarter or any date in-between the two. The facility shall choose one of these dates to determine the 24-month period. No more than one survey of a specific facility within a 10-month period or a specific unit within a period of 60 days can be counted towards the total mammography unit survey requirement.

(C) Before a medical physicist may begin independently performing mammographic surveys of a new mammographic modality, that is, a mammographic modality other than one for which the physicist received training to qualify under paragraph (a)(3)(i) or (a)(3)(ii) of this section, the physicist must receive at least 8 hours of training in surveying units of the new mammographic modality.

21 CFR 900.12(a)(3)(iv) Reestablishing qualifications. Medical physicists who fail to maintain the required continuing qualifications of paragraph (a)(3)(iii) of this section may not perform the MQSA surveys without the supervision of a qualified medical physicist. Before independently surveying another facility, medical physicists must reestablish their qualifications, as follows:

(A) Medical physicists who fail to meet the continuing educational requirements of paragraph (a)(3)(iii)(A) of this section shall obtain a sufficient number of continuing education units to bring their total units up to the required 15 in the previous 3 years.

(B) Medical physicists who fail to meet the continuing experience requirement of paragraph (a)(3)(iii)(B) of this section shall complete a sufficient number of surveys under the direct supervision of a medical physicist who meets the qualifications of paragraphs (a)(3)(i) and (a)(3)(iii) of this section to bring their total surveys up to the required two facilities and six units in the previous 24 months. No more than one survey of a specific unit within a period of 60 days can be counted towards the total mammography unit survey requirement.
ATTESTATION FORM

Regarding Requirements of the Mammography Quality Standards Act

Please include as much of the following information as possible:

Name of the institution/facility where the applicable training or mammography reading/interpreting, or other activity, took place; name of the course(s) or training (where applicable); the attendance, reading/interpreting, or other activity dates; and the supervising/responsible person (where applicable) for the institution/facility.

Please provide these details in the space below. Attach additional sheets if necessary.

I, ________________________, attest that, to the best of my knowledge and my belief, the following information provided in this declaration is true and correct. I understand that FDA may request additional information to substantiate the statements made in this declaration:

____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________
____________________________________________________________________________

I understand that knowingly providing false information in a matter within the jurisdiction of an agency of the United States could result in criminal liability, punishable by up to $10,000 fine and imprisonment of up to five years, or civil liability under the MQSA, or both.

Attester's Signature and Title

_____________________
Date signed

Facility Name and Address (if applicable) including zip code:

___________________________________
___________________________________
___________________________________

Facility ID Number (if applicable) from the Facility's MQSA certificate

___________________________________